freebsd-dev/contrib/bearssl/tools/client.c

1113 lines
26 KiB
C
Raw Normal View History

2019-01-21 20:23:49 +00:00
/*
* Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <errno.h>
#include <signal.h>
#ifdef _WIN32
#include <winsock2.h>
#include <ws2tcpip.h>
#else
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <fcntl.h>
#define SOCKET int
#define INVALID_SOCKET (-1)
#endif
#include "brssl.h"
static int
host_connect(const char *host, const char *port, int verbose)
{
struct addrinfo hints, *si, *p;
SOCKET fd;
int err;
memset(&hints, 0, sizeof hints);
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
err = getaddrinfo(host, port, &hints, &si);
if (err != 0) {
fprintf(stderr, "ERROR: getaddrinfo(): %s\n",
gai_strerror(err));
return INVALID_SOCKET;
}
fd = INVALID_SOCKET;
for (p = si; p != NULL; p = p->ai_next) {
if (verbose) {
struct sockaddr *sa;
void *addr;
char tmp[INET6_ADDRSTRLEN + 50];
sa = (struct sockaddr *)p->ai_addr;
if (sa->sa_family == AF_INET) {
addr = &((struct sockaddr_in *)
(void *)sa)->sin_addr;
} else if (sa->sa_family == AF_INET6) {
addr = &((struct sockaddr_in6 *)
(void *)sa)->sin6_addr;
} else {
addr = NULL;
}
if (addr != NULL) {
if (!inet_ntop(p->ai_family, addr,
tmp, sizeof tmp))
{
strcpy(tmp, "<invalid>");
}
} else {
sprintf(tmp, "<unknown family: %d>",
(int)sa->sa_family);
}
fprintf(stderr, "connecting to: %s\n", tmp);
}
fd = socket(p->ai_family, p->ai_socktype, p->ai_protocol);
if (fd == INVALID_SOCKET) {
if (verbose) {
perror("socket()");
}
continue;
}
if (connect(fd, p->ai_addr, p->ai_addrlen) == INVALID_SOCKET) {
if (verbose) {
perror("connect()");
}
#ifdef _WIN32
closesocket(fd);
#else
close(fd);
#endif
continue;
}
break;
}
if (p == NULL) {
freeaddrinfo(si);
fprintf(stderr, "ERROR: failed to connect\n");
return INVALID_SOCKET;
}
freeaddrinfo(si);
if (verbose) {
fprintf(stderr, "connected.\n");
}
/*
* We make the socket non-blocking, since we are going to use
* poll() or select() to organise I/O.
*/
#ifdef _WIN32
{
u_long arg;
arg = 1;
ioctlsocket(fd, FIONBIO, &arg);
}
#else
fcntl(fd, F_SETFL, O_NONBLOCK);
#endif
return fd;
}
typedef struct {
const br_ssl_client_certificate_class *vtable;
int verbose;
br_x509_certificate *chain;
size_t chain_len;
private_key *sk;
int issuer_key_type;
} ccert_context;
static void
cc_start_name_list(const br_ssl_client_certificate_class **pctx)
{
ccert_context *zc;
zc = (ccert_context *)pctx;
if (zc->verbose) {
fprintf(stderr, "Server requests a client certificate.\n");
fprintf(stderr, "--- anchor DN list start ---\n");
}
}
static void
cc_start_name(const br_ssl_client_certificate_class **pctx, size_t len)
{
ccert_context *zc;
zc = (ccert_context *)pctx;
if (zc->verbose) {
fprintf(stderr, "new anchor name, length = %u\n",
(unsigned)len);
}
}
static void
cc_append_name(const br_ssl_client_certificate_class **pctx,
const unsigned char *data, size_t len)
{
ccert_context *zc;
zc = (ccert_context *)pctx;
if (zc->verbose) {
size_t u;
for (u = 0; u < len; u ++) {
if (u == 0) {
fprintf(stderr, " ");
} else if (u > 0 && u % 16 == 0) {
fprintf(stderr, "\n ");
}
fprintf(stderr, " %02x", data[u]);
}
if (len > 0) {
fprintf(stderr, "\n");
}
}
}
static void
cc_end_name(const br_ssl_client_certificate_class **pctx)
{
(void)pctx;
}
static void
cc_end_name_list(const br_ssl_client_certificate_class **pctx)
{
ccert_context *zc;
zc = (ccert_context *)pctx;
if (zc->verbose) {
fprintf(stderr, "--- anchor DN list end ---\n");
}
}
static void
print_hashes(unsigned hh, unsigned hh2)
