2003-02-18 09:01:01 +00:00
|
|
|
/*-
|
|
|
|
* Copyright (c) 2003 Jake Burkholder.
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
* Copyright (c) 2005 Marius Strobl <marius@FreeBSD.org>
|
2003-02-18 09:01:01 +00:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
2005-03-04 16:01:57 +00:00
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
2003-02-18 09:01:01 +00:00
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/bus.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/malloc.h>
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
#include <sys/module.h>
|
2003-02-19 08:23:38 +00:00
|
|
|
#include <sys/pcpu.h>
|
2003-02-18 09:01:01 +00:00
|
|
|
|
2005-03-19 00:50:28 +00:00
|
|
|
#include <dev/led/led.h>
|
- Introduce an ofw_bus kobj-interface for retrieving the OFW node and a
subset ("compatible", "device_type", "model" and "name") of the standard
properties in drivers for devices on Open Firmware supported busses. The
standard properties "reg", "interrupts" und "address" are not covered by
this interface because they are only of interest in the respective bridge
code. There's a remaining standard property "status" which is unclear how
to support properly but which also isn't used in FreeBSD at present.
This ofw_bus kobj-interface allows to replace the various (ebus_get_node(),
ofw_pci_get_node(), etc.) and partially inconsistent (central_get_type()
vs. sbus_get_device_type(), etc.) existing IVAR ones with a common one.
This in turn allows to simplify and remove code-duplication in drivers for
devices that can hang off of more than one OFW supported bus.
- Convert the sparc64 Central, EBus, FHC, PCI and SBus bus drivers and the
drivers for their children to use the ofw_bus kobj-interface. The IVAR-
interfaces of the Central, EBus and FHC are entirely replaced by this. The
PCI bus driver used its own kobj-interface and now also uses the ofw_bus
one. The IVARs special to the SBus, e.g. for retrieving the burst size,
remain.
Beware: this causes an ABI-breakage for modules of drivers which used the
IVAR-interfaces, i.e. esp(4), hme(4), isp(4) and uart(4), which need to be
recompiled.
The style-inconsistencies introduced in some of the bus drivers will be
fixed by tmm@ in a generic clean-up of the respective drivers later (he
requested to add the changes in the "new" style).
- Convert the powerpc MacIO bus driver and the drivers for its children to
use the ofw_bus kobj-interface. This invloves removing the IVARs related
to the "reg" property which were unused and a leftover from the NetBSD
origini of the code. There's no ABI-breakage caused by this because none
of these driver are currently built as modules.
There are other powerpc bus drivers which can be converted to the ofw_bus
kobj-interface, e.g. the PCI bus driver, which should be done together
with converting powerpc to use the OFW PCI code from sparc64.
- Make the SBus and FHC front-end of zs(4) and the sparc64 eeprom(4) take
advantage of the ofw_bus kobj-interface and simplify them a bit.
Reviewed by: grehan, tmm
Approved by: re (scottl)
Discussed with: tmm
Tested with: Sun AX1105, AXe, Ultra 2, Ultra 60; PPC cross-build on i386
2004-08-12 17:41:33 +00:00
|
|
|
#include <dev/ofw/ofw_bus.h>
|
2005-11-22 16:39:44 +00:00
|
|
|
#include <dev/ofw/ofw_bus_subr.h>
|
2003-02-18 09:01:01 +00:00
|
|
|
#include <dev/ofw/openfirm.h>
|
|
|
|
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <machine/bus_common.h>
|
|
|
|
#include <machine/resource.h>
|
|
|
|
|
|
|
|
#include <sys/rman.h>
|
|
|
|
|
|
|
|
#include <sparc64/fhc/fhcreg.h>
|
|
|
|
#include <sparc64/sbus/ofw_sbus.h>
|
|
|
|
|
|
|
|
struct fhc_devinfo {
|
2005-11-22 16:39:44 +00:00
|
|
|
struct ofw_bus_devinfo fdi_obdinfo;
|
2003-02-18 09:01:01 +00:00
|
|
|
struct resource_list fdi_rl;
|
|
|
|
};
|
|
|
|
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
struct fhc_softc {
|
2007-09-06 19:16:30 +00:00
|
|
|
struct resource *sc_memres[FHC_NREG];
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
int sc_nrange;
|
|
|
|
struct sbus_ranges *sc_ranges;
|
|
|
|
int sc_ign;
|
|
|
|
struct cdev *sc_led_dev;
|
|
|
|
};
|
|
|
|
|
|
|
|
static device_probe_t fhc_probe;
|
|
|
|
static device_attach_t fhc_attach;
|
|
|
|
static bus_print_child_t fhc_print_child;
|
|
|
|
static bus_probe_nomatch_t fhc_probe_nomatch;
|
|
|
|
static bus_setup_intr_t fhc_setup_intr;
|
|
|
|
static bus_alloc_resource_t fhc_alloc_resource;
|
2011-10-02 23:22:38 +00:00
|
|
|
static bus_adjust_resource_t fhc_adjust_resource;
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
static bus_get_resource_list_t fhc_get_resource_list;
|
|
|
|
static ofw_bus_get_devinfo_t fhc_get_devinfo;
