freebsd-dev/sys/arm/freescale/imx/imx6_anatop.c

597 lines
17 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
* Copyright (c) 2014 Steven Lawrance <stl@koffein.net>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Analog PLL and power regulator driver for Freescale i.MX6 family of SoCs.
* Also, temperature montoring and cpu frequency control. It was Freescale who
* kitchen-sinked this device, not us. :)
*
* We don't really do anything with analog PLLs, but the registers for
* controlling them belong to the same block as the power regulator registers.
* Since the newbus hierarchy makes it hard for anyone other than us to get at
* them, we just export a couple public functions to allow the imx6 CCM clock
* driver to read and write those registers.
*
* We also don't do anything about power regulation yet, but when the need
* arises, this would be the place for that code to live.
*
* I have no idea where the "anatop" name comes from. It's in the standard DTS
* source describing i.MX6 SoCs, and in the linux and u-boot code which comes
* from Freescale, but it's not in the SoC manual.
*
* Note that temperature values throughout this code are handled in two types of
* units. Items with '_cnt' in the name use the hardware temperature count
* units (higher counts are lower temperatures). Items with '_val' in the name
* are deci-Celcius, which are converted to/from deci-Kelvins in the sysctl
* handlers (dK is the standard unit for temperature in sysctl).
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <machine/bus.h>
#include <machine/fdt.h>
#include <arm/freescale/fsl_ocotpreg.h>
#include <arm/freescale/fsl_ocotpvar.h>
#include <arm/freescale/imx/imx6_anatopreg.h>
#include <arm/freescale/imx/imx6_anatopvar.h>
static struct resource_spec imx6_anatop_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
#define MEMRES 0
#define IRQRES 1
struct imx6_anatop_softc {
device_t dev;
struct resource *res[2];
uint32_t cpu_curhz;
uint32_t cpu_curmhz;
uint32_t cpu_curmv;
uint32_t cpu_minhz;
uint32_t cpu_minmv;
uint32_t cpu_maxhz;
uint32_t cpu_maxmv;
uint32_t refosc_hz;
void *temp_intrhand;
uint32_t temp_high_val;
uint32_t temp_high_cnt;
uint32_t temp_last_cnt;
uint32_t temp_room_cnt;
struct callout temp_throttle_callout;
sbintime_t temp_throttle_delay;
uint32_t temp_throttle_reset_cnt;
uint32_t temp_throttle_trigger_cnt;
uint32_t temp_throttle_val;
};
static struct imx6_anatop_softc *imx6_anatop_sc;
/*
* Tables of CPU max frequencies and corresponding voltages. This is indexed by
* the max frequency value (0-3) from the ocotp CFG3 register.
*/
static uint32_t imx6_cpu_maxhz_tab[] = {
792000000, 852000000, 996000000, 1200000000
};
static uint32_t imx6_cpu_millivolt_tab[] = {
1150, 1225, 1225, 1275
};
#define TZ_ZEROC 2732 /* deci-Kelvin <-> deci-Celcius offset. */
uint32_t
imx6_anatop_read_4(bus_size_t offset)
{
KASSERT(imx6_anatop_sc != NULL, ("imx6_anatop_read_4 sc NULL"));
return (bus_read_4(imx6_anatop_sc->res[MEMRES], offset));
}
void
imx6_anatop_write_4(bus_size_t offset, uint32_t value)
{
KASSERT(imx6_anatop_sc != NULL, ("imx6_anatop_write_4 sc NULL"));
bus_write_4(imx6_anatop_sc->res[MEMRES], offset, value);
}
static void
vdd_set(struct imx6_anatop_softc *sc, int mv)
{
int newtarg, oldtarg;
uint32_t delay, pmureg;
static boolean_t init_done = false;
/*
* The datasheet says VDD_PU and VDD_SOC must be equal, and VDD_ARM
* can't be more than 50mV above or 200mV below them. For now to keep
* things simple we set all three to the same value.
*/
pmureg = imx6_anatop_read_4(IMX6_ANALOG_PMU_REG_CORE);
oldtarg = pmureg & IMX6_ANALOG_PMU_REG0_TARG_MASK;
/* Convert mV to target value. Clamp target to valid range. */
if (mv < 725)
newtarg = 0x00;
else if (mv > 1450)
newtarg = 0x1F;
else
newtarg = (mv - 700) / 25;
/*
* The first time through the 3 voltages might not be equal so use a
* long conservative delay. After that we need to delay 3uS for every
* 25mV step upward. No need to delay at all when lowering.
*/
if (init_done) {
if (newtarg == oldtarg)
return;
else if (newtarg > oldtarg)
delay = (newtarg - oldtarg) * 3;
else
delay = 0;
} else {
delay = 700 / 25 * 3;
init_done = true;
}
/*
* Make the change and wait for it to take effect.
