freebsd-dev/sys/ufs/ffs/ffs_subr.c

541 lines
13 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
1994-05-24 10:09:53 +00:00
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
1994-05-24 10:09:53 +00:00
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_subr.c 8.5 (Berkeley) 3/21/95
1994-05-24 10:09:53 +00:00
*/
2003-06-11 06:34:30 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#ifndef _KERNEL
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <sys/errno.h>
#include <ufs/ufs/dinode.h>
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
#include <ufs/ffs/fs.h>
struct malloc_type;
#define UFS_MALLOC(size, type, flags) malloc(size)
#define UFS_FREE(ptr, type) free(ptr)
#define UFS_TIME time(NULL)
#else /* _KERNEL */
1994-05-24 10:09:53 +00:00
#include <sys/systm.h>
#include <sys/lock.h>
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
#include <sys/malloc.h>
#include <sys/mount.h>
1994-05-24 10:09:53 +00:00
#include <sys/vnode.h>
#include <sys/bio.h>
1994-05-24 10:09:53 +00:00
#include <sys/buf.h>
#include <sys/ucred.h>
1994-05-24 10:09:53 +00:00
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ffs/ffs_extern.h>
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
#include <ufs/ffs/fs.h>
1994-05-24 10:09:53 +00:00
#define UFS_MALLOC(size, type, flags) malloc(size, type, flags)
#define UFS_FREE(ptr, type) free(ptr, type)
#define UFS_TIME time_second
1994-05-24 10:09:53 +00:00
/*
* Return buffer with the contents of block "offset" from the beginning of
* directory "ip". If "res" is non-zero, fill it in with a pointer to the
* remaining space in the directory.
*/
int
ffs_blkatoff(struct vnode *vp, off_t offset, char **res, struct buf **bpp)
1994-05-24 10:09:53 +00:00
{
struct inode *ip;
struct fs *fs;
1994-05-24 10:09:53 +00:00
struct buf *bp;
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
ufs_lbn_t lbn;
1994-05-24 10:09:53 +00:00
int bsize, error;
ip = VTOI(vp);
fs = ITOFS(ip);
lbn = lblkno(fs, offset);
1994-05-24 10:09:53 +00:00
bsize = blksize(fs, ip, lbn);
*bpp = NULL;
error = bread(vp, lbn, bsize, NOCRED, &bp);
if (error) {
1994-05-24 10:09:53 +00:00
brelse(bp);
return (error);
}
if (res)
*res = (char *)bp->b_data + blkoff(fs, offset);
*bpp = bp;
1994-05-24 10:09:53 +00:00
return (0);
}
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
/*
* Load up the contents of an inode and copy the appropriate pieces
* to the incore copy.
*/
void
ffs_load_inode(struct buf *bp, struct inode *ip, struct fs *fs, ino_t ino)
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
{
if (I_IS_UFS1(ip)) {
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
*ip->i_din1 =
*((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ino));
ip->i_mode = ip->i_din1->di_mode;
ip->i_nlink = ip->i_din1->di_nlink;
ip->i_size = ip->i_din1->di_size;
ip->i_flags = ip->i_din1->di_flags;
ip->i_gen = ip->i_din1->di_gen;
ip->i_uid = ip->i_din1->di_uid;
ip->i_gid = ip->i_din1->di_gid;
} else {
*ip->i_din2 =
*((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ino));
ip->i_mode = ip->i_din2->di_mode;
ip->i_nlink = ip->i_din2->di_nlink;
ip->i_size = ip->i_din2->di_size;
ip->i_flags = ip->i_din2->di_flags;
ip->i_gen = ip->i_din2->di_gen;
ip->i_uid = ip->i_din2->di_uid;
ip->i_gid = ip->i_din2->di_gid;
}
}
#endif /* KERNEL */
1994-05-24 10:09:53 +00:00
/*
* These are the low-level functions that actually read and write
* the superblock and its associated data.
*/
static off_t sblock_try[] = SBLOCKSEARCH;
static int readsuper(void *, struct fs **, off_t,
int (*)(void *, off_t, void **, int));
/*
* Read a superblock from the devfd device.
*
* If an alternate superblock is specified, it is read. Otherwise the
* set of locations given in the SBLOCKSEARCH list is searched for a
* superblock. Memory is allocated for the superblock by the readfunc and
* is returned. If filltype is non-NULL, additional memory is allocated
* of type filltype and filled in with the superblock summary information.
*
* If a superblock is found, zero is returned. Otherwise one of the
* following error values is returned:
* EIO: non-existent or truncated superblock.
* EIO: error reading summary information.
* ENOENT: no usable known superblock found.
* ENOSPC: failed to allocate space for the superblock.
* EINVAL: The previous newfs operation on this volume did not complete.
* The administrator must complete newfs before using this volume.