|
|
|
|
|
2007-09-06 19:16:30 +00:00
|
|
|
static void fhc_intr_enable(void *);
|
|
|
|
static void fhc_intr_disable(void *);
|
2008-04-23 20:04:38 +00:00
|
|
|
static void fhc_intr_assign(void *);
|
|
|
|
static void fhc_intr_clear(void *);
|
2005-03-19 00:50:28 +00:00
|
|
|
static void fhc_led_func(void *, int);
|
2005-11-22 16:39:44 +00:00
|
|
|
static int fhc_print_res(struct fhc_devinfo *);
|
2003-02-19 08:23:38 +00:00
|
|
|
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
static device_method_t fhc_methods[] = {
|
|
|
|
/* Device interface */
|
|
|
|
DEVMETHOD(device_probe, fhc_probe),
|
|
|
|
DEVMETHOD(device_attach, fhc_attach),
|
|
|
|
DEVMETHOD(device_shutdown, bus_generic_shutdown),
|
|
|
|
DEVMETHOD(device_suspend, bus_generic_suspend),
|
|
|
|
DEVMETHOD(device_resume, bus_generic_resume),
|
|
|
|
|
|
|
|
/* Bus interface */
|
|
|
|
DEVMETHOD(bus_print_child, fhc_print_child),
|
|
|
|
DEVMETHOD(bus_probe_nomatch, fhc_probe_nomatch),
|
|
|
|
DEVMETHOD(bus_alloc_resource, fhc_alloc_resource),
|
|
|
|
DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
|
|
|
|
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
|
2011-10-02 23:22:38 +00:00
|
|
|
DEVMETHOD(bus_adjust_resource, fhc_adjust_resource),
|
2009-03-19 20:29:23 +00:00
|
|
|
DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
|
|
|
|
DEVMETHOD(bus_setup_intr, fhc_setup_intr),
|
|
|
|
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
|
2009-03-19 20:29:23 +00:00
|
|
|
DEVMETHOD(bus_get_resource_list, fhc_get_resource_list),
|
2009-03-19 21:14:45 +00:00
|
|
|
DEVMETHOD(bus_child_pnpinfo_str, ofw_bus_gen_child_pnpinfo_str),
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
|
|
|
|
/* ofw_bus interface */
|
|
|
|
DEVMETHOD(ofw_bus_get_devinfo, fhc_get_devinfo),
|
|
|
|
DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat),
|
|
|
|
DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model),
|
|
|
|
DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name),
|
|
|
|
DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node),
|
|
|
|
DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type),
|
|
|
|
|
2011-11-22 21:55:40 +00:00
|
|
|
DEVMETHOD_END
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static driver_t fhc_driver = {
|
|
|
|
"fhc",
|
|
|
|
fhc_methods,
|
|
|
|
sizeof(struct fhc_softc),
|
|
|
|
};
|
|
|
|
|
|
|
|
static devclass_t fhc_devclass;
|
|
|
|
|
2009-12-22 21:02:46 +00:00
|
|
|
EARLY_DRIVER_MODULE(fhc, central, fhc_driver, fhc_devclass, 0, 0,
|
|
|
|
BUS_PASS_BUS);
|
2008-08-23 16:07:20 +00:00
|
|
|
MODULE_DEPEND(fhc, central, 1, 1, 1);
|
2009-12-22 21:02:46 +00:00
|
|
|
EARLY_DRIVER_MODULE(fhc, nexus, fhc_driver, fhc_devclass, 0, 0,
|
|
|
|
BUS_PASS_BUS);
|
2009-12-21 21:29:16 +00:00
|
|
|
MODULE_DEPEND(fhc, nexus, 1, 1, 1);
|
2008-08-23 16:07:20 +00:00
|
|
|
MODULE_VERSION(fhc, 1);
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
|
2007-09-06 19:16:30 +00:00
|
|
|
static const struct intr_controller fhc_ic = {
|
|
|
|
fhc_intr_enable,
|
|
|
|
fhc_intr_disable,
|
2008-04-23 20:04:38 +00:00
|
|
|
fhc_intr_assign,
|
|
|
|
fhc_intr_clear
|
2007-09-06 19:16:30 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
struct fhc_icarg {
|
|
|
|
struct fhc_softc *fica_sc;
|
|
|
|
struct resource *fica_memres;
|
|
|
|
};
|
|
|
|
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
static int
|
2003-02-18 09:01:01 +00:00
|
|
|
fhc_probe(device_t dev)
|
|
|
|
{
|
|
|
|
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
if (strcmp(ofw_bus_get_name(dev), "fhc") == 0) {
|
|
|
|
device_set_desc(dev, "fhc");
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
return (ENXIO);
|
2003-02-18 09:01:01 +00:00
|
|
|
}
|
|
|
|
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
static int
|
2003-02-18 09:01:01 +00:00
|
|
|
fhc_attach(device_t dev)
|
|
|
|
{
|
2005-03-19 00:50:28 +00:00
|
|
|
char ledname[sizeof("boardXX")];
|
2003-02-18 09:01:01 +00:00
|
|
|
struct fhc_devinfo *fdi;
|
2007-09-06 19:16:30 +00:00
|
|
|
struct fhc_icarg *fica;
|
2003-02-18 09:01:01 +00:00
|
|
|
struct fhc_softc *sc;
|
2007-09-06 19:16:30 +00:00
|
|
|
struct sbus_regs *reg;
|
2003-02-18 09:01:01 +00:00
|
|
|
phandle_t child;
|
|
|
|
phandle_t node;
|
|
|
|
device_t cdev;
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
uint32_t board;
|
2003-02-19 08:23:38 +00:00
|
|
|
uint32_t ctrl;
|
2005-03-04 22:23:21 +00:00
|
|
|
uint32_t *intr;
|
|
|
|
uint32_t iv;
|
2003-02-18 09:01:01 +00:00
|
|
|
char *name;
|
2007-09-06 19:16:30 +00:00
|
|
|
int central;
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
int error;
|
|
|
|
int i;
|
2009-03-19 20:29:23 +00:00
