freebsd-dev/contrib/llvm/lib/Analysis/LazyValueInfo.cpp

1146 lines
39 KiB
C++
Raw Normal View History

2009-11-18 14:58:34 +00:00
//===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interface for lazy computation of value constraint
// information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
2009-11-18 14:58:34 +00:00
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
2009-11-18 14:58:34 +00:00
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include <map>
#include <stack>
2009-11-18 14:58:34 +00:00
using namespace llvm;
using namespace PatternMatch;
2009-11-18 14:58:34 +00:00
#define DEBUG_TYPE "lazy-value-info"
2009-11-18 14:58:34 +00:00
char LazyValueInfo::ID = 0;
INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
"Lazy Value Information Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info",
"Lazy Value Information Analysis", false, true)
2009-11-18 14:58:34 +00:00
namespace llvm {
FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
}
//===----------------------------------------------------------------------===//
// LVILatticeVal
//===----------------------------------------------------------------------===//
/// LVILatticeVal - This is the information tracked by LazyValueInfo for each
/// value.
///
/// FIXME: This is basically just for bringup, this can be made a lot more rich
/// in the future.
///
namespace {
class LVILatticeVal {
enum LatticeValueTy {
/// undefined - This Value has no known value yet.
2009-11-18 14:58:34 +00:00
undefined,
/// constant - This Value has a specific constant value.
2009-11-18 14:58:34 +00:00
constant,
/// notconstant - This Value is known to not have the specified value.
2009-11-18 14:58:34 +00:00
notconstant,
/// constantrange - The Value falls within this range.
constantrange,
/// overdefined - This value is not known to be constant, and we know that
2009-11-18 14:58:34 +00:00
/// it has a value.
overdefined
};
/// Val: This stores the current lattice value along with the Constant* for
/// the constant if this is a 'constant' or 'notconstant' value.
LatticeValueTy Tag;
Constant *Val;
ConstantRange Range;
2009-11-18 14:58:34 +00:00
public:
LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {}
2009-11-18 14:58:34 +00:00
static LVILatticeVal get(Constant *C) {
LVILatticeVal Res;
if (!isa<UndefValue>(C))
Res.markConstant(C);
2009-11-18 14:58:34 +00:00
return Res;
}
static LVILatticeVal getNot(Constant *C) {
LVILatticeVal Res;
if (!isa<UndefValue>(C))
Res.markNotConstant(C);
return Res;
}
static LVILatticeVal getRange(ConstantRange CR) {
LVILatticeVal Res;
Res.markConstantRange(CR);
2009-11-18 14:58:34 +00:00
return Res;
}
bool isUndefined() const { return Tag == undefined; }
bool isConstant() const { return Tag == constant; }
bool isNotConstant() const { return Tag == notconstant; }
bool isConstantRange() const { return Tag == constantrange; }
bool isOverdefined() const { return Tag == overdefined; }
2009-11-18 14:58:34 +00:00
Constant *getConstant() const {
assert(isConstant() && "Cannot get the constant of a non-constant!");
return Val;
2009-11-18 14:58:34 +00:00
}
Constant *getNotConstant() const {
assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
return Val;
}
ConstantRange getConstantRange() const {
assert(isConstantRange() &&
"Cannot get the constant-range of a non-constant-range!");
return Range;
2009-11-18 14:58:34 +00:00
}
/// markOverdefined - Return true if this is a change in status.
bool markOverdefined() {
if (isOverdefined())
return false;
Tag = overdefined;
2009-11-18 14:58:34 +00:00
return true;
}
/// markConstant - Return true if this is a change in status.
bool markConstant(Constant *V) {
assert(V && "Marking constant with NULL");
if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
return markConstantRange(ConstantRange(CI->getValue()));
if (isa<UndefValue>(V))
2009-11-18 14:58:34 +00:00
return false;
assert((!isConstant() || getConstant() == V) &&
"Marking constant with different value");
2009-11-18 14:58:34 +00:00
assert(isUndefined());
Tag = constant;
Val = V;
2009-11-18 14:58:34 +00:00
return true;
}
/// markNotConstant - Return true if this is a change in status.
