freebsd-dev/module/zfs/zpl_file.c

582 lines
15 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2011, Lawrence Livermore National Security, LLC.
*/
Only commit the ZIL once in zpl_writepages() (msync() case). Currently, using msync() results in the following code path: sys_msync -> zpl_fsync -> filemap_write_and_wait_range -> zpl_writepages -> write_cache_pages -> zpl_putpage In such a code path, zil_commit() is called as part of zpl_putpage(). This means that for each page, the write is handed to the DMU, the ZIL is committed, and only then do we move on to the next page. As one might imagine, this results in atrocious performance where there is a large number of pages to write: instead of committing a batch of N writes, we do N commits containing one page each. In some extreme cases this can result in msync() being ~700 times slower than it should be, as well as very inefficient use of ZIL resources. This patch fixes this issue by making sure that the requested writes are batched and then committed only once. Unfortunately, the implementation is somewhat non-trivial because there is no way to run write_cache_pages in SYNC mode (so that we get all pages) without making it wait on the writeback tag for each page. The solution implemented here is composed of two parts: - I added a new callback system to the ZIL, which allows the caller to be notified when its ITX gets written to stable storage. One nice thing is that the callback is called not only in zil_commit() but in zil_sync() as well, which means that the caller doesn't have to care whether the write ended up in the ZIL or the DMU: it will get notified as soon as it's safe, period. This is an improvement over dmu_tx_callback_register() that was used previously, which only supports DMU writes. The rationale for this change is to allow zpl_putpage() to be notified when a ZIL commit is completed without having to block on zil_commit() itself. - zpl_writepages() now calls write_cache_pages in non-SYNC mode, which will prevent (1) write_cache_pages from blocking, and (2) zpl_putpage from issuing ZIL commits. zpl_writepages() will issue the commit itself instead of relying on zpl_putpage() to do it, thus nicely batching the writes. Note, however, that we still have to call write_cache_pages() again in SYNC mode because there is an edge case documented in the implementation of write_cache_pages() whereas it will not give us all dirty pages when running in non-SYNC mode. Thus we need to run it at least once in SYNC mode to make sure we honor persistency guarantees. This only happens when the pages are modified at the same time msync() is running, which should be rare. In most cases there won't be any additional pages and this second call will do nothing. Note that this change also fixes a bug related to #907 whereas calling msync() on pages that were already handed over to the DMU in a previous writepages() call would make msync() block until the next TXG sync instead of returning as soon as the ZIL commit is complete. The new callback system fixes that problem. Signed-off-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1849 Closes #907
2013-11-10 15:00:11 +00:00
#include <sys/dmu_objset.h>
#include <sys/zfs_vfsops.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_znode.h>
#include <sys/zpl.h>
static int
zpl_open(struct inode *ip, struct file *filp)
{
cred_t *cr = CRED();
int error;
error = generic_file_open(ip, filp);
if (error)
return (error);
crhold(cr);
error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_release(struct inode *ip, struct file *filp)
{
cred_t *cr = CRED();
int error;
Write dirty inodes on close When the property atime=on is set operations which only access and inode do cause an atime update. However, it turns out that dirty inodes with updated atimes are only written to disk when the inodes get evicted from the cache. Somewhat surprisingly the source suggests that this isn't a ZoL specific issue. This behavior may in part explain why zfs's reclaim logic has been observed to be slow. When reclaiming inodes its likely that they have a dirty atime which will force a write to disk. Obviously we don't want to force a write to disk for every atime update, these needs to be batched. The right way to do this is to fully implement the .dirty_inode and .write_inode callbacks. However, to do that right requires proper unification of some fields in the znode/inode. Then we could just mark the inode dirty and leave it to the VFS to call .write_inode periodically. Until that work gets done we have to settle for some middle ground. The simplest and safest thing we can do for now is to write the dirty inode on last close. This should prevent the majority of inodes in the cache from having dirty atimes and not drastically increase the number of writes. Some rudimentally testing to show how long it takes to drop 500,000 inodes from the cache shows promising results. This is as expected because we're no longer do lots of IO as part of the eviction, it was done earlier during the close. w/out patch: ~30s to drop 500,000 inodes with drop_caches. with patch: ~3s to drop 500,000 inodes with drop_caches. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-07-26 17:38:49 +00:00
if (ITOZ(ip)->z_atime_dirty)
mark_inode_dirty(ip);
crhold(cr);
error = -zfs_close(ip, filp->f_flags, cr);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_iterate(struct file *filp, struct dir_context *ctx)
{
struct dentry *dentry = filp->f_path.dentry;
cred_t *cr = CRED();
int error;
crhold(cr);
error = -zfs_readdir(dentry->d_inode, ctx, cr);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
#if !defined(HAVE_VFS_ITERATE)
static int
zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
{
struct dir_context ctx = DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
int error;
error = zpl_iterate(filp, &ctx);
filp->f_pos = ctx.pos;
return (error);
}
#endif /* HAVE_VFS_ITERATE */
#if defined(HAVE_FSYNC_WITH_DENTRY)
/*
* Linux 2.6.x - 2.6.34 API,
* Through 2.6.34 the nfsd kernel server would pass a NULL 'file struct *'
* to the fops->fsync() hook. For this reason, we must be careful not to
* use filp unconditionally.