*/
int
ffs_sbget(void *devfd, struct fs **fsp, off_t altsuperblock,
struct malloc_type *filltype,
int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
{
struct fs *fs;
int i, ret, size, blks;
uint8_t *space;
int32_t *lp;
char *buf;
*fsp = NULL;
if (altsuperblock != -1) {
if ((ret = readsuper(devfd, fsp, altsuperblock, readfunc)) != 0)
return (ret);
} else {
for (i = 0; sblock_try[i] != -1; i++) {
if ((ret = readsuper(devfd, fsp, sblock_try[i],
readfunc)) == 0)
break;
if (ret == ENOENT)
continue;
return (ret);
}
if (sblock_try[i] == -1)
return (ENOENT);
}
/*
* If not filling in summary information, return.
*/
if (filltype == NULL)
return (0);
/*
* Read in the superblock summary information.
*/
fs = *fsp;
size = fs->fs_cssize;
blks = howmany(size, fs->fs_fsize);
if (fs->fs_contigsumsize > 0)
size += fs->fs_ncg * sizeof(int32_t);
size += fs->fs_ncg * sizeof(u_int8_t);
space = UFS_MALLOC(size, filltype, M_WAITOK);
fs->fs_csp = (struct csum *)space;
for (i = 0; i < blks; i += fs->fs_frag) {
size = fs->fs_bsize;
if (i + fs->fs_frag > blks)
size = (blks - i) * fs->fs_fsize;
buf = NULL;
ret = (*readfunc)(devfd,
dbtob(fsbtodb(fs, fs->fs_csaddr + i)), (void **)&buf, size);
if (ret) {
UFS_FREE(buf, filltype);
UFS_FREE(fs->fs_csp, filltype);
fs->fs_csp = NULL;
return (ret);
}
memcpy(space, buf, size);
UFS_FREE(buf, filltype);
space += size;
}
if (fs->fs_contigsumsize > 0) {
fs->fs_maxcluster = lp = (int32_t *)space;
for (i = 0; i < fs->fs_ncg; i++)
*lp++ = fs->fs_contigsumsize;
space = (uint8_t *)lp;
}
size = fs->fs_ncg * sizeof(u_int8_t);
fs->fs_contigdirs = (u_int8_t *)space;
bzero(fs->fs_contigdirs, size);
return (0);
}
/*
* Try to read a superblock from the location specified by sblockloc.
* Return zero on success or an errno on failure.
*/
static int
readsuper(void *devfd, struct fs **fsp, off_t sblockloc,
int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
{
struct fs *fs;
int error;
error = (*readfunc)(devfd, sblockloc, (void **)fsp, SBLOCKSIZE);
if (*fsp != NULL)
(*fsp)->fs_csp = NULL; /* Not yet any summary information */
if (error != 0)
return (error);
fs = *fsp;
if (fs->fs_magic == FS_BAD_MAGIC)
return (EINVAL);
if (((fs->fs_magic == FS_UFS1_MAGIC && sblockloc <= SBLOCK_UFS1) ||
(fs->fs_magic == FS_UFS2_MAGIC &&
sblockloc == fs->fs_sblockloc)) &&
fs->fs_ncg >= 1 &&
fs->fs_bsize >= MINBSIZE &&
fs->fs_bsize <= MAXBSIZE &&
fs->fs_bsize >= roundup(sizeof(struct fs), DEV_BSIZE)) {
/* Have to set for old filesystems that predate this field */
fs->fs_sblockactualloc = sblockloc;
return (0);
}
return (ENOENT);
}
/*
* Write a superblock to the devfd device from the memory pointed to by fs.
* Write out the superblock summary information if it is present.
*
* If the write is successful, zero is returned. Otherwise one of the
* following error values is returned:
* EIO: failed to write superblock.
* EIO: failed to write superblock summary information.
*/
int
ffs_sbput(void *devfd, struct fs *fs, off_t loc,
int (*writefunc)(void *devfd, off_t loc, void *buf, int size))
{
int i, error, blks, size;
uint8_t *space;
/*
* If there is summary information, write it first, so if there
* is an error, the superblock will not be marked as clean.
*/
if (fs->fs_csp != NULL) {
blks = howmany(fs->fs_cssize, fs->fs_fsize);
space = (uint8_t *)fs->fs_csp;
for (i = 0; i < blks; i += fs->fs_frag) {
size = fs->fs_bsize;
if (i + fs->fs_frag > blks)
size = (blks - i) * fs->fs_fsize;
if ((error = (*writefunc)(devfd,
dbtob(fsbtodb(fs, fs->fs_csaddr + i)),
space, size)) != 0)
return (error);
space += size;
}
}
fs->fs_fmod = 0;
fs->fs_time = UFS_TIME;
if ((error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize)) != 0)
return (error);
return (0);
}
1994-05-24 10:09:53 +00:00
/*
1995-05-30 08:16:23 +00:00
* Update the frsum fields to reflect addition or deletion
1994-05-24 10:09:53 +00:00
* of some frags.
