freebsd-dev/sys/boot/efi/loader/main.c

961 lines
23 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2008-2010 Rui Paulo
* Copyright (c) 2006 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/reboot.h>
#include <sys/boot.h>
#include <inttypes.h>
#include <stand.h>
#include <string.h>
#include <setjmp.h>
#include <efi.h>
#include <efilib.h>
#include <uuid.h>
#include <bootstrap.h>
#include <smbios.h>
#ifdef EFI_ZFS_BOOT
#include <libzfs.h>
#endif
#include "loader_efi.h"
extern char bootprog_name[];
extern char bootprog_rev[];
extern char bootprog_date[];
extern char bootprog_maker[];
struct arch_switch archsw; /* MI/MD interface boundary */
EFI_GUID acpi = ACPI_TABLE_GUID;
EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
EFI_GUID devid = DEVICE_PATH_PROTOCOL;
EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
EFI_GUID mps = MPS_TABLE_GUID;
EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
EFI_GUID smbios = SMBIOS_TABLE_GUID;
EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
2015-05-05 11:07:43 +00:00
EFI_GUID fdtdtb = FDT_TABLE_GUID;
EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
#ifdef EFI_ZFS_BOOT
static void efi_zfs_probe(void);
#endif
static void
cp16to8(const CHAR16 *src, char *dst, size_t len)
{
size_t i;
for (i = 0; i < len && src[i]; i++)
dst[i] = (char)src[i];
2016-05-20 19:37:46 +00:00
if (i < len)
dst[i] = '\0';
}
static int
has_keyboard(void)
{
EFI_STATUS status;
EFI_DEVICE_PATH *path;
EFI_HANDLE *hin, *hin_end, *walker;
UINTN sz;
int retval = 0;
/*
* Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
* do the typical dance to get the right sized buffer.
*/
sz = 0;
hin = NULL;
status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
if (status == EFI_BUFFER_TOO_SMALL) {
hin = (EFI_HANDLE *)malloc(sz);
status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
hin);
if (EFI_ERROR(status))
free(hin);
}
if (EFI_ERROR(status))
return retval;
/*
* Look at each of the handles. If it supports the device path protocol,
* use it to get the device path for this handle. Then see if that
* device path matches either the USB device path for keyboards or the
* legacy device path for keyboards.
*/
hin_end = &hin[sz / sizeof(*hin)];
for (walker = hin; walker < hin_end; walker++) {
status = BS->HandleProtocol(*walker, &devid, (VOID **)&path);
if (EFI_ERROR(status))
continue;
while (!IsDevicePathEnd(path)) {
/*
* Check for the ACPI keyboard node. All PNP3xx nodes
* are keyboards of different flavors. Note: It is
* unclear of there's always a keyboard node when
* there's a keyboard controller, or if there's only one
* when a keyboard is detected at boot.
*/
if (DevicePathType(path) == ACPI_DEVICE_PATH &&
(DevicePathSubType(path) == ACPI_DP ||
DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
ACPI_HID_DEVICE_PATH *acpi;
acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
(acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
retval = 1;
goto out;
}
/*
* Check for USB keyboard node, if present. Unlike a
* PS/2 keyboard, these definitely only appear when
* connected to the system.
*/
} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
DevicePathSubType(path) == MSG_USB_CLASS_DP) {
USB_CLASS_DEVICE_PATH *usb;
usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
if (usb->DeviceClass == 3 && /* HID */
usb->DeviceSubClass == 1 && /* Boot devices */
usb->DeviceProtocol == 1) { /* Boot keyboards */
retval = 1;
goto out;
}
}
path = NextDevicePathNode(path);
}
}
out:
free(hin);
return retval;
}
EFI_STATUS
main(int argc, CHAR16 *argv[])
{
char var[128];
EFI_LOADED_IMAGE *img;
EFI_GUID *guid;
int i, j, vargood, unit, howto;
struct devsw *dev;
uint64_t pool_guid;
UINTN k;
int has_kbd;
archsw.arch_autoload = efi_autoload;
archsw.arch_getdev = efi_getdev;
archsw.arch_copyin = efi_copyin;
archsw.arch_copyout = efi_copyout;
archsw.arch_readin = efi_readin;
#ifdef EFI_ZFS_BOOT
/* Note this needs to be set before ZFS init. */
archsw.arch_zfs_probe = efi_zfs_probe;
#endif
has_kbd = has_keyboard();
Support UEFI booting on amd64 via loader.efi This is largely the work from the projects/uefi branch, with some additional refinements. This is derived from (and replaces) the original i386 efi implementation; i386 support will be restored later. Specific revisions of note from projects/uefi: r247380: Adjust our load device when we boot from CD under UEFI. The process for booting from a CD under UEFI involves adding a FAT filesystem containing your loader code as an El Torito boot image. When UEFI detects this, it provides a block IO instance that points at the FAT filesystem as a child of the device that represents the CD itself. The problem being that the CD device is flagged as a "raw device" while the boot image is flagged as a "logical partition". The existing EFI partition code only looks for logical partitions and so the CD filesystem was rendered invisible. To fix this, check the type of each block IO device. If it's found to be a CD, and thus an El Torito boot image, look up its parent device and add that instead so that the loader will then load the kernel from the CD filesystem. This is done by using the handle for the boot filesystem as an alias. Something similar to this will be required for booting from other media as well as the loader will live in the EFI system partition, not on the partition containing the kernel. r246231: Add necessary code to hand off from loader to an amd64 kernel. r246335: Grab the EFI memory map and store it as module metadata on