|
|
|
int j;
|
2003-02-18 09:01:01 +00:00
|
|
|
|
|
|
|
sc = device_get_softc(dev);
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
node = ofw_bus_get_node(dev);
|
|
|
|
|
2007-09-06 19:16:30 +00:00
|
|
|
central = 0;
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
if (strcmp(device_get_name(device_get_parent(dev)), "central") == 0)
|
2007-09-06 19:16:30 +00:00
|
|
|
central = 1;
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
|
|
|
|
for (i = 0; i < FHC_NREG; i++) {
|
2009-03-19 20:29:23 +00:00
|
|
|
j = i;
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
sc->sc_memres[i] = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
|
2009-03-19 20:29:23 +00:00
|
|
|
&j, RF_ACTIVE);
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
if (sc->sc_memres[i] == NULL) {
|
|
|
|
device_printf(dev, "cannot allocate resource %d\n", i);
|
|
|
|
error = ENXIO;
|
|
|
|
goto fail_memres;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-09-06 19:16:30 +00:00
|
|
|
if (central != 0) {
|
|
|
|
board = bus_read_4(sc->sc_memres[FHC_INTERNAL], FHC_BSR);
|
|
|
|
board = ((board >> 16) & 0x1) | ((board >> 12) & 0xe);
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
} else {
|
2007-09-06 19:16:30 +00:00
|
|
|
if (OF_getprop(node, "board#", &board, sizeof(board)) == -1) {
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
device_printf(dev, "cannot get board number\n");
|
|
|
|
error = ENXIO;
|
|
|
|
goto fail_memres;
|
|
|
|
}
|
|
|
|
}
|
2003-02-18 09:01:01 +00:00
|
|
|
|
2007-09-06 19:16:30 +00:00
|
|
|
device_printf(dev, "board %d, ", board);
|
2005-03-04 16:01:57 +00:00
|
|
|
if (OF_getprop_alloc(node, "board-model", 1, (void **)&name) != -1) {
|
2005-03-19 00:50:28 +00:00
|
|
|
printf("model %s\n", name);
|
2005-03-04 16:01:57 +00:00
|
|
|
free(name, M_OFWPROP);
|
2005-03-19 00:50:28 +00:00
|
|
|
} else
|
|
|
|
printf("model unknown\n");
|
2005-03-04 16:01:57 +00:00
|
|
|
|
2003-02-18 09:01:01 +00:00
|
|
|
for (i = FHC_FANFAIL; i <= FHC_TOD; i++) {
|
2010-03-31 22:19:00 +00:00
|
|
|
bus_write_4(sc->sc_memres[i], FHC_ICLR, INTCLR_IDLE);
|
2007-09-06 19:16:30 +00:00
|
|
|
(void)bus_read_4(sc->sc_memres[i], FHC_ICLR);
|
2003-02-18 09:01:01 +00:00
|
|
|
}
|
|
|
|
|
2007-09-06 19:16:30 +00:00
|
|
|
sc->sc_ign = board << 1;
|
|
|
|
bus_write_4(sc->sc_memres[FHC_IGN], 0x0, sc->sc_ign);
|
|
|
|
sc->sc_ign = bus_read_4(sc->sc_memres[FHC_IGN], 0x0);
|
2003-02-19 08:23:38 +00:00
|
|
|
|
2007-09-06 19:16:30 +00:00
|
|
|
ctrl = bus_read_4(sc->sc_memres[FHC_INTERNAL], FHC_CTRL);
|
|
|
|
if (central == 0)
|
2003-02-19 08:23:38 +00:00
|
|
|
ctrl |= FHC_CTRL_IXIST;
|
|
|
|
ctrl &= ~(FHC_CTRL_AOFF | FHC_CTRL_BOFF | FHC_CTRL_SLINE);
|
2007-09-06 19:16:30 +00:00
|
|
|
bus_write_4(sc->sc_memres[FHC_INTERNAL], FHC_CTRL, ctrl);
|
|
|
|
(void)bus_read_4(sc->sc_memres[FHC_INTERNAL], FHC_CTRL);
|
2003-02-19 08:23:38 +00:00
|
|
|
|
2003-02-18 09:01:01 +00:00
|
|
|
sc->sc_nrange = OF_getprop_alloc(node, "ranges",
|
|
|
|
sizeof(*sc->sc_ranges), (void **)&sc->sc_ranges);
|
|
|
|
if (sc->sc_nrange == -1) {
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
device_printf(dev, "cannot get ranges\n");
|
|
|
|
error = ENXIO;
|
|
|
|
goto fail_memres;
|
2003-02-18 09:01:01 +00:00
|
|
|
}
|
|
|
|
|
2007-09-06 19:16:30 +00:00
|
|
|
/*
|
|
|
|
* Apparently only the interrupt controller of boards hanging off
|
|
|
|
* of central(4) is indented to be used, otherwise we would have
|
|
|
|
* conflicts registering the interrupt controllers for all FHC
|
|
|
|
* boards as the board number and thus the IGN isn't unique.
|
|
|
|
*/
|
|
|
|
if (central == 1) {
|
|
|
|
/*
|
|
|
|
* Hunt through all the interrupt mapping regs and register
|
|
|
|
* our interrupt controller for the corresponding interrupt
|
2009-03-19 20:29:23 +00:00
|
|
|
* vectors. We do this early in order to be able to catch
|
|
|
|
* stray interrupts.
|
2007-09-06 19:16:30 +00:00
|
|
|
*/
|
|
|
|
for (i = FHC_FANFAIL; i <= FHC_TOD; i++) {
|
|
|
|
fica = malloc(sizeof(*fica), M_DEVBUF, M_NOWAIT);
|
|
|
|
if (fica == NULL)
|
|
|
|
panic("%s: could not allocate interrupt "
|
|
|
|
"controller argument", __func__);
|
|
|
|
fica->fica_sc = sc;
|
|
|
|
fica->fica_memres = sc->sc_memres[i];
|
|
|
|
#ifdef FHC_DEBUG
|
|
|
|
device_printf(dev, "intr map %d: %#lx, clr: %#lx\n", i,
|
|
|
|
(u_long)bus_read_4(fica->fica_memres, FHC_IMAP),
|
|
|
|
(u_long)bus_read_4(fica->fica_memres, FHC_ICLR));
|
|
|
|
#endif
|
|
|
|
/*
|
|
|
|
* XXX we only pick the INO rather than the INR
|
|
|
|
* from the IMR since the firmware may not provide
|
|
|
|
* the IGN and the IGN is constant for all devices
|
|
|
|
* on that FireHose controller.