{
int i;
for (i = 0; i < 8; i ++) {
const char *name;
name = hash_function_name(i);
if (((hh >> i) & 1) != 0) {
fprintf(stderr, " %s", name);
} else if (((hh2 >> i) & 1) != 0) {
fprintf(stderr, " (%s)", name);
}
}
}
static int
choose_hash(unsigned hh)
{
static const int f[] = {
br_sha256_ID, br_sha224_ID, br_sha384_ID, br_sha512_ID,
br_sha1_ID, br_md5sha1_ID, -1
};
size_t u;
for (u = 0; f[u] >= 0; u ++) {
if (((hh >> f[u]) & 1) != 0) {
return f[u];
}
}
return -1;
}
static void
cc_choose(const br_ssl_client_certificate_class **pctx,
const br_ssl_client_context *cc, uint32_t auth_types,
br_ssl_client_certificate *choices)
{
ccert_context *zc;
int scurve;
zc = (ccert_context *)pctx;
scurve = br_ssl_client_get_server_curve(cc);
if (zc->verbose) {
unsigned hashes;
hashes = br_ssl_client_get_server_hashes(cc);
if ((auth_types & 0x00FF) != 0) {
fprintf(stderr, "supported: RSA signatures:");
print_hashes(auth_types, hashes);
fprintf(stderr, "\n");
}
if ((auth_types & 0xFF00) != 0) {
fprintf(stderr, "supported: ECDSA signatures:");
print_hashes(auth_types >> 8, hashes >> 8);
fprintf(stderr, "\n");
}
if ((auth_types & 0x010000) != 0) {
fprintf(stderr, "supported:"
" fixed ECDH (cert signed with RSA)\n");
}
if ((auth_types & 0x020000) != 0) {
fprintf(stderr, "supported:"
" fixed ECDH (cert signed with ECDSA)\n");
}
if (scurve) {
fprintf(stderr, "server key curve: %s (%d)\n",
ec_curve_name(scurve), scurve);
} else {
fprintf(stderr, "server key is not EC\n");
}
}
switch (zc->sk->key_type) {
case BR_KEYTYPE_RSA:
if ((choices->hash_id = choose_hash(auth_types)) >= 0) {
if (zc->verbose) {
fprintf(stderr, "using RSA, hash = %d (%s)\n",
choices->hash_id,
hash_function_name(choices->hash_id));
}
choices->auth_type = BR_AUTH_RSA;
choices->chain = zc->chain;
choices->chain_len = zc->chain_len;
return;
}
break;
case BR_KEYTYPE_EC:
if (zc->issuer_key_type != 0
&& scurve == zc->sk->key.ec.curve)
{
int x;
x = (zc->issuer_key_type == BR_KEYTYPE_RSA) ? 16 : 17;
if (((auth_types >> x) & 1) != 0) {
if (zc->verbose) {
fprintf(stderr, "using static ECDH\n");
}
choices->auth_type = BR_AUTH_ECDH;
choices->hash_id = -1;
choices->chain = zc->chain;
choices->chain_len = zc->chain_len;
return;
}
}
if ((choices->hash_id = choose_hash(auth_types >> 8)) >= 0) {
if (zc->verbose) {
fprintf(stderr, "using ECDSA, hash = %d (%s)\n",
choices->hash_id,
hash_function_name(choices->hash_id));
}
choices->auth_type = BR_AUTH_ECDSA;
choices->chain = zc->chain;
choices->chain_len = zc->chain_len;
return;
}
break;
}
if (zc->verbose) {
fprintf(stderr, "no matching client certificate\n");
}
choices->chain = NULL;
choices->chain_len = 0;
}
static uint32_t
cc_do_keyx(const br_ssl_client_certificate_class **pctx,
unsigned char *data, size_t *len)
{
const br_ec_impl *iec;
ccert_context *zc;
size_t xoff, xlen;
uint32_t r;
zc = (ccert_context *)pctx;
iec = br_ec_get_default();
r = iec->mul(data, *len, zc->sk->key.ec.x,
zc->sk->key.ec.xlen, zc->sk->key.ec.curve);
xoff = iec->xoff(zc->sk->key.ec.curve, &xlen);
memmove(data, data + xoff, xlen);
*len = xlen;
return r;
}
static size_t
cc_do_sign(const br_ssl_client_certificate_class **pctx,
int hash_id, size_t hv_len, unsigned char *data, size_t len)
{
ccert_context *zc;
unsigned char hv[64];
zc = (ccert_context *)pctx;
memcpy(hv, data, hv_len);
switch (zc->sk->key_type) {
const br_hash_class *hc;
const unsigned char *hash_oid;
uint32_t x;
size_t sig_len;
case BR_KEYTYPE_RSA:
hash_oid = get_hash_oid(hash_id);
if (hash_oid == NULL && hash_id != 0) {