*/
void
ffs_fragacct(struct fs *fs, int fragmap, int32_t fraglist[], int cnt)
1994-05-24 10:09:53 +00:00
{
int inblk;
int field, subfield;
int siz, pos;
1994-05-24 10:09:53 +00:00
inblk = (int)(fragtbl[fs->fs_frag][fragmap]) << 1;
fragmap <<= 1;
for (siz = 1; siz < fs->fs_frag; siz++) {
if ((inblk & (1 << (siz + (fs->fs_frag % NBBY)))) == 0)
continue;
field = around[siz];
subfield = inside[siz];
for (pos = siz; pos <= fs->fs_frag; pos++) {
if ((fragmap & field) == subfield) {
fraglist[siz] += cnt;
pos += siz;
field <<= siz;
subfield <<= siz;
}
field <<= 1;
subfield <<= 1;
}
}
}
/*
* block operations
*
* check if a block is available
*/
int
ffs_isblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
1994-05-24 10:09:53 +00:00
{
unsigned char mask;
switch ((int)fs->fs_frag) {
case 8:
return (cp[h] == 0xff);
case 4:
mask = 0x0f << ((h & 0x1) << 2);
return ((cp[h >> 1] & mask) == mask);
case 2:
mask = 0x03 << ((h & 0x3) << 1);
return ((cp[h >> 2] & mask) == mask);
case 1:
mask = 0x01 << (h & 0x7);
return ((cp[h >> 3] & mask) == mask);
default:
#ifdef _KERNEL
1994-05-24 10:09:53 +00:00
panic("ffs_isblock");
#endif
break;
}
return (0);
}
/*
* check if a block is free
*/
int
ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
{
switch ((int)fs->fs_frag) {
case 8:
return (cp[h] == 0);
case 4:
return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
case 2:
return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
case 1:
return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
default:
#ifdef _KERNEL
panic("ffs_isfreeblock");
#endif
break;
1994-05-24 10:09:53 +00:00
}
return (0);
1994-05-24 10:09:53 +00:00
}
/*
* take a block out of the map
*/
void
ffs_clrblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
1994-05-24 10:09:53 +00:00
{
switch ((int)fs->fs_frag) {
case 8:
cp[h] = 0;
return;
case 4:
cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] &= ~(0x01 << (h & 0x7));
return;
default:
#ifdef _KERNEL
1994-05-24 10:09:53 +00:00
panic("ffs_clrblock");
#endif
break;
1994-05-24 10:09:53 +00:00
}
}
/*
* put a block into the map
*/
void
ffs_setblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
1994-05-24 10:09:53 +00:00
{
switch ((int)fs->fs_frag) {
case 8:
cp[h] = 0xff;
return;
case 4:
cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] |= (0x01 << (h & 0x7));
return;
default:
#ifdef _KERNEL
1994-05-24 10:09:53 +00:00
panic("ffs_setblock");
#endif
break;
}
}
/*
* Update the cluster map because of an allocation or free.
*
* Cnt == 1 means free; cnt == -1 means allocating.
*/
void
ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs1_daddr_t blkno, int cnt)
{
int32_t *sump;
int32_t *lp;
u_char *freemapp, *mapp;
int i, start, end, forw, back, map, bit;
if (fs->fs_contigsumsize <= 0)
return;
freemapp = cg_clustersfree(cgp);
sump = cg_clustersum(cgp);
/*
* Allocate or clear the actual block.
*/
if (cnt > 0)
setbit(freemapp, blkno);
else
clrbit(freemapp, blkno);
/*
* Find the size of the cluster going forward.
*/
start = blkno + 1;
end = start + fs->fs_contigsumsize;
if (end >= cgp->cg_nclusterblks)
end = cgp->cg_nclusterblks;
mapp = &freemapp[start / NBBY];
map = *mapp++;
bit = 1 << (start % NBBY);
for (i = start; i < end; i++) {
if ((map & bit) == 0)
break;
if ((i & (NBBY - 1)) != (NBBY - 1)) {
bit <<= 1;
} else {
map = *mapp++;
bit = 1;
}
}
forw = i - start;
/*
* Find the size of the cluster going backward.
*/
start = blkno - 1;
end = start - fs->fs_contigsumsize;
if (end < 0)
end = -1;
mapp = &freemapp[start / NBBY];
map = *mapp--;
bit = 1 << (start % NBBY);
for (i = start; i > end; i--) {
if ((map & bit) == 0)
break;
if ((i & (NBBY - 1)) != 0) {
bit >>= 1;
} else {
map = *mapp--;
bit = 1 << (NBBY - 1);
}
1994-05-24 10:09:53 +00:00
}
back = start - i;
/*
* Account for old cluster and the possibly new forward and
* back clusters.
*/
i = back + forw + 1;
if (i > fs->fs_contigsumsize)
i = fs->fs_contigsumsize;
sump[i] += cnt;
if (back > 0)
sump[back] -= cnt;
if (forw > 0)
sump[forw] -= cnt;
/*
* Update cluster summary information.
*/
lp = &sump[fs->fs_contigsumsize];
for (i = fs->fs_contigsumsize; i > 0; i--)
if (*lp-- > 0)
break;
fs->fs_maxcluster[cgp->cg_cgx] = i;
1994-05-24 10:09:53 +00:00
}