|
|
|
|
*/
|
2009-03-19 20:29:23 +00:00
|
|
|
j = intr_controller_register(INTMAP_VEC(sc->sc_ign,
|
2007-09-06 19:16:30 +00:00
|
|
|
INTINO(bus_read_4(fica->fica_memres, FHC_IMAP))),
|
2009-03-19 20:29:23 +00:00
|
|
|
&fhc_ic, fica);
|
|
|
|
if (j != 0)
|
|
|
|
device_printf(dev, "could not register "
|
|
|
|
"interrupt controller for map %d (%d)\n",
|
|
|
|
i, j);
|
2007-09-06 19:16:30 +00:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
snprintf(ledname, sizeof(ledname), "board%d", board);
|
2005-03-19 00:50:28 +00:00
|
|
|
sc->sc_led_dev = led_create(fhc_led_func, sc, ledname);
|
|
|
|
}
|
|
|
|
|
2003-02-18 09:01:01 +00:00
|
|
|
for (child = OF_child(node); child != 0; child = OF_peer(child)) {
|
2005-11-22 16:39:44 +00:00
|
|
|
fdi = malloc(sizeof(*fdi), M_DEVBUF, M_WAITOK | M_ZERO);
|
|
|
|
if (ofw_bus_gen_setup_devinfo(&fdi->fdi_obdinfo, child) != 0) {
|
|
|
|
free(fdi, M_DEVBUF);
|
2003-02-18 09:01:01 +00:00
|
|
|
continue;
|
2005-11-22 16:39:44 +00:00
|
|
|
}
|
2009-03-19 20:29:23 +00:00
|
|
|
i = OF_getprop_alloc(child, "reg", sizeof(*reg),
|
2005-11-22 16:39:44 +00:00
|
|
|
(void **)®);
|
2009-03-19 20:29:23 +00:00
|
|
|
if (i == -1) {
|
2005-11-22 16:39:44 +00:00
|
|
|
device_printf(dev, "<%s>: incomplete\n",
|
|
|
|
fdi->fdi_obdinfo.obd_name);
|
|
|
|
ofw_bus_gen_destroy_devinfo(&fdi->fdi_obdinfo);
|
|
|
|
free(fdi, M_DEVBUF);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
resource_list_init(&fdi->fdi_rl);
|
2009-03-19 20:29:23 +00:00
|
|
|
for (j = 0; j < i; j++)
|
|
|
|
resource_list_add(&fdi->fdi_rl, SYS_RES_MEMORY, j,
|
|
|
|
reg[j].sbr_offset, reg[j].sbr_offset +
|
|
|
|
reg[j].sbr_size, reg[j].sbr_size);
|
2005-11-22 16:39:44 +00:00
|
|
|
free(reg, M_OFWPROP);
|
2007-09-06 19:16:30 +00:00
|
|
|
if (central == 1) {
|
2009-03-19 20:29:23 +00:00
|
|
|
i = OF_getprop_alloc(child, "interrupts",
|
2007-09-06 19:16:30 +00:00
|
|
|
sizeof(*intr), (void **)&intr);
|
2009-03-19 20:29:23 +00:00
|
|
|
if (i != -1) {
|
|
|
|
for (j = 0; j < i; j++) {
|
|
|
|
iv = INTMAP_VEC(sc->sc_ign, intr[j]);
|
2007-09-06 19:16:30 +00:00
|
|
|
resource_list_add(&fdi->fdi_rl,
|
2009-03-19 20:29:23 +00:00
|
|
|
SYS_RES_IRQ, j, iv, iv, 1);
|
2007-09-06 19:16:30 +00:00
|
|
|
}
|
|
|
|
free(intr, M_OFWPROP);
|
2005-03-04 22:23:21 +00:00
|
|
|
}
|
2005-11-22 16:39:44 +00:00
|
|
|
}
|
|
|
|
cdev = device_add_child(dev, NULL, -1);
|
|
|
|
if (cdev == NULL) {
|
|
|
|
device_printf(dev, "<%s>: device_add_child failed\n",
|
|
|
|
fdi->fdi_obdinfo.obd_name);
|
|
|
|
resource_list_free(&fdi->fdi_rl);
|
|
|
|
ofw_bus_gen_destroy_devinfo(&fdi->fdi_obdinfo);
|
|
|
|
free(fdi, M_DEVBUF);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
device_set_ivars(cdev, fdi);
|
2003-02-18 09:01:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return (bus_generic_attach(dev));
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
|
|
|
|
fail_memres:
|
|
|
|
for (i = 0; i < FHC_NREG; i++)
|
|
|
|
if (sc->sc_memres[i] != NULL)
|
|
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
|
|
rman_get_rid(sc->sc_memres[i]), sc->sc_memres[i]);
|
2008-08-23 16:07:20 +00:00
|
|
|
return (error);
|
2003-02-18 09:01:01 +00:00
|
|
|
}
|
|
|
|
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
static int
|
2003-02-18 09:01:01 +00:00
|
|
|
fhc_print_child(device_t dev, device_t child)
|
|
|
|
{
|
|
|
|
int rv;
|
|
|
|
|
|
|
|
rv = bus_print_child_header(dev, child);
|
2005-11-22 16:39:44 +00:00
|
|
|
rv += fhc_print_res(device_get_ivars(child));
|
2003-02-18 09:01:01 +00:00
|
|
|
rv += bus_print_child_footer(dev, child);
|
|
|
|
return (rv);
|
|
|
|
}
|
|
|
|
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
static void
|
2003-02-18 09:01:01 +00:00
|
|
|
fhc_probe_nomatch(device_t dev, device_t child)
|
|
|
|
{
|
2005-11-22 16:39:44 +00:00
|
|
|
const char *type;
|
2003-02-18 09:01:01 +00:00
|
|
|
|
2005-11-22 16:39:44 +00:00
|
|
|
device_printf(dev, "<%s>", ofw_bus_get_name(child));
|
|
|
|
fhc_print_res(device_get_ivars(child));
|
|
|
|
type = ofw_bus_get_type(child);
|
2003-02-18 09:01:01 +00:00
|
|
|
printf(" type %s (no driver attached)\n",
|
2005-11-22 16:39:44 +00:00
|
|
|
type != NULL ? type : "unknown");
|
2003-02-18 09:01:01 +00:00
|
|
|
}
|
|
|
|
|
2007-09-06 19:16:30 +00:00
|
|
|
static void
|
|
|
|
fhc_intr_enable(void *arg)
|
2003-02-18 09:01:01 +00:00
|
|
|
{
|
2007-09-06 19:16:30 +00:00
|
|
|
struct intr_vector *iv = arg;
|
|
|
|
struct fhc_icarg *fica = iv->iv_icarg;
|
2007-02-23 12:19:07 +00:00
|
|
|
|
2007-09-06 19:16:30 +00:00
|
|
|
bus_write_4(fica->fica_memres, FHC_IMAP,
|
|
|
|
INTMAP_ENABLE(iv->iv_vec, iv->iv_mid));
|
|
|
|
(void)bus_read_4(fica->fica_memres, FHC_IMAP);
|
2003-02-18 09:01:01 +00:00
|
|
|
}
|
|
|
|
|
2007-09-06 19:16:30 +00:00
|
|
|
static void
|
|
|
|
fhc_intr_disable(void *arg)
|
2003-02-18 09:01:01 +00:00
