freebsd-dev/sbin/rtsol/Makefile

42 lines
1.2 KiB
Makefile
Raw Normal View History

# Copyright (c) 1996 WIDE Project. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modifications, are permitted provided that the above copyright notice
# and this paragraph are duplicated in all such forms and that any
# documentation, advertising materials, and other materials related to
# such distribution and use acknowledge that the software was developed
# by the WIDE Project, Japan. The name of the Project may not be used to
# endorse or promote products derived from this software without
# specific prior written permission. THIS SOFTWARE IS PROVIDED ``AS IS''
# AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
# LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE.
#
# $FreeBSD$
.PATH: ${SRCTOP}/usr.sbin/rtsold
PACKAGE=runtime
PROG= rtsol
Capsicumize rtsol(8) and rtsold(8). These programs parse ND6 Router Advertisement messages; rtsold(8) has required an SA, SA-14:20.rtsold, for a bug in this code. Thus, they are good candidates for sandboxing. The approach taken is to run the main executable in capability mode and use Casper services to provide functionality that cannot be implemented within the sandbox. In particular, several custom services were required. - A Casper service is used to send Router Solicitation messages on a raw ICMP6 socket. Initially I took the approach of creating a socket for each interface upon startup, and connect(2)ing it to the all-routers multicast group for the interface. This permits the use of sendmsg(2) in capability mode, but only works if the interface's link is up when rtsol(d) starts. So, instead, the rtsold.sendmsg service is used to transmit RS messages on behalf of the main process. One could alternately define a service which simply creates and connects a socket for each destination address, and returns the socket to the sandboxed process. However, to implement rtsold's -m option we also need to read the ND6 default router list, and this cannot be done in capability mode. - rtsold may execute resolvconf(8) in response to RDNSS and DNSSL options in received RA messages. A Casper service is used to fork and exec resolvconf(8), and to reap the child process. - A service is used to determine whether a given interface's link-local address is useable (i.e., not duplicated or undergoing DAD). This information is supplied by getifaddrs(3), which reads a sysctl not available in capability mode. The SIOCGIFCONF socket ioctl provides equivalent information and can be used in capability mode, but I decided against it for now because of some limitations of that interface. In addition to these new services, cap_syslog(3) is used to send messages to syslogd. Reviewed by: oshogbo Tested by: bz (previous versions) MFC after: 2 months Sponsored by: The FreeBSD Foundation Differential Revision: https://reviews.freebsd.org/D17572
2019-01-05 16:05:39 +00:00
SRCS= cap_llflags.c \
cap_script.c \
cap_sendmsg.c \
dump.c \
if.c \
rtsol.c \
rtsold.c \
rtsock.c
MAN=
Capsicumize rtsol(8) and rtsold(8). These programs parse ND6 Router Advertisement messages; rtsold(8) has required an SA, SA-14:20.rtsold, for a bug in this code. Thus, they are good candidates for sandboxing. The approach taken is to run the main executable in capability mode and use Casper services to provide functionality that cannot be implemented within the sandbox. In particular, several custom services were required. - A Casper service is used to send Router Solicitation messages on a raw ICMP6 socket. Initially I took the approach of creating a socket for each interface upon startup, and connect(2)ing it to the all-routers multicast group for the interface. This permits the use of sendmsg(2) in capability mode, but only works if the interface's link is up when rtsol(d) starts. So, instead, the rtsold.sendmsg service is used to transmit RS messages on behalf of the main process. One could alternately define a service which simply creates and connects a socket for each destination address, and returns the socket to the sandboxed process. However, to implement rtsold's -m option we also need to read the ND6 default router list, and this cannot be done in capability mode. - rtsold may execute resolvconf(8) in response to RDNSS and DNSSL options in received RA messages. A Casper service is used to fork and exec resolvconf(8), and to reap the child process. - A service is used to determine whether a given interface's link-local address is useable (i.e., not duplicated or undergoing DAD). This information is supplied by getifaddrs(3), which reads a sysctl not available in capability mode. The SIOCGIFCONF socket ioctl provides equivalent information and can be used in capability mode, but I decided against it for now because of some limitations of that interface. In addition to these new services, cap_syslog(3) is used to send messages to syslogd. Reviewed by: oshogbo Tested by: bz (previous versions) MFC after: 2 months Sponsored by: The FreeBSD Foundation Differential Revision: https://reviews.freebsd.org/D17572
2019-01-05 16:05:39 +00:00
LIBADD= util
Capsicumize rtsol(8) and rtsold(8). These programs parse ND6 Router Advertisement messages; rtsold(8) has required an SA, SA-14:20.rtsold, for a bug in this code. Thus, they are good candidates for sandboxing. The approach taken is to run the main executable in capability mode and use Casper services to provide functionality that cannot be implemented within the sandbox. In particular, several custom services were required. - A Casper service is used to send Router Solicitation messages on a raw ICMP6 socket. Initially I took the approach of creating a socket for each interface upon startup, and connect(2)ing it to the all-routers multicast group for the interface. This permits the use of sendmsg(2) in capability mode, but only works if the interface's link is up when rtsol(d) starts. So, instead, the rtsold.sendmsg service is used to transmit RS messages on behalf of the main process. One could alternately define a service which simply creates and connects a socket for each destination address, and returns the socket to the sandboxed process. However, to implement rtsold's -m option we also need to read the ND6 default router list, and this cannot be done in capability mode. - rtsold may execute resolvconf(8) in response to RDNSS and DNSSL options in received RA messages. A Casper service is used to fork and exec resolvconf(8), and to reap the child process. - A service is used to determine whether a given interface's link-local address is useable (i.e., not duplicated or undergoing DAD). This information is supplied by getifaddrs(3), which reads a sysctl not available in capability mode. The SIOCGIFCONF socket ioctl provides equivalent information and can be used in capability mode, but I decided against it for now because of some limitations of that interface. In addition to these new services, cap_syslog(3) is used to send messages to syslogd. Reviewed by: oshogbo Tested by: bz (previous versions) MFC after: 2 months Sponsored by: The FreeBSD Foundation Differential Revision: https://reviews.freebsd.org/D17572
2019-01-05 16:05:39 +00:00
.include <src.opts.mk>
.if ${MK_DYNAMICROOT} == "no"
.warning ${PROG} built without libcasper support
.elif ${MK_CASPER} != "no" && !defined(RESCUE)
CFLAGS+= -DWITH_CASPER
LIBADD+= cap_syslog casper nv
.endif
.include <bsd.prog.mk>