*/
static int
zpl_fsync(struct file *filp, struct dentry *dentry, int datasync)
{
cred_t *cr = CRED();
int error;
crhold(cr);
error = -zfs_fsync(dentry->d_inode, datasync, cr);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
#elif defined(HAVE_FSYNC_WITHOUT_DENTRY)
/*
* Linux 2.6.35 - 3.0 API,
* As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
* redundant. The dentry is still accessible via filp->f_path.dentry,
* and we are guaranteed that filp will never be NULL.
*/
static int
zpl_fsync(struct file *filp, int datasync)
{
struct inode *inode = filp->f_mapping->host;
cred_t *cr = CRED();
int error;
crhold(cr);
error = -zfs_fsync(inode, datasync, cr);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
#elif defined(HAVE_FSYNC_RANGE)
/*
* Linux 3.1 - 3.x API,
* As of 3.1 the responsibility to call filemap_write_and_wait_range() has
* been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex
* lock is no longer held by the caller, for zfs we don't require the lock
* to be held so we don't acquire it.
*/
static int
zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
{
struct inode *inode = filp->f_mapping->host;
cred_t *cr = CRED();
int error;
error = filemap_write_and_wait_range(inode->i_mapping, start, end);
if (error)
return (error);
crhold(cr);
error = -zfs_fsync(inode, datasync, cr);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
#else
#error "Unsupported fops->fsync() implementation"
#endif
ssize_t
zpl_read_common(struct inode *ip, const char *buf, size_t len, loff_t pos,
uio_seg_t segment, int flags, cred_t *cr)
{
int error;
ssize_t read;
struct iovec iov;
uio_t uio;
iov.iov_base = (void *)buf;
iov.iov_len = len;
uio.uio_iov = &iov;
uio.uio_resid = len;
uio.uio_iovcnt = 1;
uio.uio_loffset = pos;
uio.uio_limit = MAXOFFSET_T;
uio.uio_segflg = segment;
error = -zfs_read(ip, &uio, flags, cr);
if (error < 0)
return (error);
read = len - uio.uio_resid;
task_io_account_read(read);
return (read);
}
static ssize_t
zpl_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos)
{
cred_t *cr = CRED();
ssize_t read;
crhold(cr);
read = zpl_read_common(filp->f_mapping->host, buf, len, *ppos,
UIO_USERSPACE, filp->f_flags, cr);
crfree(cr);
if (read < 0)
return (read);
*ppos += read;
return (read);
}
ssize_t
zpl_write_common(struct inode *ip, const char *buf, size_t len, loff_t pos,
uio_seg_t segment, int flags, cred_t *cr)
{
int error;
ssize_t wrote;
struct iovec iov;
uio_t uio;
iov.iov_base = (void *)buf;
iov.iov_len = len;
uio.uio_iov = &iov;
uio.uio_resid = len,
uio.uio_iovcnt = 1;
uio.uio_loffset = pos;
uio.uio_limit = MAXOFFSET_T;
uio.uio_segflg = segment;
error = -zfs_write(ip, &uio, flags, cr);
if (error < 0)
return (error);
wrote = len - uio.uio_resid;
task_io_account_write(wrote);
return (wrote);
}
static ssize_t
zpl_write(struct file *filp, const char __user *buf, size_t len, loff_t *ppos)
{
cred_t *cr = CRED();
ssize_t wrote;
crhold(cr);
wrote = zpl_write_common(filp->f_mapping->host, buf, len, *ppos,
UIO_USERSPACE, filp->f_flags, cr);
crfree(cr);
if (wrote < 0)
return (wrote);
*ppos += wrote;
return (wrote);
}
static loff_t
zpl_llseek(struct file *filp, loff_t offset, int whence)
{
#if defined(SEEK_HOLE) && defined(SEEK_DATA)
if (whence == SEEK_DATA || whence == SEEK_HOLE) {
struct inode *ip = filp->f_mapping->host;
loff_t maxbytes = ip->i_sb->s_maxbytes;
loff_t error;
spl_inode_lock(ip);
error = -zfs_holey(ip, whence, &offset);
if (error == 0)
error = lseek_execute(filp, ip, offset, maxbytes);
spl_inode_unlock(ip);
return (error);
}
#endif /* SEEK_HOLE && SEEK_DATA */
return (generic_file_llseek(filp, offset, whence));
}
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
/*
* It's worth taking a moment to describe how mmap is implemented
* for zfs because it differs considerably from other Linux filesystems.