bool markNotConstant(Constant *V) {
assert(V && "Marking constant with NULL");
if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
if (isa<UndefValue>(V))
2009-11-18 14:58:34 +00:00
return false;
assert((!isConstant() || getConstant() != V) &&
"Marking constant !constant with same value");
assert((!isNotConstant() || getNotConstant() == V) &&
"Marking !constant with different value");
assert(isUndefined() || isConstant());
Tag = notconstant;
Val = V;
return true;
}
/// markConstantRange - Return true if this is a change in status.
bool markConstantRange(const ConstantRange NewR) {
if (isConstantRange()) {
if (NewR.isEmptySet())
return markOverdefined();
bool changed = Range != NewR;
Range = NewR;
return changed;
}
assert(isUndefined());
if (NewR.isEmptySet())
return markOverdefined();
Tag = constantrange;
Range = NewR;
2009-11-18 14:58:34 +00:00
return true;
}
/// mergeIn - Merge the specified lattice value into this one, updating this
/// one and returning true if anything changed.
bool mergeIn(const LVILatticeVal &RHS) {
if (RHS.isUndefined() || isOverdefined()) return false;
if (RHS.isOverdefined()) return markOverdefined();
if (isUndefined()) {
Tag = RHS.Tag;
Val = RHS.Val;
Range = RHS.Range;
return true;
}
if (isConstant()) {
if (RHS.isConstant()) {
if (Val == RHS.Val)
return false;
return markOverdefined();
}
if (RHS.isNotConstant()) {
if (Val == RHS.Val)
2009-11-18 14:58:34 +00:00
return markOverdefined();
// Unless we can prove that the two Constants are different, we must
// move to overdefined.
// FIXME: use DataLayout/TargetLibraryInfo for smarter constant folding.
if (ConstantInt *Res = dyn_cast<ConstantInt>(
ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
getConstant(),
RHS.getNotConstant())))
if (Res->isOne())
return markNotConstant(RHS.getNotConstant());
return markOverdefined();
2009-11-18 14:58:34 +00:00
}
// RHS is a ConstantRange, LHS is a non-integer Constant.
// FIXME: consider the case where RHS is a range [1, 0) and LHS is
// a function. The correct result is to pick up RHS.
return markOverdefined();
2009-11-18 14:58:34 +00:00
}
if (isNotConstant()) {
if (RHS.isConstant()) {
if (Val == RHS.Val)
return markOverdefined();
// Unless we can prove that the two Constants are different, we must
// move to overdefined.
// FIXME: use DataLayout/TargetLibraryInfo for smarter constant folding.
if (ConstantInt *Res = dyn_cast<ConstantInt>(
ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
getNotConstant(),
RHS.getConstant())))
if (Res->isOne())
return false;
return markOverdefined();
}
if (RHS.isNotConstant()) {
if (Val == RHS.Val)
return false;
2009-11-18 14:58:34 +00:00
return markOverdefined();
}
return markOverdefined();
2009-11-18 14:58:34 +00:00
}
assert(isConstantRange() && "New LVILattice type?");
if (!RHS.isConstantRange())
2009-11-18 14:58:34 +00:00
return markOverdefined();
ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
if (NewR.isFullSet())
return markOverdefined();
return markConstantRange(NewR);
2009-11-18 14:58:34 +00:00
}
};
} // end anonymous namespace.
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
LLVM_ATTRIBUTE_USED;
2009-11-18 14:58:34 +00:00
raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
if (Val.isUndefined())
return OS << "undefined";
if (Val.isOverdefined())
return OS << "overdefined";
if (Val.isNotConstant())
return OS << "notconstant<" << *Val.getNotConstant() << '>';
else if (Val.isConstantRange())
return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
<< Val.getConstantRange().getUpper() << '>';
2009-11-18 14:58:34 +00:00
return OS << "constant<" << *Val.getConstant() << '>';
}
}
//===----------------------------------------------------------------------===//
// LazyValueInfoCache Decl
//===----------------------------------------------------------------------===//
namespace {
/// LVIValueHandle - A callback value handle updates the cache when
/// values are erased.
