4868 lines
153 KiB
C
4868 lines
153 KiB
C
|
/* Extended regular expression matching and search library,
|
|||
|
version 0.4.
|
|||
|
(Implements POSIX draft P10003.2/D11.2, except for multibyte characters.)
|
|||
|
|
|||
|
Copyright (C) 1985, 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
|
|||
|
|
|||
|
This program is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 2, or (at your option)
|
|||
|
any later version.
|
|||
|
|
|||
|
This program is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with this program; if not, write to the Free Software
|
|||
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|||
|
|
|||
|
#if defined (_AIX) && !defined (REGEX_MALLOC)
|
|||
|
#pragma alloca
|
|||
|
#endif
|
|||
|
|
|||
|
#define _GNU_SOURCE
|
|||
|
|
|||
|
/* For interactive testing, compile with -Dtest. Then this becomes
|
|||
|
a self-contained program which reads a pattern, describes how it
|
|||
|
compiles, then reads a string and searches for it. If a command-line
|
|||
|
argument is present, it is taken to be the value for obscure_syntax (in
|
|||
|
decimal). The default is 0 (Emacs-style syntax).
|
|||
|
|
|||
|
If DEBUG is defined, this prints many voluminous messages about what
|
|||
|
it is doing (if the variable `debug' is nonzero). */
|
|||
|
|
|||
|
|
|||
|
/* The `emacs' switch turns on certain matching commands
|
|||
|
that make sense only in Emacs. */
|
|||
|
#ifdef emacs
|
|||
|
#include "config.h"
|
|||
|
#include "lisp.h"
|
|||
|
#include "buffer.h"
|
|||
|
#include "syntax.h"
|
|||
|
|
|||
|
/* Emacs uses `NULL' as a predicate. */
|
|||
|
#undef NULL
|
|||
|
|
|||
|
#else /* not emacs */
|
|||
|
|
|||
|
/* POSIX.1 says that <unistd.h> might need <sys/types.h>. We also need
|
|||
|
it for regex.h. */
|
|||
|
#include <sys/types.h>
|
|||
|
|
|||
|
#ifdef HAVE_UNISTD_H
|
|||
|
#include <unistd.h>
|
|||
|
#endif
|
|||
|
|
|||
|
#if defined (USG) || defined (POSIX) || defined (STDC_HEADERS)
|
|||
|
#ifndef BSTRING
|
|||
|
#include <string.h>
|
|||
|
#ifndef bcopy
|
|||
|
#define bcopy(s,d,n) memcpy ((d), (s), (n))
|
|||
|
#endif
|
|||
|
#ifndef bcmp
|
|||
|
#define bcmp(s1,s2,n) memcmp ((s1), (s2), (n))
|
|||
|
#endif
|
|||
|
#ifndef bzero
|
|||
|
#define bzero(s,n) memset ((s), 0, (n))
|
|||
|
#endif
|
|||
|
#endif /* not BSTRING */
|
|||
|
#endif /* USG or POSIX or STDC_HEADERS */
|
|||
|
|
|||
|
#ifdef STDC_HEADERS
|
|||
|
#include <stdlib.h>
|
|||
|
#else /* not STDC_HEADERS */
|
|||
|
char *malloc ();
|
|||
|
char *realloc ();
|
|||
|
#endif /* not STDC_HEADERS */
|
|||
|
|
|||
|
/* If debugging, we use standard I/O. */
|
|||
|
#ifdef DEBUG
|
|||
|
#include <stdio.h>
|
|||
|
#endif
|
|||
|
|
|||
|
/* Define the syntax stuff for \<, \>, etc. */
|
|||
|
|
|||
|
/* This must be nonzero for the wordchar and notwordchar pattern
|
|||
|
commands in re_match_2. */
|
|||
|
#ifndef Sword
|
|||
|
#define Sword 1
|
|||
|
#endif
|
|||
|
|
|||
|
#ifdef SYNTAX_TABLE
|
|||
|
|
|||
|
extern char *re_syntax_table;
|
|||
|
|
|||
|
#else /* not SYNTAX_TABLE */
|
|||
|
|
|||
|
/* How many characters in the character set. */
|
|||
|
#define CHAR_SET_SIZE 256
|
|||
|
|
|||
|
static char re_syntax_table[CHAR_SET_SIZE];
|
|||
|
|
|||
|
static void
|
|||
|
init_syntax_once ()
|
|||
|
{
|
|||
|
register int c;
|
|||
|
static int done = 0;
|
|||
|
|
|||
|
if (done)
|
|||
|
return;
|
|||
|
|
|||
|
bzero (re_syntax_table, sizeof re_syntax_table);
|
|||
|
|
|||
|
for (c = 'a'; c <= 'z'; c++)
|
|||
|
re_syntax_table[c] = Sword;
|
|||
|
|
|||
|
for (c = 'A'; c <= 'Z'; c++)
|
|||
|
re_syntax_table[c] = Sword;
|
|||
|
|
|||
|
for (c = '0'; c <= '9'; c++)
|
|||
|
re_syntax_table[c] = Sword;
|
|||
|
|
|||
|
re_syntax_table['_'] = Sword;
|
|||
|
|
|||
|
done = 1;
|
|||
|
}
|
|||
|
|
|||
|
#endif /* not SYNTAX_TABLE */
|
|||
|
|
|||
|
#define SYNTAX(c) re_syntax_table[c]
|
|||
|
|
|||
|
#endif /* not emacs */
|
|||
|
|
|||
|
|
|||
|
/* Get the interface, including the syntax bits. */
|
|||
|
#include "regex.h"
|
|||
|
|
|||
|
|
|||
|
/* isalpha(3) etc. are used for the character classes. */
|
|||
|
#include <ctype.h>
|
|||
|
#ifndef isgraph
|
|||
|
#define isgraph(c) (isprint (c) && !isspace (c))
|
|||
|
#endif
|
|||
|
#ifndef isblank
|
|||
|
#define isblank(c) ((c) == ' ' || (c) == '\t')
|
|||
|
#endif
|
|||
|
|
|||
|
#ifndef NULL
|
|||
|
#define NULL 0
|
|||
|
#endif
|
|||
|
|
|||
|
#ifndef SIGN_EXTEND_CHAR
|
|||
|
#ifdef __CHAR_UNSIGNED__ /* for, e.g., IBM RT */
|
|||
|
#define SIGN_EXTEND_CHAR(c) (((c)^128) - 128) /* As in Harbison and Steele. */
|
|||
|
#else
|
|||
|
#define SIGN_EXTEND_CHAR /* As nothing. */
|
|||
|
#endif /* not CHAR_UNSIGNED */
|
|||
|
#endif /* not SIGN_EXTEND_CHAR */
|
|||
|
|
|||
|
/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
|
|||
|
use `alloca' instead of `malloc'. This is because using malloc in
|
|||
|
re_search* or re_match* could cause memory leaks when C-g is used in
|
|||
|
Emacs; also, malloc is slower and causes storage fragmentation. On
|
|||
|
the other hand, malloc is more portable, and easier to debug.
|
|||
|
|
|||
|
Because we sometimes use alloca, some routines have to be macros,
|
|||
|
not functions---alloca-allocated space disappears at the end of the
|
|||
|
function it is called in. */
|
|||
|
#ifdef REGEX_MALLOC
|
|||
|
|
|||
|
#define REGEX_ALLOCATE malloc
|
|||
|
#define REGEX_REALLOCATE(source, size) (realloc (source, size))
|
|||
|
|
|||
|
#else /* not REGEX_MALLOC */
|
|||
|
|
|||
|
/* Emacs already defines alloca, sometimes. */
|
|||
|
#ifndef alloca
|
|||
|
|
|||
|
/* Make alloca work the best possible way. */
|
|||
|
#ifdef __GNUC__
|
|||
|
#define alloca __builtin_alloca
|
|||
|
#else /* not __GNUC__ */
|
|||
|
#ifdef sparc
|
|||
|
#include <alloca.h>
|
|||
|
#else /* not __GNUC__ or sparc */
|
|||
|
char *alloca ();
|
|||
|
#endif /* not sparc */
|
|||
|
#endif /* not __GNUC__ */
|
|||
|
|
|||
|
#endif /* not alloca */
|
|||
|
|
|||
|
/* Still not REGEX_MALLOC. */
|
|||
|
|
|||
|
#define REGEX_ALLOCATE alloca
|
|||
|
|
|||
|
/* Requires a `char *destination' declared. */
|
|||
|
#define REGEX_REALLOCATE(source, size) \
|
|||
|
(destination = (char *) alloca (size), \
|
|||
|
bcopy (source, destination, size), \
|
|||
|
destination)
|
|||
|
|
|||
|
#endif /* not REGEX_MALLOC */
|
|||
|
|
|||
|
/* (Re)Allocate N items of type T using malloc, or fail. */
|
|||
|
#define TALLOC(n, t) (t *) malloc ((n) * sizeof (t))
|
|||
|
#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
|
|||
|
|
|||
|
|
|||
|
#define BYTEWIDTH 8 /* In bits. */
|
|||
|
|
|||
|
#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
|
|||
|
|
|||
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|||
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|||
|
|
|||
|
/* These are the command codes that appear in compiled regular
|
|||
|
expressions. Some opcodes are followed by argument bytes. A
|
|||
|
command code can specify any interpretation whatsoever for its
|
|||
|
arguments. Zero bytes may appear in the compiled regular expression.
|
|||
|
|
|||
|
The value of `exactn' is needed in search.c (search_buffer) in Emacs.
|
|||
|
So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
|
|||
|
`exactn' we use here must also be 1. */
|
|||
|
|
|||
|
typedef enum
|
|||
|
{
|
|||
|
no_op = 0,
|
|||
|
|
|||
|
/* Followed by one byte giving n, then by n literal bytes. */
|
|||
|
exactn = 1,
|
|||
|
|
|||
|
/* Matches any (more or less) character. */
|
|||
|
anychar,
|
|||
|
|
|||
|
/* Matches any one char belonging to specified set. First
|
|||
|
following byte is number of bitmap bytes. Then come bytes
|
|||
|
for a bitmap saying which chars are in. Bits in each byte
|
|||
|
are ordered low-bit-first. A character is in the set if its
|
|||
|
bit is 1. A character too large to have a bit in the map is
|
|||
|
automatically not in the set. */
|
|||
|
charset,
|
|||
|
|
|||
|
/* Same parameters as charset, but match any character that is
|
|||
|
not one of those specified. */
|
|||
|
charset_not,
|
|||
|
|
|||
|
/* Start remembering the text that is matched, for storing in a
|
|||
|
register. Followed by one byte with the register number, in
|
|||
|
the range 0 to one less than the pattern buffer's re_nsub
|
|||
|
field. Then followed by one byte with the number of groups
|
|||
|
inner to this one. (This last has to be part of the
|
|||
|
start_memory only because we need it in the on_failure_jump
|
|||
|
of re_match_2.) */
|
|||
|
start_memory,
|
|||
|
|
|||
|
/* Stop remembering the text that is matched and store it in a
|
|||
|
memory register. Followed by one byte with the register
|
|||
|
number, in the range 0 to one less than `re_nsub' in the
|
|||
|
pattern buffer, and one byte with the number of inner groups,
|
|||
|
just like `start_memory'. (We need the number of inner
|
|||
|
groups here because we don't have any easy way of finding the
|
|||
|
corresponding start_memory when we're at a stop_memory.) */
|
|||
|
stop_memory,
|
|||
|
|
|||
|
/* Match a duplicate of something remembered. Followed by one
|
|||
|
byte containing the register number. */
|
|||
|
duplicate,
|
|||
|
|
|||
|
/* Fail unless at beginning of line. */
|
|||
|
begline,
|
|||
|
|
|||
|
/* Fail unless at end of line. */
|
|||
|
endline,
|
|||
|
|
|||
|
/* Succeeds if at beginning of buffer (if emacs) or at beginning
|
|||
|
of string to be matched (if not). */
|
|||
|
begbuf,
|
|||
|
|
|||
|
/* Analogously, for end of buffer/string. */
|
|||
|
endbuf,
|
|||
|
|
|||
|
/* Followed by two byte relative address to which to jump. */
|
|||
|
no_pop_jump,
|
|||
|
|
|||
|
/* Same as no_pop_jump, but marks the end of an alternative. */
|
|||
|
jump_past_next_alt,
|
|||
|
|
|||
|
/* Followed by two-byte relative address of place to resume at
|
|||
|
in case of failure. */
|
|||
|
on_failure_jump,
|
|||
|
|
|||
|
/* Like on_failure_jump, but pushes a placeholder instead of the
|
|||
|
current string position. */
|
|||
|
on_failure_keep_string_jump,
|
|||
|
|
|||
|
/* Throw away latest failure point and then jump to following
|
|||
|
two-byte relative address. */
|
|||
|
pop_failure_jump,
|
|||
|
|
|||
|
/* Change to pop_failure_jump if know won't have to backtrack to
|
|||
|
match; otherwise change to no_pop_jump. This is used to jump
|
|||
|
back to the beginning of a repeat. If what follows this jump
|
|||
|
clearly won't match what the repeat does, such that we can be
|
|||
|
sure that there is no use backtracking out of repetitions
|
|||
|
already matched, then we change it to a pop_failure_jump.
|
|||
|
Followed by two-byte address. */
|
|||
|
maybe_pop_jump,
|
|||
|
|
|||
|
/* Jump to following two-byte address, and push a dummy failure
|
|||
|
point. This failure point will be thrown away if an attempt
|
|||
|
is made to use it for a failure. A `+' construct makes this
|
|||
|
before the first repeat. Also used as an intermediary kind
|
|||
|
of jump when compiling an alternative. */
|
|||
|
dummy_failure_jump,
|
|||
|
|
|||
|
/* Used like on_failure_jump except has to succeed n times; The
|
|||
|
two-byte relative address following it is useless until then.
|
|||
|
The address is followed by two more bytes containing n. */
|
|||
|
succeed_n,
|
|||
|
|
|||
|
/* Similar to no_pop_jump, but jump n times only; also the
|
|||
|
relative address following is in turn followed by yet two
|
|||
|
more bytes containing n. */
|
|||
|
no_pop_jump_n,
|
|||
|
|
|||
|
/* Set the following relative location (two bytes) to the
|
|||
|
subsequent (two-byte) number. */
|
|||
|
set_number_at,
|
|||
|
|
|||
|
wordchar, /* Matches any word-constituent character. */
|
|||
|
notwordchar, /* Matches any char that is not a word-constituent. */
|
|||
|
|
|||
|
wordbeg, /* Succeeds if at word beginning. */
|
|||
|
wordend, /* Succeeds if at word end. */
|
|||
|
|
|||
|
wordbound, /* Succeeds if at a word boundary. */
|
|||
|
notwordbound /* Succeeds if not at a word boundary. */
|
|||
|
|
|||
|
#ifdef emacs
|
|||
|
,before_dot, /* Succeeds if before point. */
|
|||
|
at_dot, /* Succeeds if at point. */
|
|||
|
after_dot, /* Succeeds if after point. */
|
|||
|
|
|||
|
/* Matches any character whose syntax is specified. Followed by
|
|||
|
a byte which contains a syntax code, e.g., Sword. */
|
|||
|
syntaxspec,
|
|||
|
|
|||
|
/* Matches any character whose syntax is not that specified. */
|
|||
|
notsyntaxspec
|
|||
|
#endif /* emacs */
|
|||
|
} re_opcode_t;
|
|||
|
|
|||
|
/* Common operations on the compiled pattern. */
|
|||
|
|
|||
|
/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
|
|||
|
|
|||
|
#define STORE_NUMBER(destination, number) \
|
|||
|
do { \
|
|||
|
(destination)[0] = (number) & 0377; \
|
|||
|
(destination)[1] = (number) >> 8; \
|
|||
|
} while (0)
|
|||
|
|
|||
|
|
|||
|
/* Same as STORE_NUMBER, except increment DESTINATION to
|
|||
|
the byte after where the number is stored. Therefore, DESTINATION
|
|||
|
must be an lvalue. */
|
|||
|
|
|||
|
#define STORE_NUMBER_AND_INCR(destination, number) \
|
|||
|
do { \
|
|||
|
STORE_NUMBER (destination, number); \
|
|||
|
(destination) += 2; \
|
|||
|
} while (0)
|
|||
|
|
|||
|
|
|||
|
/* Put into DESTINATION a number stored in two contiguous bytes starting
|
|||
|
at SOURCE. */
|
|||
|
|
|||
|
#define EXTRACT_NUMBER(destination, source) \
|
|||
|
do { \
|
|||
|
(destination) = *(source) & 0377; \
|
|||
|
(destination) += SIGN_EXTEND_CHAR (*(const char *)((source) + 1)) << 8;\
|
|||
|
} while (0)
|
|||
|
|
|||
|
#ifdef DEBUG
|
|||
|
static int
|
|||
|
extract_number (source)
|
|||
|
unsigned char *source;
|
|||
|
{
|
|||
|
int answer = *source & 0377;
|
|||
|
answer += (SIGN_EXTEND_CHAR (*(char *)((source) + 1))) << 8;
|
|||
|
|
|||
|
return answer;
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
|
|||
|
/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
|
|||
|
SOURCE must be an lvalue. */
|
|||
|
|
|||
|
#define EXTRACT_NUMBER_AND_INCR(destination, source) \
|
|||
|
do { \
|
|||
|
EXTRACT_NUMBER (destination, source); \
|
|||
|
(source) += 2; \
|
|||
|
} while (0)
|
|||
|
|
|||
|
#ifdef DEBUG
|
|||
|
static void
|
|||
|
extract_number_and_incr (destination, source)
|
|||
|
int *destination;
|
|||
|
unsigned char **source;
|
|||
|
{
|
|||
|
*destination = extract_number (*source);
|
|||
|
*source += 2;
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
|
|||
|
/* Is true if there is a first string and if PTR is pointing anywhere
|
|||
|
inside it or just past the end. */
|
|||
|
|
|||
|
#define IS_IN_FIRST_STRING(ptr) \
|
|||
|
(size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
|
|||
|
|
|||
|
#ifdef DEBUG
|
|||
|
|
|||
|
extern void printchar ();
|
|||
|
|
|||
|
/* Print a compiled pattern buffer in human-readable form, starting at
|
|||
|
the START pointer into it and ending just before the pointer END. */
|
|||
|
|
|||
|
static void
|
|||
|
partial_compiled_pattern_printer (pbufp, start, end)
|
|||
|
struct re_pattern_buffer *pbufp;
|
|||
|
unsigned char *start;
|
|||
|
unsigned char *end;
|
|||
|
{
|
|||
|
|
|||
|
int mcnt, mcnt2;
|
|||
|
unsigned char *p = start;
|
|||
|
unsigned char *pend = end;
|
|||
|
|
|||
|
if (start == NULL)
|
|||
|
{
|
|||
|
printf ("(null)\n");
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
/* This loop loops over pattern commands. */
|
|||
|
while (p < pend)
|
|||
|
{
|
|||
|
switch ((re_opcode_t) *p++)
|
|||
|
{
|
|||
|
case no_op:
|
|||
|
printf ("/no_op");
|
|||
|
break;
|
|||
|
|
|||
|
case exactn:
|
|||
|
mcnt = *p++;
|
|||
|
printf ("/exactn/%d", mcnt);
|
|||
|
do
|
|||
|
{
|
|||
|
putchar ('/');
|
|||
|
printchar (*p++);
|
|||
|
}
|
|||
|
while (--mcnt);
|
|||
|
break;
|
|||
|
|
|||
|
case start_memory:
|
|||
|
mcnt = *p++;
|
|||
|
printf ("/start_memory/%d/%d", mcnt, *p++);
|
|||
|
break;
|
|||
|
|
|||
|
case stop_memory:
|
|||
|
mcnt = *p++;
|
|||
|
printf ("/stop_memory/%d/%d", mcnt, *p++);
|
|||
|
break;
|
|||
|
|
|||
|
case duplicate:
|
|||
|
printf ("/duplicate/%d", *p++);
|
|||
|
break;
|
|||
|
|
|||
|
case anychar:
|
|||
|
printf ("/anychar");
|
|||
|
break;
|
|||
|
|
|||
|
case charset:
|
|||
|
case charset_not:
|
|||
|
{
|
|||
|
register int c;
|
|||
|
|
|||
|
printf ("/charset%s/", *(p - 1) == charset_not ? "_not" : "");
|
|||
|
|
|||
|
for (c = 0; p < pend && c < *p * BYTEWIDTH; c++)
|
|||
|
{
|
|||
|
if (p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
|
|||
|
printchar (c);
|
|||
|
}
|
|||
|
p += 1 + *p;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
case begline:
|
|||
|
printf ("/begline");
|
|||
|
break;
|
|||
|
|
|||
|
case endline:
|
|||
|
printf ("/endline");
|
|||
|
break;
|
|||
|
|
|||
|
case on_failure_jump:
|
|||
|
extract_number_and_incr (&mcnt, &p);
|
|||
|
printf ("/on_failure_jump/0/%d", mcnt);
|
|||
|
break;
|
|||
|
|
|||
|
case on_failure_keep_string_jump:
|
|||
|
extract_number_and_incr (&mcnt, &p);
|
|||
|
printf ("/on_failure_keep_string_jump/0/%d", mcnt);
|
|||
|
break;
|
|||
|
|
|||
|
case dummy_failure_jump:
|
|||
|
extract_number_and_incr (&mcnt, &p);
|
|||
|
printf ("/dummy_failure_jump/0/%d", mcnt);
|
|||
|
break;
|
|||
|
|
|||
|
case maybe_pop_jump:
|
|||
|
extract_number_and_incr (&mcnt, &p);
|
|||
|
printf ("/maybe_pop_jump/0/%d", mcnt);
|
|||
|
break;
|
|||
|
|
|||
|
case pop_failure_jump:
|
|||
|
extract_number_and_incr (&mcnt, &p);
|
|||
|
printf ("/pop_failure_jump/0/%d", mcnt);
|
|||
|
break;
|
|||
|
|
|||
|
case jump_past_next_alt:
|
|||
|
extract_number_and_incr (&mcnt, &p);
|
|||
|
printf ("/jump_past_next_alt/0/%d", mcnt);
|
|||
|
break;
|
|||
|
|
|||
|
case no_pop_jump:
|
|||
|
extract_number_and_incr (&mcnt, &p);
|
|||
|
printf ("/no_pop_jump/0/%d", mcnt);
|
|||
|
break;
|
|||
|
|
|||
|
case succeed_n:
|
|||
|
extract_number_and_incr (&mcnt, &p);
|
|||
|
extract_number_and_incr (&mcnt2, &p);
|
|||
|
printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
|
|||
|
break;
|
|||
|
|
|||
|
case no_pop_jump_n:
|
|||
|
extract_number_and_incr (&mcnt, &p);
|
|||
|
extract_number_and_incr (&mcnt2, &p);
|
|||
|
printf ("/no_pop_jump_n/0/%d/0/%d", mcnt, mcnt2);
|
|||
|
break;
|
|||
|
|
|||
|
case set_number_at:
|
|||
|
extract_number_and_incr (&mcnt, &p);
|
|||
|
extract_number_and_incr (&mcnt2, &p);
|
|||
|
printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
|
|||
|
break;
|
|||
|
|
|||
|
case wordbound:
|
|||
|
printf ("/wordbound");
|
|||
|
break;
|
|||
|
|
|||
|
case notwordbound:
|
|||
|
printf ("/notwordbound");
|
|||
|
break;
|
|||
|
|
|||
|
case wordbeg:
|
|||
|
printf ("/wordbeg");
|
|||
|
break;
|
|||
|
|
|||
|
case wordend:
|
|||
|
printf ("/wordend");
|
|||
|
|
|||
|
#ifdef emacs
|
|||
|
case before_dot:
|
|||
|
printf ("/before_dot");
|
|||
|
break;
|
|||
|
|
|||
|
case at_dot:
|
|||
|
printf ("/at_dot");
|
|||
|
break;
|
|||
|
|
|||
|
case after_dot:
|
|||
|
printf ("/after_dot");
|
|||
|
break;
|
|||
|
|
|||
|
case wordchar:
|
|||
|
printf ("/wordchar-emacs");
|
|||
|
mcnt = (int) Sword;
|
|||
|
break;
|
|||
|
|
|||
|
case syntaxspec:
|
|||
|
printf ("/syntaxspec");
|
|||
|
mcnt = *p++;
|
|||
|
printf ("/%d", mcnt);
|
|||
|
break;
|
|||
|
|
|||
|
case notwordchar:
|
|||
|
printf ("/notwordchar-emacs");
|
|||
|
mcnt = (int) Sword;
|
|||
|
break;
|
|||
|
|
|||
|
case notsyntaxspec:
|
|||
|
printf ("/notsyntaxspec");
|
|||
|
mcnt = *p++;
|
|||
|
printf ("/%d", mcnt);
|
|||
|
break;
|
|||
|
#else /* not emacs */
|
|||
|
case wordchar:
|
|||
|
printf ("/wordchar-notemacs");
|
|||
|
break;
|
|||
|
|
|||
|
case notwordchar:
|
|||
|
printf ("/notwordchar-notemacs");
|
|||
|
break;
|
|||
|
#endif /* not emacs */
|
|||
|
|
|||
|
case begbuf:
|
|||
|
printf ("/begbuf");
|
|||
|
break;
|
|||
|
|
|||
|
case endbuf:
|
|||
|
printf ("/endbuf");
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
printf ("?%d", *(p-1));
|
|||
|
}
|
|||
|
}
|
|||
|
printf ("/\n");
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
compiled_pattern_printer (pbufp)
|
|||
|
struct re_pattern_buffer *pbufp;
|
|||
|
{
|
|||
|
partial_compiled_pattern_printer (pbufp, pbufp->buffer,
|
|||
|
pbufp->buffer + pbufp->used);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
static void
|
|||
|
double_string_printer (where, string1, size1, string2, size2)
|
|||
|
unsigned char *where;
|
|||
|
unsigned char *string1;
|
|||
|
unsigned char *string2;
|
|||
|
int size1;
|
|||
|
int size2;
|
|||
|
{
|
|||
|
unsigned this_char;
|
|||
|
|
|||
|
if (where == NULL)
|
|||
|
printf ("(null)");
|
|||
|
else
|
|||
|
{
|
|||
|
if (IS_IN_FIRST_STRING (where))
|
|||
|
{
|
|||
|
for (this_char = where - string1; this_char < size1; this_char++)
|
|||
|
printchar (string1[this_char]);
|
|||
|
|
|||
|
where = string2;
|
|||
|
}
|
|||
|
|
|||
|
for (this_char = where - string2; this_char < size2; this_char++)
|
|||
|
printchar (string2[this_char]);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
#endif /* DEBUG */
|
|||
|
|
|||
|
#ifdef DEBUG
|
|||
|
|
|||
|
/* It is useful to test things that must to be true when debugging. */
|
|||
|
#include <assert.h>
|
|||
|
|
|||
|
static int debug = 0;
|
|||
|
|
|||
|
#define DEBUG_STATEMENT(e) e
|
|||
|
#define DEBUG_PRINT1(x) if (debug) printf (x)
|
|||
|
#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
|
|||
|
#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
|
|||
|
#define DEBUG_COMPILED_PATTERN_PRINTER(p, s, e) \
|
|||
|
if (debug) partial_compiled_pattern_printer (p, s, e)
|
|||
|
#define DEBUG_DOUBLE_STRING_PRINTER(w, s1, sz1, s2, sz2) \
|
|||
|
if (debug) double_string_printer (w, s1, sz1, s2, sz2)
|
|||
|
|
|||
|
#else /* not DEBUG */
|
|||
|
|
|||
|
#undef assert
|
|||
|
#define assert(e)
|
|||
|
|
|||
|
#define DEBUG_STATEMENT(e)
|
|||
|
#define DEBUG_PRINT1(x)
|
|||
|
#define DEBUG_PRINT2(x1, x2)
|
|||
|
#define DEBUG_PRINT3(x1, x2, x3)
|
|||
|
#define DEBUG_COMPILED_PATTERN_PRINTER(p, s, e)
|
|||
|
#define DEBUG_DOUBLE_STRING_PRINTER(w, s1, sz1, s2, sz2)
|
|||
|
|
|||
|
#endif /* not DEBUG */
|
|||
|
|
|||
|
typedef char boolean;
|
|||
|
#define false 0
|
|||
|
#define true 1
|
|||
|
|
|||
|
/* Set by re_set_syntax to the current regexp syntax to recognize. Can
|
|||
|
also be assigned to more or less arbitrarily. Since we use this as a
|
|||
|
collection of bits, declaring it unsigned maximizes portability. */
|
|||
|
reg_syntax_t obscure_syntax = 0;
|
|||
|
|
|||
|
|
|||
|
/* Specify the precise syntax of regexps for compilation. This provides
|
|||
|
for compatibility for various utilities which historically have
|
|||
|
different, incompatible syntaxes.
