freebsd-dev/sys/dev/uart/uart_core.c

580 lines
15 KiB
C
Raw Normal View History

/*-
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
* Copyright (c) 2003 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/cons.h>
#include <sys/fcntl.h>
#include <sys/interrupt.h>
#include <sys/kdb.h>
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/reboot.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <machine/stdarg.h>
#include <dev/uart/uart.h>
#include <dev/uart/uart_bus.h>
#include <dev/uart/uart_cpu.h>
#include "uart_if.h"
devclass_t uart_devclass;
char uart_driver_name[] = "uart";
SLIST_HEAD(uart_devinfo_list, uart_devinfo) uart_sysdevs =
SLIST_HEAD_INITIALIZER(uart_sysdevs);
static MALLOC_DEFINE(M_UART, "UART", "UART driver");
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
void
uart_add_sysdev(struct uart_devinfo *di)
{
SLIST_INSERT_HEAD(&uart_sysdevs, di, next);
}
const char *
uart_getname(struct uart_class *uc)
{
return ((uc != NULL) ? uc->name : NULL);
}
struct uart_ops *
uart_getops(struct uart_class *uc)
{
return ((uc != NULL) ? uc->uc_ops : NULL);
}
int
uart_getrange(struct uart_class *uc)
{
return ((uc != NULL) ? uc->uc_range : 0);
}
2006-03-30 18:37:03 +00:00
/*
* Schedule a soft interrupt. We do this on the 0 to !0 transition
* of the TTY pending interrupt status.
*/
void
2006-03-30 18:37:03 +00:00
uart_sched_softih(struct uart_softc *sc, uint32_t ipend)
{
uint32_t new, old;
do {
old = sc->sc_ttypend;
new = old | ipend;
} while (!atomic_cmpset_32(&sc->sc_ttypend, old, new));
if ((old & SER_INT_MASK) == 0)
swi_sched(sc->sc_softih, 0);
}
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
/*
* A break condition has been detected. We treat the break condition as
* a special case that should not happen during normal operation. When
* the break condition is to be passed to higher levels in the form of
* a NUL character, we really want the break to be in the right place in
* the input stream. The overhead to achieve that is not in relation to
* the exceptional nature of the break condition, so we permit ourselves
* to be sloppy.
*/
2006-03-30 18:37:03 +00:00
static __inline int
uart_intr_break(void *arg)
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
{
2006-03-30 18:37:03 +00:00
struct uart_softc *sc = arg;
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
#if defined(KDB)
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
if (kdb_break())
return (0);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
}
#endif
if (sc->sc_opened)
2006-03-30 18:37:03 +00:00
uart_sched_softih(sc, SER_INT_BREAK);
return (0);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
}
/*
* Handle a receiver overrun situation. We lost at least 1 byte in the
* input stream and it's our job to contain the situation. We grab as
* much of the data we can, but otherwise flush the receiver FIFO to
* create some breathing room. The net effect is that we avoid the
* overrun condition to happen for the next X characters, where X is
* related to the FIFO size at the cost of loosing data right away.
* So, instead of having multiple overrun interrupts in close proximity
* to each other and possibly pessimizing UART interrupt latency for
* other UARTs in a multiport configuration, we create a longer segment
* of missing characters by freeing up the FIFO.
* Each overrun condition is marked in the input buffer by a token. The
* token represents the loss of at least one, but possible more bytes in
* the input stream.
*/
2006-03-30 18:37:03 +00:00
static __inline int
uart_intr_overrun(void *arg)
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
{
2006-03-30 18:37:03 +00:00
struct uart_softc *sc = arg;
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
if (sc->sc_opened) {
UART_RECEIVE(sc);
if (uart_rx_put(sc, UART_STAT_OVERRUN))
sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
2006-03-30 18:37:03 +00:00
uart_sched_softih(sc, SER_INT_RXREADY);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
}
UART_FLUSH(sc, UART_FLUSH_RECEIVER);
2006-03-30 18:37:03 +00:00
return (0);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
}
/*
* Received data ready.