|
|
|
{
|
2007-09-06 19:16:30 +00:00
|
|
|
struct intr_vector *iv = arg;
|
|
|
|
struct fhc_icarg *fica = iv->iv_icarg;
|
2003-02-19 08:23:38 +00:00
|
|
|
|
2007-09-06 19:16:30 +00:00
|
|
|
bus_write_4(fica->fica_memres, FHC_IMAP, iv->iv_vec);
|
|
|
|
(void)bus_read_4(fica->fica_memres, FHC_IMAP);
|
2003-02-19 08:23:38 +00:00
|
|
|
}
|
|
|
|
|
2007-09-06 19:16:30 +00:00
|
|
|
static void
|
2008-04-23 20:04:38 +00:00
|
|
|
fhc_intr_assign(void *arg)
|
|
|
|
{
|
|
|
|
struct intr_vector *iv = arg;
|
|
|
|
struct fhc_icarg *fica = iv->iv_icarg;
|
|
|
|
|
|
|
|
bus_write_4(fica->fica_memres, FHC_IMAP, INTMAP_TID(
|
|
|
|
bus_read_4(fica->fica_memres, FHC_IMAP), iv->iv_mid));
|
|
|
|
(void)bus_read_4(fica->fica_memres, FHC_IMAP);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
fhc_intr_clear(void *arg)
|
2007-06-06 22:19:23 +00:00
|
|
|
{
|
2007-09-06 19:16:30 +00:00
|
|
|
struct intr_vector *iv = arg;
|
|
|
|
struct fhc_icarg *fica = iv->iv_icarg;
|
2007-06-06 22:19:23 +00:00
|
|
|
|
2010-03-31 22:19:00 +00:00
|
|
|
bus_write_4(fica->fica_memres, FHC_ICLR, INTCLR_IDLE);
|
2007-09-06 19:16:30 +00:00
|
|
|
(void)bus_read_4(fica->fica_memres, FHC_ICLR);
|
2007-06-06 22:19:23 +00:00
|
|
|
}
|
|
|
|
|
2007-09-06 19:16:30 +00:00
|
|
|
static int
|
|
|
|
fhc_setup_intr(device_t bus, device_t child, struct resource *r, int flags,
|
|
|
|
driver_filter_t *filt, driver_intr_t *func, void *arg, void **cookiep)
|
2003-02-19 08:23:38 +00:00
|
|
|
{
|
2007-09-06 19:16:30 +00:00
|
|
|
struct fhc_softc *sc;
|
|
|
|
u_long vec;
|
2003-02-18 09:01:01 +00:00
|
|
|
|
2007-09-06 19:16:30 +00:00
|
|
|
sc = device_get_softc(bus);
|
|
|
|
/*
|
|
|
|
* Make sure the vector is fully specified and we registered
|
|
|
|
* our interrupt controller for it.
|
2008-08-23 16:07:20 +00:00
|
|
|
*/
|
2007-09-06 19:16:30 +00:00
|
|
|
vec = rman_get_start(r);
|
|
|
|
if (INTIGN(vec) != sc->sc_ign || intr_vectors[vec].iv_ic != &fhc_ic) {
|
|
|
|
device_printf(bus, "invalid interrupt vector 0x%lx\n", vec);
|
2008-08-23 16:07:20 +00:00
|
|
|
return (EINVAL);
|
|
|
|
}
|
2007-09-06 19:16:30 +00:00
|
|
|
return (bus_generic_setup_intr(bus, child, r, flags, filt, func,
|
|
|
|
arg, cookiep));
|
2003-02-18 09:01:01 +00:00
|
|
|
}
|
|
|
|
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
static struct resource *
|
2003-02-18 09:01:01 +00:00
|
|
|
fhc_alloc_resource(device_t bus, device_t child, int type, int *rid,
|
|
|
|
u_long start, u_long end, u_long count, u_int flags)
|
|
|
|
{
|
2005-03-19 00:50:28 +00:00
|
|
|
struct resource_list *rl;
|
2003-02-18 09:01:01 +00:00
|
|
|
struct resource_list_entry *rle;
|
|
|
|
struct fhc_softc *sc;
|
|
|
|
struct resource *res;
|
|
|
|
bus_addr_t coffset;
|
|
|
|
bus_addr_t cend;
|
|
|
|
bus_addr_t phys;
|
|
|
|
int isdefault;
|
2005-03-19 00:50:28 +00:00
|
|
|
int passthrough;
|
2003-02-18 09:01:01 +00:00
|
|
|
int i;
|
|
|
|
|
|
|
|
isdefault = (start == 0UL && end == ~0UL);
|
2005-03-19 00:50:28 +00:00
|
|
|
passthrough = (device_get_parent(child) != bus);
|
2003-02-18 09:01:01 +00:00
|
|
|
res = NULL;
|
2005-03-19 00:50:28 +00:00
|
|
|
rle = NULL;
|
|
|
|
rl = BUS_GET_RESOURCE_LIST(bus, child);
|
2003-02-18 09:01:01 +00:00
|
|
|
sc = device_get_softc(bus);
|
|
|
|
switch (type) {
|
|
|
|
case SYS_RES_IRQ:
|
2005-03-19 00:50:28 +00:00
|
|
|
return (resource_list_alloc(rl, bus, child, type, rid, start,
|
|
|
|
end, count, flags));
|
2003-02-18 09:01:01 +00:00
|
|
|
case SYS_RES_MEMORY:
|
2005-03-19 00:50:28 +00:00
|
|
|
if (!passthrough) {
|
2007-09-06 19:16:30 +00:00
|
|
|
rle = resource_list_find(rl, type, *rid);
|
2005-03-19 00:50:28 +00:00
|
|
|
if (rle == NULL)
|
|
|
|
return (NULL);
|
|
|
|
if (rle->res != NULL)
|
|
|
|
panic("%s: resource entry is busy", __func__);
|
|
|
|
if (isdefault) {
|
|
|
|
start = rle->start;
|
|
|
|
count = ulmax(count, rle->count);
|
|
|
|
end = ulmax(rle->end, start + count - 1);
|
|
|
|
}
|
|
|
|
}
|
2003-02-18 09:01:01 +00:00
|
|
|
for (i = 0; i < sc->sc_nrange; i++) {
|
|
|
|
coffset = sc->sc_ranges[i].coffset;
|
|
|
|
cend = coffset + sc->sc_ranges[i].size - 1;
|
|
|
|
if (start >= coffset && end <= cend) {
|
|
|
|
start -= coffset;
|
|
|
|
end -= coffset;
|
|
|
|
phys = sc->sc_ranges[i].poffset |
|
|
|
|
((bus_addr_t)sc->sc_ranges[i].pspace << 32);
|
|
|
|
res = bus_generic_alloc_resource(bus, child,
|
|
|
|
type, rid, phys + start, phys + end,
|
|
|
|
count, flags);
|
2005-03-19 00:50:28 +00:00
|
|
|
if (!passthrough)
|
|
|
|
rle->res = res;
|
2003-02-18 09:01:01 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return (res);
|
2011-10-02 23:22:38 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fhc_adjust_resource(device_t bus __unused, device_t child __unused,
|
|
|
|
int type __unused, struct resource *r __unused, u_long start __unused,
|
|
|
|