the kernel. This is the same approach used to provide the BIOS SMAP to the kernel. r246336: Pass the ACPI table metadata via hints so the kernel ACPI code can find them. r246608: Rework copy routines to ensure we always use memory allocated via EFI. The previous code assumed it could copy wherever it liked. This is not the case. The approach taken by this code is pretty ham-fisted in that it simply allocates a large (32MB) buffer area and stages into that, then copies the whole area into place when it's time to execute. A more elegant solution could be used but this works for now. r247214: Fix a number of problems preventing proper handover to the kernel. There were two issues at play here. Firstly, there was nothing preventing UEFI from placing the loader code above 1GB in RAM. This meant that when we switched in the page tables the kernel expects to be running on, we are suddenly unmapped and things no longer work. We solve this by making our trampoline code not dependent on being at any given position and simply copying it to a "safe" location before calling it. Secondly, UEFI could allocate our stack wherever it wants. As it happened on my PC, that was right where I was copying the kernel to. This did not cause happiness. The solution to this was to also switch to a temporary stack in a safe location before performing the final copy of the loaded kernel. r246231: Add necessary code to hand off from loader to an amd64 kernel. r246335: Grab the EFI memory map and store it as module metadata on the kernel. This is the same approach used to provide the BIOS SMAP to the kernel. r246336: Pass the ACPI table metadata via hints so the kernel ACPI code can find them. r246608: Rework copy routines to ensure we always use memory allocated via EFI. The previous code assumed it could copy wherever it liked. This is not the case. The approach taken by this code is pretty ham-fisted in that it simply allocates a large (32MB) buffer area and stages into that, then copies the whole area into place when it's time to execute. A more elegant solution could be used but this works for now. r247214: Fix a number of problems preventing proper handover to the kernel. There were two issues at play here. Firstly, there was nothing preventing UEFI from placing the loader code above 1GB in RAM. This meant that when we switched in the page tables the kernel expects to be running on, we are suddenly unmapped and things no longer work. We solve this by making our trampoline code not dependent on being at any given position and simply copying it to a "safe" location before calling it. Secondly, UEFI could allocate our stack wherever it wants. As it happened on my PC, that was right where I was copying the kernel to. This did not cause happiness. The solution to this was to also switch to a temporary stack in a safe location before performing the final copy of the loaded kernel. r247216: Use the UEFI Graphics Output Protocol to get the parameters of the framebuffer. Sponsored by: The FreeBSD Foundation
2014-04-04 00:16:46 +00:00
/*
* XXX Chicken-and-egg problem; we want to have console output
* early, but some console attributes may depend on reading from
* eg. the boot device, which we can't do yet. We can use
* printf() etc. once this is done.
*/
cons_probe();
/*
* Initialise the block cache. Set the upper limit.
*/
bcache_init(32768, 512);
/*
* Parse the args to set the console settings, etc
* boot1.efi passes these in, if it can read /boot.config or /boot/config
* or iPXE may be setup to pass these in.
*
* Loop through the args, and for each one that contains an '=' that is
* not the first character, add it to the environment. This allows
* loader and kernel env vars to be passed on the command line. Convert
* args from UCS-2 to ASCII (16 to 8 bit) as they are copied.
*/
howto = 0;
for (i = 1; i < argc; i++) {
if (argv[i][0] == '-') {
for (j = 1; argv[i][j] != 0; j++) {
int ch;
ch = argv[i][j];
switch (ch) {
case 'a':
howto |= RB_ASKNAME;
break;
case 'd':
howto |= RB_KDB;
break;
case 'D':
howto |= RB_MULTIPLE;
break;
case 'h':
howto |= RB_SERIAL;
break;
case 'm':
howto |= RB_MUTE;
break;
case 'p':
howto |= RB_PAUSE;
break;
case 'P':
if (!has_kbd)
howto |= RB_SERIAL | RB_MULTIPLE;
break;
case 'r':
howto |= RB_DFLTROOT;
break;
case 's':
howto |= RB_SINGLE;
break;
case 'S':
if (argv[i][j + 1] == 0) {
if (i + 1 == argc) {
setenv("comconsole_speed", "115200", 1);
} else {
cp16to8(&argv[i + 1][0], var,
sizeof(var));
setenv("comconsole_speedspeed", var, 1);
}
i++;
break;
} else {
cp16to8(&argv[i][j + 1], var,
sizeof(var));
setenv("comconsole_speed", var, 1);
break;
}
case 'v':
howto |= RB_VERBOSE;
break;
}
}
} else {
vargood = 0;
for (j = 0; argv[i][j] != 0; j++) {
if (j == sizeof(var)) {
vargood = 0;
break;
}
if (j > 0 && argv[i][j] == '=')
vargood = 1;
var[j] = (char)argv[i][j];
}
if (vargood) {
var[j] = 0;
putenv(var);
}
}
}
for (i = 0; howto_names[i].ev != NULL; i++)
if (howto & howto_names[i].mask)
setenv(howto_names[i].ev, "YES", 1);
if (howto & RB_MULTIPLE) {
if (howto & RB_SERIAL)
setenv("console", "comconsole efi" , 1);
else
setenv("console", "efi comconsole" , 1);
} else if (howto & RB_SERIAL) {
setenv("console", "comconsole" , 1);
}
if (efi_copy_init()) {