if (zc->verbose) {
fprintf(stderr, "ERROR: cannot RSA-sign with"
" unknown hash function: %d\n",
hash_id);
}
return 0;
}
sig_len = (zc->sk->key.rsa.n_bitlen + 7) >> 3;
if (len < sig_len) {
if (zc->verbose) {
fprintf(stderr, "ERROR: cannot RSA-sign,"
" buffer is too small"
" (sig=%lu, buf=%lu)\n",
(unsigned long)sig_len,
(unsigned long)len);
}
return 0;
}
x = br_rsa_pkcs1_sign_get_default()(
hash_oid, hv, hv_len, &zc->sk->key.rsa, data);
if (!x) {
if (zc->verbose) {
fprintf(stderr, "ERROR: RSA-sign failure\n");
}
return 0;
}
return sig_len;
case BR_KEYTYPE_EC:
hc = get_hash_impl(hash_id);
if (hc == NULL) {
if (zc->verbose) {
fprintf(stderr, "ERROR: cannot ECDSA-sign with"
" unknown hash function: %d\n",
hash_id);
}
return 0;
}
if (len < 139) {
if (zc->verbose) {
fprintf(stderr, "ERROR: cannot ECDSA-sign"
" (output buffer = %lu)\n",
(unsigned long)len);
}
return 0;
}
sig_len = br_ecdsa_sign_asn1_get_default()(
br_ec_get_default(), hc, hv, &zc->sk->key.ec, data);
if (sig_len == 0) {
if (zc->verbose) {
fprintf(stderr, "ERROR: ECDSA-sign failure\n");
}
return 0;
}
return sig_len;
default:
return 0;
}
}
static const br_ssl_client_certificate_class ccert_vtable = {
sizeof(ccert_context),
cc_start_name_list,
cc_start_name,
cc_append_name,
cc_end_name,
cc_end_name_list,
cc_choose,
cc_do_keyx,
cc_do_sign
};
static void
free_alpn(void *alpn)
{
xfree(*(char **)alpn);
}
static void
usage_client(void)
{
fprintf(stderr,
"usage: brssl client server[:port] [ options ]\n");
fprintf(stderr,
"options:\n");
fprintf(stderr,
" -q suppress verbose messages\n");
fprintf(stderr,
" -trace activate extra debug messages (dump of all packets)\n");
fprintf(stderr,
" -sni name use this specific name for SNI\n");
fprintf(stderr,
" -nosni do not send any SNI\n");
fprintf(stderr,
" -mono use monodirectional buffering\n");
fprintf(stderr,
" -buf length set the I/O buffer length (in bytes)\n");
fprintf(stderr,
" -CA file add certificates in 'file' to trust anchors\n");
fprintf(stderr,
" -cert file set client certificate chain\n");
fprintf(stderr,
" -key file set client private key (for certificate authentication)\n");
fprintf(stderr,
" -nostaticecdh prohibit full-static ECDH (client certificate)\n");
fprintf(stderr,
" -list list supported names (protocols, algorithms...)\n");
fprintf(stderr,
" -vmin name set minimum supported version (default: TLS-1.0)\n");
fprintf(stderr,
" -vmax name set maximum supported version (default: TLS-1.2)\n");
fprintf(stderr,
" -cs names set list of supported cipher suites (comma-separated)\n");
fprintf(stderr,
" -hf names add support for some hash functions (comma-separated)\n");
fprintf(stderr,
" -minhello len set minimum ClientHello length (in bytes)\n");
fprintf(stderr,
" -fallback send the TLS_FALLBACK_SCSV (i.e. claim a downgrade)\n");
fprintf(stderr,
" -noreneg prohibit renegotiations\n");
fprintf(stderr,
" -alpn name add protocol name to list of protocols (ALPN extension)\n");
fprintf(stderr,
" -strictalpn fail on ALPN mismatch\n");
}
/* see brssl.h */
int
do_client(int argc, char *argv[])
{
int retcode;
int verbose;
int trace;
int i, bidi;
const char *server_name;
char *host;
char *port;
const char *sni;
anchor_list anchors = VEC_INIT;
unsigned vmin, vmax;
VECTOR(char *) alpn_names = VEC_INIT;
cipher_suite *suites;
size_t num_suites;
uint16_t *suite_ids;
unsigned hfuns;
size_t u;
br_ssl_client_context cc;
br_x509_minimal_context xc;
x509_noanchor_context xwc;
const br_hash_class *dnhash;
ccert_context zc;