* However, this issue is handled the same way under OpenSolaris.
*
* The issue is that by design zfs bypasses the Linux page cache and
* leaves all caching up to the ARC. This has been shown to work
* well for the common read(2)/write(2) case. However, mmap(2)
* is problem because it relies on being tightly integrated with the
* page cache. To handle this we cache mmap'ed files twice, once in
* the ARC and a second time in the page cache. The code is careful
* to keep both copies synchronized.
*
* When a file with an mmap'ed region is written to using write(2)
* both the data in the ARC and existing pages in the page cache
* are updated. For a read(2) data will be read first from the page
* cache then the ARC if needed. Neither a write(2) or read(2) will
* will ever result in new pages being added to the page cache.
*
* New pages are added to the page cache only via .readpage() which
* is called when the vfs needs to read a page off disk to back the
* virtual memory region. These pages may be modified without
* notifying the ARC and will be written out periodically via
* .writepage(). This will occur due to either a sync or the usual
* page aging behavior. Note because a read(2) of a mmap'ed file
* will always check the page cache first even when the ARC is out
* of date correct data will still be returned.
*
* While this implementation ensures correct behavior it does have
* have some drawbacks. The most obvious of which is that it
* increases the required memory footprint when access mmap'ed
* files. It also adds additional complexity to the code keeping
* both caches synchronized.
*
* Longer term it may be possible to cleanly resolve this wart by
* mapping page cache pages directly on to the ARC buffers. The
* Linux address space operations are flexible enough to allow
* selection of which pages back a particular index. The trick
* would be working out the details of which subsystem is in
* charge, the ARC, the page cache, or both. It may also prove
* helpful to move the ARC buffers to a scatter-gather lists
* rather than a vmalloc'ed region.
*/
static int
zpl_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct inode *ip = filp->f_mapping->host;
znode_t *zp = ITOZ(ip);
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
int error;
error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
(size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
if (error)
return (error);
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
error = generic_file_mmap(filp, vma);
if (error)
return (error);
mutex_enter(&zp->z_lock);
zp->z_is_mapped = 1;
mutex_exit(&zp->z_lock);
return (error);
}
/*
* Populate a page with data for the Linux page cache. This function is
* only used to support mmap(2). There will be an identical copy of the
* data in the ARC which is kept up to date via .write() and .writepage().
*
* Current this function relies on zpl_read_common() and the O_DIRECT
* flag to read in a page. This works but the more correct way is to
* update zfs_fillpage() to be Linux friendly and use that interface.
*/
static int
zpl_readpage(struct file *filp, struct page *pp)
{
struct inode *ip;
struct page *pl[1];
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
int error = 0;
ASSERT(PageLocked(pp));
ip = pp->mapping->host;
pl[0] = pp;
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
error = -zfs_getpage(ip, pl, 1);
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
if (error) {
SetPageError(pp);
ClearPageUptodate(pp);
} else {
ClearPageError(pp);
SetPageUptodate(pp);
flush_dcache_page(pp);
}
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
unlock_page(pp);
return (error);
}
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
Correctly lock pages for .readpages() Unlike the .readpage() callback which is passed a single locked page to be populated. The .readpages() callback is passed a list of unlocked pages which are all marked for read-ahead (PG_readahead set). It is the responsibly of .readpages() to ensure to pages are properly locked before being populated. Prior to this change the requested read-ahead pages would be updated outside of the page lock which is unsafe. The unlocked pages would then be unlocked again which is harmless but should have been immediately detected as bug. Unfortunately, newer kernels failed detect this issue because the check is done with a VM_BUG_ON which is disabled by default. Luckily, the old Debian Lenny 2.6.26 kernel caught this because it simply uses a BUG_ON. The straight forward fix for this is to update the .readpages() callback to use the read_cache_pages() helper function. The helper function will ensure that each page in the list is properly locked before it is passed to the .readpage() callback. In addition resolving the bug, this results in a nice simplification of the existing code. The downside to this change is that instead of passing one large read request to the dmu multiple smaller ones are submitted. All of these requests however are marked for readahead so the lower layers should issue a large I/O regardless. Thus most of the request should hit the ARC cache. Futher optimization of this code can be done in the future is a perform analysis determines it to be worthwhile. But for the moment, it is preferable that code be correct and understandable. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #355
2011-08-04 23:25:43 +00:00
/*
* Populate a set of pages with data for the Linux page cache. This
* function will only be called for read ahead and never for demand
* paging. For simplicity, the code relies on read_cache_pages() to
* correctly lock each page for IO and call zpl_readpage().