u_long end __unused)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (ENXIO);
|
2003-02-18 09:01:01 +00:00
|
|
|
}
|
|
|
|
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
static struct resource_list *
|
2005-03-19 00:50:28 +00:00
|
|
|
fhc_get_resource_list(device_t bus, device_t child)
|
2003-02-18 09:01:01 +00:00
|
|
|
{
|
|
|
|
struct fhc_devinfo *fdi;
|
|
|
|
|
|
|
|
fdi = device_get_ivars(child);
|
2005-03-19 00:50:28 +00:00
|
|
|
return (&fdi->fdi_rl);
|
|
|
|
}
|
|
|
|
|
Rototill the sparc64 nexus(4) (actually this brings in the code the
sun4v nexus(4) in turn is based on):
o Change nexus(4) to manage the resources of its children so the
respective device drivers don't need to figure them out of OFW
themselves.
o Change nexus(4) to provide the ofw_bus KOBJ interface instead of
using IVARs for supplying the OFW node and the subset of standard
properties of its children. Together with the previous change this
also allows to fully take advantage of newbus in that drivers like
fhc(4), which attach on multiple parent busses, no longer require
different bus front-ends as obtaining the OFW node and properties
as well as resource allocation works the same for all supported
busses. As such this change also is part 4/4 of allowing creator(4)
to work in USIII-based machines as it allows this driver to attach
on both nexus(4) and upa(4). On the other hand removing these IVARs
breaks API compatibility with the powerpc nexus(4) but which isn't
that bad as a) sparc64 currently doesn't share any device driver
hanging off of nexus(4) with powerpc and b) they were no longer
compatible regarding OFW-related extensions at the pci(4) level
since quite some time.
o Provide bus_get_dma_tag methods in nexus(4) and its children in
order to handle DMA tags in a hierarchical way and get rid of the
sparc64_root_dma_tag kludge. Together with the previous two items
this changes also allows to completely get rid of the nexus(4)
IVAR interface. It also includes:
- pushing the constraints previously specified by the nexus_dmatag
down into the DMA tags of psycho(4) and sbus(4) as it's their
IOMMUs which induce these restrictions (and nothing at the
nexus(4) or anything that would warrant specifying them there),
- fixing some obviously wrong constraints of the psycho(4) and
sbus(4) DMA tags, which happened to not actually be used with
the sparc64_root_dma_tag kludge in place and therefore didn't
cause problems so far,
- replacing magic constants for constraints with macros as far
as it is obvious as to where they come from.
This doesn't include taking advantage of the newbus way to get
the parent DMA tags implemented by this change in order to divorce
the IOTSBs of the PCI and SBus IOMMUs or for implementing the
workaround for the DMA sync bug in Sabre (and Tomatillo) bridges,
yet, though.
o Get rid of the notion that nexus(4) (mostly) reflects an UPA bus
by replacing ofw_upa.h and with ofw_nexus.h (which was repo-copied
from ofw_upa.h) and renaming its content, which actually applies to
all of Fireplane/Safari, JBus and UPA (in the host bus case), as
appropriate.
o Just use M_DEVBUF instead of a separate M_NEXUS malloc type for
allocating the device info for the children of nexus(4). This is
done in order to not need to export M_NEXUS when deriving drivers
for subordinate busses from the nexus(4) class.
o Use the DEFINE_CLASS_0() macro to declare the nexus(4) driver so
we can derive subclasses from it.
o Const'ify the nexus_excl_name and nexus_excl_type arrays as well
as add 'associations' and 'rsc', which are pseudo-devices without
resources and therefore of no real interest for nexus(4), to the
former.
o Let the nexus(4) device memory rman manage the entire 64-bit address
space instead of just the UPA_MEMSTART to UPA_MEMEND subregion as
Fireplane/Safari- and JBus-based machines use multiple ranges,
which can't be as easily divided as in the case of UPA (limiting
the address space only served for sanity checking anyway).
o Use M_WAITOK instead of M_NOWAIT when allocating the device info
for children of nexus(4) in order to give one less opportunity
for adding devices to nexus(4) to fail.
o While adapting the drivers affected by the above nexus(4) changes,
change them to take advantage of rman_get_rid() instead of caching
the RIDs assigned to allocated resources, now that the RIDs of
resources are correctly set.
o In iommu(4) and nexus(4) replace hard-coded functions names, which
actually became outdated in several places, in panic strings and
status massages with __func__. [1]
o Use driver_filter_t in prototypes where appropriate.
o Add my copyright to creator(4), fhc(4), nexus(4), psycho(4) and
sbus(4) as I changed considerable amounts of these drivers as well
as added a bunch of new features, workarounds for silicon bugs etc.
o Fix some white space nits.