*/
2006-03-30 18:37:03 +00:00
static __inline int
uart_intr_rxready(void *arg)
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
{
2006-03-30 18:37:03 +00:00
struct uart_softc *sc = arg;
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
int rxp;
rxp = sc->sc_rxput;
UART_RECEIVE(sc);
#if defined(KDB)
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
while (rxp != sc->sc_rxput) {
kdb_alt_break(sc->sc_rxbuf[rxp++], &sc->sc_altbrk);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
if (rxp == sc->sc_rxbufsz)
rxp = 0;
}
}
#endif
if (sc->sc_opened)
2006-03-30 18:37:03 +00:00
uart_sched_softih(sc, SER_INT_RXREADY);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
else
sc->sc_rxput = sc->sc_rxget; /* Ignore received data. */
2006-03-30 18:37:03 +00:00
return (1);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
}
/*
* Line or modem status change (OOB signalling).
* We pass the signals to the software interrupt handler for further
* processing. Note that we merge the delta bits, but set the state
* bits. This is to avoid loosing state transitions due to having more
* than 1 hardware interrupt between software interrupts.
*/
2006-03-30 18:37:03 +00:00
static __inline int
uart_intr_sigchg(void *arg)
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
{
2006-03-30 18:37:03 +00:00
struct uart_softc *sc = arg;
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
int new, old, sig;
sig = UART_GETSIG(sc);
if (sc->sc_pps.ppsparam.mode & PPS_CAPTUREBOTH) {
if (sig & UART_SIG_DPPS) {
pps_capture(&sc->sc_pps);
pps_event(&sc->sc_pps, (sig & UART_SIG_PPS) ?
PPS_CAPTUREASSERT : PPS_CAPTURECLEAR);
}
}
2006-03-30 18:37:03 +00:00
/*
* Keep track of signal changes, even when the device is not
* opened. This allows us to inform upper layers about a
* possible loss of DCD and thus the existence of a (possibly)
* different connection when we have DCD back, during the time
* that the device was closed.
*/
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
do {
old = sc->sc_ttypend;
new = old & ~SER_MASK_STATE;
new |= sig & SER_INT_SIGMASK;
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
} while (!atomic_cmpset_32(&sc->sc_ttypend, old, new));
2006-03-30 18:37:03 +00:00
if (sc->sc_opened)
uart_sched_softih(sc, SER_INT_SIGCHG);
return (1);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
}
/*
* The transmitter can accept more data.
*/
2006-03-30 18:37:03 +00:00
static __inline int
uart_intr_txidle(void *arg)
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
{
2006-03-30 18:37:03 +00:00
struct uart_softc *sc = arg;
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
if (sc->sc_txbusy) {
sc->sc_txbusy = 0;
2006-03-30 18:37:03 +00:00
uart_sched_softih(sc, SER_INT_TXIDLE);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
}
2006-03-30 18:37:03 +00:00
return (0);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
}
static int
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
uart_intr(void *arg)
{
struct uart_softc *sc = arg;
int flag = 0, ipend;
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
2006-03-30 18:37:03 +00:00
while (!sc->sc_leaving && (ipend = UART_IPEND(sc)) != 0) {
flag = 1;
if (ipend & SER_INT_OVERRUN)
uart_intr_overrun(sc);
if (ipend & SER_INT_BREAK)
uart_intr_break(sc);
if (ipend & SER_INT_RXREADY)
uart_intr_rxready(sc);
if (ipend & SER_INT_SIGCHG)
uart_intr_sigchg(sc);
if (ipend & SER_INT_TXIDLE)
uart_intr_txidle(sc);
2006-03-30 18:37:03 +00:00
}
return((flag)?FILTER_HANDLED:FILTER_STRAY);
2006-03-30 18:37:03 +00:00
}
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
2006-03-30 18:37:03 +00:00
serdev_intr_t *
uart_bus_ihand(device_t dev, int ipend)
{
switch (ipend) {
case SER_INT_BREAK:
return (uart_intr_break);
case SER_INT_OVERRUN:
return (uart_intr_overrun);
case SER_INT_RXREADY:
return (uart_intr_rxready);
case SER_INT_SIGCHG:
return (uart_intr_sigchg);
case SER_INT_TXIDLE:
return (uart_intr_txidle);
}
return (NULL);
}
int
uart_bus_ipend(device_t dev)
{
struct uart_softc *sc;
sc = device_get_softc(dev);
return (UART_IPEND(sc));
}
2006-03-30 18:37:03 +00:00
int
uart_bus_sysdev(device_t dev)
{
struct uart_softc *sc;
sc = device_get_softc(dev);
return ((sc->sc_sysdev != NULL) ? 1 : 0);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
}
int
uart_bus_probe(device_t dev, int regshft, int rclk, int rid, int chan)
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
{
struct uart_softc *sc;
struct uart_devinfo *sysdev;
int error;
sc = device_get_softc(dev);
/*
* All uart_class references are weak. Check that the needed
* class has been compiled-in. Fail if not.