|
|||
|
|
|||
|
The argument SYNTAX is a bit mask comprised of the various bits
|
|||
|
defined in regex.h. We return the old syntax. */
|
|||
|
|
|||
|
reg_syntax_t
|
|||
|
re_set_syntax (syntax)
|
|||
|
reg_syntax_t syntax;
|
|||
|
{
|
|||
|
reg_syntax_t ret = obscure_syntax;
|
|||
|
|
|||
|
obscure_syntax = syntax;
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
/* This table gives an error message for each of the error codes listed
|
|||
|
in regex.h. Obviously the order here has to be same as there. */
|
|||
|
|
|||
|
static const char *re_error_msg[] =
|
|||
|
{ NULL, /* REG_NOERROR */
|
|||
|
"No match", /* REG_NOMATCH */
|
|||
|
"Invalid regular expression", /* REG_BADPAT */
|
|||
|
"Invalid collation character", /* REG_ECOLLATE */
|
|||
|
"Invalid character class name", /* REG_ECTYPE */
|
|||
|
"Trailing backslash", /* REG_EESCAPE */
|
|||
|
"Invalid back reference", /* REG_ESUBREG */
|
|||
|
"Unmatched [ or [^", /* REG_EBRACK */
|
|||
|
"Unmatched ( or \\(", /* REG_EPAREN */
|
|||
|
"Unmatched \\{", /* REG_EBRACE */
|
|||
|
"Invalid content of \\{\\}", /* REG_BADBR */
|
|||
|
"Invalid range end", /* REG_ERANGE */
|
|||
|
"Memory exhausted", /* REG_ESPACE */
|
|||
|
"Invalid preceding regular expression", /* REG_BADRPT */
|
|||
|
"Premature end of regular expression", /* REG_EEND */
|
|||
|
"Regular expression too big", /* REG_ESIZE */
|
|||
|
"Unmatched ) or \\)", /* REG_ERPAREN */
|
|||
|
};
|
|||
|
|
|||
|
/* Other subroutine declarations and macros for regex_compile. */
|
|||
|
|
|||
|
static void store_jump (), insert_jump (), store_jump_n (),
|
|||
|
insert_jump_n (), insert_op_2 ();
|
|||
|
|
|||
|
static boolean at_endline_op_p (), group_in_compile_stack ();
|
|||
|
|
|||
|
/* Fetch the next character in the uncompiled pattern---translating it
|
|||
|
if necessary. Also cast from a signed character in the constant
|
|||
|
string passed to us by the user to an unsigned char that we can use
|
|||
|
as an array index (in, e.g., `translate'). */
|
|||
|
#define PATFETCH(c) \
|
|||
|
do {if (p == pend) return REG_EEND; \
|
|||
|
c = (unsigned char) *p++; \
|
|||
|
if (translate) c = translate[c]; \
|
|||
|
} while (0)
|
|||
|
|
|||
|
/* Fetch the next character in the uncompiled pattern, with no
|
|||
|
translation. */
|
|||
|
#define PATFETCH_RAW(c) \
|
|||
|
do {if (p == pend) return REG_EEND; \
|
|||
|
c = (unsigned char) *p++; \
|
|||
|
} while (0)
|
|||
|
|
|||
|
/* Go backwards one character in the pattern. */
|
|||
|
#define PATUNFETCH p--
|
|||
|
|
|||
|
|
|||
|
/* If `translate' is non-null, return translate[D], else just D. We
|
|||
|
cast the subscript to translate because some data is declared as
|
|||
|
`char *', to avoid warnings when a string constant is passed. But
|
|||
|
when we use a character as a subscript we must make it unsigned. */
|
|||
|
#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
|
|||
|
|
|||
|
|
|||
|
/* Macros for outputting the compiled pattern into `buffer'. */
|
|||
|
|
|||
|
/* If the buffer isn't allocated when it comes in, use this. */
|
|||
|
#define INIT_BUF_SIZE 32
|
|||
|
|
|||
|
/* Make sure we have at least N more bytes of space in buffer. */
|
|||
|
#define GET_BUFFER_SPACE(n) \
|
|||
|
{ \
|
|||
|
while (b - bufp->buffer + (n) > bufp->allocated) \
|
|||
|
EXTEND_BUFFER (); \
|
|||
|
}
|
|||
|
|
|||
|
/* Make sure we have one more byte of buffer space and then add C to it. */
|
|||
|
#define PAT_PUSH(c) \
|
|||
|
do { \
|
|||
|
GET_BUFFER_SPACE (1); \
|
|||
|
*b++ = (unsigned char) (c); \
|
|||
|
} while (0)
|
|||
|
|
|||
|
|
|||
|
/* Make sure we have two more bytes of buffer space and then add C1 and
|
|||
|
C2 to it. */
|
|||
|
#define PAT_PUSH_2(c1, c2) \
|
|||
|
do { \
|
|||
|
GET_BUFFER_SPACE (2); \
|
|||
|
*b++ = (unsigned char) (c1); \
|
|||
|
*b++ = (unsigned char) (c2); \
|
|||
|
} while (0)
|
|||
|
|
|||
|
|
|||
|
/* Make sure we have two more bytes of buffer space and then add C1, C2
|
|||
|
and C3 to it. */
|
|||
|
#define PAT_PUSH_3(c1, c2, c3) \
|
|||
|
do { \
|
|||
|
GET_BUFFER_SPACE (3); \
|
|||
|
*b++ = (unsigned char) (c1); \
|
|||
|
*b++ = (unsigned char) (c2); \
|
|||
|
*b++ = (unsigned char) (c3); \
|
|||
|
} while (0)
|
|||
|
|
|||
|
/* This is not an arbitrary limit: the arguments to the opcodes which
|
|||
|
represent offsets into the pattern are two bytes long. So if 2^16
|
|||
|
bytes turns out to be too small, many things would have to change. */
|
|||
|
#define MAX_BUF_SIZE (1L << 16)
|
|||
|
|
|||
|
/* Extend the buffer by twice its current size via realloc and
|
|||
|
reset the pointers that pointed into the old block to point to the
|
|||
|
correct places in the new one. If extending the buffer results in it
|
|||
|
being larger than MAX_BUF_SIZE, then flag memory exhausted. */
|
|||
|
#define EXTEND_BUFFER() \
|
|||
|
do { \
|
|||
|
unsigned char *old_buffer = bufp->buffer; \
|
|||
|
if (bufp->allocated == MAX_BUF_SIZE) \
|
|||
|
return REG_ESIZE; \
|
|||
|
bufp->allocated <<= 1; \
|
|||
|
if (bufp->allocated > MAX_BUF_SIZE) \
|
|||
|
bufp->allocated = MAX_BUF_SIZE; \
|
|||
|
bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
|
|||
|
if (bufp->buffer == NULL) \
|
|||
|
return REG_ESPACE; \
|
|||
|
/* If the buffer moved, move all the pointers into it. */ \
|
|||
|
if (old_buffer != bufp->buffer) \
|
|||
|
{ \
|
|||
|
b = (b - old_buffer) + bufp->buffer; \
|
|||
|
begalt = (begalt - old_buffer) + bufp->buffer; \
|
|||
|
if (fixup_alt_jump) \
|
|||
|
fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
|
|||
|
if (laststart) \
|
|||
|
laststart = (laststart - old_buffer) + bufp->buffer; \
|
|||
|
if (pending_exact) \
|
|||
|
pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
|
|||
|
} \
|
|||
|
} while (0)
|
|||
|
|
|||
|
|
|||
|
/* Since we have one byte reserved for the register number argument to
|
|||
|
{start,stop}_memory, the maximum number of groups we can report
|
|||
|
things about is what fits in that byte. */
|
|||
|
typedef unsigned char regnum_t;
|
|||
|
#define MAX_REGNUM ((regnum_t) ((1 << BYTEWIDTH) - 1))
|
|||
|
|
|||
|
|
|||
|
/* Macros for the compile stack. */
|
|||
|
|
|||
|
/* This type needs to be able to hold values from 0 to MAX_BUF_SIZE - 1. */
|
|||
|
typedef short pattern_offset_t;
|
|||
|
|
|||
|
typedef struct
|
|||
|
{
|
|||
|
pattern_offset_t begalt_offset;
|
|||
|
pattern_offset_t fixup_alt_jump;
|
|||
|
pattern_offset_t inner_group_offset;
|
|||
|
pattern_offset_t laststart_offset;
|
|||
|
regnum_t regnum;
|
|||
|
} compile_stack_elt_t;
|
|||
|
|
|||
|
|
|||
|
typedef struct
|
|||
|
{
|
|||
|
compile_stack_elt_t *stack;
|
|||
|
unsigned size;
|
|||
|
unsigned avail; /* Offset of next open position. */
|
|||
|
} compile_stack_type;
|
|||
|
|
|||
|
|
|||
|
#define INIT_COMPILE_STACK_SIZE 32
|
|||
|
|
|||
|
#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
|
|||
|
#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
|
|||
|
|
|||
|
/* The next available element. */
|
|||
|
#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
|
|||
|
|
|||
|
|
|||
|
/* Set the bit for character C in a list. */
|
|||
|
#define SET_LIST_BIT(c) (b[(c) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
|
|||
|
|
|||
|
|
|||
|
/* Get the next unsigned number in the uncompiled pattern. */
|
|||
|
#define GET_UNSIGNED_NUMBER(num) \
|
|||
|
{ if (p != pend) \
|
|||
|
{ \
|
|||
|
PATFETCH (c); \
|
|||
|
while (isdigit (c)) \
|
|||
|
{ \
|
|||
|
if (num < 0) \
|
|||
|
num = 0; \
|
|||
|
num = num * 10 + c - '0'; \
|
|||
|
if (p == pend) \
|
|||
|
break; \
|
|||
|
PATFETCH (c); \
|
|||
|
} \
|
|||
|
} \
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Read the endpoint of a range from the uncompiled pattern and set the
|
|||
|
corresponding bits in the compiled pattern. */
|
|||
|
|
|||
|
#define DO_RANGE \
|
|||
|
{ \
|
|||
|
char end; \
|
|||
|
char this_char = p[-2]; \
|
|||
|
\
|
|||
|
if (p == pend) \
|
|||
|
return REG_ERANGE; \
|
|||
|
PATFETCH (end); \
|
|||
|
if (syntax & RE_NO_EMPTY_RANGES && this_char > end) \
|
|||
|
return REG_ERANGE; \
|
|||
|
while (this_char <= end) \
|
|||
|
{ \
|
|||
|
SET_LIST_BIT (TRANSLATE (this_char)); \
|
|||
|
this_char++; \
|
|||
|
} \
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
|
|||
|
|
|||
|
#define IS_CHAR_CLASS(string) \
|
|||
|
(STREQ (string, "alpha") || STREQ (string, "upper") \
|
|||
|
|| STREQ (string, "lower") || STREQ (string, "digit") \
|
|||
|
|| STREQ (string, "alnum") || STREQ (string, "xdigit") \
|
|||
|
|| STREQ (string, "space") || STREQ (string, "print") \
|
|||
|
|| STREQ (string, "punct") || STREQ (string, "graph") \
|
|||
|
|| STREQ (string, "cntrl") || STREQ (string, "blank"))
|
|||
|
|
|||
|
|
|||
|
/* regex_compile compiles PATTERN (of length SIZE) according to SYNTAX.
|
|||
|
Returns one of error codes defined in regex.h, or zero for success.
|
|||
|
|
|||
|
Assumes the `allocated' (and perhaps `buffer') and `translate'
|
|||
|
fields are set in BUFP on entry.
|
|||
|
|
|||
|
If it succeeds, results are put in BUFP (if it returns an error, the
|
|||
|
contents of BUFP are undefined):
|
|||
|
`buffer' is the compiled pattern;
|
|||
|
`syntax' is set to SYNTAX;
|
|||
|
`used' is set to the length of the compiled pattern;
|
|||
|
`fastmap_accurate' is set to zero;
|
|||
|
`re_nsub' is set to the number of groups in PATTERN;
|
|||
|
`not_bol' and `not_eol' are set to zero.
|
|||
|
|
|||
|
The `fastmap' and `newline_anchor' fields are neither
|
|||
|
examined nor set. */
|
|||
|
|
|||
|
static reg_errcode_t
|
|||
|
regex_compile (pattern, size, syntax, bufp)
|
|||
|
const char *pattern;
|
|||
|
int size;
|
|||
|
reg_syntax_t syntax;
|
|||
|
struct re_pattern_buffer *bufp;
|
|||
|
{
|
|||
|
register unsigned char c, c1;
|
|||
|
const char *p1;
|
|||
|
|
|||
|
/* Points to the end of the buffer, where we should append. */
|
|||
|
register unsigned char *b;
|
|||
|
|
|||
|
/* Points to the current (ending) position in the pattern. */
|
|||
|
const char *p = pattern;
|
|||
|
const char *pend = pattern + size;
|
|||
|
|
|||
|
/* How to translate the characters in the pattern. */
|
|||
|
char *translate = bufp->translate;
|
|||
|
|
|||
|
/* Address of the count-byte of the most recently inserted `exactn'
|
|||
|
command. This makes it possible to tell if a new exact-match
|
|||
|
character can be added to that command or if the character requires
|
|||
|
a new `exactn' command. */
|
|||
|
unsigned char *pending_exact = 0;
|
|||
|
|
|||
|
/* Address of start of the most recently finished expression.
|
|||
|
This tells, e.g., postfix * where to find the start of its
|
|||
|
operand. Reset at the beginning of groups and alternatives. */
|
|||
|
unsigned char *laststart = 0;
|
|||
|
|
|||
|
/* Place in the uncompiled pattern (i.e., the {) to
|
|||
|
which to go back if the interval is invalid. */
|
|||
|
const char *beg_interval; /* The `{'. */
|
|||
|
const char *following_left_brace;
|
|||
|
|
|||
|
/* Address of beginning of regexp, or inside of last group. */
|
|||
|
unsigned char *begalt;
|
|||
|
|
|||
|
/* Address of the place where a forward jump should go to the end of
|
|||
|
the containing expression. Each alternative of an `or'---except the
|
|||
|
last---ends with a forward jump of this sort. */
|
|||
|
unsigned char *fixup_alt_jump = 0;
|
|||
|
|
|||
|
/* Counts open-groups as they are encountered. Remembered for the
|
|||
|
matching close-group on the compile stack, so the same register
|
|||
|
number is put in the stop_memory as the start_memory. The type
|
|||
|
here is determined by MAX_REGNUM. */
|
|||
|
regnum_t regnum = 0;
|
|||
|
|
|||
|
/* Keeps track of unclosed groups. */
|
|||
|
compile_stack_type compile_stack;
|
|||
|
|
|||
|
#ifdef DEBUG
|
|||
|
DEBUG_PRINT1 ("\nCompiling pattern: ");
|
|||
|
if (debug)
|
|||
|
{
|
|||
|
unsigned debug_count;
|
|||
|
|
|||
|
for (debug_count = 0; debug_count < size; debug_count++)
|
|||
|
printchar (pattern[debug_count]);
|
|||
|
|
|||
|
DEBUG_PRINT1 ("\n");
|
|||
|
}
|
|||
|
#endif /* DEBUG */
|
|||
|
|
|||
|
/* Initialize the compile stack. */
|
|||
|
compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
|
|||
|
if (compile_stack.stack == NULL)
|
|||
|
return REG_ESPACE;
|
|||
|
|
|||
|
compile_stack.size = INIT_COMPILE_STACK_SIZE;
|
|||
|
compile_stack.avail = 0;
|
|||
|
|
|||
|
/* Initialize the pattern buffer. */
|
|||
|
bufp->syntax = syntax;
|
|||
|
bufp->fastmap_accurate = 0;
|
|||
|
bufp->not_bol = bufp->not_eol = 0;
|
|||
|
|
|||
|
/* Set `used' to zero, so that if we return an error, the pattern
|
|||
|
printer (for debugging) will think there's no pattern. We reset it
|
|||
|
at the end. */
|
|||
|
bufp->used = 0;
|
|||
|
|
|||
|
/* Always count groups, whether or not bufp->no_sub is set. */
|
|||
|
bufp->re_nsub = 0;
|
|||
|
|
|||
|
#if !defined (emacs) && !defined (SYNTAX_TABLE)
|
|||
|
/* Initialize the syntax table. */
|
|||
|
init_syntax_once ();
|
|||
|
#endif
|
|||
|
|
|||
|
if (bufp->allocated == 0)
|
|||
|
{
|
|||
|
if (bufp->buffer)
|
|||
|
{ /* EXTEND_BUFFER loses when bufp->allocated is 0. This loses if
|
|||
|
buffer's address is bogus, but that is the user's
|
|||
|
responsibility. */
|
|||
|
RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
|
|||
|
}
|
|||
|
else
|
|||
|
{ /* Caller did not allocate a buffer. Do it for them. */
|
|||
|
bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
|
|||
|
}
|
|||
|
if (!bufp->buffer) return REG_ESPACE;
|
|||
|
|
|||
|
bufp->allocated = INIT_BUF_SIZE;
|
|||
|
}
|
|||
|
|
|||
|
begalt = b = bufp->buffer;
|
|||
|
|
|||
|
/* Loop through the uncompiled pattern until we're at the end. */
|
|||
|
while (p != pend)
|
|||
|
{
|
|||
|
PATFETCH (c);
|
|||
|
|
|||
|
switch (c)
|
|||
|
{
|
|||
|
/* ^ matches the empty string at the beginning of a string (or
|
|||
|
possibly a line). If RE_CONTEXT_INDEP_ANCHORS is set, ^ is
|
|||
|
always an operator (and foo^bar is unmatchable). If that bit
|
|||
|
isn't set, it's an operator only at the beginning of the
|
|||
|
pattern or after an alternation or open-group operator, or,
|
|||
|
if RE_NEWLINE_ORDINARY is not set, after a newline (except it
|
|||
|
can be preceded by other operators that match the empty
|
|||
|
string); otherwise, it's a normal character. */
|
|||
|
case '^':
|
|||
|
{
|
|||
|
if ( /* If at start of (sub)pattern, it's an operator. */
|
|||
|
laststart == 0
|
|||
|
/* If context independent, it's an operator. */
|
|||
|
|| syntax & RE_CONTEXT_INDEP_ANCHORS
|
|||
|
/* If after a newline, might be an operator. (Since
|
|||
|
laststart is nonzero here, we know we have at
|
|||
|
least one byte before the ^.) */
|
|||
|
|| (!(syntax & RE_NEWLINE_ORDINARY) && p[-2] == '\n'))
|
|||
|
PAT_PUSH (begline);
|
|||
|
else
|
|||
|
goto normal_char;
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
/* $ matches the empty string following the end of the string (or
|
|||
|
possibly a line). It follows rules dual to those for ^. */
|
|||
|
case '$':
|
|||
|
{
|
|||
|
if ( /* If at end of pattern, it's an operator. */
|
|||
|
p == pend
|
|||
|
/* If context independent, it's an operator. */
|
|||
|
|| syntax & RE_CONTEXT_INDEP_ANCHORS
|
|||
|
/* Otherwise, depends on what's next. */
|
|||
|
|| at_endline_op_p (p, pend, syntax))
|
|||
|
PAT_PUSH (endline);
|
|||
|
else
|
|||
|
goto normal_char;
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case '+':
|
|||
|
case '?':
|
|||
|
if ((syntax & RE_BK_PLUS_QM)
|
|||
|
|| (syntax & RE_LIMITED_OPS))
|
|||
|
goto normal_char;
|
|||
|
handle_plus:
|
|||
|
case '*':
|
|||
|
/* If there is no previous pattern... */
|
|||
|
if (!laststart)
|
|||
|
{
|
|||
|
if (syntax & RE_CONTEXT_INVALID_OPS)
|
|||
|
return REG_BADRPT;
|
|||
|
else if (!(syntax & RE_CONTEXT_INDEP_OPS))
|
|||
|
goto normal_char;
|
|||
|
}
|
|||
|
|
|||
|
{
|
|||
|
/* Are we optimizing this jump? */
|
|||
|
boolean keep_string_p = false;
|
|||
|
|
|||
|
/* 1 means zero (many) matches is allowed. */
|
|||
|
char zero_times_ok = 0, many_times_ok = 0;
|
|||
|
|
|||
|
/* If there is a sequence of repetition chars, collapse it
|
|||
|
down to just one (the right one). We can't combine
|
|||
|
interval operators with these because of, e.g., `a{2}*',
|
|||
|
which should only match an even number of `a's. */
|
|||
|
|
|||
|
for (;;)
|
|||
|
{
|
|||
|
zero_times_ok |= c != '+';
|
|||
|
many_times_ok |= c != '?';
|
|||
|
|
|||
|
if (p == pend)
|
|||
|
break;
|
|||
|
|
|||
|
PATFETCH (c);
|
|||
|
|
|||
|
if (c == '*'
|
|||
|
|| (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
|
|||
|
;
|
|||
|
|
|||
|
else if (syntax & RE_BK_PLUS_QM && c == '\\')
|
|||
|
{
|
|||
|
if (p == pend) return REG_EESCAPE;
|
|||
|
|
|||
|
PATFETCH (c1);
|
|||
|
if (!(c1 == '+' || c1 == '?'))
|
|||
|
{
|
|||
|
PATUNFETCH;
|
|||
|
PATUNFETCH;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
c = c1;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
PATUNFETCH;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
/* If we get here, we found another repeat character. */
|
|||
|
}
|
|||
|
|
|||
|
/* Star, etc. applied to an empty pattern is equivalent
|
|||
|
to an empty pattern. */
|
|||
|
if (!laststart)
|
|||
|
break;
|
|||
|
|
|||
|
/* Now we know whether or not zero matches is allowed
|
|||
|
and also whether or not two or more matches is allowed. */
|
|||
|
if (many_times_ok)
|
|||
|
{ /* More than one repetition is allowed, so put in at the
|
|||
|
end a backward relative jump from `b' to before the next
|
|||
|
jump we're going to put in below (which jumps from
|
|||
|
laststart to after this jump).