*/
static int
zpl_readpages(struct file *filp, struct address_space *mapping,
struct list_head *pages, unsigned nr_pages)
{
return (read_cache_pages(mapping, pages,
(filler_t *)zpl_readpage, filp));
Correctly lock pages for .readpages() Unlike the .readpage() callback which is passed a single locked page to be populated. The .readpages() callback is passed a list of unlocked pages which are all marked for read-ahead (PG_readahead set). It is the responsibly of .readpages() to ensure to pages are properly locked before being populated. Prior to this change the requested read-ahead pages would be updated outside of the page lock which is unsafe. The unlocked pages would then be unlocked again which is harmless but should have been immediately detected as bug. Unfortunately, newer kernels failed detect this issue because the check is done with a VM_BUG_ON which is disabled by default. Luckily, the old Debian Lenny 2.6.26 kernel caught this because it simply uses a BUG_ON. The straight forward fix for this is to update the .readpages() callback to use the read_cache_pages() helper function. The helper function will ensure that each page in the list is properly locked before it is passed to the .readpage() callback. In addition resolving the bug, this results in a nice simplification of the existing code. The downside to this change is that instead of passing one large read request to the dmu multiple smaller ones are submitted. All of these requests however are marked for readahead so the lower layers should issue a large I/O regardless. Thus most of the request should hit the ARC cache. Futher optimization of this code can be done in the future is a perform analysis determines it to be worthwhile. But for the moment, it is preferable that code be correct and understandable. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #355
2011-08-04 23:25:43 +00:00
}
int
zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
{
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
struct address_space *mapping = data;
ASSERT(PageLocked(pp));
ASSERT(!PageWriteback(pp));
ASSERT(!(current->flags & PF_NOFS));
/*
* Annotate this call path with a flag that indicates that it is
* unsafe to use KM_SLEEP during memory allocations due to the
* potential for a deadlock. KM_PUSHPAGE should be used instead.
*/
current->flags |= PF_NOFS;
(void) zfs_putpage(mapping->host, pp, wbc);
current->flags &= ~PF_NOFS;
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
Cleanup mmap(2) writes While the existing implementation of .writepage()/zpl_putpage() was functional it was not entirely correct. In particular, it would move dirty pages in to a clean state simply after copying them in to the ARC cache. This would result in the pages being lost if the system were to crash enough though the Linux VFS believed them to be safe on stable storage. Since at the moment virtually all I/O, except mmap(2), bypasses the page cache this isn't as bad as it sounds. However, as hopefully start using the page cache more getting this right becomes more important so it's good to improve this now. This patch takes a big step in that direction by updating the code to correctly move dirty pages through a writeback phase before they are marked clean. When a dirty page is copied in to the ARC it will now be set in writeback and a completion callback is registered with the transaction. The page will stay in writeback until the dmu runs the completion callback indicating the page is on stable storage. At this point the page can be safely marked clean. This process is normally entirely asynchronous and will be repeated for every dirty page. This may initially sound inefficient but most of these pages will end up in a few txgs. That means when they are eventually written to disk they should be nicely batched. However, there is room for improvement. It may still be desirable to batch up the pages in to larger writes for the dmu. This would reduce the number of callbacks and small 4k buffer required by the ARC. Finally, if the caller requires that the I/O be done synchronously by setting WB_SYNC_ALL or if ZFS_SYNC_ALWAYS is set. Then the I/O will trigger a zil_commit() to flush the data to stable storage. At which point the registered callbacks will be run leaving the date safe of disk and marked clean before returning from .writepage. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-08-02 04:28:51 +00:00
return (0);
}
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
static int
zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
