Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
/*-
|
2017-11-27 14:52:40 +00:00
|
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
|
|
*
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
* Copyright (c) 2006-2009 Ariff Abdullah <ariff@FreeBSD.org>
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* $FreeBSD$
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _SND_PCM_H_
|
|
|
|
#define _SND_PCM_H_
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Macros for reading/writing PCM sample / int values from bytes array.
|
|
|
|
* Since every process is done using signed integer (and to make our life
|
|
|
|
* less miserable), unsigned sample will be converted to its signed
|
|
|
|
* counterpart and restored during writing back. To avoid overflow,
|
|
|
|
* we truncate 32bit (and only 32bit) samples down to 24bit (see below
|
|
|
|
* for the reason), unless SND_PCM_64 is defined.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Automatically turn on 64bit arithmetic on suitable archs
|
2014-07-07 00:27:09 +00:00
|
|
|
* (amd64 64bit, etc..) for wider 32bit samples / integer processing.
|
Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .
Summary of changes includes:
1 Volume Per-Channel (vpc). Provides private / standalone volume control
unique per-stream pcm channel without touching master volume / pcm.
Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
instead of /dev/mixer. Special "bypass" mode is enabled through
/dev/mixer which will automatically detect if the adjustment is made
through /dev/mixer and forward its request to this private volume
controller. Changes to this volume object will not interfere with
other channels.
Requirements:
- SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
require specific application modifications (preferred).
- No modifications required for using bypass mode, so applications
like mplayer or xmms should work out of the box.
Kernel hints:
- hint.pcm.%d.vpc (0 = disable vpc).
Kernel sysctls:
- hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer
bypass mode.
- hw.snd.vpc_autoreset (default: 1). By default, closing/opening
/dev/dsp will reset the volume back to 0 db gain/attenuation.
Setting this to 0 will preserve its settings across device
closing/opening.
- hw.snd.vpc_reset (default: 0). Panic/reset button to reset all
volume settings back to 0 db.
- hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value.
2 High quality fixed-point Bandlimited SINC sampling rate converter,
based on Julius O'Smith's Digital Audio Resampling -
http://ccrma.stanford.edu/~jos/resample/. It includes a filter design
script written in awk (the clumsiest joke I've ever written)
- 100% 32bit fixed-point, 64bit accumulator.
- Possibly among the fastest (if not fastest) of its kind.
- Resampling quality is tunable, either runtime or during kernel
compilation (FEEDER_RATE_PRESETS).
- Quality can be further customized during kernel compilation by
defining FEEDER_RATE_PRESETS in /etc/make.conf.
Kernel sysctls:
- hw.snd.feeder_rate_quality.
0 - Zero-order Hold (ZOH). Fastest, bad quality.
1 - Linear Interpolation (LINEAR). Slightly slower than ZOH,
better quality but still does not eliminate aliasing.
2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC
quality always start from 2 and above.
Rough quality comparisons:
- http://people.freebsd.org/~ariff/z_comparison/
3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be
directly fed into the hardware.
4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.
5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
vchans in order to make digital format pass through. It also makes
vchans more dynamic by choosing a better format/rate among all the
concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
becomes sort of optional.
6 Exclusive Stream, with special open() mode O_EXCL. This will "mute"
other concurrent vchan streams and only allow a single channel with
O_EXCL set to keep producing sound.
Other Changes:
* most feeder_* stuffs are compilable in userland. Let's not
speculate whether we should go all out for it (save that for
FreeBSD 16.0-RELEASE).
* kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
* pull out channel mixing logic out of vchan.c and create its own
feeder_mixer for world justice.
* various refactoring here and there, for good or bad.
* activation of few more OSSv4 ioctls() (see [1] above).
* opt_snd.h for possible compile time configuration:
(mostly for debugging purposes, don't try these at home)
SND_DEBUG
SND_DIAGNOSTIC
SND_FEEDER_MULTIFORMAT
SND_FEEDER_FULL_MULTIFORMAT
SND_FEEDER_RATE_HP
SND_PCM_64
SND_OLDSTEREO
Manual page updates are on the way.
Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many
unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
|
|
|
*/
|
|
|
|
#if LONG_BIT >= 64
|
|
|
|
#undef SND_PCM_64
|
|
|
|
#define SND_PCM_64 1
|
|
|
|
#endif
|
|
|
|
|
|
|
|
typedef int32_t intpcm_t;
|
|
|
|
|
|
|
|
typedef int32_t intpcm8_t;
|
|
|
|
typedef int32_t intpcm16_t;
|
|
|
|
typedef int32_t intpcm24_t;
|
|
|
|
|
|
|
|
typedef uint32_t uintpcm_t;
|
|
|
|
|
|
|
|
typedef uint32_t uintpcm8_t;
|
|
|
|
typedef uint32_t uintpcm16_t;
|
|
|
|
typedef uint32_t uintpcm24_t;
|
|
|
|
|
|
|
|
#ifdef SND_PCM_64
|
|
|
|
typedef int64_t intpcm32_t;
|
|
|
|
typedef uint64_t uintpcm32_t;
|
|
|
|
#else
|
|
|
|
typedef int32_t intpcm32_t;
|
|
|
|
typedef uint32_t uintpcm32_t;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
typedef int64_t intpcm64_t;
|
|
|
|
typedef uint64_t uintpcm64_t;
|
|
|
|
|
|
|
|
/* 32bit fixed point shift */
|
|
|
|
#define PCM_FXSHIFT 8
|
|
|
|
|
|
|
|
#define PCM_S8_MAX 0x7f
|
|
|
|
#define PCM_S8_MIN -0x80
|
|
|
|
#define PCM_S16_MAX 0x7fff
|
|
|
|
#define PCM_S16_MIN -0x8000
|
|
|
|
#define PCM_S24_MAX 0x7fffff
|
|
|
|
#define PCM_S24_MIN -0x800000
|
|
|
|
#ifdef SND_PCM_64
|
|
|
|
#if LONG_BIT >= 64
|
|
|
|
#define PCM_S32_MAX 0x7fffffffL
|
|
|
|
#define PCM_S32_MIN -0x80000000L
|
|
|
|
#else
|
|
|
|
#define PCM_S32_MAX 0x7fffffffLL
|
|
|
|
#define PCM_S32_MIN -0x80000000LL
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
#define PCM_S32_MAX 0x7fffffff
|
|
|
|
#define PCM_S32_MIN (-0x7fffffff - 1)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Bytes-per-sample definition */
|
|
|
|
#define PCM_8_BPS 1
|
|
|
|
#define PCM_16_BPS 2
|
|
|
|
#define PCM_24_BPS 3
|
|
|
|
#define PCM_32_BPS 4
|
|
|
|
|
|
|
|
#define INTPCM_T(v) ((intpcm_t)(v))
|
|
|
|
#define INTPCM8_T(v) ((intpcm8_t)(v))
|
|
|
|
#define INTPCM16_T(v) ((intpcm16_t)(v))
|
|
|
|
#define INTPCM24_T(v) ((intpcm24_t)(v))
|
|
|
|
#define INTPCM32_T(v) ((intpcm32_t)(v))
|
|
|
|
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
|
|
#define _PCM_READ_S16_LE(b8) INTPCM_T(*((int16_t *)(b8)))
|
|
|
|
#define _PCM_READ_S32_LE(b8) INTPCM_T(*((int32_t *)(b8)))
|
|
|
|
#define _PCM_READ_S16_BE(b8) \
|
|
|
|
INTPCM_T((b8)[1] | (((int8_t)((b8)[0])) << 8))
|
|
|
|
#define _PCM_READ_S32_BE(b8) \
|
|
|
|
INTPCM_T((b8)[3] | ((b8)[2] << 8) | ((b8)[1] << 16) | \
|
|
|
|
(((int8_t)((b8)[0])) << 24))
|
|
|
|
|
|
|