Support UEFI booting on amd64 via loader.efi This is largely the work from the projects/uefi branch, with some additional refinements. This is derived from (and replaces) the original i386 efi implementation; i386 support will be restored later. Specific revisions of note from projects/uefi: r247380: Adjust our load device when we boot from CD under UEFI. The process for booting from a CD under UEFI involves adding a FAT filesystem containing your loader code as an El Torito boot image. When UEFI detects this, it provides a block IO instance that points at the FAT filesystem as a child of the device that represents the CD itself. The problem being that the CD device is flagged as a "raw device" while the boot image is flagged as a "logical partition". The existing EFI partition code only looks for logical partitions and so the CD filesystem was rendered invisible. To fix this, check the type of each block IO device. If it's found to be a CD, and thus an El Torito boot image, look up its parent device and add that instead so that the loader will then load the kernel from the CD filesystem. This is done by using the handle for the boot filesystem as an alias. Something similar to this will be required for booting from other media as well as the loader will live in the EFI system partition, not on the partition containing the kernel. r246231: Add necessary code to hand off from loader to an amd64 kernel. r246335: Grab the EFI memory map and store it as module metadata on the kernel. This is the same approach used to provide the BIOS SMAP to the kernel. r246336: Pass the ACPI table metadata via hints so the kernel ACPI code can find them. r246608: Rework copy routines to ensure we always use memory allocated via EFI. The previous code assumed it could copy wherever it liked. This is not the case. The approach taken by this code is pretty ham-fisted in that it simply allocates a large (32MB) buffer area and stages into that, then copies the whole area into place when it's time to execute. A more elegant solution could be used but this works for now. r247214: Fix a number of problems preventing proper handover to the kernel. There were two issues at play here. Firstly, there was nothing preventing UEFI from placing the loader code above 1GB in RAM. This meant that when we switched in the page tables the kernel expects to be running on, we are suddenly unmapped and things no longer work. We solve this by making our trampoline code not dependent on being at any given position and simply copying it to a "safe" location before calling it. Secondly, UEFI could allocate our stack wherever it wants. As it happened on my PC, that was right where I was copying the kernel to. This did not cause happiness. The solution to this was to also switch to a temporary stack in a safe location before performing the final copy of the loaded kernel. r246231: Add necessary code to hand off from loader to an amd64 kernel. r246335: Grab the EFI memory map and store it as module metadata on the kernel. This is the same approach used to provide the BIOS SMAP to the kernel. r246336: Pass the ACPI table metadata via hints so the kernel ACPI code can find them. r246608: Rework copy routines to ensure we always use memory allocated via EFI. The previous code assumed it could copy wherever it liked. This is not the case. The approach taken by this code is pretty ham-fisted in that it simply allocates a large (32MB) buffer area and stages into that, then copies the whole area into place when it's time to execute. A more elegant solution could be used but this works for now. r247214: Fix a number of problems preventing proper handover to the kernel. There were two issues at play here. Firstly, there was nothing preventing UEFI from placing the loader code above 1GB in RAM. This meant that when we switched in the page tables the kernel expects to be running on, we are suddenly unmapped and things no longer work. We solve this by making our trampoline code not dependent on being at any given position and simply copying it to a "safe" location before calling it. Secondly, UEFI could allocate our stack wherever it wants. As it happened on my PC, that was right where I was copying the kernel to. This did not cause happiness. The solution to this was to also switch to a temporary stack in a safe location before performing the final copy of the loaded kernel. r247216: Use the UEFI Graphics Output Protocol to get the parameters of the framebuffer. Sponsored by: The FreeBSD Foundation
2014-04-04 00:16:46 +00:00
printf("failed to allocate staging area\n");
return (EFI_BUFFER_TOO_SMALL);
}
/*
* March through the device switch probing for things.
*/
for (i = 0; devsw[i] != NULL; i++)
if (devsw[i]->dv_init != NULL)
(devsw[i]->dv_init)();
/* Get our loaded image protocol interface structure. */
BS->HandleProtocol(IH, &imgid, (VOID**)&img);
printf("Command line arguments:");
2016-05-20 19:37:46 +00:00
for (i = 0; i < argc; i++)
printf(" %S", argv[i]);
printf("\n");
printf("Image base: 0x%lx\n", (u_long)img->ImageBase);
printf("EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
ST->Hdr.Revision & 0xffff);
printf("EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
printf("\n");
printf("%s, Revision %s\n", bootprog_name, bootprog_rev);
printf("(%s, %s)\n", bootprog_maker, bootprog_date);
/*
* Disable the watchdog timer. By default the boot manager sets
* the timer to 5 minutes before invoking a boot option. If we
* want to return to the boot manager, we have to disable the
* watchdog timer and since we're an interactive program, we don't
* want to wait until the user types "quit". The timer may have
* fired by then. We don't care if this fails. It does not prevent
* normal functioning in any way...