Only commit the ZIL once in zpl_writepages() (msync() case). Currently, using msync() results in the following code path: sys_msync -> zpl_fsync -> filemap_write_and_wait_range -> zpl_writepages -> write_cache_pages -> zpl_putpage In such a code path, zil_commit() is called as part of zpl_putpage(). This means that for each page, the write is handed to the DMU, the ZIL is committed, and only then do we move on to the next page. As one might imagine, this results in atrocious performance where there is a large number of pages to write: instead of committing a batch of N writes, we do N commits containing one page each. In some extreme cases this can result in msync() being ~700 times slower than it should be, as well as very inefficient use of ZIL resources. This patch fixes this issue by making sure that the requested writes are batched and then committed only once. Unfortunately, the implementation is somewhat non-trivial because there is no way to run write_cache_pages in SYNC mode (so that we get all pages) without making it wait on the writeback tag for each page. The solution implemented here is composed of two parts: - I added a new callback system to the ZIL, which allows the caller to be notified when its ITX gets written to stable storage. One nice thing is that the callback is called not only in zil_commit() but in zil_sync() as well, which means that the caller doesn't have to care whether the write ended up in the ZIL or the DMU: it will get notified as soon as it's safe, period. This is an improvement over dmu_tx_callback_register() that was used previously, which only supports DMU writes. The rationale for this change is to allow zpl_putpage() to be notified when a ZIL commit is completed without having to block on zil_commit() itself. - zpl_writepages() now calls write_cache_pages in non-SYNC mode, which will prevent (1) write_cache_pages from blocking, and (2) zpl_putpage from issuing ZIL commits. zpl_writepages() will issue the commit itself instead of relying on zpl_putpage() to do it, thus nicely batching the writes. Note, however, that we still have to call write_cache_pages() again in SYNC mode because there is an edge case documented in the implementation of write_cache_pages() whereas it will not give us all dirty pages when running in non-SYNC mode. Thus we need to run it at least once in SYNC mode to make sure we honor persistency guarantees. This only happens when the pages are modified at the same time msync() is running, which should be rare. In most cases there won't be any additional pages and this second call will do nothing. Note that this change also fixes a bug related to #907 whereas calling msync() on pages that were already handed over to the DMU in a previous writepages() call would make msync() block until the next TXG sync instead of returning as soon as the ZIL commit is complete. The new callback system fixes that problem. Signed-off-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1849 Closes #907
2013-11-10 15:00:11 +00:00
znode_t *zp = ITOZ(mapping->host);
zfs_sb_t *zsb = ITOZSB(mapping->host);
enum writeback_sync_modes sync_mode;
int result;
ZFS_ENTER(zsb);
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
wbc->sync_mode = WB_SYNC_ALL;
ZFS_EXIT(zsb);
sync_mode = wbc->sync_mode;
/*
* We don't want to run write_cache_pages() in SYNC mode here, because
* that would make putpage() wait for a single page to be committed to
* disk every single time, resulting in atrocious performance. Instead
* we run it once in non-SYNC mode so that the ZIL gets all the data,
* and then we commit it all in one go.
*/
wbc->sync_mode = WB_SYNC_NONE;
result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
if (sync_mode != wbc->sync_mode) {
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(zp);
zil_commit(zsb->z_log, zp->z_id);
ZFS_EXIT(zsb);
/*
* We need to call write_cache_pages() again (we can't just
* return after the commit) because the previous call in
* non-SYNC mode does not guarantee that we got all the dirty
* pages (see the implementation of write_cache_pages() for
* details). That being said, this is a no-op in most cases.
*/
wbc->sync_mode = sync_mode;
result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
}
return (result);
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
}
/*
* Write out dirty pages to the ARC, this function is only required to
* support mmap(2). Mapped pages may be dirtied by memory operations
* which never call .write(). These dirty pages are kept in sync with
* the ARC buffers via this hook.