class LazyValueInfoCache;
struct LVIValueHandle : public CallbackVH {
LazyValueInfoCache *Parent;
LVIValueHandle(Value *V, LazyValueInfoCache *P)
: CallbackVH(V), Parent(P) { }
void deleted() override;
void allUsesReplacedWith(Value *V) override {
deleted();
}
};
}
namespace {
2009-11-18 14:58:34 +00:00
/// LazyValueInfoCache - This is the cache kept by LazyValueInfo which
/// maintains information about queries across the clients' queries.
class LazyValueInfoCache {
/// ValueCacheEntryTy - This is all of the cached block information for
/// exactly one Value*. The entries are sorted by the BasicBlock* of the
/// entries, allowing us to do a lookup with a binary search.
typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
2009-11-18 14:58:34 +00:00
/// ValueCache - This is all of the cached information for all values,
/// mapped from Value* to key information.
std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
/// OverDefinedCache - This tracks, on a per-block basis, the set of
/// values that are over-defined at the end of that block. This is required
/// for cache updating.
typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
DenseSet<OverDefinedPairTy> OverDefinedCache;
/// SeenBlocks - Keep track of all blocks that we have ever seen, so we
/// don't spend time removing unused blocks from our caches.
DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
/// BlockValueStack - This stack holds the state of the value solver
/// during a query. It basically emulates the callstack of the naive
/// recursive value lookup process.
std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
friend struct LVIValueHandle;
/// OverDefinedCacheUpdater - A helper object that ensures that the
/// OverDefinedCache is updated whenever solveBlockValue returns.
struct OverDefinedCacheUpdater {
LazyValueInfoCache *Parent;
Value *Val;
BasicBlock *BB;
LVILatticeVal &BBLV;
OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV,
LazyValueInfoCache *P)
: Parent(P), Val(V), BB(B), BBLV(LV) { }
bool markResult(bool changed) {
if (changed && BBLV.isOverdefined())
Parent->OverDefinedCache.insert(std::make_pair(BB, Val));
return changed;
}
};
LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
LVILatticeVal &Result);
bool hasBlockValue(Value *Val, BasicBlock *BB);
// These methods process one work item and may add more. A false value
// returned means that the work item was not completely processed and must
// be revisited after going through the new items.
bool solveBlockValue(Value *Val, BasicBlock *BB);
bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
Value *Val, BasicBlock *BB);
bool solveBlockValuePHINode(LVILatticeVal &BBLV,
PHINode *PN, BasicBlock *BB);
bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
Instruction *BBI, BasicBlock *BB);
void solve();
ValueCacheEntryTy &lookup(Value *V) {
return ValueCache[LVIValueHandle(V, this)];
}
2009-11-18 14:58:34 +00:00
public:
/// getValueInBlock - This is the query interface to determine the lattice
/// value for the specified Value* at the end of the specified block.
LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB);
/// getValueOnEdge - This is the query interface to determine the lattice
/// value for the specified Value* that is true on the specified edge.
LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB);
/// threadEdge - This is the update interface to inform the cache that an
/// edge from PredBB to OldSucc has been threaded to be from PredBB to
/// NewSucc.
void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
/// eraseBlock - This is part of the update interface to inform the cache
/// that a block has been deleted.
void eraseBlock(BasicBlock *BB);
/// clear - Empty the cache.
void clear() {
SeenBlocks.clear();
ValueCache.clear();
OverDefinedCache.clear();
2009-11-18 14:58:34 +00:00
}
};
} // end anonymous namespace
2009-11-18 14:58:34 +00:00
void LVIValueHandle::deleted() {
typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
SmallVector<OverDefinedPairTy, 4> ToErase;
for (DenseSet<OverDefinedPairTy>::iterator
I = Parent->OverDefinedCache.begin(),
E = Parent->OverDefinedCache.end();
I != E; ++I) {
if (I->second == getValPtr())
ToErase.push_back(*I);
2009-11-18 14:58:34 +00:00
}
for (SmallVectorImpl<OverDefinedPairTy>::iterator I = ToErase.begin(),
E = ToErase.end(); I != E; ++I)
Parent->OverDefinedCache.erase(*I);
// This erasure deallocates *this, so it MUST happen after we're done
// using any and all members of *this.