*/
BS->SetWatchdogTimer(0, 0, 0, NULL);
if (efi_handle_lookup(img->DeviceHandle, &dev, &unit, &pool_guid) != 0)
return (EFI_NOT_FOUND);
switch (dev->dv_type) {
#ifdef EFI_ZFS_BOOT
case DEVT_ZFS: {
struct zfs_devdesc currdev;
currdev.d_dev = dev;
currdev.d_unit = unit;
currdev.d_type = currdev.d_dev->dv_type;
currdev.d_opendata = NULL;
currdev.pool_guid = pool_guid;
currdev.root_guid = 0;
env_setenv("currdev", EV_VOLATILE, efi_fmtdev(&currdev),
efi_setcurrdev, env_nounset);
env_setenv("loaddev", EV_VOLATILE, efi_fmtdev(&currdev), env_noset,
env_nounset);
init_zfs_bootenv(zfs_fmtdev(&currdev));
break;
}
#endif
default: {
struct devdesc currdev;
currdev.d_dev = dev;
currdev.d_unit = unit;
currdev.d_opendata = NULL;
currdev.d_type = currdev.d_dev->dv_type;
env_setenv("currdev", EV_VOLATILE, efi_fmtdev(&currdev),
efi_setcurrdev, env_nounset);
env_setenv("loaddev", EV_VOLATILE, efi_fmtdev(&currdev), env_noset,
env_nounset);
break;
}
}
snprintf(var, sizeof(var), "%d.%02d", ST->Hdr.Revision >> 16,
ST->Hdr.Revision & 0xffff);
env_setenv("efi-version", EV_VOLATILE, var, env_noset, env_nounset);
setenv("LINES", "24", 1); /* optional */
Support UEFI booting on amd64 via loader.efi This is largely the work from the projects/uefi branch, with some additional refinements. This is derived from (and replaces) the original i386 efi implementation; i386 support will be restored later. Specific revisions of note from projects/uefi: r247380: Adjust our load device when we boot from CD under UEFI. The process for booting from a CD under UEFI involves adding a FAT filesystem containing your loader code as an El Torito boot image. When UEFI detects this, it provides a block IO instance that points at the FAT filesystem as a child of the device that represents the CD itself. The problem being that the CD device is flagged as a "raw device" while the boot image is flagged as a "logical partition". The existing EFI partition code only looks for logical partitions and so the CD filesystem was rendered invisible. To fix this, check the type of each block IO device. If it's found to be a CD, and thus an El Torito boot image, look up its parent device and add that instead so that the loader will then load the kernel from the CD filesystem. This is done by using the handle for the boot filesystem as an alias. Something similar to this will be required for booting from other media as well as the loader will live in the EFI system partition, not on the partition containing the kernel. r246231: Add necessary code to hand off from loader to an amd64 kernel. r246335: Grab the EFI memory map and store it as module metadata on the kernel. This is the same approach used to provide the BIOS SMAP to the kernel. r246336: Pass the ACPI table metadata via hints so the kernel ACPI code can find them. r246608: Rework copy routines to ensure we always use memory allocated via EFI. The previous code assumed it could copy wherever it liked. This is not the case. The approach taken by this code is pretty ham-fisted in that it simply allocates a large (32MB) buffer area and stages into that, then copies the whole area into place when it's time to execute. A more elegant solution could be used but this works for now. r247214: Fix a number of problems preventing proper handover to the kernel. There were two issues at play here. Firstly, there was nothing preventing UEFI from placing the loader code above 1GB in RAM. This meant that when we switched in the page tables the kernel expects to be running on, we are suddenly unmapped and things no longer work. We solve this by making our trampoline code not dependent on being at any given position and simply copying it to a "safe" location before calling it. Secondly, UEFI could allocate our stack wherever it wants. As it happened on my PC, that was right where I was copying the kernel to. This did not cause happiness. The solution to this was to also switch to a temporary stack in a safe location before performing the final copy of the loaded kernel. r246231: Add necessary code to hand off from loader to an amd64 kernel. r246335: Grab the EFI memory map and store it as module metadata on the kernel. This is the same approach used to provide the BIOS SMAP to the kernel. r246336: Pass the ACPI table metadata via hints so the kernel ACPI code can find them. r246608: Rework copy routines to ensure we always use memory allocated via EFI. The previous code assumed it could copy wherever it liked. This is not the case. The approach taken by this code is pretty ham-fisted in that it simply allocates a large (32MB) buffer area and stages into that, then copies the whole area into place when it's time to execute. A more elegant solution could be used but this works for now. r247214: Fix a number of problems preventing proper handover to the kernel. There were two issues at play here. Firstly, there was nothing preventing UEFI from placing the loader code above 1GB in RAM. This meant that when we switched in the page tables the kernel expects to be running on, we are suddenly unmapped and things no longer work. We solve this by making our trampoline code not dependent on being at any given position and simply copying it to a "safe" location before calling it. Secondly, UEFI could allocate our stack wherever it wants. As it happened on my PC, that was right where I was copying the kernel to. This did not cause happiness. The solution to this was to also switch to a temporary stack in a safe location before performing the final copy of the loaded kernel. r247216: Use the UEFI Graphics Output Protocol to get the parameters of the framebuffer. Sponsored by: The FreeBSD Foundation