|
#define _PCM_WRITE_S16_LE(b8, val) do { \
|
|
|
|
*((int16_t *)(b8)) = (val); \
|
|
|
|
} while (0)
|
|
|
|
#define _PCM_WRITE_S32_LE(b8, val) do { \
|
|
|
|
*((int32_t *)(b8)) = (val); \
|
|
|
|
} while (0)
|
|
|
|
#define _PCM_WRITE_S16_BE(bb8, vval) do { \
|
|
|
|
intpcm_t val = (vval); \
|
|
|
|
uint8_t *b8 = (bb8); \
|
|
|
|
b8[1] = val; \
|
|
|
|
b8[0] = val >> 8; \
|
|
|
|
} while (0)
|
|
|
|
#define _PCM_WRITE_S32_BE(bb8, vval) do { \
|
|
|
|
intpcm_t val = (vval); \
|
|
|
|
uint8_t *b8 = (bb8); \
|
|
|
|
b8[3] = val; \
|
|
|
|
b8[2] = val >> 8; \
|
|
|
|
b8[1] = val >> 16; \
|
|
|
|
b8[0] = val >> 24; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define _PCM_READ_U16_LE(b8) \
|
|
|
|
INTPCM_T((int16_t)(*((uint16_t *)(b8)) ^ 0x8000))
|
|
|
|
#define _PCM_READ_U32_LE(b8) \
|
|
|
|
INTPCM_T((int32_t)(*((uint32_t *)(b8)) ^ 0x80000000))
|
|
|
|
#define _PCM_READ_U16_BE(b8) \
|
|
|
|
INTPCM_T((b8)[1] | (((int8_t)((b8)[0] ^ 0x80)) << 8))
|
|
|
|
#define _PCM_READ_U32_BE(b8) \
|
|
|
|
INTPCM_T((b8)[3] | ((b8)[2] << 8) | ((b8)[1] << 16) | \
|
|
|
|
(((int8_t)((b8)[0] ^ 0x80)) << 24))
|
|
|
|
|
|
|
|
#define _PCM_WRITE_U16_LE(b8, val) do { \
|
|
|
|
*((uint16_t *)(b8)) = (val) ^ 0x8000; \
|
|
|
|
} while (0)
|
|
|
|
#define _PCM_WRITE_U32_LE(b8, val) do { \
|
|
|
|
*((uint32_t *)(b8)) = (val) ^ 0x80000000; \
|
|
|
|
} while (0)
|
|
|
|
#define _PCM_WRITE_U16_BE(bb8, vval) do { \
|
|
|
|
intpcm_t val = (vval); \
|
|
|
|
uint8_t *b8 = (bb8); \
|
|
|
|
b8[1] = val; \
|
|
|
|
b8[0] = (val >> 8) ^ 0x80; \
|
|
|
|
} while (0)
|
|
|
|
#define _PCM_WRITE_U32_BE(bb8, vval) do { \
|
|
|
|
intpcm_t val = (vval); \
|
|
|
|
uint8_t *b8 = (bb8); \
|
|
|
|
b8[3] = val; \
|
|
|
|
b8[2] = val >> 8; \
|
|
|
|
b8[1] = val >> 16; \
|
|
|
|
b8[0] = (val >> 24) ^ 0x80; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define _PCM_READ_S16_NE(b8) _PCM_READ_S16_LE(b8)
|
|
|
|
#define _PCM_READ_U16_NE(b8) _PCM_READ_U16_LE(b8)
|
|
|
|
#define _PCM_READ_S32_NE(b8) _PCM_READ_S32_LE(b8)
|
|
|
|
#define _PCM_READ_U32_NE(b8) _PCM_READ_U32_LE(b8)
|
|
|
|
#define _PCM_WRITE_S16_NE(b6) _PCM_WRITE_S16_LE(b8)
|
|
|
|
#define _PCM_WRITE_U16_NE(b6) _PCM_WRITE_U16_LE(b8)
|
|
|
|
#define _PCM_WRITE_S32_NE(b6) _PCM_WRITE_S32_LE(b8)
|
|
|
|
#define _PCM_WRITE_U32_NE(b6) _PCM_WRITE_U32_LE(b8)
|
|
|
|
#else /* !LITTLE_ENDIAN */
|
|
|
|
#define _PCM_READ_S16_LE(b8) \
|
|
|
|