|
|||
|
|
|||
|
But if we are at the `*' in the exact sequence `.*\n',
|
|||
|
insert an unconditional jump backwards to the .,
|
|||
|
instead of the beginning of the loop. This way we only
|
|||
|
push a failure point once, instead of every time
|
|||
|
through the loop. */
|
|||
|
assert (p - 1 > pattern);
|
|||
|
|
|||
|
/* Get the space for the jump. */
|
|||
|
GET_BUFFER_SPACE (3);
|
|||
|
|
|||
|
/* We know we are not at the first character of the pattern,
|
|||
|
because laststart was nonzero. And we've already
|
|||
|
incremented `p', by the way, to be the character after
|
|||
|
the `*'. Do we have to do something analogous here
|
|||
|
for null bytes, because of RE_DOT_NOT_NULL? */
|
|||
|
if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
|
|||
|
&& p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
|
|||
|
&& !(syntax & RE_DOT_NEWLINE))
|
|||
|
{ /* We have .*\n. */
|
|||
|
store_jump (b, no_pop_jump, laststart);
|
|||
|
keep_string_p = true;
|
|||
|
}
|
|||
|
else
|
|||
|
/* Anything else. */
|
|||
|
store_jump (b, maybe_pop_jump, laststart - 3);
|
|||
|
|
|||
|
/* We've added more stuff to the buffer. */
|
|||
|
b += 3;
|
|||
|
}
|
|||
|
|
|||
|
/* On failure, jump from laststart to b + 3, which will be the
|
|||
|
end of the buffer after this jump is inserted. */
|
|||
|
GET_BUFFER_SPACE (3);
|
|||
|
insert_jump (keep_string_p ? on_failure_keep_string_jump
|
|||
|
: on_failure_jump,
|
|||
|
laststart, b + 3, b);
|
|||
|
pending_exact = 0;
|
|||
|
b += 3;
|
|||
|
|
|||
|
if (!zero_times_ok)
|
|||
|
{
|
|||
|
/* At least one repetition is required, so insert a
|
|||
|
dummy_failure before the initial on_failure_jump
|
|||
|
instruction of the loop. This effects a skip over that
|
|||
|
instruction the first time we hit that loop. */
|
|||
|
GET_BUFFER_SPACE (3);
|
|||
|
insert_jump (dummy_failure_jump, laststart, laststart + 6, b);
|
|||
|
b += 3;
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case '.':
|
|||
|
laststart = b;
|
|||
|
PAT_PUSH (anychar);
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case '[':
|
|||
|
{
|
|||
|
boolean just_had_a_char_class = false;
|
|||
|
|
|||
|
if (p == pend) return REG_EBRACK;
|
|||
|
|
|||
|
/* Ensure that we have enough space to push an entire
|
|||
|
charset: the opcode, the byte count, and the bitmap. */
|
|||
|
while (b - bufp->buffer + 2 + (1 << BYTEWIDTH) / BYTEWIDTH
|
|||
|
> bufp->allocated)
|
|||
|
EXTEND_BUFFER ();
|
|||
|
|
|||
|
laststart = b;
|
|||
|
|
|||
|
PAT_PUSH (*p == '^' ? charset_not : charset);
|
|||
|
if (*p == '^')
|
|||
|
p++;
|
|||
|
|
|||
|
/* Remember the first position in the bracket expression. */
|
|||
|
p1 = p;
|
|||
|
|
|||
|
/* Push the number of bytes in the bitmap. */
|
|||
|
PAT_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
|
|||
|
|
|||
|
/* Clear the whole map. */
|
|||
|
bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
|
|||
|
|
|||
|
/* charset_not matches newline according to a syntax bit. */
|
|||
|
if ((re_opcode_t) b[-2] == charset_not
|
|||
|
&& (syntax & RE_HAT_LISTS_NOT_NEWLINE))
|
|||
|
SET_LIST_BIT ('\n');
|
|||
|
|
|||
|
/* Read in characters and ranges, setting map bits. */
|
|||
|
for (;;)
|
|||
|
{
|
|||
|
if (p == pend) return REG_EBRACK;
|
|||
|
|
|||
|
PATFETCH (c);
|
|||
|
|
|||
|
/* \ might escape characters inside [...] and [^...]. */
|
|||
|
if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
|
|||
|
{
|
|||
|
if (p == pend) return REG_EESCAPE;
|
|||
|
|
|||
|
PATFETCH (c1);
|
|||
|
SET_LIST_BIT (c1);
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
/* Could be the end of the bracket expression. If it's
|
|||
|
not (i.e., when the bracket expression is `[]' so
|
|||
|
far), the ']' character bit gets set way below. */
|
|||
|
if (c == ']' && p != p1 + 1)
|
|||
|
break;
|
|||
|
|
|||
|
/* Look ahead to see if it's a range when the last thing
|
|||
|
was a character class. */
|
|||
|
if (just_had_a_char_class && c == '-' && *p != ']')
|
|||
|
return REG_ERANGE;
|
|||
|
|
|||
|
/* Look ahead to see if it's a range when the last thing
|
|||
|
was a character: if this is a hyphen not at the
|
|||
|
beginning or the end of a list, then it's the range
|
|||
|
operator. */
|
|||
|
if (c == '-'
|
|||
|
&& !(p - 2 >= pattern && p[-2] == '[')
|
|||
|
&& !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
|
|||
|
&& *p != ']')
|
|||
|
{
|
|||
|
DO_RANGE;
|
|||
|
}
|
|||
|
|
|||
|
else if (p[0] == '-' && p[1] != ']')
|
|||
|
{ /* This handles ranges made up of characters only. */
|
|||
|
PATFETCH (c1); /* The `-'. */
|
|||
|
DO_RANGE;
|
|||
|
}
|
|||
|
|
|||
|
/* See if we're at the beginning of a possible character
|
|||
|
class. */
|
|||
|
|
|||
|
else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
|
|||
|
{ /* Leave room for the null. */
|
|||
|
char str[CHAR_CLASS_MAX_LENGTH + 1];
|
|||
|
|
|||
|
PATFETCH (c);
|
|||
|
c1 = 0;
|
|||
|
|
|||
|
/* If pattern is `[[:'. */
|
|||
|
if (p == pend) return REG_EBRACK;
|
|||
|
|
|||
|
for (;;)
|
|||
|
{
|
|||
|
PATFETCH (c);
|
|||
|
if (c == ':' || c == ']' || p == pend
|
|||
|
|| c1 == CHAR_CLASS_MAX_LENGTH)
|
|||
|
break;
|
|||
|
str[c1++] = c;
|
|||
|
}
|
|||
|
str[c1] = '\0';
|
|||
|
|
|||
|
/* If isn't a word bracketed by `[:' and:`]':
|
|||
|
undo the ending character, the letters, and leave
|
|||
|
the leading `:' and `[' (but set bits for them). */
|
|||
|
if (c == ':' && *p == ']')
|
|||
|
{
|
|||
|
int ch;
|
|||
|
boolean is_alnum = STREQ (str, "alnum");
|
|||
|
boolean is_alpha = STREQ (str, "alpha");
|
|||
|
boolean is_blank = STREQ (str, "blank");
|
|||
|
boolean is_cntrl = STREQ (str, "cntrl");
|
|||
|
boolean is_digit = STREQ (str, "digit");
|
|||
|
boolean is_graph = STREQ (str, "graph");
|
|||
|
boolean is_lower = STREQ (str, "lower");
|
|||
|
boolean is_print = STREQ (str, "print");
|
|||
|
boolean is_punct = STREQ (str, "punct");
|
|||
|
boolean is_space = STREQ (str, "space");
|
|||
|
boolean is_upper = STREQ (str, "upper");
|
|||
|
boolean is_xdigit = STREQ (str, "xdigit");
|
|||
|
|
|||
|
if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
|
|||
|
|
|||
|
/* Throw away the ] at the end of the character
|
|||
|
class. */
|
|||
|
PATFETCH (c);
|
|||
|
|
|||
|
if (p == pend) return REG_EBRACK;
|
|||
|
|
|||
|
for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
|
|||
|
{
|
|||
|
if ( (is_alnum && isalnum (ch))
|
|||
|
|| (is_alpha && isalpha (ch))
|
|||
|
|| (is_blank && isblank (ch))
|
|||
|
|| (is_cntrl && iscntrl (ch))
|
|||
|
|| (is_digit && isdigit (ch))
|
|||
|
|| (is_graph && isgraph (ch))
|
|||
|
|| (is_lower && islower (ch))
|
|||
|
|| (is_print && isprint (ch))
|
|||
|
|| (is_punct && ispunct (ch))
|
|||
|
|| (is_space && isspace (ch))
|
|||
|
|| (is_upper && isupper (ch))
|
|||
|
|| (is_xdigit && isxdigit (ch)))
|
|||
|
SET_LIST_BIT (ch);
|
|||
|
}
|
|||
|
just_had_a_char_class = true;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
c1++;
|
|||
|
while (c1--)
|
|||
|
PATUNFETCH;
|
|||
|
SET_LIST_BIT ('[');
|
|||
|
SET_LIST_BIT (':');
|
|||
|
just_had_a_char_class = false;
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
just_had_a_char_class = false;
|
|||
|
SET_LIST_BIT (c);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Discard any (non)matching list bytes that are all 0 at the
|
|||
|
end of the map. Decrease the map-length byte too. */
|
|||
|
while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
|
|||
|
b[-1]--;
|
|||
|
b += b[-1];
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case '(':
|
|||
|
if (syntax & RE_NO_BK_PARENS)
|
|||
|
goto handle_open;
|
|||
|
else
|
|||
|
goto normal_char;
|
|||
|
|
|||
|
|
|||
|
case ')':
|
|||
|
if (syntax & RE_NO_BK_PARENS)
|
|||
|
goto handle_close;
|
|||
|
else
|
|||
|
goto normal_char;
|
|||
|
|
|||
|
|
|||
|
case '\n':
|
|||
|
if (syntax & RE_NEWLINE_ALT)
|
|||
|
goto handle_bar;
|
|||
|
else
|
|||
|
goto normal_char;
|
|||
|
|
|||
|
|
|||
|
case '|':
|
|||
|
if (syntax & RE_NO_BK_VBAR)
|
|||
|
goto handle_bar;
|
|||
|
else
|
|||
|
goto normal_char;
|
|||
|
|
|||
|
|
|||
|
case '{':
|
|||
|
if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
|
|||
|
goto handle_interval;
|
|||
|
else
|
|||
|
goto normal_char;
|
|||
|
|
|||
|
|
|||
|
case '\\':
|
|||
|
if (p == pend) return REG_EESCAPE;
|
|||
|
|
|||
|
/* Do not translate the character after the \, so that we can
|
|||
|
distinguish, e.g., \B from \b, even if we normally would
|
|||
|
translate, e.g., B to b. */
|
|||
|
PATFETCH_RAW (c);
|
|||
|
|
|||
|
switch (c)
|
|||
|
{
|
|||
|
case '(':
|
|||
|
if (syntax & RE_NO_BK_PARENS)
|
|||
|
goto normal_backslash;
|
|||
|
handle_open:
|
|||
|
if (syntax & RE_NO_EMPTY_GROUPS)
|
|||
|
{
|
|||
|
p1 = p;
|
|||
|
if (!(syntax & RE_NO_BK_PARENS) && *p1 == '\\') p1++;
|
|||
|
|
|||
|
/* If found an empty group... */
|
|||
|
if (*p1 == ')') return REG_BADPAT;
|
|||
|
}
|
|||
|
|
|||
|
bufp->re_nsub++;
|
|||
|
regnum++;
|
|||
|
|
|||
|
if (COMPILE_STACK_FULL)
|
|||
|
{
|
|||
|
RETALLOC (compile_stack.stack, compile_stack.size << 1,
|
|||
|
compile_stack_elt_t);
|
|||
|
if (compile_stack.stack == NULL) return REG_ESPACE;
|
|||
|
|
|||
|
compile_stack.size <<= 1;
|
|||
|
}
|
|||
|
|
|||
|
/* These are the values to restore when we hit end of this
|
|||
|
group. They are all relative offsets, so that if the
|
|||
|
whole pattern moves because of realloc, they will still
|
|||
|
be valid. */
|
|||
|
COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
|
|||
|
COMPILE_STACK_TOP.fixup_alt_jump
|
|||
|
= fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
|
|||
|
COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
|
|||
|
COMPILE_STACK_TOP.regnum = regnum;
|
|||
|
|
|||
|
/* We will eventually replace the 0 with the number of
|
|||
|
groups inner to this one. */
|
|||
|
if (regnum <= MAX_REGNUM)
|
|||
|
{
|
|||
|
COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
|
|||
|
PAT_PUSH_3 (start_memory, regnum, 0);
|
|||
|
}
|
|||
|
|
|||
|
compile_stack.avail++;
|
|||
|
|
|||
|
fixup_alt_jump = 0;
|
|||
|
laststart = 0;
|
|||
|
begalt = b;
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case ')':
|
|||
|
if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
|
|||
|
|
|||
|
if (COMPILE_STACK_EMPTY)
|
|||
|
if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
|
|||
|
goto normal_backslash;
|
|||
|
else
|
|||
|
return REG_ERPAREN;
|
|||
|
|
|||
|
handle_close:
|
|||
|
if (fixup_alt_jump)
|
|||
|
store_jump (fixup_alt_jump, jump_past_next_alt, b);
|
|||
|
|
|||
|
/* See similar code for backslashed left paren above. */
|
|||
|
|
|||
|
if (COMPILE_STACK_EMPTY)
|
|||
|
if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
|
|||
|
goto normal_char;
|
|||
|
else
|
|||
|
return REG_ERPAREN;
|
|||
|
|
|||
|
/* Since we just checked for an empty stack above, this
|
|||
|
``can't happen''. */
|
|||
|
assert (compile_stack.avail != 0);
|
|||
|
{
|
|||
|
/* We don't just want to restore into `regnum', because
|
|||
|
later groups should continue to be numbered higher,
|
|||
|
as in `(ab)c(de)' -- the second group is #2. */
|
|||
|
regnum_t this_group_regnum;
|
|||
|
|
|||
|
compile_stack.avail--;
|
|||
|
begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
|
|||
|
fixup_alt_jump
|
|||
|
= COMPILE_STACK_TOP.fixup_alt_jump
|
|||
|
? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
|
|||
|
: 0;
|
|||
|
laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
|
|||
|
this_group_regnum = COMPILE_STACK_TOP.regnum;
|
|||
|
|
|||
|
/* We're at the end of the group, so now we know how many
|
|||
|
groups were inside this one. */
|
|||
|
if (this_group_regnum <= MAX_REGNUM)
|
|||
|
{
|
|||
|
unsigned char *inner_group_loc
|
|||
|
= bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
|
|||
|
|
|||
|
*inner_group_loc = regnum - this_group_regnum;
|
|||
|
PAT_PUSH_3 (stop_memory, this_group_regnum,
|
|||
|
regnum - this_group_regnum);
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case '|': /* `\|'. */
|
|||
|
if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
|
|||
|
goto normal_backslash;
|
|||
|
handle_bar:
|
|||
|
if (syntax & RE_LIMITED_OPS)
|
|||
|
goto normal_char;
|
|||
|
|
|||
|
/* Disallow empty alternatives if RE_NO_EMPTY_ALTS is set.
|
|||
|
Caveat: can't detect if the vbar is followed by a
|
|||
|
trailing '$' yet, unless it's the last thing in a
|
|||
|
pattern; the routine for verifying endlines has to do
|
|||
|
the rest. */
|
|||
|
if ((syntax & RE_NO_EMPTY_ALTS)
|
|||
|
&& (!laststart || p == pend
|
|||
|
|| (*p == '$' && p + 1 == pend)
|
|||
|
|| ((syntax & RE_NO_BK_PARENS)
|
|||
|
? (p < pend && *p == ')')
|
|||
|
: (p + 1 < pend && p[0] == '\\' && p[1] == ')'))))
|
|||
|
return REG_BADPAT;
|
|||
|
|
|||
|
/* Insert before the previous alternative a jump which
|
|||
|
jumps to this alternative if the former fails. */
|
|||
|
GET_BUFFER_SPACE (3);
|
|||
|
insert_jump (on_failure_jump, begalt, b + 6, b);
|
|||
|
pending_exact = 0;
|
|||
|
b += 3;
|
|||
|
|
|||
|
/* The alternative before this one has a jump after it
|
|||
|
which gets executed if it gets matched. Adjust that
|
|||
|
jump so it will jump to this alternative's analogous
|
|||
|
jump (put in below, which in turn will jump to the next
|
|||
|
(if any) alternative's such jump, etc.). The last such
|
|||
|
jump jumps to the correct final destination. A picture:
|
|||
|
_____ _____
|
|||
|
| | | |
|
|||
|
| v | v
|
|||
|
a | b | c
|
|||
|
|
|||
|
If we are at `b,' then fixup_alt_jump right now points to a
|
|||
|
three-byte space after `a.' We'll put in the jump, set
|
|||
|
fixup_alt_jump to right after `b,' and leave behind three
|
|||
|
bytes which we'll fill in when we get to after `c.' */
|
|||
|
|
|||
|
if (fixup_alt_jump)
|
|||
|
store_jump (fixup_alt_jump, jump_past_next_alt, b);
|
|||
|
|
|||
|
/* Mark and leave space for a jump after this alternative,
|
|||
|
to be filled in later either by next alternative or
|
|||
|
when know we're at the end of a series of alternatives. */
|
|||
|
fixup_alt_jump = b;
|
|||
|
GET_BUFFER_SPACE (3);
|
|||
|
b += 3;
|
|||
|
|
|||
|
laststart = 0;
|
|||
|
begalt = b;
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case '{':
|
|||
|
/* If \{ is a literal. */
|
|||
|
if (!(syntax & RE_INTERVALS)
|
|||
|
/* If we're at `\{' and it's not the open-interval
|
|||
|
operator. */
|
|||
|
|| ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
|
|||
|
|| (p - 2 == pattern && p == pend))
|
|||
|
goto normal_backslash;
|
|||
|
|
|||
|
handle_interval:
|
|||
|
{
|
|||
|
/* If got here, then intervals must be allowed. */
|
|||
|
|
|||
|
/* For intervals, at least (most) this many matches must
|
|||
|
be made. */
|
|||
|
int lower_bound = -1, upper_bound = -1;
|
|||
|
|
|||
|
beg_interval = p - 1; /* The `{'. */
|
|||
|
following_left_brace = NULL;
|
|||
|
|
|||
|
if (p == pend)
|
|||
|
{
|
|||
|
if (syntax & RE_NO_BK_BRACES)
|
|||
|
goto unfetch_interval;
|
|||
|
else
|
|||
|
return REG_EBRACE;
|
|||
|
}
|
|||
|
|
|||
|
GET_UNSIGNED_NUMBER (lower_bound);
|
|||
|
|
|||
|
if (c == ',')
|
|||
|
{
|
|||
|
GET_UNSIGNED_NUMBER (upper_bound);
|
|||
|
if (upper_bound < 0) upper_bound = RE_DUP_MAX;
|
|||
|
}
|
|||
|
|
|||
|
if (upper_bound < 0)
|
|||
|
upper_bound = lower_bound;
|
|||
|
|
|||
|
if (lower_bound < 0 || upper_bound > RE_DUP_MAX
|
|||
|
|| lower_bound > upper_bound)
|
|||
|
{
|
|||
|
if (syntax & RE_NO_BK_BRACES)
|
|||
|
goto unfetch_interval;
|
|||
|
else
|
|||
|
return REG_BADBR;
|
|||
|
}
|
|||
|
|
|||
|
if (!(syntax & RE_NO_BK_BRACES))
|
|||
|
{
|
|||
|
if (c != '\\') return REG_EBRACE;
|
|||
|
|
|||
|
PATFETCH (c);
|
|||
|
}
|
|||
|
|
|||
|
if (c != '}')
|
|||
|
{
|
|||
|
if (syntax & RE_NO_BK_BRACES)
|
|||
|
goto unfetch_interval;
|
|||
|
else
|
|||
|
return REG_BADBR;
|
|||
|
}
|
|||
|
|
|||
|
/* We just parsed a valid interval. */
|
|||
|
|
|||
|
/* If it's invalid to have no preceding re. */
|
|||
|
if (!laststart)
|
|||
|
{
|
|||
|
if (syntax & RE_CONTEXT_INVALID_OPS)
|
|||
|
return REG_BADRPT;
|
|||
|
else if (syntax & RE_CONTEXT_INDEP_OPS)
|
|||
|
laststart = b;
|
|||
|
else
|
|||
|
goto unfetch_interval;
|
|||
|
}
|
|||
|
|
|||
|
/* If upper_bound is zero, don't want to succeed at all;
|
|||
|
jump from laststart to b + 3, which will be the end of
|
|||
|
the buffer after this jump is inserted. */
|
|||
|
if (upper_bound == 0)
|
|||
|
{
|
|||
|
GET_BUFFER_SPACE (3);
|
|||
|
insert_jump (no_pop_jump, laststart, b + 3, b);
|
|||
|
b += 3;
|
|||
|
}
|
|||
|
|
|||
|
/* Otherwise, after lower_bound number of succeeds, jump
|
|||
|
to after the no_pop_jump_n which will be inserted at
|
|||
|
the end of the buffer, and insert that
|
|||
|
no_pop_jump_n. */
|
|||
|
else
|
|||
|
{ /* Set to 5 if only one repetition is allowed and
|
|||
|
hence no no_pop_jump_n is inserted at the current
|
|||
|
end of the buffer. Otherwise, need 10 bytes total
|
|||
|
for the succeed_n and the no_pop_jump_n. */
|
|||
|
unsigned slots_needed = upper_bound == 1 ? 5 : 10;
|
|||
|
|
|||
|
GET_BUFFER_SPACE (slots_needed);
|
|||
|
/* Initialize the succeed_n to n, even though it will
|
|||
|
be set by its attendant set_number_at, because
|
|||
|
re_compile_fastmap will need to know it. Jump to
|
|||
|
what the end of buffer will be after inserting
|
|||
|
this succeed_n and possibly appending a
|
|||
|
no_pop_jump_n. */
|
|||
|
insert_jump_n (succeed_n, laststart, b + slots_needed,
|
|||
|
b, lower_bound);
|
|||
|
b += 5; /* Just increment for the succeed_n here. */
|
|||
|
|
|||
|
|
|||
|
/* More than one repetition is allowed, so put in at
|
|||
|
the end of the buffer a backward jump from b to the
|
|||
|
succeed_n we put in above. By the time we've gotten
|
|||
|
to this jump when matching, we'll have matched once
|
|||
|
already, so jump back only upper_bound - 1 times. */
|
|||
|
if (upper_bound > 1)
|
|||
|
{
|
|||
|
store_jump_n (b, no_pop_jump_n, laststart,
|
|||
|
upper_bound - 1);
|
|||
|
b += 5;
|
|||
|
|
|||
|
/* When hit this when matching, reset the
|
|||
|
preceding no_pop_jump_n's n to upper_bound - 1. */
|
|||
|
PAT_PUSH (set_number_at);
|
|||
|
|
|||
|
/* Only need to get space for the numbers. */
|
|||
|
GET_BUFFER_SPACE (4);
|
|||
|
STORE_NUMBER_AND_INCR (b, -5);
|
|||
|
STORE_NUMBER_AND_INCR (b, upper_bound - 1);
|
|||
|
}
|
|||
|
|
|||
|
/* When hit this when matching, set the succeed_n's n. */
|
|||
|
GET_BUFFER_SPACE (5);
|
|||
|
insert_op_2 (set_number_at, laststart, b, 5, lower_bound);
|
|||
|
b += 5;
|
|||
|
}
|
|||
|
pending_exact = 0;
|
|||
|
beg_interval = NULL;
|
|||
|
|
|||
|
if (following_left_brace)
|
|||
|
goto normal_char;
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
unfetch_interval:
|
|||
|
/* If an invalid interval, match the characters as literals. */
|
|||
|
assert (beg_interval);
|
|||
|
p = beg_interval;
|
|||
|
beg_interval = NULL;
|
|||
|
|
|||
|
/* normal_char and normal_backslash need `c'. */
|
|||
|
PATFETCH (c);
|
|||
|
|
|||
|
if (!(syntax & RE_NO_BK_BRACES))
|
|||
|
{
|
|||
|
if (p > pattern && p[-1] == '\\')
|
|||
|
goto normal_backslash;
|
|||
|
}
|
|||
|
goto normal_char;
|
|||
|
|
|||
|
#ifdef emacs
|
|||
|
/* There is no way to specify the before_dot and after_dot
|
|||
|
operators. rms says this is ok. --karl */
|
|||
|
case '=':
|
|||
|
PAT_PUSH (at_dot);
|
|||
|
break;
|
|||
|
|
|||
|
case 's':
|
|||
|
laststart = b;
|
|||
|
PATFETCH (c);
|
|||
|
PAT_PUSH_2 (syntaxspec, syntax_spec_code[c]);
|
|||
|
break;
|
|||
|
|
|||
|
case 'S':
|
|||
|
laststart = b;
|
|||
|
PATFETCH (c);
|
|||
|
PAT_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
|
|||
|
break;
|
|||
|
#endif /* emacs */
|
|||
|
|
|||
|
|
|||
|
case 'w':
|
|||
|
laststart = b;
|
|||
|
PAT_PUSH (wordchar);
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case 'W':
|
|||
|
laststart = b;
|
|||
|
PAT_PUSH (notwordchar);
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case '<':
|
|||
|
PAT_PUSH (wordbeg);
|
|||
|
break;
|
|||
|
|
|||
|
case '>':
|
|||
|
PAT_PUSH (wordend);
|
|||
|
break;
|
|||
|
|
|||
|
case 'b':
|
|||
|
PAT_PUSH (wordbound);
|
|||
|
break;
|
|||
|
|
|||
|
case 'B':
|
|||
|
PAT_PUSH (notwordbound);
|
|||
|
break;
|
|||
|
|
|||
|
case '`':
|
|||
|
PAT_PUSH (begbuf);
|
|||
|
break;
|
|||
|
|
|||
|
case '\'':
|
|||
|
PAT_PUSH (endbuf);
|
|||
|
break;
|
|||
|
|
|||
|
case '1':
|
|||
|
case '2':
|
|||
|
case '3':
|
|||
|
case '4':
|
|||
|
case '5':
|
|||
|
case '6':
|
|||
|
case '7':
|
|||
|
case '8':
|
|||
|
case '9':
|
|||
|
if (syntax & RE_NO_BK_REFS)
|
|||
|
goto normal_char;
|
|||
|
|
|||
|
c1 = c - '0';
|
|||
|
|
|||
|
if (c1 > regnum)
|
|||
|
{
|
|||
|
if (syntax & RE_NO_MISSING_BK_REF)
|
|||
|
return REG_ESUBREG;
|
|||
|
else
|
|||
|
goto normal_char;
|
|||
|
}
|
|||
|
|
|||
|
/* Can't back reference to a subexpression if inside of it. */
|
|||
|
if (group_in_compile_stack (compile_stack, c1))
|
|||
|
goto normal_char;
|
|||
|
|
|||
|
laststart = b;
|
|||
|
PAT_PUSH_2 (duplicate, c1);
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case '+':
|
|||
|
case '?':
|
|||
|
if (syntax & RE_BK_PLUS_QM)
|
|||
|
goto handle_plus;
|
|||
|
else
|
|||
|
goto normal_backslash;
|
|||
|
|
|||
|
default:
|
|||
|
normal_backslash:
|
|||
|
/* You might think it would be useful for \ to mean
|
|||
|
not to translate; but if we don't translate it
|
|||
|
it will never match anything. */
|
|||
|
c = TRANSLATE (c);
|
|||
|
goto normal_char;
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
default:
|
|||
|
/* Expects the character in `c'. */
|
|||
|
normal_char:
|
|||
|
/* If no exactn currently being built. */
|
|||
|
if (!pending_exact
|
|||
|
|
|||
|
/* If last exactn not at current position. */
|
|||
|
|| pending_exact + *pending_exact + 1 != b
|
|||
|
|
|||
|
/* We have only one byte following the exactn for the count. */
|
|||
|
|| *pending_exact == (1 << BYTEWIDTH) - 1
|
|||
|
|
|||
|
/* If followed by a repetition operator. */
|
|||
|
|| *p == '*' || *p == '^'
|
|||
|
|| ((syntax & RE_BK_PLUS_QM)
|
|||
|
? *p == '\\' && (p[1] == '+' || p[1] == '?')