2014-04-04 00:16:46 +00:00
for (k = 0; k < ST->NumberOfTableEntries; k++) {
guid = &ST->ConfigurationTable[k].VendorGuid;
if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) {
smbios_detect(ST->ConfigurationTable[k].VendorTable);
break;
}
}
interact(NULL); /* doesn't return */
return (EFI_SUCCESS); /* keep compiler happy */
}
/* XXX move to lib stand ? */
static int
wcscmp(CHAR16 *a, CHAR16 *b)
{
while (*a && *b && *a == *b) {
a++;
b++;
}
return *a - *b;
}
COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
static int
command_reboot(int argc, char *argv[])
{
int i;
for (i = 0; devsw[i] != NULL; ++i)
if (devsw[i]->dv_cleanup != NULL)
(devsw[i]->dv_cleanup)();
RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 23,
(CHAR16 *)"Reboot from the loader");
/* NOTREACHED */
return (CMD_ERROR);
}
COMMAND_SET(quit, "quit", "exit the loader", command_quit);
static int
command_quit(int argc, char *argv[])
{
exit(0);
return (CMD_OK);
}
COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
static int
command_memmap(int argc, char *argv[])
{
UINTN sz;
EFI_MEMORY_DESCRIPTOR *map, *p;
UINTN key, dsz;
UINT32 dver;
EFI_STATUS status;
int i, ndesc;
static char *types[] = {
"Reserved",
"LoaderCode",
"LoaderData",
"BootServicesCode",
"BootServicesData",
"RuntimeServicesCode",
"RuntimeServicesData",
"ConventionalMemory",
"UnusableMemory",
"ACPIReclaimMemory",
"ACPIMemoryNVS",
"MemoryMappedIO",
"MemoryMappedIOPortSpace",
"PalCode"
};
sz = 0;
status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
if (status != EFI_BUFFER_TOO_SMALL) {
printf("Can't determine memory map size\n");
return (CMD_ERROR);
}
map = malloc(sz);
status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
if (EFI_ERROR(status)) {
printf("Can't read memory map\n");
return (CMD_ERROR);
}
ndesc = sz / dsz;
printf("%23s %12s %12s %8s %4s\n",
"Type", "Physical", "Virtual", "#Pages", "Attr");
Support UEFI booting on amd64 via loader.efi This is largely the work from the projects/uefi branch, with some additional refinements. This is derived from (and replaces) the original i386 efi implementation; i386 support will be restored later. Specific revisions of note from projects/uefi: r247380: Adjust our load device when we boot from CD under UEFI. The process for booting from a CD under UEFI involves adding a FAT filesystem containing your loader code as an El Torito boot image. When UEFI detects this, it provides a block IO instance that points at the FAT filesystem as a child of the device that represents the CD itself. The problem being that the CD device is flagged as a "raw device" while the boot image is flagged as a "logical partition". The existing EFI partition code only looks for logical partitions and so the CD filesystem was rendered invisible. To fix this, check the type of each block IO device. If it's found to be a CD, and thus an El Torito boot image, look up its parent device and add that instead so that the loader will then load the kernel from the CD filesystem. This is done by using the handle for the boot filesystem as an alias. Something similar to this will be required for booting from other media as well as the loader will live in the EFI system partition, not on the partition containing the kernel. r246231: Add necessary code to hand off from loader to an amd64 kernel. r246335: Grab the EFI memory map and store it as module metadata on the kernel. This is the same approach used to provide the BIOS SMAP to the kernel. r246336: Pass the ACPI table metadata via hints so the kernel ACPI code can find them. r246608: Rework copy routines to ensure we always use memory allocated via EFI. The previous code assumed it could copy wherever it liked. This is not the case. The approach taken by this code is pretty ham-fisted in that it simply allocates a large (32MB) buffer area and stages into that, then copies the whole area into place when it's time to execute. A more elegant solution could be used but this works for now. r247214: Fix a number of problems preventing proper handover to the kernel. There were two issues at play here. Firstly, there was nothing preventing UEFI from placing the loader code above 1GB in RAM. This meant that when we switched in the page tables the kernel expects to be running on, we are suddenly unmapped and things no longer work. We solve this by making our trampoline code not dependent on being at any given position and simply copying it to a "safe" location before calling it. Secondly, UEFI could allocate our stack wherever it wants. As it happened on my PC, that was right where I was copying the kernel to. This did not cause happiness. The solution to this was to also switch to a temporary stack in a safe location before performing the final copy of the loaded kernel. r246231: Add necessary code to hand off from loader to an amd64 kernel. r246335: Grab the EFI memory map and store it as module metadata on the kernel. This is the same approach used to provide the BIOS SMAP to the kernel. r246336: Pass the ACPI table metadata via hints so the kernel ACPI code can find them. r246608: Rework copy routines to ensure we always