*/
if (sc->sc_class == NULL)
return (ENXIO);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
/*
* Initialize the instance. Note that the instance (=softc) does
* not necessarily match the hardware specific softc. We can't do
* anything about it now, because we may not attach to the device.
* Hardware drivers cannot use any of the class specific fields
* while probing.
*/
kobj_init((kobj_t)sc, (kobj_class_t)sc->sc_class);
sc->sc_dev = dev;
if (device_get_desc(dev) == NULL)
device_set_desc(dev, uart_getname(sc->sc_class));
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
/*
* Allocate the register resource. We assume that all UARTs have
* a single register window in either I/O port space or memory
* mapped I/O space. Any UART that needs multiple windows will
* consequently not be supported by this driver as-is. We try I/O
* port space first because that's the common case.
*/
sc->sc_rrid = rid;
sc->sc_rtype = SYS_RES_IOPORT;
sc->sc_rres = bus_alloc_resource(dev, sc->sc_rtype, &sc->sc_rrid,
0, ~0, uart_getrange(sc->sc_class), RF_ACTIVE);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
if (sc->sc_rres == NULL) {
sc->sc_rrid = rid;
sc->sc_rtype = SYS_RES_MEMORY;
sc->sc_rres = bus_alloc_resource(dev, sc->sc_rtype,
&sc->sc_rrid, 0, ~0, uart_getrange(sc->sc_class),
RF_ACTIVE);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
if (sc->sc_rres == NULL)
return (ENXIO);
}
/*
* Fill in the bus access structure and compare this device with
* a possible console device and/or a debug port. We set the flags
* in the softc so that the hardware dependent probe can adjust
* accordingly. In general, you don't want to permanently disrupt
* console I/O.
*/
sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
sc->sc_bas.chan = chan;
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
sc->sc_bas.regshft = regshft;
sc->sc_bas.rclk = (rclk == 0) ? sc->sc_class->uc_rclk : rclk;
SLIST_FOREACH(sysdev, &uart_sysdevs, next) {
if (chan == sysdev->bas.chan &&
uart_cpu_eqres(&sc->sc_bas, &sysdev->bas)) {
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
/* XXX check if ops matches class. */
sc->sc_sysdev = sysdev;
sysdev->bas.rclk = sc->sc_bas.rclk;
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
}
}
error = UART_PROBE(sc);
bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
return ((error) ? error : BUS_PROBE_DEFAULT);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
}
int
uart_bus_attach(device_t dev)
{
struct uart_softc *sc, *sc0;
const char *sep;
int error;
/*
* The sc_class field defines the type of UART we're going to work
* with and thus the size of the softc. Replace the generic softc
* with one that matches the UART now that we're certain we handle
* the device.
*/
sc0 = device_get_softc(dev);
if (sc0->sc_class->size > sizeof(*sc)) {
sc = malloc(sc0->sc_class->size, M_UART, M_WAITOK|M_ZERO);
bcopy(sc0, sc, sizeof(*sc));
device_set_softc(dev, sc);
} else
sc = sc0;
/*
* Protect ourselves against interrupts while we're not completely
* finished attaching and initializing. We don't expect interrupts
* until after UART_ATTACH() though.
