freebsd-dev/sbin/fsck_ffs/gjournal.c

172 lines
5.7 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-3-Clause AND BSD-2-Clause-FreeBSD
*
* Copyright (c) 2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
#include <string.h>
#include <sys/stat.h>
#include <ufs/ffs/fs.h>
#include "fsck.h"
void
gjournal_check(const char *filesys)
{
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
struct fs *fs;
struct inode ip;
union dinode *dp;
struct bufarea *cgbp;
struct cg *cgp;
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
struct inodesc idesc;
uint8_t *inosused;
ino_t cino, ino;
int cg;
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
fs = &sblock;
2009-06-03 09:23:31 +00:00
/* Are there any unreferenced inodes in this file system? */
if (fs->fs_unrefs == 0) {
//printf("No unreferenced inodes.\n");
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
sbdirty();
ckfini(1);
return;
}
for (cg = 0; cg < fs->fs_ncg; cg++) {
/* Show progress if requested. */
if (got_siginfo) {
printf("%s: phase j: cyl group %d of %d (%d%%)\n",
cdevname, cg, fs->fs_ncg, cg * 100 / fs->fs_ncg);
got_siginfo = 0;
}
if (got_sigalarm) {
setproctitle("%s pj %d%%", cdevname,
cg * 100 / fs->fs_ncg);
got_sigalarm = 0;
}
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
cgbp = cglookup(cg);
cgp = cgbp->b_un.b_cg;
if (!check_cgmagic(cg, cgbp, 0)) {
rerun = 1;
ckfini(0);
return;
}
/* Are there any unreferenced inodes in this cylinder group? */
if (cgp->cg_unrefs == 0)
continue;
//printf("Analizing cylinder group %d (count=%d)\n", cg, cgp->cg_unrefs);
/*
* Now go through the list of all inodes in this cylinder group
* to find unreferenced ones.
*/
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
inosused = cg_inosused(cgp);
for (cino = 0; cino < fs->fs_ipg; cino++) {
ino = fs->fs_ipg * cg + cino;
/* Unallocated? Skip it. */
if (isclr(inosused, cino))
continue;
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
ginode(ino, &ip);
dp = ip.i_dp;
/* Not a regular file nor directory? Skip it. */
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
if (!S_ISREG(dp->dp2.di_mode) &&
!S_ISDIR(dp->dp2.di_mode)) {
irelse(&ip);
continue;
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
}
/* Has reference(s)? Skip it. */
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
if (dp->dp2.di_nlink > 0) {
irelse(&ip);
continue;
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
}
/* printf("Clearing inode=%d (size=%jd)\n", ino,
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
(intmax_t)dp->dp2->di_size); */
/* Deallocate it. */
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
memset(&idesc, 0, sizeof(struct inodesc));
idesc.id_type = ADDR;
idesc.id_func = freeblock;
idesc.id_number = ino;
clri(&idesc, "UNREF", 1);
clrbit(inosused, cino);
/* Update position of last used inode. */
if (ino < cgp->cg_irotor)
cgp->cg_irotor = ino;
/* Update statistics. */
cgp->cg_unrefs--;
fs->fs_unrefs--;
/* Zero-fill the inode. */
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
dp->dp2 = zino.dp2;
/* Write the inode back. */
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
inodirty(&ip);
irelse(&ip);
cgdirty(cgbp);
if (cgp->cg_unrefs == 0) {
//printf("No more unreferenced inodes in cg=%d.\n", cg);
break;
}
}
/*
* If there are no more unreferenced inodes, there is no need to
* check other cylinder groups.
*/
if (fs->fs_unrefs == 0) {
//printf("No more unreferenced inodes (cg=%d/%d).\n", cg,
// fs->fs_ncg);
break;
}
}
/* Write back updated statistics and super-block. */
Rewrite the disk I/O management system in fsck_ffs(8). Other than making fsck_ffs(8) run faster, there should be no functional change. The original fsck_ffs(8) had its own disk I/O management system. When gjournal(8) was added to FreeBSD 7, code was added to fsck_ffs(8) to do the necessary gjournal rollback. Rather than use the existing fsck_ffs(8) disk I/O system, it wrote its own from scratch. Similarly when journalled soft updates were added in FreeBSD 9, code was added to fsck_ffs(8) to do the necessary journal rollback. And once again, rather than using either of the existing fsck_ffs(8) disk I/O systems, it wrote its own from scratch. Lastly the fsdb(8) utility uses the fsck_ffs(8) disk I/O management system. In preparation for making the changes necessary to enable snapshots to be taken when using journalled soft updates, it was necessary to have a single disk I/O system used by all the various subsystems in fsck_ffs(8). This commit merges the functionality required by all the different subsystems into a single disk I/O system that supports all of their needs. In so doing it picks up optimizations from each of them with the results that each of the subsystems does fewer reads and writes than it did with its own customized I/O system. It also greatly simplifies making changes to fsck_ffs(8) since everything goes through a single place. For example the ginode() function fetches an inode from the disk. When inode check hashes were added, they previously had to be checked in the code implementing inode fetch in each of the three different disk I/O systems. Now they need only be checked in ginode(). Tested by: Peter Holm Sponsored by: Netflix
2021-01-07 01:37:08 +00:00
sbdirty();
ckfini(1);
}