use memory allocated via EFI. The previous code assumed it could copy wherever it liked. This is not the case. The approach taken by this code is pretty ham-fisted in that it simply allocates a large (32MB) buffer area and stages into that, then copies the whole area into place when it's time to execute. A more elegant solution could be used but this works for now. r247214: Fix a number of problems preventing proper handover to the kernel. There were two issues at play here. Firstly, there was nothing preventing UEFI from placing the loader code above 1GB in RAM. This meant that when we switched in the page tables the kernel expects to be running on, we are suddenly unmapped and things no longer work. We solve this by making our trampoline code not dependent on being at any given position and simply copying it to a "safe" location before calling it. Secondly, UEFI could allocate our stack wherever it wants. As it happened on my PC, that was right where I was copying the kernel to. This did not cause happiness. The solution to this was to also switch to a temporary stack in a safe location before performing the final copy of the loaded kernel. r247216: Use the UEFI Graphics Output Protocol to get the parameters of the framebuffer. Sponsored by: The FreeBSD Foundation
2014-04-04 00:16:46 +00:00
for (i = 0, p = map; i < ndesc;
i++, p = NextMemoryDescriptor(p, dsz)) {
printf("%23s %012jx %012jx %08jx ", types[p->Type],
(uintmax_t)p->PhysicalStart, (uintmax_t)p->VirtualStart,
(uintmax_t)p->NumberOfPages);
if (p->Attribute & EFI_MEMORY_UC)
printf("UC ");
if (p->Attribute & EFI_MEMORY_WC)
printf("WC ");
if (p->Attribute & EFI_MEMORY_WT)
printf("WT ");
if (p->Attribute & EFI_MEMORY_WB)
printf("WB ");
if (p->Attribute & EFI_MEMORY_UCE)
printf("UCE ");
if (p->Attribute & EFI_MEMORY_WP)
printf("WP ");
if (p->Attribute & EFI_MEMORY_RP)
printf("RP ");
if (p->Attribute & EFI_MEMORY_XP)
printf("XP ");
printf("\n");
}
return (CMD_OK);
}
COMMAND_SET(configuration, "configuration", "print configuration tables",
command_configuration);
static const char *
guid_to_string(EFI_GUID *guid)
{
static char buf[40];
sprintf(buf, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
guid->Data1, guid->Data2, guid->Data3, guid->Data4[0],
guid->Data4[1], guid->Data4[2], guid->Data4[3], guid->Data4[4],
guid->Data4[5], guid->Data4[6], guid->Data4[7]);
return (buf);
}
static int
command_configuration(int argc, char *argv[])
{
UINTN i;
printf("NumberOfTableEntries=%lu\n",
(unsigned long)ST->NumberOfTableEntries);
for (i = 0; i < ST->NumberOfTableEntries; i++) {
EFI_GUID *guid;
printf(" ");
guid = &ST->ConfigurationTable[i].VendorGuid;
if (!memcmp(guid, &mps, sizeof(EFI_GUID)))
printf("MPS Table");
else if (!memcmp(guid, &acpi, sizeof(EFI_GUID)))
printf("ACPI Table");
else if (!memcmp(guid, &acpi20, sizeof(EFI_GUID)))
printf("ACPI 2.0 Table");
else if (!memcmp(guid, &smbios, sizeof(EFI_GUID)))
printf("SMBIOS Table");
else if (!memcmp(guid, &dxe, sizeof(EFI_GUID)))
printf("DXE Table");
else if (!memcmp(guid, &hoblist, sizeof(EFI_GUID)))
printf("HOB List Table");
else if (!memcmp(guid, &memtype, sizeof(EFI_GUID)))
printf("Memory Type Information Table");
else if (!memcmp(guid, &debugimg, sizeof(EFI_GUID)))
printf("Debug Image Info Table");
2015-05-05 11:07:43 +00:00
else if (!memcmp(guid, &fdtdtb, sizeof(EFI_GUID)))
printf("FDT Table");
else
printf("Unknown Table (%s)", guid_to_string(guid));
printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
}
return (CMD_OK);
Support UEFI booting on amd64 via loader.efi This is largely the work from the projects/uefi branch, with some additional refinements. This is derived from (and replaces) the original i386 efi implementation; i386 support will be restored later. Specific revisions of note from projects/uefi: r247380: Adjust our load device when we boot from CD under UEFI. The process for booting from a CD under UEFI involves adding a FAT filesystem containing your loader code as an El Torito boot image. When UEFI detects this, it provides a block IO instance that points at the FAT filesystem as a child of the device that represents the CD itself. The problem being that the CD device is flagged as a "raw device" while the boot image is flagged as a "logical partition". The existing EFI partition code only looks for logical partitions and so the CD filesystem was rendered invisible. To fix this, check the type of each block IO device. If it's found to be a CD, and thus an El Torito boot image, look up its parent device and add that instead so that the loader will then load the kernel from the CD filesystem. This is done by using the handle for the boot filesystem as an alias. Something similar to this will be required for booting from other media as well as the loader will live in the EFI system partition, not on the partition containing the kernel. r246231: Add necessary code to hand off from loader to an amd64 kernel. r246335: Grab the EFI memory map and store it as module metadata on the kernel. This is the same approach used to provide the BIOS SMAP to the kernel. r246336: Pass the ACPI table metadata via hints so the kernel ACPI code can find them. r246608: Rework copy routines to ensure we always use memory allocated via EFI. The previous code assumed it could copy wherever it liked. This is not the case. The approach taken by this code is pretty ham-fisted in that it simply