|
|||
|
: (*p == '+' || *p == '?'))
|
|||
|
|| ((syntax & RE_INTERVALS)
|
|||
|
&& ((syntax & RE_NO_BK_BRACES)
|
|||
|
? *p == '{'
|
|||
|
: (p[0] == '\\' && p[1] == '{'))))
|
|||
|
{
|
|||
|
/* Start building a new exactn. */
|
|||
|
|
|||
|
laststart = b;
|
|||
|
|
|||
|
PAT_PUSH_2 (exactn, 0);
|
|||
|
pending_exact = b - 1;
|
|||
|
}
|
|||
|
|
|||
|
PAT_PUSH (c);
|
|||
|
(*pending_exact)++;
|
|||
|
break;
|
|||
|
} /* switch (c) */
|
|||
|
} /* while p != pend */
|
|||
|
|
|||
|
|
|||
|
/* Through the pattern now. */
|
|||
|
|
|||
|
if (fixup_alt_jump)
|
|||
|
store_jump (fixup_alt_jump, jump_past_next_alt, b);
|
|||
|
|
|||
|
if (!COMPILE_STACK_EMPTY)
|
|||
|
return REG_EPAREN;
|
|||
|
|
|||
|
free (compile_stack.stack);
|
|||
|
|
|||
|
/* We have succeeded; set the length of the buffer. */
|
|||
|
bufp->used = b - bufp->buffer;
|
|||
|
return REG_NOERROR;
|
|||
|
} /* regex_compile */
|
|||
|
|
|||
|
/* Subroutines for regex_compile. */
|
|||
|
|
|||
|
/* Store a jump of the form <OPCODE> <relative address>.
|
|||
|
Store in the location FROM a jump operation to jump to relative
|
|||
|
address FROM - TO. OPCODE is the opcode to store. */
|
|||
|
|
|||
|
static void
|
|||
|
store_jump (from, op, to)
|
|||
|
unsigned char *from, *to;
|
|||
|
re_opcode_t op;
|
|||
|
{
|
|||
|
from[0] = (unsigned char) op;
|
|||
|
STORE_NUMBER (from + 1, to - (from + 3));
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Open up space before char FROM, and insert there a jump to TO.
|
|||
|
CURRENT_END gives the end of the storage not in use, so we know
|
|||
|
how much data to copy up. OP is the opcode of the jump to insert.
|
|||
|
|
|||
|
If you call this function, you must zero out pending_exact. */
|
|||
|
|
|||
|
static void
|
|||
|
insert_jump (op, from, to, current_end)
|
|||
|
re_opcode_t op;
|
|||
|
unsigned char *from, *to, *current_end;
|
|||
|
{
|
|||
|
register unsigned char *pfrom = current_end; /* Copy from here... */
|
|||
|
register unsigned char *pto = current_end + 3; /* ...to here. */
|
|||
|
|
|||
|
while (pfrom != from)
|
|||
|
*--pto = *--pfrom;
|
|||
|
|
|||
|
store_jump (from, op, to);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Store a jump of the form <opcode> <relative address> <n>.
|
|||
|
|
|||
|
Store in the location FROM a jump operation to jump to relative
|
|||
|
address FROM - TO. OPCODE is the opcode to store, N is a number the
|
|||
|
jump uses, say, to decide how many times to jump.
|
|||
|
|
|||
|
If you call this function, you must zero out pending_exact. */
|
|||
|
|
|||
|
static void
|
|||
|
store_jump_n (from, op, to, n)
|
|||
|
unsigned char *from, *to;
|
|||
|
re_opcode_t op;
|
|||
|
unsigned n;
|
|||
|
{
|
|||
|
from[0] = (unsigned char) op;
|
|||
|
STORE_NUMBER (from + 1, to - (from + 3));
|
|||
|
STORE_NUMBER (from + 3, n);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Similar to insert_jump, but handles a jump which needs an extra
|
|||
|
number to handle minimum and maximum cases. Open up space at
|
|||
|
location FROM, and insert there a jump to TO. CURRENT_END gives the
|
|||
|
end of the storage in use, so we know how much data to copy up. OP is
|
|||
|
the opcode of the jump to insert.
|
|||
|
|
|||
|
If you call this function, you must zero out pending_exact. */
|
|||
|
|
|||
|
static void
|
|||
|
insert_jump_n (op, from, to, current_end, n)
|
|||
|
re_opcode_t op;
|
|||
|
unsigned char *from, *to, *current_end;
|
|||
|
unsigned n;
|
|||
|
{
|
|||
|
register unsigned char *pfrom = current_end;
|
|||
|
register unsigned char *pto = current_end + 5;
|
|||
|
|
|||
|
while (pfrom != from)
|
|||
|
*--pto = *--pfrom;
|
|||
|
|
|||
|
store_jump_n (from, op, to, n);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Open up space at location THERE, and insert operation OP followed by
|
|||
|
NUM_1 and NUM_2. CURRENT_END gives the end of the storage in use, so
|
|||
|
we know how much data to copy up.
|
|||
|
|
|||
|
If you call this function, you must zero out pending_exact. */
|
|||
|
|
|||
|
static void
|
|||
|
insert_op_2 (op, there, current_end, num_1, num_2)
|
|||
|
re_opcode_t op;
|
|||
|
unsigned char *there, *current_end;
|
|||
|
int num_1, num_2;
|
|||
|
{
|
|||
|
register unsigned char *pfrom = current_end;
|
|||
|
register unsigned char *pto = current_end + 5;
|
|||
|
|
|||
|
while (pfrom != there)
|
|||
|
*--pto = *--pfrom;
|
|||
|
|
|||
|
there[0] = (unsigned char) op;
|
|||
|
STORE_NUMBER (there + 1, num_1);
|
|||
|
STORE_NUMBER (there + 3, num_2);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Return true if the pattern position P is at a close-group or
|
|||
|
alternation operator, or if it is a newline and RE_NEWLINE_ORDINARY
|
|||
|
is not set in SYNTAX. Before checking, though, we skip past all
|
|||
|
operators that match the empty string.
|
|||
|
|
|||
|
This is not quite the dual of what happens with ^. There, we can
|
|||
|
easily check if the (sub)pattern so far can match only the empty
|
|||
|
string, because we have seen the pattern, and `laststart' is set to
|
|||
|
exactly that. But we cannot easily look at the pattern yet to come
|
|||
|
to see if it matches the empty string; that would require us to compile
|
|||
|
the pattern, then go back and analyze the pattern after every
|
|||
|
endline. POSIX required this at one point (that $ be in a
|
|||
|
``trailing'' position to be considered an anchor), so we implemented
|
|||
|
it, but it was slow and took lots of code, and we were never really
|
|||
|
convinced it worked in all cases. So now it's gone, and we live with
|
|||
|
the slight inconsistency between ^ and $. */
|
|||
|
|
|||
|
static boolean
|
|||
|
at_endline_op_p (p, pend, syntax)
|
|||
|
const char *p, *pend;
|
|||
|
int syntax;
|
|||
|
{
|
|||
|
boolean context_indep = !!(syntax & RE_CONTEXT_INDEP_ANCHORS);
|
|||
|
|
|||
|
/* Skip past operators that match the empty string. (Except we don't
|
|||
|
handle empty groups.) */
|
|||
|
while (p < pend)
|
|||
|
{
|
|||
|
if (context_indep && (*p == '^' || *p == '$'))
|
|||
|
p++;
|
|||
|
|
|||
|
/* All others start with \. */
|
|||
|
else if (*p == '\\' && p + 1 < pend
|
|||
|
&& (p[1] == 'b' || p[1] == 'B'
|
|||
|
|| p[1] == '<' || p[1] == '>'
|
|||
|
|| p[1] == '`' || p[1] == '\''
|
|||
|
#ifdef emacs
|
|||
|
|| p[1] == '='
|
|||
|
#endif
|
|||
|
))
|
|||
|
p += 2;
|
|||
|
|
|||
|
else /* Not an empty string operator. */
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
/* See what we're at now. */
|
|||
|
return p < pend
|
|||
|
&& ((!(syntax & RE_NEWLINE_ORDINARY) && *p == '\n')
|
|||
|
|| (syntax & RE_NO_BK_PARENS
|
|||
|
? *p == ')'
|
|||
|
: *p == '\\' && p + 1 < pend && p[1] == ')')
|
|||
|
|| (syntax & RE_NO_BK_VBAR
|
|||
|
? *p == '|'
|
|||
|
: (*p == '\\' && p + 1 < pend && p[1] == '|')));
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
|
|||
|
false if it's not. */
|
|||
|
|
|||
|
static boolean
|
|||
|
group_in_compile_stack (compile_stack, regnum)
|
|||
|
compile_stack_type compile_stack;
|
|||
|
regnum_t regnum;
|
|||
|
{
|
|||
|
int this_element;
|
|||
|
|
|||
|
for (this_element = compile_stack.avail - 1;
|
|||
|
this_element >= 0;
|
|||
|
this_element--)
|
|||
|
if (compile_stack.stack[this_element].regnum == regnum)
|
|||
|
return true;
|
|||
|
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
/* Failure stack declarations and macros; both re_compile_fastmap and
|
|||
|
re_match_2 use a failure stack. These have to be macros because of
|
|||
|
REGEX_ALLOCATE. */
|
|||
|
|
|||
|
|
|||
|
/* Number of failure points for which to initially allocate space
|
|||
|
when matching. If this number is exceeded, we allocate more
|
|||
|
space---so it is not a hard limit. */
|
|||
|
#ifndef INIT_FAILURE_ALLOC
|
|||
|
#define INIT_FAILURE_ALLOC 5
|
|||
|
#endif
|
|||
|
|
|||
|
/* Roughly the maximum number of failure points on the stack. Would be
|
|||
|
exactly that if always used MAX_FAILURE_SPACE each time we failed.
|
|||
|
This is a variable only so users of regex can assign to it; we never
|
|||
|
change it ourselves. */
|
|||
|
int re_max_failures = 2000;
|
|||
|
|
|||
|
typedef const unsigned char *failure_stack_elt_t;
|
|||
|
|
|||
|
typedef struct
|
|||
|
{
|
|||
|
failure_stack_elt_t *stack;
|
|||
|
unsigned size;
|
|||
|
unsigned avail; /* Offset of next open position. */
|
|||
|
} failure_stack_type;
|
|||
|
|
|||
|
#define FAILURE_STACK_EMPTY() (failure_stack.avail == 0)
|
|||
|
#define FAILURE_STACK_PTR_EMPTY() (failure_stack_ptr->avail == 0)
|
|||
|
#define FAILURE_STACK_FULL() (failure_stack.avail == failure_stack.size)
|
|||
|
#define FAILURE_STACK_TOP() (failure_stack.stack[failure_stack.avail])
|
|||
|
|
|||
|
|
|||
|
/* Initialize FAILURE_STACK. Return 1 if success, 0 if not. */
|
|||
|
|
|||
|
#define INIT_FAILURE_STACK(failure_stack) \
|
|||
|
((failure_stack).stack = (failure_stack_elt_t *) \
|
|||
|
REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (failure_stack_elt_t)), \
|
|||
|
(failure_stack).stack == NULL \
|
|||
|
? 0 \
|
|||
|
: ((failure_stack).size = INIT_FAILURE_ALLOC, \
|
|||
|
(failure_stack).avail = 0, \
|
|||
|
1))
|
|||
|
|
|||
|
|
|||
|
/* Double the size of FAILURE_STACK, up to approximately
|
|||
|
`re_max_failures' items.
|
|||
|
|
|||
|
Return 1 if succeeds, and 0 if either ran out of memory
|
|||
|
allocating space for it or it was already too large.
|
|||
|
|
|||
|
REGEX_REALLOCATE requires `destination' be declared. */
|
|||
|
|
|||
|
#define DOUBLE_FAILURE_STACK(failure_stack) \
|
|||
|
((failure_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
|
|||
|
? 0 \
|
|||
|
: ((failure_stack).stack = (failure_stack_elt_t *) \
|
|||
|
REGEX_REALLOCATE ((failure_stack).stack, \
|
|||
|
((failure_stack).size << 1) * sizeof (failure_stack_elt_t)), \
|
|||
|
\
|
|||
|
(failure_stack).stack == NULL \
|
|||
|
? 0 \
|
|||
|
: ((failure_stack).size <<= 1, \
|
|||
|
1)))
|
|||
|
|
|||
|
|
|||
|
/* Push PATTERN_OP on FAILURE_STACK.
|
|||
|
|
|||
|
Return 1 if was able to do so and 0 if ran out of memory allocating
|
|||
|
space to do so. */
|
|||
|
#define PUSH_PATTERN_OP(pattern_op, failure_stack) \
|
|||
|
((FAILURE_STACK_FULL () \
|
|||
|
&& !DOUBLE_FAILURE_STACK (failure_stack)) \
|
|||
|
? 0 \
|
|||
|
: ((failure_stack).stack[(failure_stack).avail++] = pattern_op, \
|
|||
|
1))
|
|||
|
|
|||
|
/* This pushes an item onto the failure stack. Must be a four-byte
|
|||
|
value. Assumes the variable `failure_stack'. Probably should only
|
|||
|
be called from within `PUSH_FAILURE_POINT'. */
|
|||
|
#define PUSH_FAILURE_ITEM(item) \
|
|||
|
failure_stack.stack[failure_stack.avail++] = (failure_stack_elt_t) item
|
|||
|
|
|||
|
/* The complement operation. Assumes stack is nonempty, and pointed to
|
|||
|
`failure_stack_ptr'. */
|
|||
|
#define POP_FAILURE_ITEM() \
|
|||
|
failure_stack_ptr->stack[--failure_stack_ptr->avail]
|
|||
|
|
|||
|
/* Used to omit pushing failure point id's when we're not debugging. */
|
|||
|
#ifdef DEBUG
|
|||
|
#define DEBUG_PUSH PUSH_FAILURE_ITEM
|
|||
|
#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
|
|||
|
#else
|
|||
|
#define DEBUG_PUSH(item)
|
|||
|
#define DEBUG_POP(item_addr)
|
|||
|
#endif
|
|||
|
|
|||
|
|
|||
|
/* Push the information about the state we will need
|
|||
|
if we ever fail back to it.
|
|||
|
|
|||
|
Requires variables failure_stack, regstart, regend, reg_info, and
|
|||
|
num_regs be declared. DOUBLE_FAILURE_STACK requires `destination' be
|
|||
|
declared.
|
|||
|
|
|||
|
Does `return FAILURE_CODE' if runs out of memory. */
|
|||
|
|
|||
|
#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
|
|||
|
do { \
|
|||
|
char *destination; \
|
|||
|
/* Must be int, so when we don't save any registers, the arithmetic \
|
|||
|
of 0 + -1 isn't done as unsigned. */ \
|
|||
|
int this_reg; \
|
|||
|
\
|
|||
|
DEBUG_STATEMENT (failure_id++); \
|
|||
|
DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
|
|||
|
DEBUG_PRINT2 (" Before push, next avail: %d\n", (failure_stack).avail);\
|
|||
|
DEBUG_PRINT2 (" size: %d\n", (failure_stack).size);\
|
|||
|
\
|
|||
|
DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
|
|||
|
DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
|
|||
|
\
|
|||
|
/* Ensure we have enough space allocated for what we will push. */ \
|
|||
|
while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
|
|||
|
{ \
|
|||
|
if (!DOUBLE_FAILURE_STACK (failure_stack)) \
|
|||
|
return failure_code; \
|
|||
|
\
|
|||
|
DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
|
|||
|
(failure_stack).size); \
|
|||
|
DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
|
|||
|
} \
|
|||
|
\
|
|||
|
/* Push the info, starting with the registers. */ \
|
|||
|
DEBUG_PRINT1 ("\n"); \
|
|||
|
\
|
|||
|
for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
|
|||
|
this_reg++) \
|
|||
|
{ \
|
|||
|
DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
|
|||
|
DEBUG_STATEMENT (num_regs_pushed++); \
|
|||
|
\
|
|||
|
DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
|
|||
|
PUSH_FAILURE_ITEM (regstart[this_reg]); \
|
|||
|
\
|
|||
|
DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
|
|||
|
PUSH_FAILURE_ITEM (regend[this_reg]); \
|
|||
|
\
|
|||
|
DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
|
|||
|
DEBUG_PRINT2 (" match_nothing=%d", \
|
|||
|
REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
|
|||
|
DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
|
|||
|
DEBUG_PRINT2 (" matched_something=%d", \
|
|||
|
MATCHED_SOMETHING (reg_info[this_reg])); \
|
|||
|
DEBUG_PRINT2 (" ever_matched=%d", \
|
|||
|
EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
|
|||
|
DEBUG_PRINT1 ("\n"); \
|
|||
|
PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
|
|||
|
} \
|
|||
|
\
|
|||
|
DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg); \
|
|||
|
PUSH_FAILURE_ITEM (lowest_active_reg); \
|
|||
|
\
|
|||
|
DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
|
|||
|
PUSH_FAILURE_ITEM (highest_active_reg); \
|
|||
|
\
|
|||
|
DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
|
|||
|
DEBUG_COMPILED_PATTERN_PRINTER (bufp, pattern_place, pend); \
|
|||
|
PUSH_FAILURE_ITEM (pattern_place); \
|
|||
|
\
|
|||
|
DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
|
|||
|
DEBUG_DOUBLE_STRING_PRINTER (string_place, string1, size1, string2, \
|
|||
|
size2); \
|
|||
|
DEBUG_PRINT1 ("'\n"); \
|
|||
|
PUSH_FAILURE_ITEM (string_place); \
|
|||
|
\
|
|||
|
DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
|
|||
|
DEBUG_PUSH (failure_id); \
|
|||
|
} while (0)
|
|||
|
|
|||
|
/* This is the number of items that are pushed and popped on the stack
|
|||
|
for each register. */
|
|||
|
#define NUM_REG_ITEMS 3
|
|||
|
|
|||
|
/* Individual items aside from the registers. */
|
|||
|
#ifdef DEBUG
|
|||
|
#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
|
|||
|
#else
|
|||
|
#define NUM_NONREG_ITEMS 4
|
|||
|
#endif
|
|||
|
|
|||
|
/* We push at most this many items on the stack. */
|
|||
|
#define MAX_FAILURE_ITEMS \
|
|||
|
((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
|
|||
|
|
|||
|
/* We actually push this many items. */
|
|||
|
#define NUM_FAILURE_ITEMS \
|
|||
|
((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
|
|||
|
+ NUM_NONREG_ITEMS)
|
|||
|
|
|||
|
/* How many items can still be added to the stack without overflowing it. */
|
|||
|
#define REMAINING_AVAIL_SLOTS \
|
|||
|
((failure_stack).size - (failure_stack).avail)
|
|||
|
|
|||
|
/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
|
|||
|
BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
|
|||
|
characters can start a string that matches the pattern. This fastmap
|
|||
|
is used by re_search to skip quickly over impossible starting points.
|
|||
|
|
|||
|
The caller must supply the address of a (1 << BYTEWIDTH)-byte data
|
|||
|
area as BUFP->fastmap. The other components of BUFP describe the
|
|||
|
pattern to be used.