br_x509_certificate *chain;
size_t chain_len;
private_key *sk;
int nostaticecdh;
unsigned char *iobuf;
size_t iobuf_len;
size_t minhello_len;
int fallback;
uint32_t flags;
SOCKET fd;
retcode = 0;
verbose = 1;
trace = 0;
server_name = NULL;
host = NULL;
port = NULL;
sni = NULL;
bidi = 1;
vmin = 0;
vmax = 0;
suites = NULL;
num_suites = 0;
hfuns = 0;
suite_ids = NULL;
chain = NULL;
chain_len = 0;
sk = NULL;
nostaticecdh = 0;
iobuf = NULL;
iobuf_len = 0;
minhello_len = (size_t)-1;
fallback = 0;
flags = 0;
fd = INVALID_SOCKET;
for (i = 0; i < argc; i ++) {
const char *arg;
arg = argv[i];
if (arg[0] != '-') {
if (server_name != NULL) {
fprintf(stderr,
"ERROR: duplicate server name\n");
usage_client();
goto client_exit_error;
}
server_name = arg;
continue;
}
if (eqstr(arg, "-v") || eqstr(arg, "-verbose")) {
verbose = 1;
} else if (eqstr(arg, "-q") || eqstr(arg, "-quiet")) {
verbose = 0;
} else if (eqstr(arg, "-trace")) {
trace = 1;
} else if (eqstr(arg, "-sni")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-sni'\n");
usage_client();
goto client_exit_error;
}
if (sni != NULL) {
fprintf(stderr, "ERROR: duplicate SNI\n");
usage_client();
goto client_exit_error;
}
sni = argv[i];
} else if (eqstr(arg, "-nosni")) {
if (sni != NULL) {
fprintf(stderr, "ERROR: duplicate SNI\n");
usage_client();
goto client_exit_error;
}
sni = "";
} else if (eqstr(arg, "-mono")) {
bidi = 0;
} else if (eqstr(arg, "-buf")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-buf'\n");
usage_client();
goto client_exit_error;
}
arg = argv[i];
if (iobuf_len != 0) {
fprintf(stderr,
"ERROR: duplicate I/O buffer length\n");
usage_client();
goto client_exit_error;
}
iobuf_len = parse_size(arg);
if (iobuf_len == (size_t)-1) {
usage_client();
goto client_exit_error;
}
} else if (eqstr(arg, "-CA")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-CA'\n");
usage_client();
goto client_exit_error;
}
arg = argv[i];
if (read_trust_anchors(&anchors, arg) == 0) {
usage_client();
goto client_exit_error;
}
} else if (eqstr(arg, "-cert")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-cert'\n");
usage_client();
goto client_exit_error;
}
if (chain != NULL) {
fprintf(stderr,
"ERROR: duplicate certificate chain\n");
usage_client();
goto client_exit_error;
}
arg = argv[i];
chain = read_certificates(arg, &chain_len);
if (chain == NULL || chain_len == 0) {
goto client_exit_error;
}
} else if (eqstr(arg, "-key")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-key'\n");
usage_client();
goto client_exit_error;
}
if (sk != NULL) {
fprintf(stderr,
"ERROR: duplicate private key\n");
usage_client();
goto client_exit_error;
}
arg = argv[i];
sk = read_private_key(arg);
if (sk == NULL) {
goto client_exit_error;
}
} else if (eqstr(arg, "-nostaticecdh")) {
nostaticecdh = 1;
} else if (eqstr(arg, "-list")) {
list_names();
goto client_exit;
} else if (eqstr(arg, "-vmin")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-vmin'\n");
usage_client();
goto client_exit_error;
}
arg = argv[i];
if (vmin != 0) {
fprintf(stderr,
"ERROR: duplicate minimum version\n");
usage_client();
goto client_exit_error;
}
vmin = parse_version(arg, strlen(arg));
if (vmin == 0) {
fprintf(stderr,
"ERROR: unrecognised version '%s'\n",
arg);
usage_client();
goto client_exit_error;
}
} else if (eqstr(arg, "-vmax")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-vmax'\n");
usage_client();
goto client_exit_error;
}
arg = argv[i];
if (vmax != 0) {
fprintf(stderr,
"ERROR: duplicate maximum version\n");
usage_client();
