freebsd-dev/share/man/man9/vm_page_wire.9

84 lines
2.9 KiB
Groff
Raw Normal View History

.\"
.\" Copyright (C) 2001 Chad David <davidc@acns.ab.ca>. All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice(s), this list of conditions and the following disclaimer as
.\" the first lines of this file unmodified other than the possible
.\" addition of one or more copyright notices.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice(s), this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
.\" EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
.\" WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
.\" DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
.\" DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
.\" (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
.\" SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
.\" CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
.\" DAMAGE.
.\"
.\" $FreeBSD$
.\"
Change synchonization rules for vm_page reference counting. There are several mechanisms by which a vm_page reference is held, preventing the page from being freed back to the page allocator. In particular, holding the page's object lock is sufficient to prevent the page from being freed; holding the busy lock or a wiring is sufficent as well. These references are protected by the page lock, which must therefore be acquired for many per-page operations. This results in false sharing since the page locks are external to the vm_page structures themselves and each lock protects multiple structures. Transition to using an atomically updated per-page reference counter. The object's reference is counted using a flag bit in the counter. A second flag bit is used to atomically block new references via pmap_extract_and_hold() while removing managed mappings of a page. Thus, the reference count of a page is guaranteed not to increase if the page is unbusied, unmapped, and the object's write lock is held. As a consequence of this, the page lock no longer protects a page's identity; operations which move pages between objects are now synchronized solely by the objects' locks. The vm_page_wire() and vm_page_unwire() KPIs are changed. The former requires that either the object lock or the busy lock is held. The latter no longer has a return value and may free the page if it releases the last reference to that page. vm_page_unwire_noq() behaves the same as before; the caller is responsible for checking its return value and freeing or enqueuing the page as appropriate. vm_page_wire_mapped() is introduced for use in pmap_extract_and_hold(). It fails if the page is concurrently being unmapped, typically triggering a fallback to the fault handler. vm_page_wire() no longer requires the page lock and vm_page_unwire() now internally acquires the page lock when releasing the last wiring of a page (since the page lock still protects a page's queue state). In particular, synchronization details are no longer leaked into the caller. The change excises the page lock from several frequently executed code paths. In particular, vm_object_terminate() no longer bounces between page locks as it releases an object's pages, and direct I/O and sendfile(SF_NOCACHE) completions no longer require the page lock. In these latter cases we now get linear scalability in the common scenario where different threads are operating on different files. __FreeBSD_version is bumped. The DRM ports have been updated to accomodate the KPI changes. Reviewed by: jeff (earlier version) Tested by: gallatin (earlier version), pho Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20486
2019-09-09 21:32:42 +00:00
.Dd September 9, 2019
.Dt VM_PAGE_WIRE 9
.Os
.Sh NAME
.Nm vm_page_wire ,
Change synchonization rules for vm_page reference counting. There are several mechanisms by which a vm_page reference is held, preventing the page from being freed back to the page allocator. In particular, holding the page's object lock is sufficient to prevent the page from being freed; holding the busy lock or a wiring is sufficent as well. These references are protected by the page lock, which must therefore be acquired for many per-page operations. This results in false sharing since the page locks are external to the vm_page structures themselves and each lock protects multiple structures. Transition to using an atomically updated per-page reference counter. The object's reference is counted using a flag bit in the counter. A second flag bit is used to atomically block new references via pmap_extract_and_hold() while removing managed mappings of a page. Thus, the reference count of a page is guaranteed not to increase if the page is unbusied, unmapped, and the object's write lock is held. As a consequence of this, the page lock no longer protects a page's identity; operations which move pages between objects are now synchronized solely by the objects' locks. The vm_page_wire() and vm_page_unwire() KPIs are changed. The former requires that either the object lock or the busy lock is held. The latter no longer has a return value and may free the page if it releases the last reference to that page. vm_page_unwire_noq() behaves the same as before; the caller is responsible for checking its return value and freeing or enqueuing the page as appropriate. vm_page_wire_mapped() is introduced for use in pmap_extract_and_hold(). It fails if the page is concurrently being unmapped, typically triggering a fallback to the fault handler. vm_page_wire() no longer requires the page lock and vm_page_unwire() now internally acquires the page lock when releasing the last wiring of a page (since the page lock still protects a page's queue state). In particular, synchronization details are no longer leaked into the caller. The change excises the page lock from several frequently executed code paths. In particular, vm_object_terminate() no longer bounces between page locks as it releases an object's pages, and direct I/O and sendfile(SF_NOCACHE) completions no longer require the page lock. In these latter cases we now get linear scalability in the common scenario where different threads are operating on different files. __FreeBSD_version is bumped. The DRM ports have been updated to accomodate the KPI changes. Reviewed by: jeff (earlier version) Tested by: gallatin (earlier version), pho Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20486