Due to lack of access to Exx00 hardware, these changes, i.e. central(4)
and fhc(4), couldn't be runtime tested on such a machine. Exx00 are
currently reported to panic before trying to attach nexus(4) anyway
though.
PR: 76052 [1]
Approved by: re (kensmith)
2007-03-07 21:13:51 +00:00
|
|
|
static const struct ofw_bus_devinfo *
|
2005-11-22 16:39:44 +00:00
|
|
|
fhc_get_devinfo(device_t bus, device_t child)
|
|
|
|
{
|
|
|
|
struct fhc_devinfo *fdi;
|
|
|
|
|
|
|
|
fdi = device_get_ivars(child);
|
|
|
|
return (&fdi->fdi_obdinfo);
|
|
|
|
}
|
|
|
|
|
2005-03-19 00:50:28 +00:00
|
|
|
static void
|
|
|
|
fhc_led_func(void *arg, int onoff)
|
|
|
|
{
|
|
|
|
struct fhc_softc *sc;
|
|
|
|
uint32_t ctrl;
|
|
|
|
|
|
|
|
sc = (struct fhc_softc *)arg;
|
|
|
|
|
2007-09-06 19:16:30 +00:00
|
|
|
ctrl = bus_read_4(sc->sc_memres[FHC_INTERNAL], FHC_CTRL);
|
2005-03-19 00:50:28 +00:00
|
|
|
if (onoff)
|
|
|
|
ctrl |= FHC_CTRL_RLED;
|
|
|
|
else
|
|
|
|
ctrl &= ~FHC_CTRL_RLED;
|
|
|
|
ctrl &= ~(FHC_CTRL_AOFF | FHC_CTRL_BOFF | FHC_CTRL_SLINE);
|
2007-09-06 19:16:30 +00:00
|
|
|
bus_write_4(sc->sc_memres[FHC_INTERNAL], FHC_CTRL, ctrl);
|
|
|
|
(void)bus_read_4(sc->sc_memres[FHC_INTERNAL], FHC_CTRL);
|
2003-02-18 09:01:01 +00:00
|
|
|
}
|
- Introduce an ofw_bus kobj-interface for retrieving the OFW node and a
subset ("compatible", "device_type", "model" and "name") of the standard
properties in drivers for devices on Open Firmware supported busses. The
standard properties "reg", "interrupts" und "address" are not covered by
this interface because they are only of interest in the respective bridge
code. There's a remaining standard property "status" which is unclear how
to support properly but which also isn't used in FreeBSD at present.
This ofw_bus kobj-interface allows to replace the various (ebus_get_node(),
ofw_pci_get_node(), etc.) and partially inconsistent (central_get_type()
vs. sbus_get_device_type(), etc.) existing IVAR ones with a common one.
This in turn allows to simplify and remove code-duplication in drivers for
devices that can hang off of more than one OFW supported bus.
- Convert the sparc64 Central, EBus, FHC, PCI and SBus bus drivers and the
drivers for their children to use the ofw_bus kobj-interface. The IVAR-
interfaces of the Central, EBus and FHC are entirely replaced by this. The
PCI bus driver used its own kobj-interface and now also uses the ofw_bus
one. The IVARs special to the SBus, e.g. for retrieving the burst size,
remain.
Beware: this causes an ABI-breakage for modules of drivers which used the
IVAR-interfaces, i.e. esp(4), hme(4), isp(4) and uart(4), which need to be
recompiled.
The style-inconsistencies introduced in some of the bus drivers will be
fixed by tmm@ in a generic clean-up of the respective drivers later (he
requested to add the changes in the "new" style).
- Convert the powerpc MacIO bus driver and the drivers for its children to
use the ofw_bus kobj-interface. This invloves removing the IVARs related
to the "reg" property which were unused and a leftover from the NetBSD
origini of the code. There's no ABI-breakage caused by this because none
of these driver are currently built as modules.
There are other powerpc bus drivers which can be converted to the ofw_bus
kobj-interface, e.g. the PCI bus driver, which should be done together
with converting powerpc to use the OFW PCI code from sparc64.
- Make the SBus and FHC front-end of zs(4) and the sparc64 eeprom(4) take
advantage of the ofw_bus kobj-interface and simplify them a bit.
Reviewed by: grehan, tmm
Approved by: re (scottl)
Discussed with: tmm
Tested with: Sun AX1105, AXe, Ultra 2, Ultra 60; PPC cross-build on i386
2004-08-12 17:41:33 +00:00
|
|
|
|
2005-11-22 16:39:44 +00:00
|
|
|
static int
|
|
|
|
fhc_print_res(struct fhc_devinfo *fdi)
|
- Introduce an ofw_bus kobj-interface for retrieving the OFW node and a
subset ("compatible", "device_type", "model" and "name") of the standard
properties in drivers for devices on Open Firmware supported busses. The
standard properties "reg", "interrupts" und "address" are not covered by
this interface because they are only of interest in the respective bridge
code. There's a remaining standard property "status" which is unclear how
to support properly but which also isn't used in FreeBSD at present.
This ofw_bus kobj-interface allows to replace the various (ebus_get_node(),
ofw_pci_get_node(), etc.) and partially inconsistent (central_get_type()
vs. sbus_get_device_type(), etc.) existing IVAR ones with a common one.
This in turn allows to simplify and remove code-duplication in drivers for
devices that can hang off of more than one OFW supported bus.
- Convert the sparc64 Central, EBus, FHC, PCI and SBus bus drivers and the
drivers for their children to use the ofw_bus kobj-interface. The IVAR-
interfaces of the Central, EBus and FHC are entirely replaced by this. The
PCI bus driver used its own kobj-interface and now also uses the ofw_bus
one. The IVARs special to the SBus, e.g. for retrieving the burst size,
remain.
Beware: this causes an ABI-breakage for modules of drivers which used the
IVAR-interfaces, i.e. esp(4), hme(4), isp(4) and uart(4), which need to be
recompiled.
The style-inconsistencies introduced in some of the bus drivers will be
fixed by tmm@ in a generic clean-up of the respective drivers later (he
requested to add the changes in the "new" style).
