freebsd-dev/contrib/cortex-strings/benchmarks/multi/harness.c

408 lines
9.4 KiB
C
Raw Normal View History

/*
* Copyright (c) 2011, Linaro Limited
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Linaro nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** A simple harness that times how long a string function takes to
* run.
*/
/* PENDING: Add EPL */
#include <string.h>
#include <time.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <assert.h>
#include <unistd.h>
#include <errno.h>
#define NUM_ELEMS(_x) (sizeof(_x) / sizeof((_x)[0]))
#ifndef VERSION
#define VERSION "(unknown version)"
#endif
/** Make sure a function is called by using the return value */
#define SPOIL(_x) volatile long x = (long)(_x); (void)x
/** Type of functions that can be tested */
typedef void (*stub_t)(void *dest, void *src, size_t n);
/** Meta data about one test */
struct test
{
/** Test name */
const char *name;
/** Function to test */
stub_t stub;
};
/** Flush the cache by reading a chunk of memory */
static void empty(volatile char *against)
{
/* We know that there's a 16 k cache with 64 byte lines giving
a total of 256 lines. Read randomly from 256*5 places should
flush everything */
int offset = (1024 - 256)*1024;
for (int i = offset; i < offset + 16*1024*3; i += 64)
{
against[i];
}
}
/** Stub that does nothing. Used for calibrating */
static void xbounce(void *dest, void *src, size_t n)
{
SPOIL(0);
}
/** Stub that calls memcpy */
static void xmemcpy(void *dest, void *src, size_t n)
{
SPOIL(memcpy(dest, src, n));
}
/** Stub that calls memset */
static void xmemset(void *dest, void *src, size_t n)
{
SPOIL(memset(dest, 0, n));
}
/** Stub that calls memcmp */
static void xmemcmp(void *dest, void *src, size_t n)
{
SPOIL(memcmp(dest, src, n));
}
/** Stub that calls strcpy */
static void xstrcpy(void *dest, void *src, size_t n)
{
SPOIL(strcpy(dest, src));
}
/** Stub that calls strlen */
static void xstrlen(void *dest, void *src, size_t n)
{
SPOIL(strlen(dest));
}
/** Stub that calls strcmp */
static void xstrcmp(void *dest, void *src, size_t n)
{
SPOIL(strcmp(dest, src));
}
/** Stub that calls strchr */
static void xstrchr(void *dest, void *src, size_t n)
{
/* Put the character at the end of the string and before the null */
((char *)src)[n-1] = 32;
SPOIL(strchr(src, 32));
}
/** Stub that calls memchr */
static void xmemchr(void *dest, void *src, size_t n)
{
/* Put the character at the end of the block */
((char *)src)[n-1] = 32;
SPOIL(memchr(src, 32, n));
}
/** All functions that can be tested */
static const struct test tests[] =
{
{ "bounce", xbounce },
{ "memchr", xmemchr },
{ "memcpy", xmemcpy },
{ "memset", xmemset },
{ "memcmp", xmemcmp },
{ "strchr", xstrchr },
{ "strcmp", xstrcmp },
{ "strcpy", xstrcpy },
{ "strlen", xstrlen },
{ NULL }
};
/** Show basic usage */
static void usage(const char* name)
{
printf("%s %s: run a string related benchmark.\n"
"usage: %s [-c block-size] [-l loop-count] [-a alignment|src_alignment:dst_alignment] [-f] [-t test-name] [-r run-id]\n"
, name, VERSION, name);
printf("Tests:");
for (const struct test *ptest = tests; ptest->name != NULL; ptest++)
{
printf(" %s", ptest->name);
}
printf("\n");
exit(-1);
}
/** Find the test by name */
static const struct test *find_test(const char *name)
{
if (name == NULL)
{
return tests + 0;
}
else
{
for (const struct test *p = tests; p->name != NULL; p++)
{
if (strcmp(p->name, name) == 0)
{
return p;
}
}
}
return NULL;
}
#define MIN_BUFFER_SIZE 1024*1024
#define MAX_ALIGNMENT 256
/** Take a pointer and ensure that the lower bits == alignment */
static char *realign(char *p, int alignment)
{
uintptr_t pp = (uintptr_t)p;
pp = (pp + (MAX_ALIGNMENT - 1)) & ~(MAX_ALIGNMENT - 1);