2019-09-09 21:32:42 +00:00
.Nm vm_page_unwire ,
.Nm vm_page_unwire_noq
.Nd "wire and unwire pages"
.Sh SYNOPSIS
.In sys/param.h
.In vm/vm.h
.In vm/vm_page.h
.Ft void
.Fn vm_page_wire "vm_page_t m"
Change synchonization rules for vm_page reference counting. There are several mechanisms by which a vm_page reference is held, preventing the page from being freed back to the page allocator. In particular, holding the page's object lock is sufficient to prevent the page from being freed; holding the busy lock or a wiring is sufficent as well. These references are protected by the page lock, which must therefore be acquired for many per-page operations. This results in false sharing since the page locks are external to the vm_page structures themselves and each lock protects multiple structures. Transition to using an atomically updated per-page reference counter. The object's reference is counted using a flag bit in the counter. A second flag bit is used to atomically block new references via pmap_extract_and_hold() while removing managed mappings of a page. Thus, the reference count of a page is guaranteed not to increase if the page is unbusied, unmapped, and the object's write lock is held. As a consequence of this, the page lock no longer protects a page's identity; operations which move pages between objects are now synchronized solely by the objects' locks. The vm_page_wire() and vm_page_unwire() KPIs are changed. The former requires that either the object lock or the busy lock is held. The latter no longer has a return value and may free the page if it releases the last reference to that page. vm_page_unwire_noq() behaves the same as before; the caller is responsible for checking its return value and freeing or enqueuing the page as appropriate. vm_page_wire_mapped() is introduced for use in pmap_extract_and_hold(). It fails if the page is concurrently being unmapped, typically triggering a fallback to the fault handler. vm_page_wire() no longer requires the page lock and vm_page_unwire() now internally acquires the page lock when releasing the last wiring of a page (since the page lock still protects a page's queue state). In particular, synchronization details are no longer leaked into the caller. The change excises the page lock from several frequently executed code paths. In particular, vm_object_terminate() no longer bounces between page locks as it releases an object's pages, and direct I/O and sendfile(SF_NOCACHE) completions no longer require the page lock. In these latter cases we now get linear scalability in the common scenario where different threads are operating on different files. __FreeBSD_version is bumped. The DRM ports have been updated to accomodate the KPI changes. Reviewed by: jeff (earlier version) Tested by: gallatin (earlier version), pho Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20486
2019-09-09 21:32:42 +00:00
.Ft bool
.Fn vm_page_wire_mapped "vm_page_t m"
.Ft void
Change synchonization rules for vm_page reference counting. There are several mechanisms by which a vm_page reference is held, preventing the page from being freed back to the page allocator. In particular, holding the page's object lock is sufficient to prevent the page from being freed; holding the busy lock or a wiring is sufficent as well. These references are protected by the page lock, which must therefore be acquired for many per-page operations. This results in false sharing since the page locks are external to the vm_page structures themselves and each lock protects multiple structures. Transition to using an atomically updated per-page reference counter. The object's reference is counted using a flag bit in the counter. A second flag bit is used to atomically block new references via pmap_extract_and_hold() while removing managed mappings of a page. Thus, the reference count of a page is guaranteed not to increase if the page is unbusied, unmapped, and the object's write lock is held. As a consequence of this, the page lock no longer protects a page's identity; operations which move pages between objects are now synchronized solely by the objects' locks. The vm_page_wire() and vm_page_unwire() KPIs are changed. The former requires that either the object lock or the busy lock is held. The latter no longer has a return value and may free the page if it releases the last reference to that page. vm_page_unwire_noq() behaves the same as before; the caller is responsible for checking its return value and freeing or enqueuing the page as appropriate. vm_page_wire_mapped() is introduced for use in pmap_extract_and_hold(). It fails if the page is concurrently being unmapped, typically triggering a fallback to the fault handler. vm_page_wire() no longer requires the page lock and vm_page_unwire() now internally acquires the page lock when releasing the last wiring of a page (since the page lock still protects a page's queue state). In particular, synchronization details are no longer leaked into the caller. The change excises the page lock from several frequently executed code paths. In particular, vm_object_terminate() no longer bounces between page locks as it releases an object's pages, and direct I/O and sendfile(SF_NOCACHE) completions no longer require the page lock. In these latter cases we now get linear scalability in the common scenario where different threads are operating on different files. __FreeBSD_version is bumped. The DRM ports have been updated to accomodate the KPI changes. Reviewed by: jeff (earlier version) Tested by: gallatin (earlier version), pho Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20486