INTPCM_T((b8)[0] | (((int8_t)((b8)[1])) << 8))
|
|
|
|
#define _PCM_READ_S32_LE(b8) \
|
|
|
|
INTPCM_T((b8)[0] | ((b8)[1] << 8) | ((b8)[2] << 16) | \
|
|
|
|
(((int8_t)((b8)[3])) << 24))
|
|
|
|
#define _PCM_READ_S16_BE(b8) INTPCM_T(*((int16_t *)(b8)))
|
|
|
|
#define _PCM_READ_S32_BE(b8) INTPCM_T(*((int32_t *)(b8)))
|
|
|
|
|
|
|
|
#define _PCM_WRITE_S16_LE(bb8, vval) do { \
|
|
|
|
intpcm_t val = (vval); \
|
|
|
|
uint8_t *b8 = (bb8); \
|
|
|
|
b8[0] = val; \
|
|
|
|
b8[1] = val >> 8; \
|
|
|
|
} while (0)
|
|
|
|
#define _PCM_WRITE_S32_LE(bb8, vval) do { \
|
|
|
|
intpcm_t val = (vval); \
|
|
|
|
uint8_t *b8 = (bb8); \
|
|
|
|
b8[0] = val; \
|
|
|
|
b8[1] = val >> 8; \
|
|
|
|
b8[2] = val >> 16; \
|
|
|
|
b8[3] = val >> 24; \
|
|
|
|
} while (0)
|
|
|
|
#define _PCM_WRITE_S16_BE(b8, val) do { \
|
|
|
|
*((int16_t *)(b8)) = (val); \
|
|
|
|
} while (0)
|
|
|
|
#define _PCM_WRITE_S32_BE(b8, val) do { \
|
|
|
|
*((int32_t *)(b8)) = (val); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define _PCM_READ_U16_LE(b8) \
|
|
|
|
INTPCM_T((b8)[0] | (((int8_t)((b8)[1] ^ 0x80)) << 8))
|
|
|
|
#define _PCM_READ_U32_LE(b8) \
|
|
|
|
INTPCM_T((b8)[0] | ((b8)[1] << 8) | ((b8)[2] << 16) | \
|
|
|
|
(((int8_t)((b8)[3] ^ 0x80)) << 24))
|
|
|
|
#define _PCM_READ_U16_BE(b8) \
|
|
|
|
INTPCM_T((int16_t)(*((uint16_t *)(b8)) ^ 0x8000))
|
|
|
|
#define _PCM_READ_U32_BE(b8) \
|
|
|
|
INTPCM_T((int32_t)(*((uint32_t *)(b8)) ^ 0x80000000))
|
|
|
|
|
|
|
|
#define _PCM_WRITE_U16_LE(bb8, vval) do { \
|
|
|
|
intpcm_t val = (vval); \
|
|
|
|
uint8_t *b8 = (bb8); \
|
|
|
|
b8[0] = val; \
|
|
|
|
b8[1] = (val >> 8) ^ 0x80; \
|
|
|
|
} while (0)
|
|
|
|
#define _PCM_WRITE_U32_LE(bb8, vval) do { \
|
|
|
|
intpcm_t val = (vval); \
|
|
|
|
uint8_t *b8 = (bb8); \
|
|
|
|
b8[0] = val; \
|
|
|
|
b8[1] = val >> 8; \
|
|
|
|
b8[2] = val >> 16; \
|
|
|
|
b8[3] = (val >> 24) ^ 0x80; \
|
|
|
|
} while (0)
|
|
|
|
#define _PCM_WRITE_U16_BE(b8, val) do { \
|
|
|
|
*((uint16_t *)(b8)) = (val) ^ 0x8000; \
|
|
|
|
} while (0)
|
|
|
|
#define _PCM_WRITE_U32_BE(b8, val) do { \
|
|
|
|
*((uint32_t *)(b8)) = (val) ^ 0x80000000; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define _PCM_READ_S16_NE(b8) _PCM_READ_S16_BE(b8)
|
|
|
|
#define _PCM_READ_U16_NE(b8) _PCM_READ_U16_BE(b8)
|
|
|
|
#define _PCM_READ_S32_NE(b8) _PCM_READ_S32_BE(b8)
|
|
|
|
#define _PCM_READ_U32_NE(b8) _PCM_READ_U32_BE(b8)
|
|
|
|