*/
static int
zpl_writepage(struct page *pp, struct writeback_control *wbc)
{
Only commit the ZIL once in zpl_writepages() (msync() case). Currently, using msync() results in the following code path: sys_msync -> zpl_fsync -> filemap_write_and_wait_range -> zpl_writepages -> write_cache_pages -> zpl_putpage In such a code path, zil_commit() is called as part of zpl_putpage(). This means that for each page, the write is handed to the DMU, the ZIL is committed, and only then do we move on to the next page. As one might imagine, this results in atrocious performance where there is a large number of pages to write: instead of committing a batch of N writes, we do N commits containing one page each. In some extreme cases this can result in msync() being ~700 times slower than it should be, as well as very inefficient use of ZIL resources. This patch fixes this issue by making sure that the requested writes are batched and then committed only once. Unfortunately, the implementation is somewhat non-trivial because there is no way to run write_cache_pages in SYNC mode (so that we get all pages) without making it wait on the writeback tag for each page. The solution implemented here is composed of two parts: - I added a new callback system to the ZIL, which allows the caller to be notified when its ITX gets written to stable storage. One nice thing is that the callback is called not only in zil_commit() but in zil_sync() as well, which means that the caller doesn't have to care whether the write ended up in the ZIL or the DMU: it will get notified as soon as it's safe, period. This is an improvement over dmu_tx_callback_register() that was used previously, which only supports DMU writes. The rationale for this change is to allow zpl_putpage() to be notified when a ZIL commit is completed without having to block on zil_commit() itself. - zpl_writepages() now calls write_cache_pages in non-SYNC mode, which will prevent (1) write_cache_pages from blocking, and (2) zpl_putpage from issuing ZIL commits. zpl_writepages() will issue the commit itself instead of relying on zpl_putpage() to do it, thus nicely batching the writes. Note, however, that we still have to call write_cache_pages() again in SYNC mode because there is an edge case documented in the implementation of write_cache_pages() whereas it will not give us all dirty pages when running in non-SYNC mode. Thus we need to run it at least once in SYNC mode to make sure we honor persistency guarantees. This only happens when the pages are modified at the same time msync() is running, which should be rare. In most cases there won't be any additional pages and this second call will do nothing. Note that this change also fixes a bug related to #907 whereas calling msync() on pages that were already handed over to the DMU in a previous writepages() call would make msync() block until the next TXG sync instead of returning as soon as the ZIL commit is complete. The new callback system fixes that problem. Signed-off-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1849 Closes #907
2013-11-10 15:00:11 +00:00
if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
wbc->sync_mode = WB_SYNC_ALL;
return (zpl_putpage(pp, wbc, pp->mapping));
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
}
/*
* The only flag combination which matches the behavior of zfs_space()
* is FALLOC_FL_PUNCH_HOLE. This flag was introduced in the 2.6.38 kernel.
*/
long
zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
{
cred_t *cr = CRED();
int error = -EOPNOTSUPP;
if (mode & FALLOC_FL_KEEP_SIZE)
return (-EOPNOTSUPP);
crhold(cr);
#ifdef FALLOC_FL_PUNCH_HOLE
if (mode & FALLOC_FL_PUNCH_HOLE) {
flock64_t bf;
bf.l_type = F_WRLCK;
bf.l_whence = 0;
bf.l_start = offset;
bf.l_len = len;
bf.l_pid = 0;
error = -zfs_space(ip, F_FREESP, &bf, FWRITE, offset, cr);
}
#endif /* FALLOC_FL_PUNCH_HOLE */
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
#ifdef HAVE_FILE_FALLOCATE
static long
zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
{
return zpl_fallocate_common(filp->f_path.dentry->d_inode,
mode, offset, len);
}
#endif /* HAVE_FILE_FALLOCATE */
static long
zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case ZFS_IOC_GETFLAGS:
case ZFS_IOC_SETFLAGS:
return (-EOPNOTSUPP);
default:
return (-ENOTTY);
}
}
#ifdef CONFIG_COMPAT
static long
zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
return (zpl_ioctl(filp, cmd, arg));
}
#endif /* CONFIG_COMPAT */
const struct address_space_operations zpl_address_space_operations = {
.readpages = zpl_readpages,
.readpage = zpl_readpage,
.writepage = zpl_writepage,
.writepages = zpl_writepages,
};
const struct file_operations zpl_file_operations = {
.open = zpl_open,
.release = zpl_release,
.llseek = zpl_llseek,
Add mmap(2) support It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
2011-02-03 18:34:05 +00:00
.read = zpl_read,
.write = zpl_write,
.mmap = zpl_mmap,
.fsync = zpl_fsync,
#ifdef HAVE_FILE_FALLOCATE
.fallocate = zpl_fallocate,
#endif /* HAVE_FILE_FALLOCATE */
.unlocked_ioctl = zpl_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = zpl_compat_ioctl,
#endif
};
const struct file_operations zpl_dir_file_operations = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
#ifdef HAVE_VFS_ITERATE
.iterate = zpl_iterate,
#else
.readdir = zpl_readdir,
#endif
.fsync = zpl_fsync,
.unlocked_ioctl = zpl_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = zpl_compat_ioctl,
#endif
};