2019-09-09 21:32:42 +00:00
.Fn vm_page_unwire "vm_page_t m" "int queue"
.Ft bool
.Fn vm_page_unwire_noq "vm_page_t m"
.Sh DESCRIPTION
The
.Fn vm_page_wire
Change synchonization rules for vm_page reference counting. There are several mechanisms by which a vm_page reference is held, preventing the page from being freed back to the page allocator. In particular, holding the page's object lock is sufficient to prevent the page from being freed; holding the busy lock or a wiring is sufficent as well. These references are protected by the page lock, which must therefore be acquired for many per-page operations. This results in false sharing since the page locks are external to the vm_page structures themselves and each lock protects multiple structures. Transition to using an atomically updated per-page reference counter. The object's reference is counted using a flag bit in the counter. A second flag bit is used to atomically block new references via pmap_extract_and_hold() while removing managed mappings of a page. Thus, the reference count of a page is guaranteed not to increase if the page is unbusied, unmapped, and the object's write lock is held. As a consequence of this, the page lock no longer protects a page's identity; operations which move pages between objects are now synchronized solely by the objects' locks. The vm_page_wire() and vm_page_unwire() KPIs are changed. The former requires that either the object lock or the busy lock is held. The latter no longer has a return value and may free the page if it releases the last reference to that page. vm_page_unwire_noq() behaves the same as before; the caller is responsible for checking its return value and freeing or enqueuing the page as appropriate. vm_page_wire_mapped() is introduced for use in pmap_extract_and_hold(). It fails if the page is concurrently being unmapped, typically triggering a fallback to the fault handler. vm_page_wire() no longer requires the page lock and vm_page_unwire() now internally acquires the page lock when releasing the last wiring of a page (since the page lock still protects a page's queue state). In particular, synchronization details are no longer leaked into the caller. The change excises the page lock from several frequently executed code paths. In particular, vm_object_terminate() no longer bounces between page locks as it releases an object's pages, and direct I/O and sendfile(SF_NOCACHE) completions no longer require the page lock. In these latter cases we now get linear scalability in the common scenario where different threads are operating on different files. __FreeBSD_version is bumped. The DRM ports have been updated to accomodate the KPI changes. Reviewed by: jeff (earlier version) Tested by: gallatin (earlier version), pho Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20486
2019-09-09 21:32:42 +00:00
and
.Fn vm_page_wire_mapped
functions wire the page, which prevents it from being reclaimed by the page
Change synchonization rules for vm_page reference counting. There are several mechanisms by which a vm_page reference is held, preventing the page from being freed back to the page allocator. In particular, holding the page's object lock is sufficient to prevent the page from being freed; holding the busy lock or a wiring is sufficent as well. These references are protected by the page lock, which must therefore be acquired for many per-page operations. This results in false sharing since the page locks are external to the vm_page structures themselves and each lock protects multiple structures. Transition to using an atomically updated per-page reference counter. The object's reference is counted using a flag bit in the counter. A second flag bit is used to atomically block new references via pmap_extract_and_hold() while removing managed mappings of a page. Thus, the reference count of a page is guaranteed not to increase if the page is unbusied, unmapped, and the object's write lock is held. As a consequence of this, the page lock no longer protects a page's identity; operations which move pages between objects are now synchronized solely by the objects' locks. The vm_page_wire() and vm_page_unwire() KPIs are changed. The former requires that either the object lock or the busy lock is held. The latter no longer has a return value and may free the page if it releases the last reference to that page. vm_page_unwire_noq() behaves the same as before; the caller is responsible for checking its return value and freeing or enqueuing the page as appropriate. vm_page_wire_mapped() is introduced for use in pmap_extract_and_hold(). It fails if the page is concurrently being unmapped, typically triggering a fallback to the fault handler. vm_page_wire() no longer requires the page lock and vm_page_unwire() now internally acquires the page lock when releasing the last wiring of a page (since the page lock still protects a page's queue state). In particular, synchronization details are no longer leaked into the caller. The change excises the page lock from several frequently executed code paths. In particular, vm_object_terminate() no longer bounces between page locks as it releases an object's pages, and direct I/O and sendfile(SF_NOCACHE) completions no longer require the page lock. In these latter cases we now get linear scalability in the common scenario where different threads are operating on different files. __FreeBSD_version is bumped. The DRM ports have been updated to accomodate the KPI changes. Reviewed by: jeff (earlier version) Tested by: gallatin (earlier version), pho Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20486
2019-09-09 21:32:42 +00:00
daemon or when its containing object is destroyed.