#define _PCM_WRITE_S16_NE(b6) _PCM_WRITE_S16_BE(b8)
|
|
|
|
#define _PCM_WRITE_U16_NE(b6) _PCM_WRITE_U16_BE(b8)
|
|
|
|
#define _PCM_WRITE_S32_NE(b6) _PCM_WRITE_S32_BE(b8)
|
|
|
|
#define _PCM_WRITE_U32_NE(b6) _PCM_WRITE_U32_BE(b8)
|
|
|
|
#endif /* LITTLE_ENDIAN */
|
|
|
|
|
|
|
|
#define _PCM_READ_S24_LE(b8) \
|
|
|
|
INTPCM_T((b8)[0] | ((b8)[1] << 8) | (((int8_t)((b8)[2])) << 16))
|
|
|
|
#define _PCM_READ_S24_BE(b8) \
|
|
|
|
INTPCM_T((b8)[2] | ((b8)[1] << 8) | (((int8_t)((b8)[0])) << 16))
|
|
|
|
|
|
|
|
#define _PCM_WRITE_S24_LE(bb8, vval) do { \
|
|
|
|
intpcm_t val = (vval); \
|
|
|
|
uint8_t *b8 = (bb8); \
|
|
|
|
b8[0] = val; \
|
|
|
|
b8[1] = val >> 8; \
|
|
|
|
b8[2] = val >> 16; \
|
|
|
|
} while (0)
|
|
|
|
#define _PCM_WRITE_S24_BE(bb8, vval) do { \
|
|
|
|
intpcm_t val = (vval); \
|
|
|
|
uint8_t *b8 = (bb8); \
|
|
|
|
b8[2] = val; \
|
|
|
|
b8[1] = val >> 8; \
|
|
|
|
b8[0] = val >> 16; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define _PCM_READ_U24_LE(b8) \
|
|
|
|
INTPCM_T((b8)[0] | ((b8)[1] << 8) | \
|
|
|
|
(((int8_t)((b8)[2] ^ 0x80)) << 16))
|
|
|
|
#define _PCM_READ_U24_BE(b8) \
|
|
|
|
INTPCM_T((b8)[2] | ((b8)[1] << 8) | \
|
|
|
|
(((int8_t)((b8)[0] ^ 0x80)) << 16))
|
|
|
|
|
|
|
|
#define _PCM_WRITE_U24_LE(bb8, vval) do { \
|
|
|
|
intpcm_t val = (vval); \
|
|
|
|
uint8_t *b8 = (bb8); \
|
|
|
|
b8[0] = val; \
|
|
|
|
b8[1] = val >> 8; \
|
|
|
|
b8[2] = (val >> 16) ^ 0x80; \
|
|
|
|
} while (0)
|
|
|
|
#define _PCM_WRITE_U24_BE(bb8, vval) do { \
|
|
|
|
intpcm_t val = (vval); \
|
|
|
|
uint8_t *b8 = (bb8); \
|
|
|
|
b8[2] = val; \
|
|
|
|
b8[1] = val >> 8; \
|
|
|
|
b8[0] = (val >> 16) ^ 0x80; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
|
|
#define _PCM_READ_S24_NE(b8) _PCM_READ_S24_LE(b8)
|
|
|
|
#define _PCM_READ_U24_NE(b8) _PCM_READ_U24_LE(b8)
|
|
|
|
#define _PCM_WRITE_S24_NE(b6) _PCM_WRITE_S24_LE(b8)
|
|
|
|
#define _PCM_WRITE_U24_NE(b6) _PCM_WRITE_U24_LE(b8)
|
|
|
|
#else /* !LITTLE_ENDIAN */
|
|
|
|
#define _PCM_READ_S24_NE(b8) _PCM_READ_S24_BE(b8)
|
|
|
|
#define _PCM_READ_U24_NE(b8) _PCM_READ_U24_BE(b8)
|
|
|
|
#define _PCM_WRITE_S24_NE(b6) _PCM_WRITE_S24_BE(b8)
|
|
|
|
#define _PCM_WRITE_U24_NE(b6) _PCM_WRITE_U24_BE(b8)
|
|
|
|
#endif /* LITTLE_ENDIAN */
|
|
|
|
/*
|
|
|
|
* 8bit sample is pretty much useless since it doesn't provide
|
|
|
|
* sufficient dynamic range throughout our filtering process.