Parent->ValueCache.erase(*this);
}
void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
// Shortcut if we have never seen this block.
DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
if (I == SeenBlocks.end())
return;
SeenBlocks.erase(I);
SmallVector<OverDefinedPairTy, 4> ToErase;
for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
E = OverDefinedCache.end(); I != E; ++I) {
if (I->first == BB)
ToErase.push_back(*I);
}
for (SmallVectorImpl<OverDefinedPairTy>::iterator I = ToErase.begin(),
E = ToErase.end(); I != E; ++I)
OverDefinedCache.erase(*I);
for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator
I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
I->second.erase(BB);
}
void LazyValueInfoCache::solve() {
while (!BlockValueStack.empty()) {
std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
if (solveBlockValue(e.second, e.first)) {
assert(BlockValueStack.top() == e);
BlockValueStack.pop();
}
}
}
bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
// If already a constant, there is nothing to compute.
if (isa<Constant>(Val))
return true;
LVIValueHandle ValHandle(Val, this);
std::map<LVIValueHandle, ValueCacheEntryTy>::iterator I =
ValueCache.find(ValHandle);
if (I == ValueCache.end()) return false;
return I->second.count(BB);
}
LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
// If already a constant, there is nothing to compute.
if (Constant *VC = dyn_cast<Constant>(Val))
return LVILatticeVal::get(VC);
SeenBlocks.insert(BB);
return lookup(Val)[BB];
2009-11-18 14:58:34 +00:00
}
bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
if (isa<Constant>(Val))
return true;
ValueCacheEntryTy &Cache = lookup(Val);
SeenBlocks.insert(BB);
LVILatticeVal &BBLV = Cache[BB];
2009-11-18 14:58:34 +00:00
// OverDefinedCacheUpdater is a helper object that will update
// the OverDefinedCache for us when this method exits. Make sure to
// call markResult on it as we exist, passing a bool to indicate if the
// cache needs updating, i.e. if we have solve a new value or not.
OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this);
2009-11-18 14:58:34 +00:00
// If we've already computed this block's value, return it.
if (!BBLV.isUndefined()) {
2010-01-01 10:31:22 +00:00
DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n');
// Since we're reusing a cached value here, we don't need to update the
// OverDefinedCahce. The cache will have been properly updated
// whenever the cached value was inserted.
ODCacheUpdater.markResult(false);
return true;
2009-11-18 14:58:34 +00:00
}
// Otherwise, this is the first time we're seeing this block. Reset the
// lattice value to overdefined, so that cycles will terminate and be
// conservatively correct.
BBLV.markOverdefined();
Instruction *BBI = dyn_cast<Instruction>(Val);
if (!BBI || BBI->getParent() != BB) {
return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB));
2009-11-18 14:58:34 +00:00
}
2009-11-18 14:58:34 +00:00
if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB));
2009-11-18 14:58:34 +00:00
}
if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
return ODCacheUpdater.markResult(true);
}
// We can only analyze the definitions of certain classes of instructions
// (integral binops and casts at the moment), so bail if this isn't one.
2009-11-18 14:58:34 +00:00
LVILatticeVal Result;
if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
!BBI->getType()->isIntegerTy()) {
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because inst def found.\n");
BBLV.markOverdefined();
return ODCacheUpdater.markResult(true);
}
// FIXME: We're currently limited to binops with a constant RHS. This should
// be improved.
BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
if (BO && !isa<ConstantInt>(BO->getOperand(1))) {
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because inst def found.\n");
BBLV.markOverdefined();
return ODCacheUpdater.markResult(true);
}
return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB));
}
static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
if (LoadInst *L = dyn_cast<LoadInst>(I)) {
return L->getPointerAddressSpace() == 0 &&
GetUnderlyingObject(L->getPointerOperand()) == Ptr;
}
if (StoreInst *S = dyn_cast<StoreInst>(I)) {
return S->getPointerAddressSpace() == 0 &&
GetUnderlyingObject(S->getPointerOperand()) == Ptr;
}
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
if (MI->isVolatile()) return false;
// FIXME: check whether it has a valuerange that excludes zero?
ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
if (!Len || Len->isZero()) return false;
if (MI->getDestAddressSpace() == 0)
if (GetUnderlyingObject(MI->getRawDest()) == Ptr)
return true;
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
if (MTI->getSourceAddressSpace() == 0)
if (GetUnderlyingObject(MTI->getRawSource()) == Ptr)
return true;
}
return false;
}
bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
Value *Val, BasicBlock *BB) {
LVILatticeVal Result; // Start Undefined.
// If this is a pointer, and there's a load from that pointer in this BB,
// then we know that the pointer can't be NULL.
bool NotNull = false;
if (Val->getType()->isPointerTy()) {
if (isKnownNonNull(Val)) {
NotNull = true;
} else {
Value *UnderlyingVal = GetUnderlyingObject(Val);
// If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
// inside InstructionDereferencesPointer either.
if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, nullptr, 1)) {
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
BI != BE; ++BI) {
if (InstructionDereferencesPointer(BI, UnderlyingVal)) {
NotNull = true;
break;
}
}
}
}
}
// If this is the entry block, we must be asking about an argument. The
// value is overdefined.
if (BB == &BB->getParent()->getEntryBlock()) {
assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
if (NotNull) {
PointerType *PTy = cast<PointerType>(Val->getType());
Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
} else {
Result.markOverdefined();
}
BBLV = Result;
return true;
}
// Loop over all of our predecessors, merging what we know from them into
// result.
bool EdgesMissing = false;
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
LVILatticeVal EdgeResult;
EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
if (EdgesMissing)
continue;
Result.mergeIn(EdgeResult);
// If we hit overdefined, exit early. The BlockVals entry is already set
// to overdefined.
if (Result.isOverdefined()) {
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because of pred.\n");
// If we previously determined that this is a pointer that can't be null
// then return that rather than giving up entirely.
if (NotNull) {
PointerType *PTy = cast<PointerType>(Val->getType());
Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
}
BBLV = Result;
return true;
}
}
if (EdgesMissing)
return false;
// Return the merged value, which is more precise than 'overdefined'.
assert(!Result.isOverdefined());
BBLV = Result;
return true;
}
bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
PHINode *PN, BasicBlock *BB) {
LVILatticeVal Result; // Start Undefined.
// Loop over all of our predecessors, merging what we know from them into
// result.
bool EdgesMissing = false;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *PhiBB = PN->getIncomingBlock(i);
Value *PhiVal = PN->getIncomingValue(i);
LVILatticeVal EdgeResult;
EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult);
if (EdgesMissing)
continue;
Result.mergeIn(EdgeResult);
// If we hit overdefined, exit early. The BlockVals entry is already set
// to overdefined.
if (Result.isOverdefined()) {
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because of pred.\n");
BBLV = Result;
return true;
}
}
if (EdgesMissing)
return false;
// Return the merged value, which is more precise than 'overdefined'.
assert(!Result.isOverdefined() && "Possible PHI in entry block?");
BBLV = Result;
return true;
}
bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
Instruction *BBI,
BasicBlock *BB) {
// Figure out the range of the LHS. If that fails, bail.
if (!hasBlockValue(BBI->getOperand(0), BB)) {
BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0)));
return false;
}
LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
if (!LHSVal.isConstantRange()) {
BBLV.markOverdefined();
return true;
}
ConstantRange LHSRange = LHSVal.getConstantRange();
ConstantRange RHSRange(1);
IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
if (isa<BinaryOperator>(BBI)) {
if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
RHSRange = ConstantRange(RHS->getValue());
} else {
BBLV.markOverdefined();
return true;
}
}
// NOTE: We're currently limited by the set of operations that ConstantRange
// can evaluate symbolically. Enhancing that set will allows us to analyze
// more definitions.