goto client_exit_error;
}
vmax = parse_version(arg, strlen(arg));
if (vmax == 0) {
fprintf(stderr,
"ERROR: unrecognised version '%s'\n",
arg);
usage_client();
goto client_exit_error;
}
} else if (eqstr(arg, "-cs")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-cs'\n");
usage_client();
goto client_exit_error;
}
arg = argv[i];
if (suites != NULL) {
fprintf(stderr, "ERROR: duplicate list"
" of cipher suites\n");
usage_client();
goto client_exit_error;
}
suites = parse_suites(arg, &num_suites);
if (suites == NULL) {
usage_client();
goto client_exit_error;
}
} else if (eqstr(arg, "-hf")) {
unsigned x;
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-hf'\n");
usage_client();
goto client_exit_error;
}
arg = argv[i];
x = parse_hash_functions(arg);
if (x == 0) {
usage_client();
goto client_exit_error;
}
hfuns |= x;
} else if (eqstr(arg, "-minhello")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-minhello'\n");
usage_client();
goto client_exit_error;
}
arg = argv[i];
if (minhello_len != (size_t)-1) {
fprintf(stderr, "ERROR: duplicate minimum"
" ClientHello length\n");
usage_client();
goto client_exit_error;
}
minhello_len = parse_size(arg);
/*
* Minimum ClientHello length must fit on 16 bits.
*/
if (minhello_len == (size_t)-1
|| (((minhello_len >> 12) >> 4) != 0))
{
usage_client();
goto client_exit_error;
}
} else if (eqstr(arg, "-fallback")) {
fallback = 1;
} else if (eqstr(arg, "-noreneg")) {
flags |= BR_OPT_NO_RENEGOTIATION;
} else if (eqstr(arg, "-alpn")) {
if (++ i >= argc) {
fprintf(stderr,
"ERROR: no argument for '-alpn'\n");
usage_client();
goto client_exit_error;
}
VEC_ADD(alpn_names, xstrdup(argv[i]));
} else if (eqstr(arg, "-strictalpn")) {
flags |= BR_OPT_FAIL_ON_ALPN_MISMATCH;
} else {
fprintf(stderr, "ERROR: unknown option: '%s'\n", arg);
usage_client();
goto client_exit_error;
}
}
if (server_name == NULL) {
fprintf(stderr, "ERROR: no server name/address provided\n");
usage_client();
goto client_exit_error;
}
for (u = strlen(server_name); u > 0; u --) {
int c = server_name[u - 1];
if (c == ':') {
break;
}
if (c < '0' || c > '9') {
u = 0;
break;
}
}
if (u == 0) {
host = xstrdup(server_name);
port = xstrdup("443");
} else {
port = xstrdup(server_name + u);
host = xmalloc(u);
memcpy(host, server_name, u - 1);
host[u - 1] = 0;
}
if (sni == NULL) {
sni = host;
}
if (chain == NULL && sk != NULL) {
fprintf(stderr, "ERROR: private key specified, but"
" no certificate chain\n");
usage_client();
goto client_exit_error;
}
if (chain != NULL && sk == NULL) {
fprintf(stderr, "ERROR: certificate chain specified, but"
" no private key\n");
usage_client();
goto client_exit_error;
}
if (vmin == 0) {
vmin = BR_TLS10;
}
if (vmax == 0) {
vmax = BR_TLS12;
}
if (vmax < vmin) {
fprintf(stderr, "ERROR: impossible minimum/maximum protocol"
" version combination\n");
usage_client();
goto client_exit_error;
}
if (suites == NULL) {
num_suites = 0;
for (u = 0; cipher_suites[u].name; u ++) {
if ((cipher_suites[u].req & REQ_TLS12) == 0
|| vmax >= BR_TLS12)
{
num_suites ++;
}
}
suites = xmalloc(num_suites * sizeof *suites);
num_suites = 0;
for (u = 0; cipher_suites[u].name; u ++) {
if ((cipher_suites[u].req & REQ_TLS12) == 0
|| vmax >= BR_TLS12)
{
suites[num_suites ++] = cipher_suites[u];
}
}
}
if (hfuns == 0) {
hfuns = (unsigned)-1;
}
if (iobuf_len == 0) {
if (bidi) {
iobuf_len = BR_SSL_BUFSIZE_BIDI;
} else {
iobuf_len = BR_SSL_BUFSIZE_MONO;
}
}
iobuf = xmalloc(iobuf_len);
/*
* Compute implementation requirements and inject implementations.