|
|
|
|
* For the sake of completeness, declare it anyway.
|
|
|
|
*/
|
|
|
|
#define _PCM_READ_S8_NE(b8) INTPCM_T(*((int8_t *)(b8)))
|
|
|
|
#define _PCM_READ_U8_NE(b8) \
|
|
|
|
INTPCM_T((int8_t)(*((uint8_t *)(b8)) ^ 0x80))
|
|
|
|
|
|
|
|
#define _PCM_WRITE_S8_NE(b8, val) do { \
|
|
|
|
*((int8_t *)(b8)) = (val); \
|
|
|
|
} while (0)
|
|
|
|
#define _PCM_WRITE_U8_NE(b8, val) do { \
|
|
|
|
*((uint8_t *)(b8)) = (val) ^ 0x80; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Common macross. Use this instead of "_", unless we want
|
|
|
|
* the real sample value.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* 8bit */
|
|
|
|
#define PCM_READ_S8_NE(b8) _PCM_READ_S8_NE(b8)
|
|
|
|
#define PCM_READ_U8_NE(b8) _PCM_READ_U8_NE(b8)
|
|
|
|
#define PCM_WRITE_S8_NE(b8, val) _PCM_WRITE_S8_NE(b8, val)
|
|
|
|
#define PCM_WRITE_U8_NE(b8, val) _PCM_WRITE_U8_NE(b8, val)
|
|
|
|
|
|
|
|
/* 16bit */
|
|
|
|
#define PCM_READ_S16_LE(b8) _PCM_READ_S16_LE(b8)
|
|
|
|
#define PCM_READ_S16_BE(b8) _PCM_READ_S16_BE(b8)
|
|
|
|
#define PCM_READ_U16_LE(b8) _PCM_READ_U16_LE(b8)
|
|
|
|
#define PCM_READ_U16_BE(b8) _PCM_READ_U16_BE(b8)
|
|
|
|
|
|
|
|
#define PCM_WRITE_S16_LE(b8, val) _PCM_WRITE_S16_LE(b8, val)
|
|
|
|
#define PCM_WRITE_S16_BE(b8, val) _PCM_WRITE_S16_BE(b8, val)
|
|
|
|
#define PCM_WRITE_U16_LE(b8, val) _PCM_WRITE_U16_LE(b8, val)
|
|
|
|
#define PCM_WRITE_U16_BE(b8, val) _PCM_WRITE_U16_BE(b8, val)
|
|
|
|
|
|
|
|
#define PCM_READ_S16_NE(b8) _PCM_READ_S16_NE(b8)
|
|
|
|
#define PCM_READ_U16_NE(b8) _PCM_READ_U16_NE(b8)
|
|
|
|
#define PCM_WRITE_S16_NE(b8) _PCM_WRITE_S16_NE(b8)
|
|
|
|
#define PCM_WRITE_U16_NE(b8) _PCM_WRITE_U16_NE(b8)
|
|
|
|
|
|
|
|
/* 24bit */
|
|
|
|
#define PCM_READ_S24_LE(b8) _PCM_READ_S24_LE(b8)
|
|
|
|
#define PCM_READ_S24_BE(b8) _PCM_READ_S24_BE(b8)
|
|
|
|
#define PCM_READ_U24_LE(b8) _PCM_READ_U24_LE(b8)
|
|
|
|