LVILatticeVal Result;
switch (BBI->getOpcode()) {
case Instruction::Add:
Result.markConstantRange(LHSRange.add(RHSRange));
break;
case Instruction::Sub:
Result.markConstantRange(LHSRange.sub(RHSRange));
break;
case Instruction::Mul:
Result.markConstantRange(LHSRange.multiply(RHSRange));
break;
case Instruction::UDiv:
Result.markConstantRange(LHSRange.udiv(RHSRange));
break;
case Instruction::Shl:
Result.markConstantRange(LHSRange.shl(RHSRange));
break;
case Instruction::LShr:
Result.markConstantRange(LHSRange.lshr(RHSRange));
break;
case Instruction::Trunc:
Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
break;
case Instruction::SExt:
Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
break;
case Instruction::ZExt:
Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
break;
case Instruction::BitCast:
Result.markConstantRange(LHSRange);
break;
case Instruction::And:
Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
break;
case Instruction::Or:
Result.markConstantRange(LHSRange.binaryOr(RHSRange));
break;
// Unhandled instructions are overdefined.
default:
DEBUG(dbgs() << " compute BB '" << BB->getName()
<< "' - overdefined because inst def found.\n");
Result.markOverdefined();
break;
}
BBLV = Result;
return true;
2009-11-18 14:58:34 +00:00
}
/// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
/// Val is not constrained on the edge.
static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
BasicBlock *BBTo, LVILatticeVal &Result) {
2009-11-18 14:58:34 +00:00
// TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
// know that v != 0.
if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
// If this is a conditional branch and only one successor goes to BBTo, then
// we maybe able to infer something from the condition.
if (BI->isConditional() &&
BI->getSuccessor(0) != BI->getSuccessor(1)) {
bool isTrueDest = BI->getSuccessor(0) == BBTo;
assert(BI->getSuccessor(!isTrueDest) == BBTo &&
"BBTo isn't a successor of BBFrom");
// If V is the condition of the branch itself, then we know exactly what
// it is.
if (BI->getCondition() == Val) {
Result = LVILatticeVal::get(ConstantInt::get(
Type::getInt1Ty(Val->getContext()), isTrueDest));
return true;
}
2009-11-18 14:58:34 +00:00
// If the condition of the branch is an equality comparison, we may be
// able to infer the value.
ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition());
if (ICI && isa<Constant>(ICI->getOperand(1))) {
if (ICI->isEquality() && ICI->getOperand(0) == Val) {
2009-11-18 14:58:34 +00:00
// We know that V has the RHS constant if this is a true SETEQ or
// false SETNE.
if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
else
Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
return true;
2009-11-18 14:58:34 +00:00
}
// Recognize the range checking idiom that InstCombine produces.
// (X-C1) u< C2 --> [C1, C1+C2)
ConstantInt *NegOffset = nullptr;
if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
match(ICI->getOperand(0), m_Add(m_Specific(Val),
m_ConstantInt(NegOffset)));
ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
// Calculate the range of values that would satisfy the comparison.
ConstantRange CmpRange(CI->getValue());
ConstantRange TrueValues =
ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange);
if (NegOffset) // Apply the offset from above.
TrueValues = TrueValues.subtract(NegOffset->getValue());
// If we're interested in the false dest, invert the condition.
if (!isTrueDest) TrueValues = TrueValues.inverse();
Result = LVILatticeVal::getRange(TrueValues);
return true;
}
}
2009-11-18 14:58:34 +00:00
}
}
// If the edge was formed by a switch on the value, then we may know exactly
// what it is.
if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
if (SI->getCondition() != Val)
return false;
bool DefaultCase = SI->getDefaultDest() == BBTo;
unsigned BitWidth = Val->getType()->getIntegerBitWidth();
ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
i != e; ++i) {
ConstantRange EdgeVal(i.getCaseValue()->getValue());
if (DefaultCase) {
// It is possible that the default destination is the destination of
// some cases. There is no need to perform difference for those cases.
if (i.getCaseSuccessor() != BBTo)
EdgesVals = EdgesVals.difference(EdgeVal);
} else if (i.getCaseSuccessor() == BBTo)
EdgesVals = EdgesVals.unionWith(EdgeVal);
2009-11-18 14:58:34 +00:00
}
Result = LVILatticeVal::getRange(EdgesVals);
return true;
}
return false;
2009-11-18 14:58:34 +00:00
}
/// \brief Compute the value of Val on the edge BBFrom -> BBTo, or the value at
/// the basic block if the edge does not constraint Val.
bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
BasicBlock *BBTo, LVILatticeVal &Result) {
// If already a constant, there is nothing to compute.