|
|||
|
|
|||
|
We set the `can_be_null' and `fastmap_accurate' fields in the pattern
|
|||
|
|
|||
|
Returns 0 if it can compile a fastmap. Returns -2 if there is an
|
|||
|
internal error. */
|
|||
|
|
|||
|
int
|
|||
|
re_compile_fastmap (bufp)
|
|||
|
struct re_pattern_buffer *bufp;
|
|||
|
{
|
|||
|
int j, k;
|
|||
|
failure_stack_type failure_stack;
|
|||
|
#ifndef REGEX_MALLOC
|
|||
|
char *destination;
|
|||
|
#endif
|
|||
|
/* We don't push any register information onto the failure stack. */
|
|||
|
unsigned num_regs = 0;
|
|||
|
|
|||
|
register char *fastmap = bufp->fastmap;
|
|||
|
unsigned char *pattern = bufp->buffer;
|
|||
|
unsigned long size = bufp->used;
|
|||
|
const unsigned char *p = pattern;
|
|||
|
register unsigned char *pend = pattern + size;
|
|||
|
|
|||
|
INIT_FAILURE_STACK (failure_stack);
|
|||
|
|
|||
|
bzero (fastmap, 1 << BYTEWIDTH);
|
|||
|
bufp->fastmap_accurate = 1; /* It will be when we're done. */
|
|||
|
bufp->can_be_null = 0;
|
|||
|
|
|||
|
while (p)
|
|||
|
{
|
|||
|
boolean is_a_succeed_n = false;
|
|||
|
|
|||
|
if (p == pend)
|
|||
|
if (FAILURE_STACK_EMPTY ())
|
|||
|
{
|
|||
|
bufp->can_be_null = 1;
|
|||
|
break;
|
|||
|
}
|
|||
|
else
|
|||
|
p = failure_stack.stack[--failure_stack.avail];
|
|||
|
|
|||
|
#ifdef SWITCH_ENUM_BUG
|
|||
|
switch ((int) ((re_opcode_t) *p++))
|
|||
|
#else
|
|||
|
switch ((re_opcode_t) *p++)
|
|||
|
#endif
|
|||
|
{
|
|||
|
case exactn:
|
|||
|
fastmap[p[1]] = 1;
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case charset:
|
|||
|
for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
|
|||
|
if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
|
|||
|
fastmap[j] = 1;
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case charset_not:
|
|||
|
/* Chars beyond end of map must be allowed. */
|
|||
|
for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
|
|||
|
fastmap[j] = 1;
|
|||
|
|
|||
|
for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
|
|||
|
if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
|
|||
|
fastmap[j] = 1;
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case no_op:
|
|||
|
case begline:
|
|||
|
case begbuf:
|
|||
|
case endbuf:
|
|||
|
case wordbound:
|
|||
|
case notwordbound:
|
|||
|
case wordbeg:
|
|||
|
case wordend:
|
|||
|
continue;
|
|||
|
|
|||
|
|
|||
|
case endline:
|
|||
|
if (!bufp->can_be_null)
|
|||
|
bufp->can_be_null = 2;
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case no_pop_jump_n:
|
|||
|
case pop_failure_jump:
|
|||
|
case maybe_pop_jump:
|
|||
|
case no_pop_jump:
|
|||
|
case jump_past_next_alt:
|
|||
|
case dummy_failure_jump:
|
|||
|
EXTRACT_NUMBER_AND_INCR (j, p);
|
|||
|
p += j;
|
|||
|
if (j > 0)
|
|||
|
continue;
|
|||
|
|
|||
|
/* Jump backward reached implies we just went through
|
|||
|
the body of a loop and matched nothing. Opcode jumped to
|
|||
|
should be an on_failure_jump or succeed_n. Just treat it
|
|||
|
like an ordinary jump. For a * loop, it has pushed its
|
|||
|
failure point already; if so, discard that as redundant. */
|
|||
|
|
|||
|
if ((re_opcode_t) *p != on_failure_jump
|
|||
|
&& (re_opcode_t) *p != succeed_n)
|
|||
|
continue;
|
|||
|
|
|||
|
p++;
|
|||
|
EXTRACT_NUMBER_AND_INCR (j, p);
|
|||
|
p += j;
|
|||
|
|
|||
|
/* If what's on the stack is where we are now, pop it. */
|
|||
|
if (!FAILURE_STACK_EMPTY ()
|
|||
|
&& failure_stack.stack[failure_stack.avail - 1] == p)
|
|||
|
failure_stack.avail--;
|
|||
|
|
|||
|
continue;
|
|||
|
|
|||
|
|
|||
|
case on_failure_jump:
|
|||
|
handle_on_failure_jump:
|
|||
|
EXTRACT_NUMBER_AND_INCR (j, p);
|
|||
|
|
|||
|
/* For some patterns, e.g., `(a?)?', `p+j' here points to the
|
|||
|
end of the pattern. We don't want to push such a point,
|
|||
|
since when we restore it above, entering the switch will
|
|||
|
increment `p' past the end of the pattern. We don't need
|
|||
|
to push such a point since there can't be any more
|
|||
|
possibilities for the fastmap beyond pend. */
|
|||
|
if (p + j < pend)
|
|||
|
{
|
|||
|
if (!PUSH_PATTERN_OP (p + j, failure_stack))
|
|||
|
return -2;
|
|||
|
}
|
|||
|
|
|||
|
if (is_a_succeed_n)
|
|||
|
EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
|
|||
|
|
|||
|
continue;
|
|||
|
|
|||
|
|
|||
|
case succeed_n:
|
|||
|
is_a_succeed_n = true;
|
|||
|
|
|||
|
/* Get to the number of times to succeed. */
|
|||
|
p += 2;
|
|||
|
|
|||
|
/* Increment p past the n for when k != 0. */
|
|||
|
EXTRACT_NUMBER_AND_INCR (k, p);
|
|||
|
if (k == 0)
|
|||
|
{
|
|||
|
p -= 4;
|
|||
|
goto handle_on_failure_jump;
|
|||
|
}
|
|||
|
continue;
|
|||
|
|
|||
|
|
|||
|
case set_number_at:
|
|||
|
p += 4;
|
|||
|
continue;
|
|||
|
|
|||
|
|
|||
|
case start_memory:
|
|||
|
case stop_memory:
|
|||
|
p += 2;
|
|||
|
continue;
|
|||
|
|
|||
|
|
|||
|
/* I don't understand this case (any of it). --karl */
|
|||
|
case duplicate:
|
|||
|
bufp->can_be_null = 1;
|
|||
|
fastmap['\n'] = 1;
|
|||
|
|
|||
|
|
|||
|
case anychar:
|
|||
|
for (j = 0; j < (1 << BYTEWIDTH); j++)
|
|||
|
if (j != '\n')
|
|||
|
fastmap[j] = 1;
|
|||
|
if (bufp->can_be_null)
|
|||
|
return 0;
|
|||
|
|
|||
|
/* Don't return; check the alternative paths
|
|||
|
so we can set can_be_null if appropriate. */
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case wordchar:
|
|||
|
for (j = 0; j < (1 << BYTEWIDTH); j++)
|
|||
|
if (SYNTAX (j) == Sword)
|
|||
|
fastmap[j] = 1;
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case notwordchar:
|
|||
|
for (j = 0; j < (1 << BYTEWIDTH); j++)
|
|||
|
if (SYNTAX (j) != Sword)
|
|||
|
fastmap[j] = 1;
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
#ifdef emacs
|
|||
|
case before_dot:
|
|||
|
case at_dot:
|
|||
|
case after_dot:
|
|||
|
continue;
|
|||
|
|
|||
|
|
|||
|
case syntaxspec:
|
|||
|
k = *p++;
|
|||
|
for (j = 0; j < (1 << BYTEWIDTH); j++)
|
|||
|
if (SYNTAX (j) == (enum syntaxcode) k)
|
|||
|
fastmap[j] = 1;
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case notsyntaxspec:
|
|||
|
k = *p++;
|
|||
|
for (j = 0; j < (1 << BYTEWIDTH); j++)
|
|||
|
if (SYNTAX (j) != (enum syntaxcode) k)
|
|||
|
fastmap[j] = 1;
|
|||
|
break;
|
|||
|
#endif /* not emacs */
|
|||
|
|
|||
|
default:
|
|||
|
abort ();
|
|||
|
} /* switch *p++ */
|
|||
|
|
|||
|
/* Getting here means we have successfully found the possible starting
|
|||
|
characters of one path of the pattern. We need not follow this
|
|||
|
path any farther. Instead, look at the next alternative
|
|||
|
remembered in the stack, or quit. The test at the top of the
|
|||
|
loop does these things. */
|
|||
|
p = pend;
|
|||
|
} /* while p */
|
|||
|
|
|||
|
return 0;
|
|||
|
} /* re_compile_fastmap */
|
|||
|
|
|||
|
/* Searching routines. */
|
|||
|
|
|||
|
/* Like re_search_2, below, but only one string is specified, and
|
|||
|
doesn't let you say where to stop matching. */
|
|||
|
|
|||
|
int
|
|||
|
re_search (bufp, string, size, startpos, range, regs)
|
|||
|
struct re_pattern_buffer *bufp;
|
|||
|
const char *string;
|
|||
|
int size, startpos, range;
|
|||
|
struct re_registers *regs;
|
|||
|
{
|
|||
|
return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
|
|||
|
regs, size);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Using the compiled pattern in BUFP->buffer, first tries to match the
|
|||
|
virtual concatenation of STRING1 and STRING2, starting first at index
|
|||
|
STARTPOS, then at STARTPOS + 1, and so on.
|
|||
|
|
|||
|
STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
|
|||
|
|
|||
|
RANGE is how far to scan while trying to match. RANGE = 0 means try
|
|||
|
only at STARTPOS; in general, the last start tried is STARTPOS +
|
|||
|
RANGE.
|
|||
|
|
|||
|
In REGS, return the indices of the virtual concatenation of STRING1
|
|||
|
and STRING2 that matched the entire BUFP->buffer and its contained
|
|||
|
subexpressions.
|
|||
|
|
|||
|
Do not consider matching one past the index STOP in the virtual
|
|||
|
concatenation of STRING1 and STRING2.
|
|||
|
|
|||
|
We return either the position in the strings at which the match was
|
|||
|
found, -1 if no match, or -2 if error (such as failure
|
|||
|
stack overflow). */
|
|||
|
|
|||
|
int
|
|||
|
re_search_2 (bufp, string1, size1, string2, size2, startpos, range,
|
|||
|
regs, stop)
|
|||
|
struct re_pattern_buffer *bufp;
|
|||
|
const char *string1, *string2;
|
|||
|
int size1, size2;
|
|||
|
int startpos;
|
|||
|
int range;
|
|||
|
struct re_registers *regs;
|
|||
|
int stop;
|
|||
|
{
|
|||
|
int val;
|
|||
|
register char *fastmap = bufp->fastmap;
|
|||
|
register char *translate = bufp->translate;
|
|||
|
int total_size = size1 + size2;
|
|||
|
int endpos = startpos + range;
|
|||
|
|
|||
|
/* Check for out-of-range STARTPOS. */
|
|||
|
if (startpos < 0 || startpos > total_size)
|
|||
|
return -1;
|
|||
|
|
|||
|
/* Fix up RANGE if it might eventually take us outside
|
|||
|
the virtual concatenation of STRING1 and STRING2. */
|
|||
|
if (endpos < -1)
|
|||
|
range = -1 - startpos;
|
|||
|
else if (endpos > total_size)
|
|||
|
range = total_size - startpos;
|
|||
|
|
|||
|
/* Update the fastmap now if not correct already. */
|
|||
|
if (fastmap && !bufp->fastmap_accurate)
|
|||
|
if (re_compile_fastmap (bufp) == -2)
|
|||
|
return -2;
|
|||
|
|
|||
|
/* If the search isn't to be a backwards one, don't waste time in a
|
|||
|
long search for a pattern that says it is anchored. */
|
|||
|
if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf
|
|||
|
&& range > 0)
|
|||
|
{
|
|||
|
if (startpos > 0)
|
|||
|
return -1;
|
|||
|
else
|
|||
|
range = 1;
|
|||
|
}
|
|||
|
|
|||
|
for (;;)
|
|||
|
{
|
|||
|
/* If a fastmap is supplied, skip quickly over characters that
|
|||
|
cannot be the start of a match. If the pattern can match the
|
|||
|
null string, however, we don't want to skip over characters; we
|
|||
|
want the first null string. */
|
|||
|
if (fastmap && startpos < total_size && !bufp->can_be_null)
|
|||
|
{
|
|||
|
if (range > 0) /* Searching forwards. */
|
|||
|
{
|
|||
|
register const char *d;
|
|||
|
register int lim = 0;
|
|||
|
int irange = range;
|
|||
|
|
|||
|
if (startpos < size1 && startpos + range >= size1)
|
|||
|
lim = range - (size1 - startpos);
|
|||
|
|
|||
|
d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
|
|||
|
|
|||
|
/* Written out as an if-else to avoid testing `translate'
|
|||
|
inside the loop. */
|
|||
|
if (translate)
|
|||
|
{
|
|||
|
while (range > lim
|
|||
|
&& !fastmap[(unsigned char) translate[*d++]])
|
|||
|
range--;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
while (range > lim && !fastmap[(unsigned char) *d++])
|
|||
|
range--;
|
|||
|
}
|
|||
|
|
|||
|
startpos += irange - range;
|
|||
|
}
|
|||
|
else /* Searching backwards. */
|
|||
|
{
|
|||
|
register char c
|
|||
|
= (size1 == 0 || startpos >= size1
|
|||
|
? string2[startpos - size1]
|
|||
|
: string1[startpos]);
|
|||
|
|
|||
|
if (translate
|
|||
|
? !fastmap[(unsigned char) translate[(unsigned char) c]]
|
|||
|
: !fastmap[(unsigned char) c])
|
|||
|
goto advance;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* If can't match the null string, and that's all we have left, fail. */
|
|||
|
if (range >= 0 && startpos == total_size
|
|||
|
&& fastmap && bufp->can_be_null == 0)
|
|||
|
return -1;
|
|||
|
|
|||
|
val = re_match_2 (bufp, string1, size1, string2, size2,
|
|||
|
startpos, regs, stop);
|
|||
|
if (val >= 0)
|
|||
|
return startpos;
|
|||
|
|
|||
|
if (val == -2)
|
|||
|
return -2;
|
|||
|
|
|||
|
advance:
|
|||
|
if (!range)
|
|||
|
break;
|
|||
|
else if (range > 0)
|
|||
|
{
|
|||
|
range--;
|
|||
|
startpos++;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
range++;
|
|||
|
startpos--;
|
|||
|
}
|
|||
|
}
|
|||
|
return -1;
|
|||
|
} /* re_search_2 */
|
|||
|
|
|||
|
/* Declarations and macros for re_match_2. */
|
|||
|
|
|||
|
static int bcmp_translate ();
|
|||
|
static boolean alt_match_null_string_p (),
|
|||
|
common_op_match_null_string_p (),
|
|||
|
group_match_null_string_p ();
|
|||
|
static void pop_failure_point ();
|
|||
|
|
|||
|
|
|||
|
/* Structure for per-register (a.k.a. per-group) information.
|
|||
|
This must not be longer than one word, because we push this value
|
|||
|
onto the failure stack. Other register information, such as the
|
|||
|
starting and ending positions (which are addresses), and the list of
|
|||
|
inner groups (which is a bits list) are maintained in separate
|
|||
|
variables.
|
|||
|
|
|||
|
We are making a (strictly speaking) nonportable assumption here: that
|
|||
|
the compiler will pack our bit fields into something that fits into
|
|||
|
the type of `word', i.e., is something that fits into one item on the
|
|||
|
failure stack. */
|
|||
|
typedef union
|
|||
|
{
|
|||
|
failure_stack_elt_t word;
|
|||
|
struct
|
|||
|
{
|
|||
|
/* This field is one if this group can match the empty string,
|
|||
|
zero if not. If not yet determined, `MATCH_NOTHING_UNSET_VALUE'. */
|
|||
|
#define MATCH_NOTHING_UNSET_VALUE 3
|
|||
|
unsigned match_null_string_p : 2;
|
|||
|
unsigned is_active : 1;
|
|||
|
unsigned matched_something : 1;
|
|||
|
unsigned ever_matched_something : 1;
|
|||
|
} bits;
|
|||
|
} register_info_type;
|
|||
|
|
|||
|
#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
|
|||
|
#define IS_ACTIVE(R) ((R).bits.is_active)
|
|||
|
#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
|
|||
|
#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
|
|||
|
|
|||
|
|
|||
|
/* Call this when have matched something; it sets `matched' flags for the
|
|||
|
registers corresponding to the group of which we currently are inside.
|
|||
|
Also records whether this group ever matched something. We only care
|
|||
|
about this information at `stop_memory', and then only about the
|
|||
|
previous time through the loop (if the group is starred or whatever).
|
|||
|
So it is ok to clear all the nonactive registers here. */
|
|||
|
#define SET_REGS_MATCHED() \
|
|||
|
do \
|
|||
|
{ \
|
|||
|
unsigned r; \
|
|||
|
for (r = lowest_active_reg; r <= highest_active_reg; r++) \
|
|||
|
{ \
|
|||
|
MATCHED_SOMETHING (reg_info[r]) \
|
|||
|
= EVER_MATCHED_SOMETHING (reg_info[r]) \
|
|||
|
= 1; \
|
|||
|
} \
|
|||
|
} \
|
|||
|
while (0)
|
|||
|
|
|||
|
|
|||
|
/* This converts a pointer into one or the other of the strings into an
|
|||
|
offset from the beginning of that string. */
|
|||
|
#define POINTER_TO_OFFSET(pointer) IS_IN_FIRST_STRING (pointer) \
|
|||
|
? (pointer) - string1 \
|
|||
|
: (pointer) - string2 + size1
|
|||
|
|
|||
|
/* Registers are set to a sentinel value when they haven't yet matched
|
|||
|
anything. */
|
|||
|
#define REG_UNSET_VALUE ((char *) -1)
|
|||
|
#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
|
|||
|
|
|||
|
|
|||
|
/* Macros for dealing with the split strings in re_match_2. */
|
|||
|
|
|||
|
#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
|
|||
|
|
|||
|
/* Call before fetching a character with *d. This switches over to
|
|||
|
string2 if necessary. */
|
|||
|
#define PREFETCH \
|
|||
|
while (d == dend) \
|
|||
|
{ \
|
|||
|
/* End of string2 => fail. */ \
|
|||
|
if (dend == end_match_2) \
|
|||
|
goto fail; \
|
|||
|
/* End of string1 => advance to string2. */ \
|
|||
|
d = string2; \
|
|||
|
dend = end_match_2; \
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Test if at very beginning or at very end of the virtual concatenation
|
|||
|
of string1 and string2. If there is only one string, we've put it in
|
|||
|
string2. */
|
|||
|
#define AT_STRINGS_BEG (d == (size1 ? string1 : string2) || !size2)
|
|||
|
#define AT_STRINGS_END (d == end2)
|
|||
|
|
|||
|
|
|||
|
/* Test if D points to a character which is word-constituent. We have
|
|||
|
two special cases to check for: if past the end of string1, look at
|
|||
|
the first character in string2; and if before the beginning of
|
|||
|
string2, look at the last character in string1.
|
|||
|
|
|||
|
We assume there is a string1, so use this in conjunction with
|
|||
|
AT_STRINGS_BEG. */
|
|||
|
#define LETTER_P(d) \
|
|||
|
(SYNTAX ((d) == end1 ? *string2 : (d) == string2 - 1 ? *(end1 - 1) : *(d))\
|
|||
|
== Sword)
|
|||
|
|
|||
|
/* Test if the character before D and the one at D differ with respect
|
|||
|
to being word-constituent. */
|
|||
|
#define AT_WORD_BOUNDARY(d) \
|
|||
|
(AT_STRINGS_BEG || AT_STRINGS_END || LETTER_P (d - 1) != LETTER_P (d))
|
|||
|
|
|||
|
|
|||
|
/* Free everything we malloc. */
|
|||
|
#ifdef REGEX_MALLOC
|
|||
|
#define FREE_VARIABLES() \
|
|||
|
do { \
|
|||
|
free (failure_stack.stack); \
|
|||
|
free (regstart); \
|
|||
|
free (regend); \
|
|||
|
free (old_regstart); \
|
|||
|
free (old_regend); \
|
|||
|
free (reg_info); \
|
|||
|
free (best_regstart); \
|
|||
|
free (best_regend); \
|
|||
|
reg_info = NULL; \
|
|||
|
failure_stack.stack = NULL; \
|
|||
|
regstart = regend = old_regstart = old_regend \
|
|||
|
= best_regstart = best_regend = NULL; \
|
|||
|
} while (0)
|
|||
|
#else /* not REGEX_MALLOC */
|
|||
|
#define FREE_VARIABLES() /* As nothing, since we use alloca. */
|
|||
|
#endif /* not REGEX_MALLOC */
|
|||
|
|
|||
|
|
|||
|
/* These values must meet several constraints. They must not be valid
|
|||
|
register values; since we have a limit of 255 registers (because
|
|||
|
we use only one byte in the pattern for the register number), we can
|
|||
|
use numbers larger than 255. They must differ by 1, because of
|
|||
|
NUM_FAILURE_ITEMS above. And the value for the lowest register must
|
|||
|
be larger than the value for the highest register, so we do not try
|
|||
|
to actually save any registers when none are active. */
|
|||
|
#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
|
|||
|
#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
|
|||
|
|
|||
|
/* Matching routines. */
|
|||
|
|
|||
|
#ifndef emacs /* Emacs never uses this. */
|
|||
|
|
|||
|
/* re_match is like re_match_2 except it takes only a single string. */
|
|||
|
|
|||
|
int
|
|||
|
re_match (bufp, string, size, pos, regs)
|
|||
|
const struct re_pattern_buffer *bufp;
|
|||
|
const char *string;
|
|||
|
int size, pos;
|
|||
|
struct re_registers *regs;
|
|||
|
{
|
|||
|
return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
|
|||
|
}
|
|||
|
#endif /* not emacs */
|
|||
|
|
|||
|
|
|||
|
/* re_match_2 matches the compiled pattern in BUFP against the
|
|||
|
the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
|
|||
|
and SIZE2, respectively). We start matching at POS, and stop
|
|||
|
matching at STOP.
|
|||
|
|
|||
|
If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
|
|||
|
store offsets for the substring each group matched in REGS. (If
|
|||
|
BUFP->caller_allocated_regs is nonzero, we fill REGS->num_regs
|
|||
|
registers; if zero, we set REGS->num_regs to max (RE_NREGS,
|
|||
|
re_nsub+1) and allocate the space with malloc before filling.)
|
|||
|
|
|||
|
We return -1 if no match, -2 if an internal error (such as the
|
|||
|
failure stack overflowing). Otherwise, we return the length of the
|
|||
|
matched substring. */
|
|||
|
|
|||
|
int
|
|||
|
re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
|
|||
|
const struct re_pattern_buffer *bufp;
|
|||
|
const char *string1, *string2;
|
|||
|
int size1, size2;
|
|||
|
int pos;
|
|||
|
struct re_registers *regs;
|
|||
|
int stop;
|
|||
|
{
|
|||
|
/* General temporaries. */
|
|||
|
int mcnt;
|
|||
|
unsigned char *p1;
|
|||
|
|
|||
|
/* Just past the end of the corresponding string. */
|
|||
|
const char *end1, *end2;
|
|||
|
|
|||
|
/* Pointers into string1 and string2, just past the last characters in
|
|||
|
each to consider matching. */
|
|||
|
const char *end_match_1, *end_match_2;
|
|||
|
|
|||
|
/* Where we are in the data, and the end of the current string. */
|
|||
|
const char *d, *dend;
|
|||
|
|
|||
|
/* Where we are in the pattern, and the end of the pattern. */
|
|||
|
unsigned char *p = bufp->buffer;
|
|||
|
register unsigned char *pend = p + bufp->used;
|
|||
|
|
|||
|
/* We use this to map every character in the string. */
|
|||
|
char *translate = bufp->translate;
|
|||
|
|
|||
|
/* Failure point stack. Each place that can handle a failure further
|
|||
|
down the line pushes a failure point on this stack. It consists of
|
|||
|
restart, regend, and reg_info for all registers corresponding to the
|
|||
|
subexpressions we're currently inside, plus the number of such
|
|||
|
registers, and, finally, two char *'s. The first char * is where to
|
|||
|
resume scanning the pattern; the second one is where to resume
|
|||
|
scanning the strings. If the latter is zero, the failure point is a
|
|||
|
``dummy''; if a failure happens and the failure point is a dummy, it
|
|||
|
gets discarded and the next next one is tried. */
|
|||
|
failure_stack_type failure_stack;
|
|||
|
#ifdef DEBUG
|
|||
|
static unsigned failure_id = 0;
|
|||
|
#endif
|
|||
|
|
|||
|
/* We fill all the registers internally, independent of what we
|
|||
|
return, for use in backreferences. The number here includes
|
|||
|
register zero. */
|
|||
|
unsigned num_regs = bufp->re_nsub + 1;
|
|||
|
|
|||
|
/* The currently active registers. */
|
|||
|
unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
|||
|
unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
|||
|
|
|||
|
/* Information on the contents of registers. These are pointers into
|
|||
|
the input strings; they record just what was matched (on this
|
|||
|
attempt) by a subexpression part of the pattern, that is, the
|
|||
|
regnum-th regstart pointer points to where in the pattern we began
|
|||
|
matching and the regnum-th regend points to right after where we
|
|||
|
stopped matching the regnum-th subexpression. (The zeroth register
|
|||
|
keeps track of what the whole pattern matches.) */
|
|||
|
const char **regstart
|
|||
|
= (const char **) REGEX_ALLOCATE (num_regs * sizeof (char *));
|
|||
|
const char **regend
|
|||
|
= (const char **) REGEX_ALLOCATE (num_regs * sizeof (char *));
|
|||
|
|
|||
|
/* If a group that's operated upon by a repetition operator fails to
|
|||
|
match anything, then the register for its start will need to be
|
|||
|
restored because it will have been set to wherever in the string we
|
|||
|
are when we last see its open-group operator. Similarly for a
|
|||
|
register's end. */
|
|||
|
const char **old_regstart
|
|||
|
= (const char **) REGEX_ALLOCATE (num_regs * sizeof (char *));
|
|||
|
const char **old_regend
|
|||
|
= (const char **) REGEX_ALLOCATE (num_regs * sizeof (char *));
|
|||
|
|
|||
|
/* The is_active field of reg_info helps us keep track of which (possibly
|
|||
|
nested) subexpressions we are currently in. The matched_something
|
|||
|
field of reg_info[reg_num] helps us tell whether or not we have
|
|||
|
matched any of the pattern so far this time through the reg_num-th
|
|||
|
subexpression. These two fields get reset each time through any
|
|||
|
loop their register is in. */
|
|||
|
register_info_type *reg_info = (register_info_type *)
|
|||
|
REGEX_ALLOCATE (num_regs * sizeof (register_info_type));
|
|||
|
|
|||
|
/* The following record the register info as found in the above
|
|||
|
variables when we find a match better than any we've seen before.