- Convert the powerpc MacIO bus driver and the drivers for its children to
use the ofw_bus kobj-interface. This invloves removing the IVARs related
to the "reg" property which were unused and a leftover from the NetBSD
origini of the code. There's no ABI-breakage caused by this because none
of these driver are currently built as modules.
There are other powerpc bus drivers which can be converted to the ofw_bus
kobj-interface, e.g. the PCI bus driver, which should be done together
with converting powerpc to use the OFW PCI code from sparc64.
- Make the SBus and FHC front-end of zs(4) and the sparc64 eeprom(4) take
advantage of the ofw_bus kobj-interface and simplify them a bit.
Reviewed by: grehan, tmm
Approved by: re (scottl)
Discussed with: tmm
Tested with: Sun AX1105, AXe, Ultra 2, Ultra 60; PPC cross-build on i386
2004-08-12 17:41:33 +00:00
|
|
|
{
|
2005-11-22 16:39:44 +00:00
|
|
|
int rv;
|
- Introduce an ofw_bus kobj-interface for retrieving the OFW node and a
subset ("compatible", "device_type", "model" and "name") of the standard
properties in drivers for devices on Open Firmware supported busses. The
standard properties "reg", "interrupts" und "address" are not covered by
this interface because they are only of interest in the respective bridge
code. There's a remaining standard property "status" which is unclear how
to support properly but which also isn't used in FreeBSD at present.
This ofw_bus kobj-interface allows to replace the various (ebus_get_node(),
ofw_pci_get_node(), etc.) and partially inconsistent (central_get_type()
vs. sbus_get_device_type(), etc.) existing IVAR ones with a common one.
This in turn allows to simplify and remove code-duplication in drivers for
devices that can hang off of more than one OFW supported bus.
- Convert the sparc64 Central, EBus, FHC, PCI and SBus bus drivers and the
drivers for their children to use the ofw_bus kobj-interface. The IVAR-
interfaces of the Central, EBus and FHC are entirely replaced by this. The
PCI bus driver used its own kobj-interface and now also uses the ofw_bus
one. The IVARs special to the SBus, e.g. for retrieving the burst size,
remain.
Beware: this causes an ABI-breakage for modules of drivers which used the
IVAR-interfaces, i.e. esp(4), hme(4), isp(4) and uart(4), which need to be
recompiled.
The style-inconsistencies introduced in some of the bus drivers will be
fixed by tmm@ in a generic clean-up of the respective drivers later (he
requested to add the changes in the "new" style).
- Convert the powerpc MacIO bus driver and the drivers for its children to
use the ofw_bus kobj-interface. This invloves removing the IVARs related
to the "reg" property which were unused and a leftover from the NetBSD
origini of the code. There's no ABI-breakage caused by this because none
of these driver are currently built as modules.
There are other powerpc bus drivers which can be converted to the ofw_bus
kobj-interface, e.g. the PCI bus driver, which should be done together
with converting powerpc to use the OFW PCI code from sparc64.
- Make the SBus and FHC front-end of zs(4) and the sparc64 eeprom(4) take
advantage of the ofw_bus kobj-interface and simplify them a bit.
Reviewed by: grehan, tmm
Approved by: re (scottl)
Discussed with: tmm
Tested with: Sun AX1105, AXe, Ultra 2, Ultra 60; PPC cross-build on i386
2004-08-12 17:41:33 +00:00
|
|
|
|
2005-11-22 16:39:44 +00:00
|
|
|
rv = 0;
|
|
|
|
rv += resource_list_print_type(&fdi->fdi_rl, "mem", SYS_RES_MEMORY,
|
|
|
|
"%#lx");
|
|
|
|
rv += resource_list_print_type(&fdi->fdi_rl, "irq", SYS_RES_IRQ, "%ld");
|
|
|
|
return (rv);
|
- Introduce an ofw_bus kobj-interface for retrieving the OFW node and a
subset ("compatible", "device_type", "model" and "name") of the standard
properties in drivers for devices on Open Firmware supported busses. The
standard properties "reg", "interrupts" und "address" are not covered by
this interface because they are only of interest in the respective bridge
code. There's a remaining standard property "status" which is unclear how
to support properly but which also isn't used in FreeBSD at present.
This ofw_bus kobj-interface allows to replace the various (ebus_get_node(),
ofw_pci_get_node(), etc.) and partially inconsistent (central_get_type()
vs. sbus_get_device_type(), etc.) existing IVAR ones with a common one.
This in turn allows to simplify and remove code-duplication in drivers for
devices that can hang off of more than one OFW supported bus.
- Convert the sparc64 Central, EBus, FHC, PCI and SBus bus drivers and the
drivers for their children to use the ofw_bus kobj-interface. The IVAR-
interfaces of the Central, EBus and FHC are entirely replaced by this. The
PCI bus driver used its own kobj-interface and now also uses the ofw_bus
one. The IVARs special to the SBus, e.g. for retrieving the burst size,
remain.
Beware: this causes an ABI-breakage for modules of drivers which used the
IVAR-interfaces, i.e. esp(4), hme(4), isp(4) and uart(4), which need to be
recompiled.
The style-inconsistencies introduced in some of the bus drivers will be
fixed by tmm@ in a generic clean-up of the respective drivers later (he
requested to add the changes in the "new" style).
- Convert the powerpc MacIO bus driver and the drivers for its children to
use the ofw_bus kobj-interface. This invloves removing the IVARs related
to the "reg" property which were unused and a leftover from the NetBSD
origini of the code. There's no ABI-breakage caused by this because none
of these driver are currently built as modules.
There are other powerpc bus drivers which can be converted to the ofw_bus
kobj-interface, e.g. the PCI bus driver, which should be done together
with converting powerpc to use the OFW PCI code from sparc64.
- Make the SBus and FHC front-end of zs(4) and the sparc64 eeprom(4) take
advantage of the ofw_bus kobj-interface and simplify them a bit.
Reviewed by: grehan, tmm
Approved by: re (scottl)
Discussed with: tmm
Tested with: Sun AX1105, AXe, Ultra 2, Ultra 60; PPC cross-build on i386
2004-08-12 17:41:33 +00:00
|
|
|
}
|