#define PCM_READ_U24_BE(b8) _PCM_READ_U24_BE(b8)
|
|
|
|
|
|
|
|
#define PCM_WRITE_S24_LE(b8, val) _PCM_WRITE_S24_LE(b8, val)
|
|
|
|
#define PCM_WRITE_S24_BE(b8, val) _PCM_WRITE_S24_BE(b8, val)
|
|
|
|
#define PCM_WRITE_U24_LE(b8, val) _PCM_WRITE_U24_LE(b8, val)
|
|
|
|
#define PCM_WRITE_U24_BE(b8, val) _PCM_WRITE_U24_BE(b8, val)
|
|
|
|
|
|
|
|
#define PCM_READ_S24_NE(b8) _PCM_READ_S24_NE(b8)
|
|
|
|
#define PCM_READ_U24_NE(b8) _PCM_READ_U24_NE(b8)
|
|
|
|
#define PCM_WRITE_S24_NE(b8) _PCM_WRITE_S24_NE(b8)
|
|
|
|
#define PCM_WRITE_U24_NE(b8) _PCM_WRITE_U24_NE(b8)
|
|
|
|
|
|
|
|
/* 32bit */
|
|
|
|
#ifdef SND_PCM_64
|
|
|
|
#define PCM_READ_S32_LE(b8) _PCM_READ_S32_LE(b8)
|
|
|
|
#define PCM_READ_S32_BE(b8) _PCM_READ_S32_BE(b8)
|
|
|
|
#define PCM_READ_U32_LE(b8) _PCM_READ_U32_LE(b8)
|
|
|
|
#define PCM_READ_U32_BE(b8) _PCM_READ_U32_BE(b8)
|
|
|
|
|
|
|
|
#define PCM_WRITE_S32_LE(b8, val) _PCM_WRITE_S32_LE(b8, val)
|
|
|
|
#define PCM_WRITE_S32_BE(b8, val) _PCM_WRITE_S32_BE(b8, val)
|
|
|
|
#define PCM_WRITE_U32_LE(b8, val) _PCM_WRITE_U32_LE(b8, val)
|
|
|
|
#define PCM_WRITE_U32_BE(b8, val) _PCM_WRITE_U32_BE(b8, val)
|
|
|
|
|
|
|
|
#define PCM_READ_S32_NE(b8) _PCM_READ_S32_NE(b8)
|
|
|
|
#define PCM_READ_U32_NE(b8) _PCM_READ_U32_NE(b8)
|
|
|
|
#define PCM_WRITE_S32_NE(b8) _PCM_WRITE_S32_NE(b8)
|
|
|
|
#define PCM_WRITE_U32_NE(b8) _PCM_WRITE_U32_NE(b8)
|
|
|
|
#else /* !SND_PCM_64 */
|
|
|
|
/*
|
|
|
|
* 24bit integer ?!? This is quite unfortunate, eh? Get the fact straight:
|
|
|
|
* Dynamic range for:
|
|
|
|
* 1) Human =~ 140db
|
|
|
|
* 2) 16bit = 96db (close enough)
|
|
|
|
* 3) 24bit = 144db (perfect)
|
|
|
|
* 4) 32bit = 196db (way too much)
|
|
|
|
* 5) Bugs Bunny = Gazillion!@%$Erbzzztt-EINVAL db
|
|
|
|
* Since we're not Bugs Bunny ..uh..err.. avoiding 64bit arithmetic, 24bit
|
|
|
|
* is pretty much sufficient for our signed integer processing.