|
|||
|
This happens as we backtrack through the failure points, which in
|
|||
|
turn happens only if we have not yet matched the entire string. */
|
|||
|
unsigned best_regs_set = 0;
|
|||
|
const char **best_regstart
|
|||
|
= (const char **) REGEX_ALLOCATE (num_regs * sizeof (char *));
|
|||
|
const char **best_regend
|
|||
|
= (const char **) REGEX_ALLOCATE (num_regs * sizeof (char *));
|
|||
|
|
|||
|
/* Used when we pop values we don't care about. */
|
|||
|
const char **reg_dummy
|
|||
|
= (const char **) REGEX_ALLOCATE (num_regs * sizeof (char *));
|
|||
|
register_info_type *reg_info_dummy = (register_info_type *)
|
|||
|
REGEX_ALLOCATE (num_regs * sizeof (register_info_type));
|
|||
|
|
|||
|
#ifdef DEBUG
|
|||
|
/* Counts the total number of registers pushed. */
|
|||
|
unsigned num_regs_pushed = 0;
|
|||
|
#endif
|
|||
|
|
|||
|
DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
|
|||
|
|
|||
|
if (!INIT_FAILURE_STACK (failure_stack))
|
|||
|
return -2;
|
|||
|
|
|||
|
if (!(regstart && regend && old_regstart && old_regend && reg_info
|
|||
|
&& best_regstart && best_regend))
|
|||
|
{
|
|||
|
FREE_VARIABLES ();
|
|||
|
return -2;
|
|||
|
}
|
|||
|
|
|||
|
/* The starting position is bogus. */
|
|||
|
if (pos < 0 || pos > size1 + size2)
|
|||
|
{
|
|||
|
FREE_VARIABLES ();
|
|||
|
return -1;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Initialize subexpression text positions to -1 to mark ones that no
|
|||
|
\( or ( and \) or ) has been seen for. Also set all registers to
|
|||
|
inactive and mark them as not having any inner groups, able to
|
|||
|
match the empty string, matched anything so far, or ever failed. */
|
|||
|
for (mcnt = 0; mcnt < num_regs; mcnt++)
|
|||
|
{
|
|||
|
regstart[mcnt] = regend[mcnt]
|
|||
|
= old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
|
|||
|
|
|||
|
REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NOTHING_UNSET_VALUE;
|
|||
|
IS_ACTIVE (reg_info[mcnt]) = 0;
|
|||
|
MATCHED_SOMETHING (reg_info[mcnt]) = 0;
|
|||
|
EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
|
|||
|
}
|
|||
|
|
|||
|
IS_ACTIVE (reg_info[0]) = 1;
|
|||
|
|
|||
|
/* We move string1 into string2 if the latter's empty---but not if
|
|||
|
string1 is null. */
|
|||
|
if (size2 == 0 && string1 != NULL)
|
|||
|
{
|
|||
|
string2 = string1;
|
|||
|
size2 = size1;
|
|||
|
string1 = 0;
|
|||
|
size1 = 0;
|
|||
|
}
|
|||
|
end1 = string1 + size1;
|
|||
|
end2 = string2 + size2;
|
|||
|
|
|||
|
/* Compute where to stop matching, within the two strings. */
|
|||
|
if (stop <= size1)
|
|||
|
{
|
|||
|
end_match_1 = string1 + stop;
|
|||
|
end_match_2 = string2;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
end_match_1 = end1;
|
|||
|
end_match_2 = string2 + stop - size1;
|
|||
|
}
|
|||
|
|
|||
|
/* `p' scans through the pattern as `d' scans through the data. `dend'
|
|||
|
is the end of the input string that `d' points within. `d' is
|
|||
|
advanced into the following input string whenever necessary, but
|
|||
|
this happens before fetching; therefore, at the beginning of the
|
|||
|
loop, `d' can be pointing at the end of a string, but it cannot
|
|||
|
equal `string2'. */
|
|||
|
if (size1 > 0 && pos <= size1)
|
|||
|
{
|
|||
|
d = string1 + pos;
|
|||
|
dend = end_match_1;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
d = string2 + pos - size1;
|
|||
|
dend = end_match_2;
|
|||
|
}
|
|||
|
|
|||
|
DEBUG_PRINT1 ("The compiled pattern is: ");
|
|||
|
DEBUG_COMPILED_PATTERN_PRINTER (bufp, p, pend);
|
|||
|
DEBUG_PRINT1 ("The string to match is: `");
|
|||
|
DEBUG_DOUBLE_STRING_PRINTER (d, string1, size1, string2, size2);
|
|||
|
DEBUG_PRINT1 ("'\n");
|
|||
|
|
|||
|
/* This loops over pattern commands. It exits by returning from the
|
|||
|
function if the match is complete, or it drops through if the match
|
|||
|
fails at this starting point in the input data. */
|
|||
|
for (;;)
|
|||
|
{
|
|||
|
DEBUG_PRINT2 ("\n0x%x: ", p);
|
|||
|
|
|||
|
if (p == pend)
|
|||
|
{ /* End of pattern means we might have succeeded. */
|
|||
|
DEBUG_PRINT1 ("End of pattern: ");
|
|||
|
/* If not end of string, try backtracking. Otherwise done. */
|
|||
|
if (d != end_match_2)
|
|||
|
{
|
|||
|
DEBUG_PRINT1 ("backtracking.\n");
|
|||
|
|
|||
|
if (!FAILURE_STACK_EMPTY ())
|
|||
|
{ /* More failure points to try. */
|
|||
|
|
|||
|
boolean in_same_string =
|
|||
|
IS_IN_FIRST_STRING (best_regend[0])
|
|||
|
== MATCHING_IN_FIRST_STRING;
|
|||
|
|
|||
|
/* If exceeds best match so far, save it. */
|
|||
|
if (!best_regs_set
|
|||
|
|| (in_same_string && d > best_regend[0])
|
|||
|
|| (!in_same_string && !MATCHING_IN_FIRST_STRING))
|
|||
|
{
|
|||
|
best_regs_set = 1;
|
|||
|
best_regend[0] = d; /* Never use regstart[0]. */
|
|||
|
|
|||
|
for (mcnt = 1; mcnt < num_regs; mcnt++)
|
|||
|
{
|
|||
|
best_regstart[mcnt] = regstart[mcnt];
|
|||
|
best_regend[mcnt] = regend[mcnt];
|
|||
|
}
|
|||
|
}
|
|||
|
goto fail;
|
|||
|
}
|
|||
|
|
|||
|
/* If no failure points, don't restore garbage. */
|
|||
|
else if (best_regs_set)
|
|||
|
{
|
|||
|
restore_best_regs:
|
|||
|
/* Restore best match. */
|
|||
|
d = best_regend[0];
|
|||
|
|
|||
|
if (d >= string1 && d <= end1)
|
|||
|
dend = end_match_1;
|
|||
|
|
|||
|
for (mcnt = 0; mcnt < num_regs; mcnt++)
|
|||
|
{
|
|||
|
regstart[mcnt] = best_regstart[mcnt];
|
|||
|
regend[mcnt] = best_regend[mcnt];
|
|||
|
}
|
|||
|
}
|
|||
|
} /* d != end_match_2 */
|
|||
|
|
|||
|
DEBUG_PRINT1 ("accepting match.\n");
|
|||
|
|
|||
|
/* If caller wants register contents data back, do it. */
|
|||
|
if (regs && !bufp->no_sub)
|
|||
|
{
|
|||
|
/* If they haven't allocated it, we'll do it. */
|
|||
|
if (!bufp->caller_allocated_regs)
|
|||
|
{
|
|||
|
regs->num_regs = MAX (RE_NREGS, num_regs + 1);
|
|||
|
regs->start = TALLOC (regs->num_regs, regoff_t);
|
|||
|
regs->end = TALLOC (regs->num_regs, regoff_t);
|
|||
|
if (regs->start == NULL || regs->end == NULL)
|
|||
|
return -2;
|
|||
|
}
|
|||
|
|
|||
|
/* Convert the pointer data in `regstart' and `regend' to
|
|||
|
indices. Register zero has to be set differently,
|
|||
|
since we haven't kept track of any info for it. */
|
|||
|
if (regs->num_regs > 0)
|
|||
|
{
|
|||
|
regs->start[0] = pos;
|
|||
|
regs->end[0] = MATCHING_IN_FIRST_STRING
|
|||
|
? d - string1
|
|||
|
: d - string2 + size1;
|
|||
|
}
|
|||
|
|
|||
|
/* Go through the first min (num_regs, regs->num_regs)
|
|||
|
registers, since that is all we initialized at the
|
|||
|
beginning. */
|
|||
|
for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
|
|||
|
{
|
|||
|
if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
|
|||
|
regs->start[mcnt] = regs->end[mcnt] = -1;
|
|||
|
else
|
|||
|
{
|
|||
|
regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
|
|||
|
regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* If the regs structure we return has more elements than
|
|||
|
it than were in the pattern, set the extra elements to
|
|||
|
-1. If we allocated the registers, this is the case,
|
|||
|
because we always allocate enough to have at least -1
|
|||
|
at the end. */
|
|||
|
for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
|
|||
|
regs->start[mcnt] = regs->end[mcnt] = -1;
|
|||
|
} /* regs && !bufp->no_sub */
|
|||
|
|
|||
|
FREE_VARIABLES ();
|
|||
|
DEBUG_PRINT2 ("%d registers pushed.\n", num_regs_pushed);
|
|||
|
|
|||
|
mcnt = d - pos - (MATCHING_IN_FIRST_STRING
|
|||
|
? string1
|
|||
|
: string2 - size1);
|
|||
|
|
|||
|
DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
|
|||
|
|
|||
|
return mcnt;
|
|||
|
}
|
|||
|
|
|||
|
/* Otherwise match next pattern command. */
|
|||
|
#ifdef SWITCH_ENUM_BUG
|
|||
|
switch ((int) ((re_opcode_t) *p++))
|
|||
|
#else
|
|||
|
switch ((re_opcode_t) *p++)
|
|||
|
#endif
|
|||
|
{
|
|||
|
/* Ignore these. Used to ignore the n of succeed_n's which
|
|||
|
currently have n == 0. */
|
|||
|
case no_op:
|
|||
|
DEBUG_PRINT1 ("EXECUTING no_op.\n");
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
/* Match the next n pattern characters exactly. The following
|
|||
|
byte in the pattern defines n, and the n bytes after that
|
|||
|
are the characters to match. */
|
|||
|
case exactn:
|
|||
|
mcnt = *p++;
|
|||
|
DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
|
|||
|
|
|||
|
/* This is written out as an if-else so we don't waste time
|
|||
|
testing `translate' inside the loop. */
|
|||
|
if (translate)
|
|||
|
{
|
|||
|
do
|
|||
|
{
|
|||
|
PREFETCH;
|
|||
|
if (translate[(unsigned char) *d++] != (char) *p++)
|
|||
|
goto fail;
|
|||
|
}
|
|||
|
while (--mcnt);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
do
|
|||
|
{
|
|||
|
PREFETCH;
|
|||
|
if (*d++ != (char) *p++) goto fail;
|
|||
|
}
|
|||
|
while (--mcnt);
|
|||
|
}
|
|||
|
SET_REGS_MATCHED ();
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
/* Match anything but possibly a newline or a null. */
|
|||
|
case anychar:
|
|||
|
DEBUG_PRINT1 ("EXECUTING anychar.\n");
|
|||
|
|
|||
|
PREFETCH;
|
|||
|
|
|||
|
if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
|
|||
|
|| (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
|
|||
|
goto fail;
|
|||
|
|
|||
|
SET_REGS_MATCHED ();
|
|||
|
d++;
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case charset:
|
|||
|
case charset_not:
|
|||
|
{
|
|||
|
register unsigned char c;
|
|||
|
boolean not = (re_opcode_t) *(p - 1) == charset_not;
|
|||
|
|
|||
|
DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
|
|||
|
|
|||
|
PREFETCH;
|
|||
|
c = TRANSLATE (*d); /* The character to match. */
|
|||
|
|
|||
|
if (c < (unsigned char) (*p * BYTEWIDTH)
|
|||
|
&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
|
|||
|
not = !not;
|
|||
|
|
|||
|
p += 1 + *p;
|
|||
|
|
|||
|
if (!not) goto fail;
|
|||
|
|
|||
|
SET_REGS_MATCHED ();
|
|||
|
d++;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* The beginning of a group is represented by start_memory.
|
|||
|
The arguments are the register number in the next byte, and the
|
|||
|
number of groups inner to this one in the next. The text
|
|||
|
matched within the group is recorded (in the internal
|
|||
|
registers data structure) under the register number. */
|
|||
|
case start_memory:
|
|||
|
DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
|
|||
|
|
|||
|
/* Find out if this group can match the empty string. */
|
|||
|
p1 = p; /* To send to group_match_null_string_p. */
|
|||
|
|
|||
|
if (REG_MATCH_NULL_STRING_P (reg_info[*p])
|
|||
|
== MATCH_NOTHING_UNSET_VALUE)
|
|||
|
REG_MATCH_NULL_STRING_P (reg_info[*p])
|
|||
|
= group_match_null_string_p (&p1, pend, reg_info);
|
|||
|
|
|||
|
/* Save the position in the string where we were the last time
|
|||
|
we were at this open-group operator in case the group is
|
|||
|
operated upon by a repetition operator, e.g., with `(a*)*b'
|
|||
|
against `ab'; then we want to ignore where we are now in
|
|||
|
the string in case this attempt to match fails. */
|
|||
|
old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
|
|||
|
? REG_UNSET (regstart[*p]) ? d : regstart[*p]
|
|||
|
: regstart[*p];
|
|||
|
DEBUG_PRINT2 (" old_regstart: %d\n",
|
|||
|
POINTER_TO_OFFSET (old_regstart[*p]));
|
|||
|
|
|||
|
regstart[*p] = d;
|
|||
|
DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
|
|||
|
|
|||
|
IS_ACTIVE (reg_info[*p]) = 1;
|
|||
|
MATCHED_SOMETHING (reg_info[*p]) = 0;
|
|||
|
|
|||
|
/* This is the new highest active register. */
|
|||
|
highest_active_reg = *p;
|
|||
|
|
|||
|
/* If nothing was active before, this is the new lowest active
|
|||
|
register. */
|
|||
|
if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
|
|||
|
lowest_active_reg = *p;
|
|||
|
|
|||
|
/* Move past the register number and inner group count. */
|
|||
|
p += 2;
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
/* The stop_memory opcode represents the end of a group. Its
|
|||
|
arguments are the same as start_memory's: the register
|
|||
|
number, and the number of inner groups. */
|
|||
|
case stop_memory:
|
|||
|
DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
|
|||
|
|
|||
|
/* We need to save the string position the last time we were at
|
|||
|
this close-group operator in case the group is operated
|
|||
|
upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
|
|||
|
against `aba'; then we want to ignore where we are now in
|
|||
|
the string in case this attempt to match fails. */
|
|||
|
old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
|
|||
|
? REG_UNSET (regend[*p]) ? d : regend[*p]
|
|||
|
: regend[*p];
|
|||
|
DEBUG_PRINT2 (" old_regend: %d\n",
|
|||
|
POINTER_TO_OFFSET (old_regend[*p]));
|
|||
|
|
|||
|
regend[*p] = d;
|
|||
|
DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
|
|||
|
|
|||
|
/* This register isn't active anymore. */
|
|||
|
IS_ACTIVE (reg_info[*p]) = 0;
|
|||
|
|
|||
|
/* If this was the only register active, nothing is active
|
|||
|
anymore. */
|
|||
|
if (lowest_active_reg == highest_active_reg)
|
|||
|
{
|
|||
|
lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
|||
|
highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
|||
|
}
|
|||
|
else
|
|||
|
{ /* We must scan for the new highest active register, since
|
|||
|
it isn't necessarily one less than now: consider
|
|||
|
(a(b)c(d(e)f)g). When group 3 ends, after the f), the
|
|||
|
new highest active register is 1. */
|
|||
|
unsigned char r = *p - 1;
|
|||
|
|
|||
|
/* This loop will always terminate, because register 0 is
|
|||
|
always active. */
|
|||
|
assert (IS_ACTIVE (reg_info[0]));
|
|||
|
while (!IS_ACTIVE (reg_info[r]))
|
|||
|
r--;
|
|||
|
|
|||
|
/* If we end up at register zero, that means that we saved
|
|||
|
the registers as the result of an on_failure_jump, not
|
|||
|
a start_memory, and we jumped to past the innermost
|
|||
|
stop_memory. For example, in ((.)*). We save
|
|||
|
registers 1 and 2 as a result of the *, but when we pop
|
|||
|
back to the second ), we are at the stop_memory 1.
|
|||
|
Thus, nothing is active. */
|
|||
|
if (r != 0)
|
|||
|
highest_active_reg = r;
|
|||
|
else
|
|||
|
{
|
|||
|
lowest_active_reg = NO_LOWEST_ACTIVE_REG;
|
|||
|
highest_active_reg = NO_HIGHEST_ACTIVE_REG;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* If just failed to match something this time around with a
|
|||
|
group that's operated on by a repetition operator, try to
|
|||
|
force exit from the ``loop,'' and restore the register
|
|||
|
information for this group that we had before trying this
|
|||
|
last match. */
|
|||
|
if ((!MATCHED_SOMETHING (reg_info[*p])
|
|||
|
|| (re_opcode_t) p[-3] == start_memory)
|
|||
|
&& (p + 2) < pend)
|
|||
|
{
|
|||
|
boolean is_a_jump_n = false;
|
|||
|
|
|||
|
p1 = p + 2;
|
|||
|
mcnt = 0;
|
|||
|
switch ((re_opcode_t) *p1++)
|
|||
|
{
|
|||
|
case no_pop_jump_n:
|
|||
|
is_a_jump_n = true;
|
|||
|
case pop_failure_jump:
|
|||
|
case maybe_pop_jump:
|
|||
|
case no_pop_jump:
|
|||
|
case dummy_failure_jump:
|
|||
|
EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|||
|
if (is_a_jump_n)
|
|||
|
p1 += 2;
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
/* do nothing */ ;
|
|||
|
}
|
|||
|
p1 += mcnt;
|
|||
|
|
|||
|
/* If the next operation is a jump backwards in the pattern
|
|||
|
to an on_failure_jump right before the start_memory
|
|||
|
corresponding to this stop_memory, exit from the loop
|
|||
|
by forcing a failure after pushing on the stack the
|
|||
|
on_failure_jump's jump in the pattern, and d. */
|
|||
|
if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
|
|||
|
&& (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
|
|||
|
{
|
|||
|
/* If this group ever matched anything, then restore
|
|||
|
what its registers were before trying this last
|
|||
|
failed match, e.g., with `(a*)*b' against `ab' for
|
|||
|
regstart[1], and, e.g., with `((a*)*(b*)*)*'
|
|||
|
against `aba' for regend[3].
|
|||
|
|
|||
|
Also restore the registers for inner groups for,
|
|||
|
e.g., `((a*)(b*))*' against `aba' (register 3 would
|
|||
|
otherwise get trashed). */
|
|||
|
|
|||
|
if (EVER_MATCHED_SOMETHING (reg_info[*p]))
|
|||
|
{
|
|||
|
unsigned r;
|
|||
|
|
|||
|
EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
|
|||
|
|
|||
|
/* Restore this and inner groups' (if any) registers. */
|
|||
|
for (r = *p; r < *p + *(p + 1); r++)
|
|||
|
{
|
|||
|
regstart[r] = old_regstart[r];
|
|||
|
|
|||
|
/* xx why this test? */
|
|||
|
if ((int) old_regend[r] >= (int) regstart[r])
|
|||
|
regend[r] = old_regend[r];
|
|||
|
}
|
|||
|
}
|
|||
|
p1++;
|
|||
|
EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|||
|
PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
|
|||
|
|
|||
|
goto fail;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Move past the register number and the inner group count. */
|
|||
|
p += 2;
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
/* \<digit> has been turned into a `duplicate' command which is
|
|||
|
followed by the numeric value of <digit> as the register number. */
|
|||
|
case duplicate:
|
|||
|
{
|
|||
|
register const char *d2, *dend2;
|
|||
|
int regno = *p++; /* Get which register to match against. */
|
|||
|
DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
|
|||
|
|
|||
|
/* Can't back reference a group which we've never matched. */
|
|||
|
if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
|
|||
|
goto fail;
|
|||
|
|
|||
|
/* Where in input to try to start matching. */
|
|||
|
d2 = regstart[regno];
|
|||
|
|
|||
|
/* Where to stop matching; if both the place to start and
|
|||
|
the place to stop matching are in the same string, then
|
|||
|
set to the place to stop, otherwise, for now have to use
|
|||
|
the end of the first string. */
|
|||
|
|
|||
|
dend2 = ((IS_IN_FIRST_STRING (regstart[regno])
|
|||
|
== IS_IN_FIRST_STRING (regend[regno]))
|
|||
|
? regend[regno] : end_match_1);
|
|||
|
for (;;)
|
|||
|
{
|
|||
|
/* If necessary, advance to next segment in register
|
|||
|
contents. */
|
|||
|
while (d2 == dend2)
|
|||
|
{
|
|||
|
if (dend2 == end_match_2) break;
|
|||
|
if (dend2 == regend[regno]) break;
|
|||
|
|
|||
|
/* End of string1 => advance to string2. */
|
|||
|
d2 = string2;
|
|||
|
dend2 = regend[regno];
|
|||
|
}
|
|||
|
/* At end of register contents => success */
|
|||
|
if (d2 == dend2) break;
|
|||
|
|
|||
|
/* If necessary, advance to next segment in data. */
|
|||
|
PREFETCH;
|
|||
|
|
|||
|
/* How many characters left in this segment to match. */
|
|||
|
mcnt = dend - d;
|
|||
|
|
|||
|
/* Want how many consecutive characters we can match in
|
|||
|
one shot, so, if necessary, adjust the count. */
|
|||
|
if (mcnt > dend2 - d2)
|
|||
|
mcnt = dend2 - d2;
|
|||
|
|
|||
|
/* Compare that many; failure if mismatch, else move
|
|||
|
past them. */
|
|||
|
if (translate
|
|||
|
? bcmp_translate (d, d2, mcnt, translate)
|
|||
|
: bcmp (d, d2, mcnt))
|
|||
|
goto fail;
|
|||
|
d += mcnt, d2 += mcnt;
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
/* begline matches the empty string at the beginning of the string
|
|||
|
(unless `not_bol' is set in `bufp'), and, if
|
|||
|
`newline_anchor' is set, after newlines. */
|
|||
|
case begline:
|
|||
|
DEBUG_PRINT1 ("EXECUTING begline.\n");
|
|||
|
|
|||
|
if (AT_STRINGS_BEG)
|
|||
|
{
|
|||
|
if (!bufp->not_bol) break;
|
|||
|
}
|
|||
|
else if (d[-1] == '\n' && bufp->newline_anchor)
|
|||
|
{
|
|||
|
break;
|
|||
|
}
|
|||
|
/* In all other cases, we fail. */
|
|||
|
goto fail;
|
|||
|
|
|||
|
|
|||
|
/* endline is the dual of begline. */
|
|||
|
case endline:
|
|||
|
DEBUG_PRINT1 ("EXECUTING endline.\n");
|
|||
|
|
|||
|
if (AT_STRINGS_END)
|
|||
|
{
|
|||
|
if (!bufp->not_eol) break;
|
|||
|
}
|
|||
|
|
|||
|
/* We have to ``prefetch'' the next character. */
|
|||
|
else if ((d == end1 ? *string2 : *d) == '\n'
|
|||
|
&& bufp->newline_anchor)
|
|||
|
{
|
|||
|
break;
|
|||
|
}
|
|||
|
goto fail;
|
|||
|
|
|||
|
|
|||
|
/* Match at the very beginning of the data. */
|
|||
|
case begbuf:
|
|||
|
DEBUG_PRINT1 ("EXECUTING begbuf.\n");
|
|||
|
if (AT_STRINGS_BEG)
|
|||
|
break;
|
|||
|
goto fail;
|
|||
|
|
|||
|
|
|||
|
/* Match at the very end of the data. */
|
|||
|
case endbuf:
|
|||
|
DEBUG_PRINT1 ("EXECUTING endbuf.\n");
|
|||
|
if (AT_STRINGS_END)
|
|||
|
break;
|
|||
|
goto fail;
|
|||
|
|
|||
|
|
|||
|
/* on_failure_keep_string_jump is used to optimize `.*\n'. It
|
|||
|
pushes NULL as the value for the string on the stack. Then
|
|||
|
pop_failure_point will keep the current value for the string,
|
|||
|
instead of restoring it. To see why, consider matching
|
|||
|
`foo\nbar' against `.*\n'. The .* matches the foo; then the
|
|||
|
. fails against the \n. But the next thing we want to do is
|
|||
|
match the \n against the \n; if we restored the string value,
|
|||
|
we would be back at the foo.
|
|||
|
|
|||
|
Because this is used only in specific cases, we don't need to
|
|||
|
go through the hassle of checking all the things that
|
|||
|
on_failure_jump does, to make sure the right things get saved
|
|||
|
on the stack. Hence we don't share its code. The only
|
|||
|
reason to push anything on the stack at all is that otherwise
|
|||
|
we would have to change anychar's code to do something
|
|||
|
besides goto fail in this case; that seems worse than this. */
|
|||
|
case on_failure_keep_string_jump:
|
|||
|
DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
|
|||
|
|
|||
|
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|||
|
DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
|
|||
|
|
|||
|
PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
/* Uses of on_failure_jump:
|
|||
|
|
|||
|
Each alternative starts with an on_failure_jump that points
|
|||
|
to the beginning of the next alternative. Each alternative
|
|||
|
except the last ends with a jump that in effect jumps past
|
|||
|
the rest of the alternatives. (They really jump to the
|
|||
|
ending jump of the following alternative, because tensioning
|
|||
|
these jumps is a hassle.)
|
|||
|
|
|||
|
Repeats start with an on_failure_jump that points past both
|
|||
|
the repetition text and either the following jump or
|
|||
|
pop_failure_jump back to this on_failure_jump. */
|
|||
|
case on_failure_jump:
|
|||
|
on_failure:
|
|||
|
DEBUG_PRINT1 ("EXECUTING on_failure_jump");
|
|||
|
|
|||
|
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|||
|
DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
|
|||
|
|
|||
|
/* If this on_failure_jump comes right before a group (i.e.,
|
|||
|
the original * applied to a group), save the information
|
|||
|
for that group and all inner ones, so that if we fail back
|
|||
|
to this point, the group's information will be correct.