allocates a large (32MB) buffer area and stages into that, then copies the whole area into place when it's time to execute. A more elegant solution could be used but this works for now. r247214: Fix a number of problems preventing proper handover to the kernel. There were two issues at play here. Firstly, there was nothing preventing UEFI from placing the loader code above 1GB in RAM. This meant that when we switched in the page tables the kernel expects to be running on, we are suddenly unmapped and things no longer work. We solve this by making our trampoline code not dependent on being at any given position and simply copying it to a "safe" location before calling it. Secondly, UEFI could allocate our stack wherever it wants. As it happened on my PC, that was right where I was copying the kernel to. This did not cause happiness. The solution to this was to also switch to a temporary stack in a safe location before performing the final copy of the loaded kernel. r246231: Add necessary code to hand off from loader to an amd64 kernel. r246335: Grab the EFI memory map and store it as module metadata on the kernel. This is the same approach used to provide the BIOS SMAP to the kernel. r246336: Pass the ACPI table metadata via hints so the kernel ACPI code can find them. r246608: Rework copy routines to ensure we always use memory allocated via EFI. The previous code assumed it could copy wherever it liked. This is not the case. The approach taken by this code is pretty ham-fisted in that it simply allocates a large (32MB) buffer area and stages into that, then copies the whole area into place when it's time to execute. A more elegant solution could be used but this works for now. r247214: Fix a number of problems preventing proper handover to the kernel. There were two issues at play here. Firstly, there was nothing preventing UEFI from placing the loader code above 1GB in RAM. This meant that when we switched in the page tables the kernel expects to be running on, we are suddenly unmapped and things no longer work. We solve this by making our trampoline code not dependent on being at any given position and simply copying it to a "safe" location before calling it. Secondly, UEFI could allocate our stack wherever it wants. As it happened on my PC, that was right where I was copying the kernel to. This did not cause happiness. The solution to this was to also switch to a temporary stack in a safe location before performing the final copy of the loaded kernel. r247216: Use the UEFI Graphics Output Protocol to get the parameters of the framebuffer. Sponsored by: The FreeBSD Foundation
2014-04-04 00:16:46 +00:00
}
COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
static int
command_mode(int argc, char *argv[])
{
UINTN cols, rows;
unsigned int mode;
int i;
char *cp;
char rowenv[8];
EFI_STATUS status;
SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
extern void HO(void);
conout = ST->ConOut;
if (argc > 1) {
mode = strtol(argv[1], &cp, 0);
if (cp[0] != '\0') {
printf("Invalid mode\n");
return (CMD_ERROR);
}
status = conout->QueryMode(conout, mode, &cols, &rows);
if (EFI_ERROR(status)) {
printf("invalid mode %d\n", mode);
return (CMD_ERROR);
}
status = conout->SetMode(conout, mode);
if (EFI_ERROR(status)) {
printf("couldn't set mode %d\n", mode);
return (CMD_ERROR);
}
sprintf(rowenv, "%u", (unsigned)rows);
setenv("LINES", rowenv, 1);
HO(); /* set cursor */
return (CMD_OK);
}
printf("Current mode: %d\n", conout->Mode->Mode);
for (i = 0; i <= conout->Mode->MaxMode; i++) {
status = conout->QueryMode(conout, i, &cols, &rows);
if (EFI_ERROR(status))
continue;
printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
(unsigned)rows);
}
if (i != 0)
printf("Select a mode with the command \"mode <number>\"\n");
return (CMD_OK);
}
/* deprecated */
COMMAND_SET(nvram, "nvram", "get or set NVRAM variables", command_nvram);
static int
command_nvram(int argc, char *argv[])
{
CHAR16 var[128];
CHAR16 *data;
EFI_STATUS status;
EFI_GUID varguid = { 0,0,0,{0,0,0,0,0,0,0,0} };
UINTN varsz, datasz, i;
SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
conout = ST->ConOut;
/* Initiate the search */
status = RS->GetNextVariableName(&varsz, NULL, NULL);
pager_open();
for (; status != EFI_NOT_FOUND; ) {
status = RS->GetNextVariableName(&varsz, var, &varguid);
//if (EFI_ERROR(status))
//break;
conout->OutputString(conout, var);
printf("=");
datasz = 0;
status = RS->GetVariable(var, &varguid, NULL, &datasz, NULL);
/* XXX: check status */
data = malloc(datasz);
status = RS->GetVariable(var, &varguid, NULL, &datasz, data);
if (EFI_ERROR(status))
printf("<error retrieving variable>");
else {
for (i = 0; i < datasz; i++) {
if (isalnum(data[i]) || isspace(data[i]))
printf("%c", data[i]);
else
printf("\\x%02x", data[i]);
}
}
free(data);
if (pager_output("\n"))
break;
}
pager_close();
return (CMD_OK);
}
#ifdef EFI_ZFS_BOOT
COMMAND_SET(lszfs, "lszfs", "list child datasets of a zfs dataset",
command_lszfs);
static int
command_lszfs(int argc, char *argv[])
{
int err;
if (argc != 2) {
command_errmsg = "wrong number of arguments";
return (CMD_ERROR);
}
err = zfs_list(argv[1]);
if (err != 0) {
command_errmsg = strerror(err);
return (CMD_ERROR);
}
return (CMD_OK);
}
COMMAND_SET(reloadbe, "reloadbe", "refresh the list of ZFS Boot Environments",
command_reloadbe);
static int
command_reloadbe(int argc, char *argv[])
{
int err;