|
|
|
|
*/
|
|
|
|
#define PCM_READ_S32_LE(b8) (_PCM_READ_S32_LE(b8) >> PCM_FXSHIFT)
|
|
|
|
#define PCM_READ_S32_BE(b8) (_PCM_READ_S32_BE(b8) >> PCM_FXSHIFT)
|
|
|
|
#define PCM_READ_U32_LE(b8) (_PCM_READ_U32_LE(b8) >> PCM_FXSHIFT)
|
|
|
|
#define PCM_READ_U32_BE(b8) (_PCM_READ_U32_BE(b8) >> PCM_FXSHIFT)
|
|
|
|
|
|
|
|
#define PCM_READ_S32_NE(b8) (_PCM_READ_S32_NE(b8) >> PCM_FXSHIFT)
|
|
|
|
#define PCM_READ_U32_NE(b8) (_PCM_READ_U32_NE(b8) >> PCM_FXSHIFT)
|
|
|
|
|
|
|
|
#define PCM_WRITE_S32_LE(b8, val) \
|
|
|
|
_PCM_WRITE_S32_LE(b8, (val) << PCM_FXSHIFT)
|
|
|
|
#define PCM_WRITE_S32_BE(b8, val) \
|
|
|
|
_PCM_WRITE_S32_BE(b8, (val) << PCM_FXSHIFT)
|
|
|
|
#define PCM_WRITE_U32_LE(b8, val) \
|
|
|
|
_PCM_WRITE_U32_LE(b8, (val) << PCM_FXSHIFT)
|
|
|
|
#define PCM_WRITE_U32_BE(b8, val) \
|
|
|
|
_PCM_WRITE_U32_BE(b8, (val) << PCM_FXSHIFT)
|
|
|
|
|
|
|
|
#define PCM_WRITE_S32_NE(b8, val) \
|
|
|
|
_PCM_WRITE_S32_NE(b8, (val) << PCM_FXSHIFT)
|
|
|
|
#define PCM_WRITE_U32_NE(b8, val) \
|
|
|
|
_PCM_WRITE_U32_NE(b8, (val) << PCM_FXSHIFT)
|
|
|
|
#endif /* SND_PCM_64 */
|
|
|
|
|
|
|
|
#define PCM_CLAMP_S8(val) \
|
|
|
|
(((val) > PCM_S8_MAX) ? PCM_S8_MAX : \
|
|
|
|
(((val) < PCM_S8_MIN) ? PCM_S8_MIN : (val)))
|
|
|
|
#define PCM_CLAMP_S16(val) \
|
|
|
|
(((val) > PCM_S16_MAX) ? PCM_S16_MAX : \
|
|
|
|
(((val) < PCM_S16_MIN) ? PCM_S16_MIN : (val)))
|
|
|
|
#define PCM_CLAMP_S24(val) \
|
|
|
|
(((val) > PCM_S24_MAX) ? PCM_S24_MAX : \
|
|
|
|
(((val) < PCM_S24_MIN) ? PCM_S24_MIN : (val)))
|
|
|
|
|
|
|
|
#ifdef SND_PCM_64
|
|
|
|
#define PCM_CLAMP_S32(val) \
|
|
|
|
(((val) > PCM_S32_MAX) ? PCM_S32_MAX : \
|
|
|
|
(((val) < PCM_S32_MIN) ? PCM_S32_MIN : (val)))
|
|
|
|
#else /* !SND_PCM_64 */
|
|
|
|
#define PCM_CLAMP_S32(val) \
|
|
|
|
(((val) > PCM_S24_MAX) ? PCM_S32_MAX : \
|
|
|
|
(((val) < PCM_S24_MIN) ? PCM_S32_MIN : \
|
|
|
|
((val) << PCM_FXSHIFT)))
|
|
|
|
#endif /* SND_PCM_64 */
|
|
|
|
|
|
|
|
#define PCM_CLAMP_U8(val) PCM_CLAMP_S8(val)
|
|
|
|
#define PCM_CLAMP_U16(val) PCM_CLAMP_S16(val)
|
|
|
|
#define PCM_CLAMP_U24(val) PCM_CLAMP_S24(val)
|
|
|
|
#define PCM_CLAMP_U32(val) PCM_CLAMP_S32(val)
|
|
|
|
|
|
|
|
#endif /* !_SND_PCM_H_ */
|