|
|||
|
For example, in \(a*\)*\1, we only need the preceding group,
|
|||
|
and in \(\(a*\)b*\)\2, we need the inner group. */
|
|||
|
|
|||
|
/* We can't use `p' to check ahead because we push
|
|||
|
a failure point to `p + mcnt' after we do this. */
|
|||
|
p1 = p;
|
|||
|
|
|||
|
/* We need to skip no_op's before we look for the
|
|||
|
start_memory in case this on_failure_jump is happening as
|
|||
|
the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
|
|||
|
against aba. */
|
|||
|
while (p1 < pend && (re_opcode_t) *p1 == no_op)
|
|||
|
p1++;
|
|||
|
|
|||
|
if (p1 < pend && (re_opcode_t) *p1 == start_memory)
|
|||
|
{
|
|||
|
/* We have a new highest active register now. This will
|
|||
|
get reset at the start_memory we are about to get to,
|
|||
|
but we will have saved all the registers relevant to
|
|||
|
this repetition op, as described above. */
|
|||
|
highest_active_reg = *(p1 + 1) + *(p1 + 2);
|
|||
|
if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
|
|||
|
lowest_active_reg = *(p1 + 1);
|
|||
|
}
|
|||
|
|
|||
|
DEBUG_PRINT1 (":\n");
|
|||
|
PUSH_FAILURE_POINT (p + mcnt, d, -2);
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
/* A smart repeat ends with a maybe_pop_jump.
|
|||
|
We change it either to a pop_failure_jump or a no_pop_jump. */
|
|||
|
case maybe_pop_jump:
|
|||
|
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|||
|
DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
|
|||
|
{
|
|||
|
register unsigned char *p2 = p;
|
|||
|
|
|||
|
/* Compare the beginning of the repeat with what in the
|
|||
|
pattern follows its end. If we can establish that there
|
|||
|
is nothing that they would both match, i.e., that we
|
|||
|
would have to backtrack because of (as in, e.g., `a*a')
|
|||
|
then we can change to pop_failure_jump, because we'll
|
|||
|
never have to backtrack. */
|
|||
|
|
|||
|
/* Skip over open/close-group commands. */
|
|||
|
while (p2 + 2 < pend
|
|||
|
&& ((re_opcode_t) *p2 == stop_memory
|
|||
|
|| (re_opcode_t) *p2 == start_memory))
|
|||
|
p2 += 3; /* Skip over args, too. */
|
|||
|
|
|||
|
/* If we're at the end of the pattern, we can change. */
|
|||
|
if (p2 == pend)
|
|||
|
p[-3] = (unsigned char) pop_failure_jump;
|
|||
|
|
|||
|
else if ((re_opcode_t) *p2 == exactn
|
|||
|
|| (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
|
|||
|
{
|
|||
|
register unsigned char c
|
|||
|
= *p2 == (unsigned char) endline ? '\n' : p2[2];
|
|||
|
p1 = p + mcnt;
|
|||
|
|
|||
|
/* p1[0] ... p1[2] are the on_failure_jump corresponding
|
|||
|
to the maybe_finalize_jump of this case. Examine what
|
|||
|
follows it. */
|
|||
|
if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
|
|||
|
p[-3] = (unsigned char) pop_failure_jump;
|
|||
|
else if ((re_opcode_t) p1[3] == charset
|
|||
|
|| (re_opcode_t) p1[3] == charset_not)
|
|||
|
{
|
|||
|
int not = (re_opcode_t) p1[3] == charset_not;
|
|||
|
|
|||
|
if (c < (unsigned char) (p1[4] * BYTEWIDTH)
|
|||
|
&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
|
|||
|
not = !not;
|
|||
|
|
|||
|
/* `not' is equal to 1 if c would match, which means
|
|||
|
that we can't change to pop_failure_jump. */
|
|||
|
if (!not)
|
|||
|
p[-3] = (unsigned char) pop_failure_jump;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
p -= 2; /* Point at relative address again. */
|
|||
|
if ((re_opcode_t) p[-1] != pop_failure_jump)
|
|||
|
{
|
|||
|
p[-1] = (unsigned char) no_pop_jump;
|
|||
|
goto no_pop;
|
|||
|
}
|
|||
|
/* Note fall through. */
|
|||
|
|
|||
|
|
|||
|
/* The end of a simple repeat has a pop_failure_jump back to
|
|||
|
its matching on_failure_jump, where the latter will push a
|
|||
|
failure point. The pop_failure_jump takes off failure
|
|||
|
points put on by this pop_failure_jump's matching
|
|||
|
on_failure_jump; we got through the pattern to here from the
|
|||
|
matching on_failure_jump, so didn't fail. */
|
|||
|
case pop_failure_jump:
|
|||
|
{
|
|||
|
/* We need to pass separate storage for the lowest and
|
|||
|
highest registers, even though we aren't interested.
|
|||
|
Otherwise, we will restore only one register from the
|
|||
|
stack, since lowest will equal highest in
|
|||
|
pop_failure_point (since they'll be the same memory
|
|||
|
location). */
|
|||
|
unsigned dummy_low, dummy_high;
|
|||
|
unsigned char *pdummy = NULL;
|
|||
|
|
|||
|
DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
|
|||
|
pop_failure_point (bufp, pend,
|
|||
|
#ifdef DEBUG
|
|||
|
string1, size1, string2, size2,
|
|||
|
#endif
|
|||
|
&failure_stack, &pdummy, &pdummy,
|
|||
|
&dummy_low, &dummy_high,
|
|||
|
®_dummy, ®_dummy, ®_info_dummy);
|
|||
|
}
|
|||
|
/* Note fall through. */
|
|||
|
|
|||
|
|
|||
|
/* Jump without taking off any failure points. */
|
|||
|
case no_pop_jump:
|
|||
|
no_pop:
|
|||
|
EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
|
|||
|
DEBUG_PRINT2 ("EXECUTING no_pop_jump %d ", mcnt);
|
|||
|
p += mcnt; /* Do the jump. */
|
|||
|
DEBUG_PRINT2 ("(to 0x%x).\n", p);
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
/* We need this opcode so we can detect where alternatives end
|
|||
|
in `group_match_null_string_p' et al. */
|
|||
|
case jump_past_next_alt:
|
|||
|
DEBUG_PRINT1 ("EXECUTING jump_past_next_alt.\n");
|
|||
|
goto no_pop;
|
|||
|
|
|||
|
|
|||
|
/* Normally, the on_failure_jump pushes a failure point, which
|
|||
|
then gets popped at pop_failure_jump. We will end up at
|
|||
|
pop_failure_jump, also, and with a pattern of, say, `a+', we
|
|||
|
are skipping over the on_failure_jump, so we have to push
|
|||
|
something meaningless for pop_failure_jump to pop. */
|
|||
|
case dummy_failure_jump:
|
|||
|
DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
|
|||
|
/* It doesn't matter what we push for the string here. What
|
|||
|
the code at `fail' tests is the value for the pattern. */
|
|||
|
PUSH_FAILURE_POINT (0, 0, -2);
|
|||
|
goto no_pop;
|
|||
|
|
|||
|
|
|||
|
/* Have to succeed matching what follows at least n times. Then
|
|||
|
just handle like an on_failure_jump. */
|
|||
|
case succeed_n:
|
|||
|
EXTRACT_NUMBER (mcnt, p + 2);
|
|||
|
DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
|
|||
|
|
|||
|
/* Originally, this is how many times we HAVE to succeed. */
|
|||
|
if (mcnt)
|
|||
|
{
|
|||
|
mcnt--;
|
|||
|
p += 2;
|
|||
|
STORE_NUMBER_AND_INCR (p, mcnt);
|
|||
|
DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
|
|||
|
}
|
|||
|
else if (mcnt == 0)
|
|||
|
{
|
|||
|
DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
|
|||
|
p[2] = (unsigned char) no_op;
|
|||
|
p[3] = (unsigned char) no_op;
|
|||
|
goto on_failure;
|
|||
|
}
|
|||
|
#ifdef DEBUG
|
|||
|
else
|
|||
|
{
|
|||
|
fprintf (stderr, "regex: negative n at succeed_n.\n");
|
|||
|
abort ();
|
|||
|
}
|
|||
|
#endif /* DEBUG */
|
|||
|
break;
|
|||
|
|
|||
|
case no_pop_jump_n:
|
|||
|
EXTRACT_NUMBER (mcnt, p + 2);
|
|||
|
DEBUG_PRINT2 ("EXECUTING no_pop_jump_n %d.\n", mcnt);
|
|||
|
|
|||
|
/* Originally, this is how many times we CAN jump. */
|
|||
|
if (mcnt)
|
|||
|
{
|
|||
|
mcnt--;
|
|||
|
STORE_NUMBER(p + 2, mcnt);
|
|||
|
goto no_pop;
|
|||
|
}
|
|||
|
/* If don't have to jump any more, skip over the rest of command. */
|
|||
|
else
|
|||
|
p += 4;
|
|||
|
break;
|
|||
|
|
|||
|
case set_number_at:
|
|||
|
{
|
|||
|
DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
|
|||
|
|
|||
|
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|||
|
p1 = p + mcnt;
|
|||
|
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
|||
|
STORE_NUMBER (p1, mcnt);
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
case wordbound:
|
|||
|
DEBUG_PRINT1 ("EXECUTING wordbound.\n");
|
|||
|
if (AT_WORD_BOUNDARY (d))
|
|||
|
break;
|
|||
|
goto fail;
|
|||
|
|
|||
|
case notwordbound:
|
|||
|
DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
|
|||
|
if (AT_WORD_BOUNDARY (d))
|
|||
|
goto fail;
|
|||
|
break;
|
|||
|
|
|||
|
case wordbeg:
|
|||
|
DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
|
|||
|
if (LETTER_P (d) && (AT_STRINGS_BEG || !LETTER_P (d - 1)))
|
|||
|
break;
|
|||
|
goto fail;
|
|||
|
|
|||
|
case wordend:
|
|||
|
DEBUG_PRINT1 ("EXECUTING wordend.\n");
|
|||
|
if (!AT_STRINGS_BEG && LETTER_P (d - 1)
|
|||
|
&& (!LETTER_P (d) || AT_STRINGS_END))
|
|||
|
break;
|
|||
|
goto fail;
|
|||
|
|
|||
|
#ifdef emacs
|
|||
|
#ifdef emacs19
|
|||
|
case before_dot:
|
|||
|
DEBUG_PRINT1 ("EXECUTING before_dot.\n");
|
|||
|
if (PTR_CHAR_POS ((unsigned char *) d) >= point)
|
|||
|
goto fail;
|
|||
|
break;
|
|||
|
|
|||
|
case at_dot:
|
|||
|
DEBUG_PRINT1 ("EXECUTING at_dot.\n");
|
|||
|
if (PTR_CHAR_POS ((unsigned char *) d) != point)
|
|||
|
goto fail;
|
|||
|
break;
|
|||
|
|
|||
|
case after_dot:
|
|||
|
DEBUG_PRINT1 ("EXECUTING after_dot.\n");
|
|||
|
if (PTR_CHAR_POS ((unsigned char *) d) <= point)
|
|||
|
goto fail;
|
|||
|
break;
|
|||
|
#else /* not emacs19 */
|
|||
|
case at_dot:
|
|||
|
DEBUG_PRINT1 ("EXECUTING at_dot.\n");
|
|||
|
if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
|
|||
|
goto fail;
|
|||
|
break;
|
|||
|
#endif /* not emacs19 */
|
|||
|
|
|||
|
case syntaxspec:
|
|||
|
DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
|
|||
|
mcnt = *p++;
|
|||
|
goto matchsyntax;
|
|||
|
|
|||
|
case wordchar:
|
|||
|
DEBUG_PRINT1 ("EXECUTING wordchar.\n");
|
|||
|
mcnt = (int) Sword;
|
|||
|
matchsyntax:
|
|||
|
PREFETCH;
|
|||
|
if (SYNTAX (*d++) != (enum syntaxcode) mcnt) goto fail;
|
|||
|
SET_REGS_MATCHED ();
|
|||
|
break;
|
|||
|
|
|||
|
case notsyntaxspec:
|
|||
|
DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
|
|||
|
mcnt = *p++;
|
|||
|
goto matchnotsyntax;
|
|||
|
|
|||
|
case notwordchar:
|
|||
|
DEBUG_PRINT1 ("EXECUTING notwordchar.\n");
|
|||
|
mcnt = (int) Sword;
|
|||
|
matchnotsyntax: /* We goto here from notsyntaxspec. */
|
|||
|
PREFETCH;
|
|||
|
if (SYNTAX (*d++) == (enum syntaxcode) mcnt) goto fail;
|
|||
|
SET_REGS_MATCHED ();
|
|||
|
break;
|
|||
|
|
|||
|
#else /* not emacs */
|
|||
|
case wordchar:
|
|||
|
DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
|
|||
|
PREFETCH;
|
|||
|
if (!LETTER_P (d))
|
|||
|
goto fail;
|
|||
|
SET_REGS_MATCHED ();
|
|||
|
break;
|
|||
|
|
|||
|
case notwordchar:
|
|||
|
DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
|
|||
|
PREFETCH;
|
|||
|
if (LETTER_P (d))
|
|||
|
goto fail;
|
|||
|
SET_REGS_MATCHED ();
|
|||
|
break;
|
|||
|
#endif /* not emacs */
|
|||
|
|
|||
|
default:
|
|||
|
abort ();
|
|||
|
}
|
|||
|
continue; /* Successfully executed one pattern command; keep going. */
|
|||
|
|
|||
|
|
|||
|
/* We goto here if a matching operation fails. */
|
|||
|
fail:
|
|||
|
if (!FAILURE_STACK_EMPTY ())
|
|||
|
{ /* A restart point is known. Restore to that state. */
|
|||
|
DEBUG_PRINT1 ("\nFAIL:\n");
|
|||
|
pop_failure_point (bufp, pend,
|
|||
|
#ifdef DEBUG
|
|||
|
string1, size1, string2, size2,
|
|||
|
#endif
|
|||
|
&failure_stack, &p, &d, &lowest_active_reg,
|
|||
|
&highest_active_reg, ®start, ®end,
|
|||
|
®_info);
|
|||
|
|
|||
|
/* If this failure point is a dummy, try the next one. */
|
|||
|
if (!p)
|
|||
|
goto fail;
|
|||
|
|
|||
|
/* If we failed to the end of the pattern, don't examine *p. */
|
|||
|
assert (p <= pend);
|
|||
|
if (p < pend)
|
|||
|
{
|
|||
|
boolean is_a_jump_n = false;
|
|||
|
|
|||
|
/* If failed to a backwards jump that's part of a repetition
|
|||
|
loop, need to pop this failure point and use the next one. */
|
|||
|
switch ((re_opcode_t) *p)
|
|||
|
{
|
|||
|
case no_pop_jump_n:
|
|||
|
is_a_jump_n = true;
|
|||
|
case maybe_pop_jump:
|
|||
|
case pop_failure_jump:
|
|||
|
case no_pop_jump:
|
|||
|
p1 = p + 1;
|
|||
|
EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|||
|
p1 += mcnt;
|
|||
|
|
|||
|
if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
|
|||
|
|| (!is_a_jump_n
|
|||
|
&& (re_opcode_t) *p1 == on_failure_jump))
|
|||
|
goto fail;
|
|||
|
break;
|
|||
|
default:
|
|||
|
/* do nothing */ ;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (d >= string1 && d <= end1)
|
|||
|
dend = end_match_1;
|
|||
|
}
|
|||
|
else
|
|||
|
break; /* Matching at this starting point really fails. */
|
|||
|
} /* for (;;) */
|
|||
|
|
|||
|
if (best_regs_set)
|
|||
|
goto restore_best_regs;
|
|||
|
|
|||
|
FREE_VARIABLES ();
|
|||
|
|
|||
|
return -1; /* Failure to match. */
|
|||
|
} /* re_match_2 */
|
|||
|
|
|||
|
/* Subroutine definitions for re_match_2. */
|
|||
|
|
|||
|
|
|||
|
/* Pops what PUSH_FAILURE_STACK pushes. */
|
|||
|
|
|||
|
static void
|
|||
|
pop_failure_point (bufp, pattern_end,
|
|||
|
#ifdef DEBUG
|
|||
|
string1, size1, string2, size2,
|
|||
|
#endif
|
|||
|
failure_stack_ptr, pattern_place, string_place,
|
|||
|
lowest_active_reg, highest_active_reg,
|
|||
|
regstart, regend, reg_info)
|
|||
|
const struct re_pattern_buffer *bufp; /* These not modified. */
|
|||
|
unsigned char *pattern_end;
|
|||
|
#ifdef DEBUG
|
|||
|
unsigned char *string1, *string2;
|
|||
|
int size1, size2;
|
|||
|
#endif
|
|||
|
failure_stack_type *failure_stack_ptr; /* These get modified. */
|
|||
|
const unsigned char **pattern_place;
|
|||
|
const unsigned char **string_place;
|
|||
|
unsigned *lowest_active_reg, *highest_active_reg;
|
|||
|
const unsigned char ***regstart;
|
|||
|
const unsigned char ***regend;
|
|||
|
register_info_type **reg_info;
|
|||
|
{
|
|||
|
#ifdef DEBUG
|
|||
|
/* Type is really unsigned; it's declared this way just to avoid a
|
|||
|
compiler warning. */
|
|||
|
failure_stack_elt_t failure_id;
|
|||
|
#endif
|
|||
|
int this_reg;
|
|||
|
const unsigned char *string_temp;
|
|||
|
|
|||
|
assert (!FAILURE_STACK_PTR_EMPTY ());
|
|||
|
|
|||
|
/* Remove failure points and point to how many regs pushed. */
|
|||
|
DEBUG_PRINT1 ("pop_failure_point:\n");
|
|||
|
DEBUG_PRINT2 (" Before pop, next avail: %d\n", failure_stack_ptr->avail);
|
|||
|
DEBUG_PRINT2 (" size: %d\n", failure_stack_ptr->size);
|
|||
|
|
|||
|
assert (failure_stack_ptr->avail >= NUM_NONREG_ITEMS);
|
|||
|
|
|||
|
DEBUG_POP (&failure_id);
|
|||
|
DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id);
|
|||
|
|
|||
|
/* If the saved string location is NULL, it came from an
|
|||
|
on_failure_keep_string_jump opcode, and we want to throw away the
|
|||
|
saved NULL, thus retaining our current position in the string. */
|
|||
|
string_temp = POP_FAILURE_ITEM ();
|
|||
|
if (string_temp != NULL)
|
|||
|
*string_place = string_temp;
|
|||
|
|
|||
|
DEBUG_PRINT2 (" Popping string 0x%x: `", *string_place);
|
|||
|
DEBUG_DOUBLE_STRING_PRINTER (*string_place, string1, size1, string2, size2);
|
|||
|
DEBUG_PRINT1 ("'\n");
|
|||
|
|
|||
|
*pattern_place = POP_FAILURE_ITEM ();
|
|||
|
DEBUG_PRINT2 (" Popping pattern 0x%x: ", *pattern_place);
|
|||
|
DEBUG_COMPILED_PATTERN_PRINTER (bufp, *pattern_place, pattern_end);
|
|||
|
|
|||
|
/* Restore register info. */
|
|||
|
*highest_active_reg = (unsigned) POP_FAILURE_ITEM ();
|
|||
|
DEBUG_PRINT2 (" Popping high active reg: %d\n", *highest_active_reg);
|
|||
|
|
|||
|
*lowest_active_reg = (unsigned) POP_FAILURE_ITEM ();
|
|||
|
DEBUG_PRINT2 (" Popping low active reg: %d\n", *lowest_active_reg);
|
|||
|
|
|||
|
for (this_reg = *highest_active_reg; this_reg >= *lowest_active_reg;
|
|||
|
this_reg--)
|
|||
|
{
|
|||
|
DEBUG_PRINT2 (" Popping reg: %d\n", this_reg);
|
|||
|
|
|||
|
(*reg_info)[this_reg].word = POP_FAILURE_ITEM ();
|
|||
|
DEBUG_PRINT2 (" info: 0x%x\n", (*reg_info)[this_reg]);
|
|||
|
|
|||
|
(*regend)[this_reg] = POP_FAILURE_ITEM ();
|
|||
|
DEBUG_PRINT2 (" end: 0x%x\n", (*regend)[this_reg]);
|
|||
|
|
|||
|
(*regstart)[this_reg] = POP_FAILURE_ITEM ();
|
|||
|
DEBUG_PRINT2 (" start: 0x%x\n", (*regstart)[this_reg]);
|
|||
|
}
|
|||
|
} /* pop_failure_point */
|
|||
|
|
|||
|
|
|||
|
/* We are passed P pointing to a register number after a start_memory.
|
|||
|
|
|||
|
Return true if the pattern up to the corresponding stop_memory can
|
|||
|
match the empty string, and false otherwise.
|
|||
|
|
|||
|
If we find the matching stop_memory, sets P to point to one past its number.
|
|||
|
Otherwise, sets P to an undefined byte less than or equal to END.
|
|||
|
|
|||
|
We don't handle duplicates properly (yet). */
|
|||
|
|
|||
|
static boolean
|
|||
|
group_match_null_string_p (p, end, reg_info)
|
|||
|
unsigned char **p, *end;
|
|||
|
register_info_type *reg_info;
|
|||
|
{
|
|||
|
int mcnt;
|
|||
|
/* Point to after the args to the start_memory. */
|
|||
|
unsigned char *p1 = *p + 2;
|
|||
|
|
|||
|
while (p1 < end)
|
|||
|
{
|
|||
|
/* Skip over opcodes that can match nothing, and return true or
|
|||
|
false, as appropriate, when we get to one that can't, or to the
|
|||
|
matching stop_memory. */
|
|||
|
|
|||
|
switch ((re_opcode_t) *p1)
|
|||
|
{
|
|||
|
/* Could be either a loop or a series of alternatives. */
|
|||
|
case on_failure_jump:
|
|||
|
p1++;
|
|||
|
EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|||
|
|
|||
|
/* If the next operation is not a jump backwards in the
|
|||
|
pattern. */
|
|||
|
|
|||
|
if (mcnt >= 0)
|
|||
|
{
|
|||
|
/* Go through the on_failure_jumps of the alternatives,
|
|||
|
seeing if any of the alternatives cannot match nothing.
|
|||
|
The last alternative starts with only a no_pop_jump,
|
|||
|
whereas the rest start with on_failure_jump and end
|
|||
|
with a no_pop_jump, e.g., here is the pattern for `a|b|c':
|
|||
|
|
|||
|
/on_failure_jump/0/6/exactn/1/a/jump_past_next_alt/0/6
|
|||
|
/on_failure_jump/0/6/exactn/1/b/jump_past_next_alt/0/3
|
|||
|
/exactn/1/c
|
|||
|
|
|||
|
So, we have to first go through the first (n-1)
|
|||
|
alternatives and then deal with the last one separately. */
|
|||
|
|
|||
|
|
|||
|
/* Deal with the first (n-1) alternatives, which start
|
|||
|
with an on_failure_jump (see above) that jumps to right
|
|||
|
past a jump_past_next_alt. */
|
|||
|
|
|||
|
while ((re_opcode_t) p1[mcnt-3] == jump_past_next_alt)
|
|||
|
{
|
|||
|
/* `mcnt' holds how many bytes long the alternative
|
|||
|
is, including the ending `jump_past_next_alt' and
|
|||
|
its number. */
|
|||
|
|
|||
|
if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
|
|||
|
reg_info))
|
|||
|
return false;
|
|||
|
|
|||
|
/* Move to right after this alternative, including the
|
|||
|
jump_past_next_alt. */
|
|||
|
p1 += mcnt;
|
|||
|
|
|||
|
/* Break if it's the beginning of an n-th alternative
|
|||
|
that doesn't begin with an on_failure_jump. */
|
|||
|
if ((re_opcode_t) *p1 != on_failure_jump)
|
|||
|
break;
|
|||
|
|
|||
|
/* Still have to check that it's not an n-th
|
|||
|
alternative that starts with an on_failure_jump. */
|
|||
|
p1++;
|
|||
|
EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|||
|
if ((re_opcode_t) p1[mcnt-3] != jump_past_next_alt)
|
|||
|
{
|
|||
|
/* Get to the beginning of the n-th alternative. */
|
|||
|
p1 -= 3;
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Deal with the last alternative: go back and get number
|
|||
|
of the jump_past_next_alt just before it. `mcnt'
|
|||
|
contains how many bytes long the alternative is. */
|
|||
|
EXTRACT_NUMBER (mcnt, p1 - 2);
|
|||
|
|
|||
|
if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
|
|||
|
return false;
|
|||
|
|
|||
|
p1 += mcnt; /* Get past the n-th alternative. */
|
|||
|
} /* if mcnt > 0 */
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case stop_memory:
|
|||
|
assert (p1[1] == **p);
|
|||
|
*p = p1 + 2;
|
|||
|
return true;
|
|||
|
|
|||
|
|
|||
|
default:
|
|||
|
if (!common_op_match_null_string_p (&p1, end, reg_info))
|
|||
|
return false;
|
|||
|
}
|
|||
|
} /* while p1 < end */
|
|||
|
|
|||
|
return false;
|
|||
|
} /* group_match_null_string_p */
|
|||
|
|
|||
|
|
|||
|
/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
|
|||
|
It expects P to be the first byte of a single alternative and END one
|
|||
|
byte past the last. The alternative can contain groups. */
|
|||
|
|
|||
|
static boolean
|
|||
|
alt_match_null_string_p (p, end, reg_info)
|
|||
|
unsigned char *p, *end;
|
|||
|
register_info_type *reg_info;
|
|||
|
{
|
|||
|
int mcnt;
|
|||
|
unsigned char *p1 = p;
|
|||
|
|
|||
|
while (p1 < end)
|
|||
|
{
|
|||
|
/* Skip over opcodes that can match nothing, and break when we get
|
|||
|
to one that can't. */
|
|||
|
|
|||
|
switch ((re_opcode_t) *p1)
|
|||
|
{
|
|||
|
/* It's a loop. */
|
|||
|
case on_failure_jump:
|
|||
|
p1++;
|
|||
|
EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|||
|
p1 += mcnt;
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
if (!common_op_match_null_string_p (&p1, end, reg_info))
|
|||
|
return false;
|
|||
|
}
|
|||
|
} /* while p1 < end */
|
|||
|
|
|||
|
return true;
|
|||
|
} /* alt_match_null_string_p */
|
|||
|
|
|||
|
|
|||
|
/* Deals with the ops common to group_match_null_string_p and
|
|||
|
alt_match_null_string_p.