*/
suite_ids = xmalloc((num_suites + 1) * sizeof *suite_ids);
br_ssl_client_zero(&cc);
br_ssl_engine_set_versions(&cc.eng, vmin, vmax);
dnhash = NULL;
for (u = 0; hash_functions[u].name; u ++) {
const br_hash_class *hc;
int id;
hc = hash_functions[u].hclass;
id = (hc->desc >> BR_HASHDESC_ID_OFF) & BR_HASHDESC_ID_MASK;
if ((hfuns & ((unsigned)1 << id)) != 0) {
dnhash = hc;
}
}
if (dnhash == NULL) {
fprintf(stderr, "ERROR: no supported hash function\n");
goto client_exit_error;
}
br_x509_minimal_init(&xc, dnhash,
&VEC_ELT(anchors, 0), VEC_LEN(anchors));
if (vmin <= BR_TLS11) {
if (!(hfuns & (1 << br_md5_ID))) {
fprintf(stderr, "ERROR: TLS 1.0 and 1.1 need MD5\n");
goto client_exit_error;
}
if (!(hfuns & (1 << br_sha1_ID))) {
fprintf(stderr, "ERROR: TLS 1.0 and 1.1 need SHA-1\n");
goto client_exit_error;
}
}
for (u = 0; u < num_suites; u ++) {
unsigned req;
req = suites[u].req;
suite_ids[u] = suites[u].suite;
if ((req & REQ_TLS12) != 0 && vmax < BR_TLS12) {
fprintf(stderr,
"ERROR: cipher suite %s requires TLS 1.2\n",
suites[u].name);
goto client_exit_error;
}
if ((req & REQ_SHA1) != 0 && !(hfuns & (1 << br_sha1_ID))) {
fprintf(stderr,
"ERROR: cipher suite %s requires SHA-1\n",
suites[u].name);
goto client_exit_error;
}
if ((req & REQ_SHA256) != 0 && !(hfuns & (1 << br_sha256_ID))) {
fprintf(stderr,
"ERROR: cipher suite %s requires SHA-256\n",
suites[u].name);
goto client_exit_error;
}
if ((req & REQ_SHA384) != 0 && !(hfuns & (1 << br_sha384_ID))) {
fprintf(stderr,
"ERROR: cipher suite %s requires SHA-384\n",
suites[u].name);
goto client_exit_error;
}
/* TODO: algorithm implementation selection */
if ((req & REQ_AESCBC) != 0) {
br_ssl_engine_set_default_aes_cbc(&cc.eng);
}
if ((req & REQ_AESCCM) != 0) {
br_ssl_engine_set_default_aes_ccm(&cc.eng);
}
if ((req & REQ_AESGCM) != 0) {
br_ssl_engine_set_default_aes_gcm(&cc.eng);
}
if ((req & REQ_CHAPOL) != 0) {
br_ssl_engine_set_default_chapol(&cc.eng);
}
if ((req & REQ_3DESCBC) != 0) {
br_ssl_engine_set_default_des_cbc(&cc.eng);
}
if ((req & REQ_RSAKEYX) != 0) {
br_ssl_client_set_default_rsapub(&cc);
}
if ((req & REQ_ECDHE_RSA) != 0) {
br_ssl_engine_set_default_ec(&cc.eng);
br_ssl_engine_set_default_rsavrfy(&cc.eng);
}
if ((req & REQ_ECDHE_ECDSA) != 0) {
br_ssl_engine_set_default_ecdsa(&cc.eng);
}
if ((req & REQ_ECDH) != 0) {
br_ssl_engine_set_default_ec(&cc.eng);
}
}
if (fallback) {
suite_ids[num_suites ++] = 0x5600;
}
br_ssl_engine_set_suites(&cc.eng, suite_ids, num_suites);
for (u = 0; hash_functions[u].name; u ++) {
const br_hash_class *hc;
int id;
hc = hash_functions[u].hclass;
id = (hc->desc >> BR_HASHDESC_ID_OFF) & BR_HASHDESC_ID_MASK;