if (Constant *VC = dyn_cast<Constant>(Val)) {
Result = LVILatticeVal::get(VC);
return true;
}
if (getEdgeValueLocal(Val, BBFrom, BBTo, Result)) {
if (!Result.isConstantRange() ||
Result.getConstantRange().getSingleElement())
return true;
// FIXME: this check should be moved to the beginning of the function when
// LVI better supports recursive values. Even for the single value case, we
// can intersect to detect dead code (an empty range).
if (!hasBlockValue(Val, BBFrom)) {
BlockValueStack.push(std::make_pair(BBFrom, Val));
return false;
}
// Try to intersect ranges of the BB and the constraint on the edge.
LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
if (!InBlock.isConstantRange())
return true;
ConstantRange Range =
Result.getConstantRange().intersectWith(InBlock.getConstantRange());
Result = LVILatticeVal::getRange(Range);
return true;
}
if (!hasBlockValue(Val, BBFrom)) {
BlockValueStack.push(std::make_pair(BBFrom, Val));
return false;
}
// if we couldn't compute the value on the edge, use the value from the BB
Result = getBlockValue(Val, BBFrom);
return true;
}
2009-11-18 14:58:34 +00:00
LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) {
2010-01-01 10:31:22 +00:00
DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
2009-11-18 14:58:34 +00:00
<< BB->getName() << "'\n");
BlockValueStack.push(std::make_pair(BB, V));
solve();
LVILatticeVal Result = getBlockValue(V, BB);
2010-01-01 10:31:22 +00:00
DEBUG(dbgs() << " Result = " << Result << "\n");
2009-11-18 14:58:34 +00:00
return Result;
}
LVILatticeVal LazyValueInfoCache::
getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) {
2010-01-01 10:31:22 +00:00
DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
2009-11-18 14:58:34 +00:00
<< FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
LVILatticeVal Result;
if (!getEdgeValue(V, FromBB, ToBB, Result)) {
solve();
bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result);
(void)WasFastQuery;
assert(WasFastQuery && "More work to do after problem solved?");
}
2010-01-01 10:31:22 +00:00
DEBUG(dbgs() << " Result = " << Result << "\n");
2009-11-18 14:58:34 +00:00
return Result;
}
void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
BasicBlock *NewSucc) {
// When an edge in the graph has been threaded, values that we could not
// determine a value for before (i.e. were marked overdefined) may be possible
// to solve now. We do NOT try to proactively update these values. Instead,
// we clear their entries from the cache, and allow lazy updating to recompute
// them when needed.
// The updating process is fairly simple: we need to dropped cached info
// for all values that were marked overdefined in OldSucc, and for those same
// values in any successor of OldSucc (except NewSucc) in which they were
// also marked overdefined.
std::vector<BasicBlock*> worklist;
worklist.push_back(OldSucc);
DenseSet<Value*> ClearSet;
for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
E = OverDefinedCache.end(); I != E; ++I) {
if (I->first == OldSucc)
ClearSet.insert(I->second);
}
// Use a worklist to perform a depth-first search of OldSucc's successors.
// NOTE: We do not need a visited list since any blocks we have already
// visited will have had their overdefined markers cleared already, and we
// thus won't loop to their successors.
while (!worklist.empty()) {
BasicBlock *ToUpdate = worklist.back();
worklist.pop_back();
// Skip blocks only accessible through NewSucc.
if (ToUpdate == NewSucc) continue;
bool changed = false;
for (DenseSet<Value*>::iterator I = ClearSet.begin(), E = ClearSet.end();
I != E; ++I) {
// If a value was marked overdefined in OldSucc, and is here too...
DenseSet<OverDefinedPairTy>::iterator OI =
OverDefinedCache.find(std::make_pair(ToUpdate, *I));
if (OI == OverDefinedCache.end()) continue;
// Remove it from the caches.
ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)];
ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
assert(CI != Entry.end() && "Couldn't find entry to update?");
Entry.erase(CI);
OverDefinedCache.erase(OI);
// If we removed anything, then we potentially need to update
// blocks successors too.
changed = true;
}
if (!changed) continue;
worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
}
}
2009-11-18 14:58:34 +00:00
//===----------------------------------------------------------------------===//
// LazyValueInfo Impl
//===----------------------------------------------------------------------===//
/// getCache - This lazily constructs the LazyValueInfoCache.
static LazyValueInfoCache &getCache(void *&PImpl) {
if (!PImpl)
PImpl = new LazyValueInfoCache();
return *static_cast<LazyValueInfoCache*>(PImpl);
}
bool LazyValueInfo::runOnFunction(Function &F) {
if (PImpl)
getCache(PImpl).clear();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
TLI = &getAnalysis<TargetLibraryInfo>();
// Fully lazy.
return false;
}
void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<TargetLibraryInfo>();
}
2009-11-18 14:58:34 +00:00
void LazyValueInfo::releaseMemory() {
// If the cache was allocated, free it.
if (PImpl) {
delete &getCache(PImpl);
PImpl = nullptr;
2009-11-18 14:58:34 +00:00
}
}
Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB);
if (Result.isConstant())
return Result.getConstant();
if (Result.isConstantRange()) {
ConstantRange CR = Result.getConstantRange();
if (const APInt *SingleVal = CR.getSingleElement())
return ConstantInt::get(V->getContext(), *SingleVal);
}
return nullptr;
2009-11-18 14:58:34 +00:00
}
/// getConstantOnEdge - Determine whether the specified value is known to be a
/// constant on the specified edge. Return null if not.
Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
BasicBlock *ToBB) {
LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
if (Result.isConstant())
return Result.getConstant();
if (Result.isConstantRange()) {
ConstantRange CR = Result.getConstantRange();
if (const APInt *SingleVal = CR.getSingleElement())
return ConstantInt::get(V->getContext(), *SingleVal);
}
return nullptr;
2009-11-18 14:58:34 +00:00
}
/// getPredicateOnEdge - Determine whether the specified value comparison
/// with a constant is known to be true or false on the specified CFG edge.
/// Pred is a CmpInst predicate.
LazyValueInfo::Tristate
LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
BasicBlock *FromBB, BasicBlock *ToBB) {
LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
// If we know the value is a constant, evaluate the conditional.
Constant *Res = nullptr;
2009-11-18 14:58:34 +00:00
if (Result.isConstant()) {
Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL,
TLI);
if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
2009-11-18 14:58:34 +00:00
return ResCI->isZero() ? False : True;
return Unknown;
}
if (Result.isConstantRange()) {
ConstantInt *CI = dyn_cast<ConstantInt>(C);
if (!CI) return Unknown;
ConstantRange CR = Result.getConstantRange();
if (Pred == ICmpInst::ICMP_EQ) {
if (!CR.contains(CI->getValue()))
return False;
if (CR.isSingleElement() && CR.contains(CI->getValue()))
return True;
} else if (Pred == ICmpInst::ICMP_NE) {
if (!CR.contains(CI->getValue()))
return True;
if (CR.isSingleElement() && CR.contains(CI->getValue()))
return False;
}
// Handle more complex predicates.
ConstantRange TrueValues =
ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
if (TrueValues.contains(CR))
return True;
if (TrueValues.inverse().contains(CR))
return False;
return Unknown;
}
2009-11-18 14:58:34 +00:00
if (Result.isNotConstant()) {
// If this is an equality comparison, we can try to fold it knowing that
// "V != C1".
if (Pred == ICmpInst::ICMP_EQ) {
// !C1 == C -> false iff C1 == C.
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
Result.getNotConstant(), C, DL,
TLI);
2009-11-18 14:58:34 +00:00
if (Res->isNullValue())
return False;
} else if (Pred == ICmpInst::ICMP_NE) {
// !C1 != C -> true iff C1 == C.
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
Result.getNotConstant(), C, DL,
TLI);
2009-11-18 14:58:34 +00:00
if (Res->isNullValue())
return True;
}
return Unknown;
}
return Unknown;
}
void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
BasicBlock *NewSucc) {
if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc);
}
2009-11-18 14:58:34 +00:00
void LazyValueInfo::eraseBlock(BasicBlock *BB) {
if (PImpl) getCache(PImpl).eraseBlock(BB);
}