|
|||
|
|
|||
|
Sets P to one after the op and its arguments, if any. */
|
|||
|
|
|||
|
static boolean
|
|||
|
common_op_match_null_string_p (p, end, reg_info)
|
|||
|
unsigned char **p, *end;
|
|||
|
register_info_type *reg_info;
|
|||
|
{
|
|||
|
int mcnt;
|
|||
|
boolean ret;
|
|||
|
int reg_no;
|
|||
|
unsigned char *p1 = *p;
|
|||
|
|
|||
|
switch ((re_opcode_t) *p1++)
|
|||
|
{
|
|||
|
case no_op:
|
|||
|
case begline:
|
|||
|
case endline:
|
|||
|
case begbuf:
|
|||
|
case endbuf:
|
|||
|
case wordbeg:
|
|||
|
case wordend:
|
|||
|
case wordbound:
|
|||
|
case notwordbound:
|
|||
|
#ifdef emacs
|
|||
|
case before_dot:
|
|||
|
case at_dot:
|
|||
|
case after_dot:
|
|||
|
#endif
|
|||
|
break;
|
|||
|
|
|||
|
case start_memory:
|
|||
|
reg_no = *p1;
|
|||
|
ret = group_match_null_string_p (&p1, end, reg_info);
|
|||
|
|
|||
|
/* Have to set this here in case we're checking a group which
|
|||
|
contains a group and a back reference to it. */
|
|||
|
|
|||
|
if (REG_MATCH_NULL_STRING_P (reg_info[reg_no])
|
|||
|
== MATCH_NOTHING_UNSET_VALUE)
|
|||
|
REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
|
|||
|
|
|||
|
if (!ret)
|
|||
|
return false;
|
|||
|
break;
|
|||
|
|
|||
|
/* If this is an optimized succeed_n for zero times, make the jump. */
|
|||
|
case no_pop_jump:
|
|||
|
EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|||
|
if (mcnt >= 0)
|
|||
|
p1 += mcnt;
|
|||
|
else
|
|||
|
return false;
|
|||
|
break;
|
|||
|
|
|||
|
case succeed_n:
|
|||
|
/* Get to the number of times to succeed. */
|
|||
|
p1 += 2;
|
|||
|
EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|||
|
|
|||
|
if (mcnt == 0)
|
|||
|
{
|
|||
|
p1 -= 4;
|
|||
|
EXTRACT_NUMBER_AND_INCR (mcnt, p1);
|
|||
|
p1 += mcnt;
|
|||
|
}
|
|||
|
else
|
|||
|
return false;
|
|||
|
break;
|
|||
|
|
|||
|
case duplicate:
|
|||
|
if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
|
|||
|
return false;
|
|||
|
break;
|
|||
|
|
|||
|
case set_number_at:
|
|||
|
p1 += 4;
|
|||
|
|
|||
|
default:
|
|||
|
/* All other opcodes mean we cannot match the empty string. */
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
*p = p1;
|
|||
|
return true;
|
|||
|
} /* common_op_match_null_string_p */
|
|||
|
|
|||
|
|
|||
|
/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
|
|||
|
bytes; nonzero otherwise. */
|
|||
|
|
|||
|
static int
|
|||
|
bcmp_translate (s1, s2, len, translate)
|
|||
|
unsigned char *s1, *s2;
|
|||
|
register int len;
|
|||
|
char *translate;
|
|||
|
{
|
|||
|
register unsigned char *p1 = s1, *p2 = s2;
|
|||
|
while (len)
|
|||
|
{
|
|||
|
if (translate[*p1++] != translate[*p2++]) return 1;
|
|||
|
len--;
|
|||
|
}
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Entry points for GNU code. */
|
|||
|
|
|||
|
/* re_compile_pattern is the GNU regular expression compiler: it
|
|||
|
compiles PATTERN (of length SIZE) and puts the result in BUFP.
|
|||
|
Returns 0 if the pattern was valid, otherwise an error string.
|
|||
|
|
|||
|
Assumes the `allocated' (and perhaps `buffer') and `translate' fields
|
|||
|
are set in BUFP on entry.
|
|||
|
|
|||
|
We call regex_compile to do the actual compilation. */
|
|||
|
|
|||
|
const char *
|
|||
|
re_compile_pattern (pattern, length, bufp)
|
|||
|
const char *pattern;
|
|||
|
int length;
|
|||
|
struct re_pattern_buffer *bufp;
|
|||
|
{
|
|||
|
reg_errcode_t ret;
|
|||
|
|
|||
|
/* GNU code is written to assume RE_NREGS registers will be set
|
|||
|
(and extraneous ones will be filled with -1). */
|
|||
|
bufp->caller_allocated_regs = 0;
|
|||
|
|
|||
|
/* And GNU code determines whether or not to get register information
|
|||
|
by passing null for the REGS argument to re_match, etc., not by
|
|||
|
setting no_sub. */
|
|||
|
bufp->no_sub = 0;
|
|||
|
|
|||
|
/* Match anchors at newline. */
|
|||
|
bufp->newline_anchor = 1;
|
|||
|
|
|||
|
ret = regex_compile (pattern, length, obscure_syntax, bufp);
|
|||
|
|
|||
|
return re_error_msg[(int) ret];
|
|||
|
}
|
|||
|
|
|||
|
/* Entry points compatible with 4.2 BSD regex library. We don't define
|
|||
|
them if this is an Emacs compilation. */
|
|||
|
|
|||
|
#if !defined (emacs)
|
|||
|
|
|||
|
static struct re_pattern_buffer re_comp_buf;
|
|||
|
|
|||
|
const char *
|
|||
|
re_comp (s)
|
|||
|
const char *s;
|
|||
|
{
|
|||
|
reg_errcode_t ret;
|
|||
|
|
|||
|
if (!s)
|
|||
|
{
|
|||
|
if (!re_comp_buf.buffer)
|
|||
|
return "No previous regular expression";
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
if (!re_comp_buf.buffer)
|
|||
|
{
|
|||
|
re_comp_buf.buffer = (unsigned char *) malloc (200);
|
|||
|
if (re_comp_buf.buffer == NULL)
|
|||
|
return "Memory exhausted";
|
|||
|
re_comp_buf.allocated = 200;
|
|||
|
|
|||
|
re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
|
|||
|
if (re_comp_buf.fastmap == NULL)
|
|||
|
return "Memory exhausted";
|
|||
|
}
|
|||
|
|
|||
|
/* Match anchors at newlines. */
|
|||
|
re_comp_buf.newline_anchor = 1;
|
|||
|
|
|||
|
ret = regex_compile (s, strlen (s), obscure_syntax, &re_comp_buf);
|
|||
|
|
|||
|
return re_error_msg[(int) ret];
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
int
|
|||
|
re_exec (s)
|
|||
|
const char *s;
|
|||
|
{
|
|||
|
const int len = strlen (s);
|
|||
|
return 0 <= re_search (&re_comp_buf, s, len, 0, len,
|
|||
|
(struct re_registers *) 0);
|
|||
|
}
|
|||
|
#endif /* not emacs */
|
|||
|
|
|||
|
/* Entry points compatible with POSIX regex library. Don't define these
|
|||
|
for Emacs. */
|
|||
|
|
|||
|
#ifndef emacs
|
|||
|
|
|||
|
/* regcomp takes a regular expression as a string and compiles it.
|
|||
|
|
|||
|
PREG is a regex_t *. We do not expect any fields to be initialized,
|
|||
|
since POSIX says we shouldn't. Thus, we set
|
|||
|
|
|||
|
`buffer' to the compiled pattern;
|
|||
|
`used' to the length of the compiled pattern;
|
|||
|
`syntax' to RE_SYNTAX_POSIX_EXTENDED if the
|
|||
|
REG_EXTENDED bit in CFLAGS is set; otherwise, to
|
|||
|
RE_SYNTAX_POSIX_BASIC;
|
|||
|
`newline_anchor' to REG_NEWLINE being set in CFLAGS;
|
|||
|
`fastmap' and `fastmap_accurate' to zero;
|
|||
|
`re_nsub' to the number of subexpressions in PATTERN.
|
|||
|
|
|||
|
PATTERN is the address of the pattern string.
|
|||
|
|
|||
|
CFLAGS is a series of bits which affect compilation.
|
|||
|
|
|||
|
If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
|
|||
|
use POSIX basic syntax.
|
|||
|
|
|||
|
If REG_NEWLINE is set, then . and [^...] don't match newline.
|
|||
|
Also, regexec will try a match beginning after every newline.
|
|||
|
|
|||
|
If REG_ICASE is set, then we considers upper- and lowercase
|
|||
|
versions of letters to be equivalent when matching.
|
|||
|
|
|||
|
If REG_NOSUB is set, then when PREG is passed to regexec, that
|
|||
|
routine will report only success or failure, and nothing about the
|
|||
|
registers.
|
|||
|
|
|||
|
It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
|
|||
|
the return codes and their meanings.) */
|
|||
|
|
|||
|
int
|
|||
|
regcomp (preg, pattern, cflags)
|
|||
|
regex_t *preg;
|
|||
|
const char *pattern;
|
|||
|
int cflags;
|
|||
|
{
|
|||
|
reg_errcode_t ret;
|
|||
|
unsigned syntax
|
|||
|
= cflags & REG_EXTENDED ? RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
|
|||
|
|
|||
|
/* regex_compile will allocate the space for the compiled pattern. */
|
|||
|
preg->buffer = 0;
|
|||
|
|
|||
|
/* Don't bother to use a fastmap when searching. This simplifies the
|
|||
|
REG_NEWLINE case: if we used a fastmap, we'd have to put all the
|
|||
|
characters after newlines into the fastmap. This way, we just try
|
|||
|
every character. */
|
|||
|
preg->fastmap = 0;
|
|||
|
|
|||
|
if (cflags & REG_ICASE)
|
|||
|
{
|
|||
|
unsigned i;
|
|||
|
|
|||
|
preg->translate = (char *) malloc (CHAR_SET_SIZE);
|
|||
|
if (preg->translate == NULL)
|
|||
|
return (int) REG_ESPACE;
|
|||
|
|
|||
|
/* Map uppercase characters to corresponding lowercase ones. */
|
|||
|
for (i = 0; i < CHAR_SET_SIZE; i++)
|
|||
|
preg->translate[i] = isupper (i) ? tolower (i) : i;
|
|||
|
}
|
|||
|
else
|
|||
|
preg->translate = NULL;
|
|||
|
|
|||
|
/* If REG_NEWLINE is set, newlines are treated differently. */
|
|||
|
if (cflags & REG_NEWLINE)
|
|||
|
{ /* REG_NEWLINE implies neither . nor [^...] match newline. */
|
|||
|
syntax &= ~RE_DOT_NEWLINE;
|
|||
|
syntax |= RE_HAT_LISTS_NOT_NEWLINE;
|
|||
|
/* It also changes the matching behavior. */
|
|||
|
preg->newline_anchor = 1;
|
|||
|
}
|
|||
|
else
|
|||
|
preg->newline_anchor = 0;
|
|||
|
|
|||
|
preg->no_sub = !!(cflags & REG_NOSUB);
|
|||
|
|
|||
|
/* POSIX says a null character in the pattern terminates it, so we
|
|||
|
can use strlen here in compiling the pattern. */
|
|||
|
ret = regex_compile (pattern, strlen (pattern), syntax, preg);
|
|||
|
|
|||
|
/* POSIX doesn't distinguish between an unmatched open-group and an
|
|||
|
unmatched close-group: both are REG_EPAREN. */
|
|||
|
if (ret == REG_ERPAREN) ret = REG_EPAREN;
|
|||
|
|
|||
|
return (int) ret;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* regexec searches for a given pattern, specified by PREG, in the
|
|||
|
string STRING.
|
|||
|
|
|||
|
If NMATCH is zero or REG_NOSUB was set in the cflags argument to
|
|||
|
`regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
|
|||
|
least NMATCH elements, and we set them to the offsets of the
|
|||
|
corresponding matched substrings.
|
|||
|
|
|||
|
EFLAGS specifies `execution flags' which affect matching: if
|
|||
|
REG_NOTBOL is set, then ^ does not match at the beginning of the
|
|||
|
string; if REG_NOTEOL is set, then $ does not match at the end.
|
|||
|
|
|||
|
We return 0 if we find a match and REG_NOMATCH if not. */
|
|||
|
|
|||
|
int
|
|||
|
regexec (preg, string, nmatch, pmatch, eflags)
|
|||
|
const regex_t *preg;
|
|||
|
const char *string;
|
|||
|
size_t nmatch;
|
|||
|
regmatch_t pmatch[];
|
|||
|
int eflags;
|
|||
|
{
|
|||
|
int ret;
|
|||
|
struct re_registers regs;
|
|||
|
regex_t private_preg;
|
|||
|
int len = strlen (string);
|
|||
|
boolean want_reg_info = !preg->no_sub && nmatch > 0;
|
|||
|
|
|||
|
private_preg = *preg;
|
|||
|
|
|||
|
private_preg.not_bol = !!(eflags & REG_NOTBOL);
|
|||
|
private_preg.not_eol = !!(eflags & REG_NOTEOL);
|
|||
|
|
|||
|
/* The user has told us how many registers to return information
|
|||
|
about, via `nmatch'. We have to pass that on to the matching
|
|||
|
routines. */
|
|||
|
private_preg.caller_allocated_regs = 1;
|
|||
|
|
|||
|
if (want_reg_info)
|
|||
|
{
|
|||
|
regs.num_regs = nmatch;
|
|||
|
regs.start = TALLOC (nmatch, regoff_t);
|
|||
|
regs.end = TALLOC (nmatch, regoff_t);
|
|||
|
if (regs.start == NULL || regs.end == NULL)
|
|||
|
return (int) REG_NOMATCH;
|
|||
|
}
|
|||
|
|
|||
|
/* Perform the searching operation. */
|
|||
|
ret = re_search (&private_preg, string, len,
|
|||
|
/* start: */ 0, /* range: */ len,
|
|||
|
want_reg_info ? ®s : NULL);
|
|||
|
|
|||
|
/* Copy the register information to the POSIX structure. */
|
|||
|
if (want_reg_info)
|
|||
|
{
|
|||
|
if (ret >= 0)
|
|||
|
{
|
|||
|
unsigned r;
|
|||
|
|
|||
|
for (r = 0; r < nmatch; r++)
|
|||
|
{
|
|||
|
pmatch[r].rm_so = regs.start[r];
|
|||
|
pmatch[r].rm_eo = regs.end[r];
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* If we needed the temporary register info, free the space now. */
|
|||
|
free (regs.start);
|
|||
|
free (regs.end);
|
|||
|
}
|
|||
|
|
|||
|
/* We want zero return to mean success, unlike `re_search'. */
|
|||
|
return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Returns a message corresponding to an error code, ERRCODE, returned
|
|||
|
from either regcomp or regexec. */
|
|||
|
|
|||
|
size_t
|
|||
|
regerror (errcode, preg, errbuf, errbuf_size)
|
|||
|
int errcode;
|
|||
|
const regex_t *preg;
|
|||
|
char *errbuf;
|
|||
|
size_t errbuf_size;
|
|||
|
{
|
|||
|
const char *msg
|
|||
|
= re_error_msg[errcode] == NULL ? "Success" : re_error_msg[errcode];
|
|||
|
size_t msg_size = strlen (msg) + 1; /* Includes the null. */
|
|||
|
|
|||
|
if (errbuf_size != 0)
|
|||
|
{
|
|||
|
if (msg_size > errbuf_size)
|
|||
|
{
|
|||
|
strncpy (errbuf, msg, errbuf_size - 1);
|
|||
|
errbuf[errbuf_size - 1] = 0;
|
|||
|
}
|
|||
|
else
|
|||
|
strcpy (errbuf, msg);
|
|||
|
}
|
|||
|
|
|||
|
return msg_size;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Free dynamically allocated space used by PREG. */
|
|||
|
|
|||
|
void
|
|||
|
regfree (preg)
|
|||
|
regex_t *preg;
|
|||
|
{
|
|||
|
if (preg->buffer != NULL)
|
|||
|
free (preg->buffer);
|
|||
|
preg->buffer = NULL;
|
|||
|
|
|||
|
preg->allocated = 0;
|
|||
|
preg->used = 0;
|
|||
|
|
|||
|
if (preg->fastmap != NULL)
|
|||
|
free (preg->fastmap);
|
|||
|
preg->fastmap = NULL;
|
|||
|
preg->fastmap_accurate = 0;
|
|||
|
|
|||
|
if (preg->translate != NULL)
|
|||
|
free (preg->translate);
|
|||
|
preg->translate = NULL;
|
|||
|
}
|
|||
|
|
|||
|
#endif /* not emacs */
|
|||
|
|
|||
|
#ifdef test
|
|||
|
|
|||
|
#include <stdio.h>
|
|||
|
|
|||
|
/* Indexed by a character, gives the upper case equivalent of the
|
|||
|
character. */
|
|||
|
|
|||
|
char upcase[0400] =
|
|||
|
{ 000, 001, 002, 003, 004, 005, 006, 007,
|
|||
|
010, 011, 012, 013, 014, 015, 016, 017,
|
|||
|
020, 021, 022, 023, 024, 025, 026, 027,
|
|||
|
030, 031, 032, 033, 034, 035, 036, 037,
|
|||
|
040, 041, 042, 043, 044, 045, 046, 047,
|
|||
|
050, 051, 052, 053, 054, 055, 056, 057,
|
|||
|
060, 061, 062, 063, 064, 065, 066, 067,
|
|||
|
070, 071, 072, 073, 074, 075, 076, 077,
|
|||
|
0100, 0101, 0102, 0103, 0104, 0105, 0106, 0107,
|
|||
|
0110, 0111, 0112, 0113, 0114, 0115, 0116, 0117,
|
|||
|
0120, 0121, 0122, 0123, 0124, 0125, 0126, 0127,
|
|||
|
0130, 0131, 0132, 0133, 0134, 0135, 0136, 0137,
|
|||
|
0140, 0101, 0102, 0103, 0104, 0105, 0106, 0107,
|
|||
|
0110, 0111, 0112, 0113, 0114, 0115, 0116, 0117,
|
|||
|
0120, 0121, 0122, 0123, 0124, 0125, 0126, 0127,
|
|||
|
0130, 0131, 0132, 0173, 0174, 0175, 0176, 0177,
|
|||
|
0200, 0201, 0202, 0203, 0204, 0205, 0206, 0207,
|
|||
|
0210, 0211, 0212, 0213, 0214, 0215, 0216, 0217,
|
|||
|
0220, 0221, 0222, 0223, 0224, 0225, 0226, 0227,
|
|||
|
0230, 0231, 0232, 0233, 0234, 0235, 0236, 0237,
|
|||
|
0240, 0241, 0242, 0243, 0244, 0245, 0246, 0247,
|
|||
|
0250, 0251, 0252, 0253, 0254, 0255, 0256, 0257,
|
|||
|
0260, 0261, 0262, 0263, 0264, 0265, 0266, 0267,
|
|||
|
0270, 0271, 0272, 0273, 0274, 0275, 0276, 0277,
|
|||
|
0300, 0301, 0302, 0303, 0304, 0305, 0306, 0307,
|
|||
|
0310, 0311, 0312, 0313, 0314, 0315, 0316, 0317,
|
|||
|
0320, 0321, 0322, 0323, 0324, 0325, 0326, 0327,
|
|||
|
0330, 0331, 0332, 0333, 0334, 0335, 0336, 0337,
|
|||
|
0340, 0341, 0342, 0343, 0344, 0345, 0346, 0347,
|
|||
|
0350, 0351, 0352, 0353, 0354, 0355, 0356, 0357,
|
|||
|
0360, 0361, 0362, 0363, 0364, 0365, 0366, 0367,
|
|||
|
0370, 0371, 0372, 0373, 0374, 0375, 0376, 0377
|
|||
|
};
|
|||
|
|
|||
|
|
|||
|
/* Use this to run interactive tests. */
|
|||
|
|
|||
|
void
|
|||
|
main (argc, argv)
|
|||
|
int argc;
|
|||
|
char **argv;
|
|||
|
{
|
|||
|
char pat[500];
|
|||
|
struct re_pattern_buffer buf;
|
|||
|
int i;
|
|||
|
char c;
|
|||
|
char fastmap[(1 << BYTEWIDTH)];
|
|||
|
|
|||
|
/* Allow a command argument to specify the style of syntax. */
|
|||
|
if (argc > 1)
|
|||
|
re_set_syntax (atoi (argv[1]));
|
|||
|
|
|||
|
buf.allocated = 40;
|
|||
|
buf.buffer = (unsigned char *) malloc (buf.allocated);
|
|||
|
buf.fastmap = fastmap;
|
|||
|
buf.translate = upcase;
|
|||
|
|
|||
|
for (;;)
|
|||
|
{
|
|||
|
printf ("Pattern = ");
|
|||
|
gets (pat);
|
|||
|
|
|||
|
if (*pat)
|
|||
|
{
|
|||
|
void printchar ();
|
|||
|
re_compile_pattern (pat, strlen (pat), &buf);
|
|||
|
|
|||
|
for (i = 0; i < buf.used; i++)
|
|||
|
printchar (buf.buffer[i]);
|
|||
|
|
|||
|
putchar ('\n');
|
|||
|
|
|||
|
printf ("%d allocated, %d used.\n", buf.allocated, buf.used);
|
|||
|
|
|||
|
re_compile_fastmap (&buf);
|
|||
|
printf ("Allowed by fastmap: ");
|
|||
|
for (i = 0; i < (1 << BYTEWIDTH); i++)
|
|||
|
if (fastmap[i]) printchar (i);
|
|||
|
putchar ('\n');
|
|||
|
}
|
|||
|
|
|||
|
printf ("String = ");
|
|||
|
gets (pat); /* Now read the string to match against */
|
|||
|
|
|||
|
i = re_match (&buf, pat, strlen (pat), 0, 0);
|
|||
|
printf ("Match value %d.\n\n", i);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
#if 0
|
|||
|
/* We have a fancier version now, compiled_pattern_printer. */
|
|||
|
print_buf (bufp)
|
|||
|
struct re_pattern_buffer *bufp;
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
printf ("buf is :\n----------------\n");
|
|||
|
for (i = 0; i < bufp->used; i++)
|
|||
|
printchar (bufp->buffer[i]);
|
|||
|
|
|||
|
printf ("\n%d allocated, %d used.\n", bufp->allocated, bufp->used);
|
|||
|
|
|||
|
printf ("Allowed by fastmap: ");
|
|||
|
for (i = 0; i < (1 << BYTEWIDTH); i++)
|
|||
|
if (bufp->fastmap[i])
|
|||
|
printchar (i);
|
|||
|
printf ("\nAllowed by translate: ");
|
|||
|
if (bufp->translate)
|
|||
|
for (i = 0; i < (1 << BYTEWIDTH); i++)
|
|||
|
if (bufp->translate[i])
|
|||
|
printchar (i);
|
|||
|
printf ("\nfastmap is%s accurate\n", bufp->fastmap_accurate ? "" : "n't");
|
|||
|
printf ("can %s be null\n----------", bufp->can_be_null ? "" : "not");
|
|||
|
}
|
|||
|
#endif /* 0 */
|
|||
|
|
|||
|
|
|||
|
void
|
|||
|
printchar (c)
|
|||
|
char c;
|
|||
|
{
|
|||
|
if (c < 040 || c >= 0177)
|
|||
|
{
|
|||
|
putchar ('\\');
|
|||
|
putchar (((c >> 6) & 3) + '0');
|
|||
|
putchar (((c >> 3) & 7) + '0');
|
|||
|
putchar ((c & 7) + '0');
|
|||
|
}
|
|||
|
else
|
|||
|
putchar (c);
|
|||
|
}
|
|||
|
#endif /* test */
|
|||
|
|
|||
|
/*
|
|||
|
Local variables:
|
|||
|
make-backup-files: t
|
|||
|
version-control: t
|
|||
|
trim-versions-without-asking: nil
|
|||
|
End:
|
|||
|
*/
|