pp += alignment;
return (char *)pp;
}
static int parse_int_arg(const char *arg, const char *exe_name)
{
long int ret;
errno = 0;
ret = strtol(arg, NULL, 0);
if (errno)
{
usage(exe_name);
}
return (int)ret;
}
static void parse_alignment_arg(const char *arg, const char *exe_name,
int *src_alignment, int *dst_alignment)
{
long int ret;
char *endptr;
errno = 0;
ret = strtol(arg, &endptr, 0);
if (errno)
{
usage(exe_name);
}
*src_alignment = (int)ret;
if (ret > 256 || ret < 1)
{
printf("Alignment should be in the range [1, 256].\n");
usage(exe_name);
}
if (ret == 256)
ret = 0;
if (endptr && *endptr == ':')
{
errno = 0;
ret = strtol(endptr + 1, NULL, 0);
if (errno)
{
usage(exe_name);
}
if (ret > 256 || ret < 1)
{
printf("Alignment should be in the range [1, 256].\n");
usage(exe_name);
}
if (ret == 256)
ret = 0;
}
*dst_alignment = (int)ret;
}
/** Setup and run a test */
int main(int argc, char **argv)
{
/* Size of src and dest buffers */
size_t buffer_size = MIN_BUFFER_SIZE;
/* Number of bytes per call */
int count = 31;
/* Number of times to run */
int loops = 10000000;
/* True to flush the cache each time */
int flush = 0;
/* Name of the test */
const char *name = NULL;
/* Alignment of buffers */
int src_alignment = 8;
int dst_alignment = 8;
/* Name of the run */
const char *run_id = "0";
int opt;
while ((opt = getopt(argc, argv, "c:l:ft:r:hva:")) > 0)
{
switch (opt)
{
case 'c':
count = parse_int_arg(optarg, argv[0]);
break;
case 'l':
loops = parse_int_arg(optarg, argv[0]);
break;
case 'a':
parse_alignment_arg(optarg, argv[0], &src_alignment, &dst_alignment);
break;
case 'f':
flush = 1;
break;
case 't':
name = strdup(optarg);
break;
case 'r':
run_id = strdup(optarg);
break;
case 'h':
usage(argv[0]);
break;
default:
usage(argv[0]);
break;
}
}
/* Find the test by name */
const struct test *ptest = find_test(name);
if (ptest == NULL)
{
usage(argv[0]);
}
if (count + MAX_ALIGNMENT * 2 > MIN_BUFFER_SIZE)
{
buffer_size = count + MAX_ALIGNMENT * 2;
}
/* Buffers to read and write from */
char *src = malloc(buffer_size);
char *dest = malloc(buffer_size);
assert(src != NULL && dest != NULL);
src = realign(src, src_alignment);
dest = realign(dest, dst_alignment);
/* Fill the buffer with non-zero, reproducable random data */
srandom(1539);
for (int i = 0; i < buffer_size; i++)
{
src[i] = (char)random() | 1;
dest[i] = src[i];
}
/* Make sure the buffers are null terminated for any string tests */
src[count] = 0;
dest[count] = 0;
struct timespec start, end;
int err = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start);
assert(err == 0);
/* Preload */
stub_t stub = ptest->stub;
/* Run two variants to reduce the cost of testing for the flush */
if (flush == 0)
{
for (int i = 0; i < loops; i++)
{
(*stub)(dest, src, count);
}
}
else
{
for (int i = 0; i < loops; i++)
{
(*stub)(dest, src, count);
empty(dest);
}
}
err = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end);
assert(err == 0);
/* Drop any leading path and pull the variant name out of the executable */
char *variant = strrchr(argv[0], '/');
if (variant == NULL)
{
variant = argv[0];
}
variant = strstr(variant, "try-");
assert(variant != NULL);
double elapsed = (end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) * 1e-9;
/* Estimate the bounce time. Measured on a Panda. */
double bounced = 0.448730 * loops / 50000000;
/* Dump both machine and human readable versions */
printf("%s:%s:%u:%u:%d:%d:%s:%.6f: took %.6f s for %u calls to %s of %u bytes. ~%.3f MB/s corrected.\n",
variant + 4, ptest->name,
count, loops, src_alignment, dst_alignment, run_id,
elapsed,
elapsed, loops, ptest->name, count,
(double)loops*count/(elapsed - bounced)/(1024*1024));
return 0;
}