char *root;
if (argc > 2) {
command_errmsg = "wrong number of arguments";
return (CMD_ERROR);
}
if (argc == 2) {
err = zfs_bootenv(argv[1]);
} else {
root = getenv("zfs_be_root");
if (root == NULL) {
return (CMD_OK);
}
err = zfs_bootenv(root);
}
if (err != 0) {
command_errmsg = strerror(err);
return (CMD_ERROR);
}
return (CMD_OK);
}
#endif
COMMAND_SET(efishow, "efi-show", "print some or all EFI variables", command_efi_printenv);
static int
efi_print_var(CHAR16 *varnamearg, EFI_GUID *matchguid, int lflag)
{
UINTN datasz;
EFI_STATUS status;
UINT32 attr;
CHAR16 *data;
char *str;
uint32_t uuid_status;
datasz = 0;
status = RS->GetVariable(varnamearg, matchguid, &attr,
&datasz, NULL);
if (status != EFI_BUFFER_TOO_SMALL) {
printf("Can't get the variable: error %#lx\n", status);
return (CMD_ERROR);
}
data = malloc(datasz);
status = RS->GetVariable(varnamearg, matchguid, &attr,
&datasz, data);
if (status != EFI_SUCCESS) {
printf("Can't get the variable: error %#lx\n", status);
return (CMD_ERROR);
}
uuid_to_string((uuid_t *)matchguid, &str, &uuid_status);
printf("%s %S=%S", str, varnamearg, data);
free(str);
free(data);
if (pager_output("\n"))
return (CMD_WARN);
return (CMD_OK);
}
static int
command_efi_printenv(int argc, char *argv[])
{
/*
* efi-printenv [-a]
* print all the env
* efi-printenv -u UUID
* print all the env vars tagged with UUID
* efi-printenv -v var
* search all the env vars and print the ones matching var
* eif-printenv -u UUID -v var
* eif-printenv UUID var
* print all the env vars that match UUID and var
*/
/* XXX We assume EFI_GUID is the same as uuid_t */
int aflag = 0, gflag = 0, lflag = 0, vflag = 0;
int ch, rv;
unsigned i;
EFI_STATUS status;
EFI_GUID varguid = { 0,0,0,{0,0,0,0,0,0,0,0} };
EFI_GUID matchguid = { 0,0,0,{0,0,0,0,0,0,0,0} };
uint32_t uuid_status;
CHAR16 varname[128];
CHAR16 varnamearg[128];
UINTN varsz;
while ((ch = getopt(argc, argv, "ag:lv:")) != -1) {
switch (ch) {
case 'a':
aflag = 1;
break;
case 'g':
gflag = 1;
uuid_from_string(optarg, (uuid_t *)&matchguid,
&uuid_status);
if (uuid_status != uuid_s_ok) {
printf("uid %s could not be parsed\n", optarg);
return (CMD_ERROR);
}
break;
case 'l':
lflag = 1;
break;
case 'v':
vflag = 1;
if (strlen(optarg) >= nitems(varnamearg)) {
printf("Variable %s is longer than %zd characters\n",
optarg, nitems(varnamearg));
return (CMD_ERROR);
}
for (i = 0; i < strlen(optarg); i++)
varnamearg[i] = optarg[i];
varnamearg[i] = 0;
default:
printf("Invalid argument %c\n", ch);
return (CMD_ERROR);
}
}
if (aflag && (gflag || vflag)) {
printf("-a isn't compatible with -v or -u\n");
return (CMD_ERROR);
}
if (aflag && optind < argc) {
printf("-a doesn't take any args");
return (CMD_ERROR);
}
if (optind == argc)
aflag = 1;
argc -= optind;
argv += optind;
pager_open();
if (vflag && gflag) {
rv = efi_print_var(varnamearg, &matchguid, lflag);
pager_close();
return (rv);
}
if (argc == 2) {
optarg = argv[0];
if (strlen(optarg) >= nitems(varnamearg)) {
printf("Variable %s is longer than %zd characters\n",
optarg, nitems(varnamearg));
pager_close();
return (CMD_ERROR);
}
for (i = 0; i < strlen(optarg); i++)
varnamearg[i] = optarg[i];
varnamearg[i] = 0;
optarg = argv[1];
uuid_from_string(optarg, (uuid_t *)&matchguid,
&uuid_status);
if (uuid_status != uuid_s_ok) {
printf("uid %s could not be parsed\n", optarg);
pager_close();
return (CMD_ERROR);
}
rv = efi_print_var(varnamearg, &matchguid, lflag);
pager_close();
return (rv);
}
if (argc != 0) {
printf("Too many args\n");
pager_close();
return (CMD_ERROR);
}
/*
* Initiate the search -- note the standard takes pain
* to specify the initial call must be a poiner to a NULL
* character.
*/
varsz = nitems(varname);
varname[0] = 0;
while ((status = RS->GetNextVariableName(&varsz, varname, &varguid)) !=
EFI_NOT_FOUND) {
if (aflag) {
if (efi_print_var(varname, &varguid, lflag) != CMD_OK)
break;
continue;
}
if (vflag) {
if (wcscmp(varnamearg, varname) == 0) {
if (efi_print_var(varname, &varguid, lflag) != CMD_OK)
break;
continue;
}
}
if (gflag) {
if (memcmp(&varguid, &matchguid, sizeof(varguid)) == 0) {
if (efi_print_var(varname, &varguid, lflag) != CMD_OK)
break;
continue;
}
}
}
pager_close();
return (CMD_OK);
}
COMMAND_SET(efiset, "efi-set", "set EFI variables", command_efi_set);
static int
command_efi_set(int argc, char *argv[])
{
return (CMD_OK);
}
COMMAND_SET(efiunset, "efi-unset", "delete / unset EFI variables", command_efi_unset);
static int
command_efi_unset(int argc, char *argv[])
{
return (CMD_OK);
}
#ifdef LOADER_FDT_SUPPORT
extern int command_fdt_internal(int argc, char *argv[]);
/*
* Since proper fdt command handling function is defined in fdt_loader_cmd.c,
* and declaring it as extern is in contradiction with COMMAND_SET() macro
* (which uses static pointer), we're defining wrapper function, which
* calls the proper fdt handling routine.
*/
static int
command_fdt(int argc, char *argv[])
{
return (command_fdt_internal(argc, argv));
}
COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
#endif
#ifdef EFI_ZFS_BOOT
static void
efi_zfs_probe(void)
{
EFI_HANDLE h;
u_int unit;
int i;
char dname[SPECNAMELEN + 1];
uint64_t guid;
unit = 0;
h = efi_find_handle(&efipart_dev, 0);
for (i = 0; h != NULL; h = efi_find_handle(&efipart_dev, ++i)) {
snprintf(dname, sizeof(dname), "%s%d:", efipart_dev.dv_name, i);
if (zfs_probe_dev(dname, &guid) == 0)
(void)efi_handle_update_dev(h, &zfs_dev, unit++, guid);
}
}
#endif