Both functions require that the page belong to an object.
The
.Fn vm_page_wire_mapped
function is for use by the
.Xr pmap 9
layer following a lookup.
This function may fail if mappings of the page are concurrently
being destroyed, in which case it will return false.
.Pp
The
.Fn vm_page_unwire
Change synchonization rules for vm_page reference counting. There are several mechanisms by which a vm_page reference is held, preventing the page from being freed back to the page allocator. In particular, holding the page's object lock is sufficient to prevent the page from being freed; holding the busy lock or a wiring is sufficent as well. These references are protected by the page lock, which must therefore be acquired for many per-page operations. This results in false sharing since the page locks are external to the vm_page structures themselves and each lock protects multiple structures. Transition to using an atomically updated per-page reference counter. The object's reference is counted using a flag bit in the counter. A second flag bit is used to atomically block new references via pmap_extract_and_hold() while removing managed mappings of a page. Thus, the reference count of a page is guaranteed not to increase if the page is unbusied, unmapped, and the object's write lock is held. As a consequence of this, the page lock no longer protects a page's identity; operations which move pages between objects are now synchronized solely by the objects' locks. The vm_page_wire() and vm_page_unwire() KPIs are changed. The former requires that either the object lock or the busy lock is held. The latter no longer has a return value and may free the page if it releases the last reference to that page. vm_page_unwire_noq() behaves the same as before; the caller is responsible for checking its return value and freeing or enqueuing the page as appropriate. vm_page_wire_mapped() is introduced for use in pmap_extract_and_hold(). It fails if the page is concurrently being unmapped, typically triggering a fallback to the fault handler. vm_page_wire() no longer requires the page lock and vm_page_unwire() now internally acquires the page lock when releasing the last wiring of a page (since the page lock still protects a page's queue state). In particular, synchronization details are no longer leaked into the caller. The change excises the page lock from several frequently executed code paths. In particular, vm_object_terminate() no longer bounces between page locks as it releases an object's pages, and direct I/O and sendfile(SF_NOCACHE) completions no longer require the page lock. In these latter cases we now get linear scalability in the common scenario where different threads are operating on different files. __FreeBSD_version is bumped. The DRM ports have been updated to accomodate the KPI changes. Reviewed by: jeff (earlier version) Tested by: gallatin (earlier version), pho Sponsored by: Netflix Differential Revision: https://reviews.freebsd.org/D20486
2019-09-09 21:32:42 +00:00
and
.Fn vm_page_unwire_noq
functions release a wiring of a page.
The
.Fn vm_page_unwire
function takes a queue index and will insert the page into the
corresponding page queue upon releasing its last wiring.
If the page does not belong to an object and no other references
to the page exist,
.Fn vm_page_unwire
will free the page.
.Fn vm_page_unwire_noq
releases the wiring and returns true if it was the last wiring
of the page.
.Sh AUTHORS
This manual page was written by
.An Chad David Aq Mt davidc@acns.ab.ca .