if ((hfuns & ((unsigned)1 << id)) != 0) {
br_ssl_engine_set_hash(&cc.eng, id, hc);
br_x509_minimal_set_hash(&xc, id, hc);
}
}
if (vmin <= BR_TLS11) {
br_ssl_engine_set_prf10(&cc.eng, &br_tls10_prf);
}
if (vmax >= BR_TLS12) {
if ((hfuns & ((unsigned)1 << br_sha256_ID)) != 0) {
br_ssl_engine_set_prf_sha256(&cc.eng,
&br_tls12_sha256_prf);
}
if ((hfuns & ((unsigned)1 << br_sha384_ID)) != 0) {
br_ssl_engine_set_prf_sha384(&cc.eng,
&br_tls12_sha384_prf);
}
}
br_x509_minimal_set_rsa(&xc, br_rsa_pkcs1_vrfy_get_default());
br_x509_minimal_set_ecdsa(&xc,
br_ec_get_default(), br_ecdsa_vrfy_asn1_get_default());
/*
* If there is no provided trust anchor, then certificate validation
* will always fail. In that situation, we use our custom wrapper
* that tolerates unknown anchors.
*/
if (VEC_LEN(anchors) == 0) {
if (verbose) {
fprintf(stderr,
"WARNING: no configured trust anchor\n");
}
x509_noanchor_init(&xwc, &xc.vtable);
br_ssl_engine_set_x509(&cc.eng, &xwc.vtable);
} else {
br_ssl_engine_set_x509(&cc.eng, &xc.vtable);
}
if (minhello_len != (size_t)-1) {
br_ssl_client_set_min_clienthello_len(&cc, minhello_len);
}
br_ssl_engine_set_all_flags(&cc.eng, flags);
if (VEC_LEN(alpn_names) != 0) {
br_ssl_engine_set_protocol_names(&cc.eng,
(const char **)&VEC_ELT(alpn_names, 0),
VEC_LEN(alpn_names));
}
if (chain != NULL) {
zc.vtable = &ccert_vtable;
zc.verbose = verbose;
zc.chain = chain;
zc.chain_len = chain_len;
zc.sk = sk;
if (nostaticecdh || sk->key_type != BR_KEYTYPE_EC) {
zc.issuer_key_type = 0;
} else {
zc.issuer_key_type = get_cert_signer_algo(&chain[0]);
if (zc.issuer_key_type == 0) {
goto client_exit_error;
}
}
br_ssl_client_set_client_certificate(&cc, &zc.vtable);
}
br_ssl_engine_set_buffer(&cc.eng, iobuf, iobuf_len, bidi);
br_ssl_client_reset(&cc, sni, 0);
/*
* On Unix systems, we need to avoid SIGPIPE.
*/
#ifndef _WIN32
signal(SIGPIPE, SIG_IGN);
#endif
/*
* Connect to the peer.
*/
fd = host_connect(host, port, verbose);
if (fd == INVALID_SOCKET) {
goto client_exit_error;
}
/*
* Run the engine until completion.
*/
if (run_ssl_engine(&cc.eng, fd,
(verbose ? RUN_ENGINE_VERBOSE : 0)
| (trace ? RUN_ENGINE_TRACE : 0)) != 0)
{
goto client_exit_error;
} else {
goto client_exit;
}
/*
* Release allocated structures.
*/
client_exit:
xfree(host);
xfree(port);
xfree(suites);
xfree(suite_ids);
VEC_CLEAREXT(anchors, &free_ta_contents);
VEC_CLEAREXT(alpn_names, &free_alpn);
free_certificates(chain, chain_len);
free_private_key(sk);
xfree(iobuf);
if (fd != INVALID_SOCKET) {
#ifdef _WIN32
closesocket(fd);
#else
close(fd);
#endif
}
return retcode;
client_exit_error:
retcode = -1;
goto client_exit;
}