*/
sc->sc_leaving = 1;
2006-03-30 18:37:03 +00:00
mtx_init(&sc->sc_hwmtx_s, "uart_hwmtx", NULL, MTX_SPIN);
if (sc->sc_hwmtx == NULL)
sc->sc_hwmtx = &sc->sc_hwmtx_s;
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
/*
* Re-allocate. We expect that the softc contains the information
* collected by uart_bus_probe() intact.
*/
sc->sc_rres = bus_alloc_resource(dev, sc->sc_rtype, &sc->sc_rrid,
0, ~0, uart_getrange(sc->sc_class), RF_ACTIVE);
if (sc->sc_rres == NULL) {
2006-03-30 18:37:03 +00:00
mtx_destroy(&sc->sc_hwmtx_s);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
return (ENXIO);
}
2003-09-23 09:55:21 +00:00
sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
sc->sc_irid = 0;
sc->sc_ires = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irid,
RF_ACTIVE | RF_SHAREABLE);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
if (sc->sc_ires != NULL) {
error = bus_setup_intr(dev,
sc->sc_ires, INTR_TYPE_TTY,
uart_intr, NULL, sc, &sc->sc_icookie);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
if (error)
error = bus_setup_intr(dev,
sc->sc_ires, INTR_TYPE_TTY | INTR_MPSAFE,
NULL, (driver_intr_t *)uart_intr, sc, &sc->sc_icookie);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
else
sc->sc_fastintr = 1;
if (error) {
device_printf(dev, "could not activate interrupt\n");
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
sc->sc_ires);
sc->sc_ires = NULL;
}
}
if (sc->sc_ires == NULL) {
/* XXX no interrupt resource. Force polled mode. */
sc->sc_polled = 1;
}
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
sc->sc_rxbufsz = 384;
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
sc->sc_rxbuf = malloc(sc->sc_rxbufsz * sizeof(*sc->sc_rxbuf),
M_UART, M_WAITOK);
sc->sc_txbuf = malloc(sc->sc_txfifosz * sizeof(*sc->sc_txbuf),
M_UART, M_WAITOK);
error = UART_ATTACH(sc);
if (error)
goto fail;
if (sc->sc_hwiflow || sc->sc_hwoflow) {
sep = "";
device_print_prettyname(dev);
if (sc->sc_hwiflow) {
printf("%sRTS iflow", sep);
sep = ", ";
}
if (sc->sc_hwoflow) {
printf("%sCTS oflow", sep);
sep = ", ";
}
printf("\n");
}
if (bootverbose && (sc->sc_fastintr || sc->sc_polled)) {
sep = "";
device_print_prettyname(dev);
if (sc->sc_fastintr) {
printf("%sfast interrupt", sep);
sep = ", ";
}
if (sc->sc_polled) {
printf("%spolled mode", sep);
sep = ", ";
}
printf("\n");
}
if (sc->sc_sysdev != NULL) {
if (sc->sc_sysdev->baudrate == 0) {
if (UART_IOCTL(sc, UART_IOCTL_BAUD,
(intptr_t)&sc->sc_sysdev->baudrate) != 0)
sc->sc_sysdev->baudrate = -1;
}
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
switch (sc->sc_sysdev->type) {
case UART_DEV_CONSOLE:
device_printf(dev, "console");
break;
case UART_DEV_DBGPORT:
device_printf(dev, "debug port");
break;
case UART_DEV_KEYBOARD:
device_printf(dev, "keyboard");
break;
default:
device_printf(dev, "unknown system device");
break;
}
printf(" (%d,%c,%d,%d)\n", sc->sc_sysdev->baudrate,
"noems"[sc->sc_sysdev->parity], sc->sc_sysdev->databits,
sc->sc_sysdev->stopbits);
}
sc->sc_pps.ppscap = PPS_CAPTUREBOTH;
pps_init(&sc->sc_pps);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
error = (sc->sc_sysdev != NULL && sc->sc_sysdev->attach != NULL)
? (*sc->sc_sysdev->attach)(sc) : uart_tty_attach(sc);
if (error)
goto fail;
2006-03-30 18:37:03 +00:00
if (sc->sc_sysdev != NULL)
sc->sc_sysdev->hwmtx = sc->sc_hwmtx;
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
sc->sc_leaving = 0;
uart_intr(sc);
return (0);
fail:
free(sc->sc_txbuf, M_UART);
free(sc->sc_rxbuf, M_UART);
if (sc->sc_ires != NULL) {
bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
sc->sc_ires);
}
bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
2006-03-30 18:37:03 +00:00
mtx_destroy(&sc->sc_hwmtx_s);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
return (error);
}
int
uart_bus_detach(device_t dev)
{
struct uart_softc *sc;
sc = device_get_softc(dev);
sc->sc_leaving = 1;
2006-03-30 18:37:03 +00:00
if (sc->sc_sysdev != NULL)
sc->sc_sysdev->hwmtx = NULL;
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
UART_DETACH(sc);
if (sc->sc_sysdev != NULL && sc->sc_sysdev->detach != NULL)
(*sc->sc_sysdev->detach)(sc);
else
uart_tty_detach(sc);
free(sc->sc_txbuf, M_UART);
free(sc->sc_rxbuf, M_UART);
if (sc->sc_ires != NULL) {
bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie);
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
sc->sc_ires);
}
bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
2006-03-30 18:37:03 +00:00
mtx_destroy(&sc->sc_hwmtx_s);
The uart(4) driver is an universal driver for various UART hardware. It improves on sio(4) in the following areas: o Fully newbusified to allow for memory mapped I/O. This is a must for ia64 and sparc64, o Machine dependent code to take full advantage of machine and firm- ware specific ways to define serial consoles and/or debug ports. o Hardware abstraction layer to allow the driver to be used with various UARTs, such as the well-known ns8250 family of UARTs, the Siemens sab82532 or the Zilog Z8530. This is especially important for pc98 and sparc64 where it's common to have different UARTs, o The notion of system devices to unkludge low-level consoles and remote gdb ports and provides the mechanics necessary to support the keyboard on sparc64 (which is UART based). o The notion of a kernel interface so that a UART can be tied to something other than the well-known TTY interface. This is needed on sparc64 to present the user with a device and ioctl handling suitable for a keyboard, but also allows us to cleanly hide an UART when used as a debug port. Following is a list of features and bugs/flaws specific to the ns8250 family of UARTs as compared to their support in sio(4): o The uart(4) driver determines the FIFO size and automaticly takes advantages of larger FIFOs and/or additional features. Note that since I don't have sufficient access to 16[679]5x UARTs, hardware flow control has not been enabled. This is almost trivial to do, provided one can test. The downside of this is that broken UARTs are more likely to not work correctly with uart(4). The need for tunables or knobs may be large enough to warrant their creation. o The uart(4) driver does not share the same bumpy history as sio(4) and will therefore not provide the necessary hooks, tweaks, quirks or work-arounds to deal with once common hardware. To that extend, uart(4) supports a subset of the UARTs that sio(4) supports. The question before us is whether the subset is sufficient for current hardware. o There is no support for multiport UARTs in uart(4). The decision behind this is that uart(4) deals with one EIA RS232-C interface. Packaging of multiple interfaces in a single chip or on a single expansion board is beyond the scope of uart(4) and is now mostly left for puc(4) to deal with. Lack of hardware made it impossible to actually implement such a dependency other than is present for the dual channel SAB82532 and Z8350 SCCs. The current list of missing features is: o No configuration capabilities. A set of tunables and sysctls is being worked out. There are likely not going to be any or much compile-time knobs. Such configuration does not fit well with current hardware. o No support for the PPS API. This is partly dependent on the ability to configure uart(4) and partly dependent on having sufficient information to implement it properly. As usual, the manpage is present but lacks the attention the software has gotten.
2003-09-06 23:13:47 +00:00
if (sc->sc_class->size > sizeof(*sc)) {
device_set_softc(dev, NULL);
free(sc, M_UART);
} else
device_set_softc(dev, NULL);
return (0);
}