*/
pmureg &= ~(IMX6_ANALOG_PMU_REG0_TARG_MASK |
IMX6_ANALOG_PMU_REG1_TARG_MASK |
IMX6_ANALOG_PMU_REG2_TARG_MASK);
pmureg |= newtarg << IMX6_ANALOG_PMU_REG0_TARG_SHIFT;
pmureg |= newtarg << IMX6_ANALOG_PMU_REG1_TARG_SHIFT;
pmureg |= newtarg << IMX6_ANALOG_PMU_REG2_TARG_SHIFT;
imx6_anatop_write_4(IMX6_ANALOG_PMU_REG_CORE, pmureg);
DELAY(delay);
sc->cpu_curmv = newtarg * 25 + 700;
device_printf(sc->dev, "voltage set to %u\n", sc->cpu_curmv);
}
static inline uint32_t
cpufreq_hz_from_div(struct imx6_anatop_softc *sc, uint32_t div)
{
return (sc->refosc_hz * (div / 2));
}
static inline uint32_t
cpufreq_hz_to_div(struct imx6_anatop_softc *sc, uint32_t cpu_hz)
{
return (cpu_hz / (sc->refosc_hz / 2));
}
static inline uint32_t
cpufreq_actual_hz(struct imx6_anatop_softc *sc, uint32_t cpu_hz)
{
return (cpufreq_hz_from_div(sc, cpufreq_hz_to_div(sc, cpu_hz)));
}
static void
cpufreq_set_clock(struct imx6_anatop_softc * sc, uint32_t cpu_newhz)
{
uint32_t div, timeout, wrk32;
const uint32_t mindiv = 54;
const uint32_t maxdiv = 108;
/*
* Clip the requested frequency to the configured max, then clip the
* resulting divisor to the documented min/max values.
*/
cpu_newhz = min(cpu_newhz, sc->cpu_maxhz);
div = cpufreq_hz_to_div(sc, cpu_newhz);
if (div < mindiv)
div = mindiv;
else if (div > maxdiv)
div = maxdiv;
sc->cpu_curhz = cpufreq_hz_from_div(sc, div);
sc->cpu_curmhz = sc->cpu_curhz / 1000000;
/*
* I can't find a documented procedure for changing the ARM PLL divisor,
* but some trial and error came up with this:
* - Set the bypass clock source to REF_CLK_24M (source #0).
* - Set the PLL into bypass mode; cpu should now be running at 24mhz.
* - Change the divisor.
* - Wait for the LOCK bit to come on; it takes ~50 loop iterations.
* - Turn off bypass mode; cpu should now be running at cpu_newhz.
*/
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_CLR,
IMX6_ANALOG_CCM_PLL_ARM_CLK_SRC_MASK);
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_SET,
IMX6_ANALOG_CCM_PLL_ARM_BYPASS);
wrk32 = imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM);
wrk32 &= ~IMX6_ANALOG_CCM_PLL_ARM_DIV_MASK;
wrk32 |= div;
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM, wrk32);
timeout = 10000;
while ((imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM) &
IMX6_ANALOG_CCM_PLL_ARM_LOCK) == 0)
if (--timeout == 0)
panic("imx6_set_cpu_clock(): PLL never locked");
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_ARM_CLR,
IMX6_ANALOG_CCM_PLL_ARM_BYPASS);
}
static void
cpufreq_initialize(struct imx6_anatop_softc *sc)
{
uint32_t cfg3speed;
struct sysctl_ctx_list *ctx;
ctx = device_get_sysctl_ctx(sc->dev);
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
OID_AUTO, "cpu_mhz", CTLFLAG_RD, &sc->cpu_curmhz, 0,
"CPU frequency in MHz");
/*
* XXX 24mhz shouldn't be hard-coded, should get this from imx6_ccm
* (even though in the real world it will always be 24mhz). Oh wait a
* sec, I never wrote imx6_ccm.
*/
sc->refosc_hz = 24000000;
/*
* Get the maximum speed this cpu can be set to. The values in the
* OCOTP CFG3 register are not documented in the reference manual.
* The following info was in an archived email found via web search:
* - 2b'11: 1200000000Hz;
* - 2b'10: 996000000Hz;
* - 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
* - 2b'00: 792000000Hz;
*/
cfg3speed = (fsl_ocotp_read_4(FSL_OCOTP_CFG3) &
FSL_OCOTP_CFG3_SPEED_MASK) >> FSL_OCOTP_CFG3_SPEED_SHIFT;
sc->cpu_minhz = cpufreq_actual_hz(sc, imx6_cpu_maxhz_tab[0]);
sc->cpu_minmv = imx6_cpu_millivolt_tab[0];
sc->cpu_maxhz = cpufreq_actual_hz(sc, imx6_cpu_maxhz_tab[cfg3speed]);
sc->cpu_maxmv = imx6_cpu_millivolt_tab[cfg3speed];
/*
* Set the CPU to maximum speed.
*
* We won't have thermal throttling until interrupts are enabled, but we
* want to run at full speed through all the device init stuff. This
* basically assumes that a single core can't overheat before interrupts
* are enabled; empirical testing shows that to be a safe assumption.
*/
vdd_set(sc, sc->cpu_maxmv);
cpufreq_set_clock(sc, sc->cpu_maxhz);
device_printf(sc->dev, "CPU frequency %uMHz\n", sc->cpu_curmhz);
}
static inline uint32_t
temp_from_count(struct imx6_anatop_softc *sc, uint32_t count)
{
return (((sc->temp_high_val - (count - sc->temp_high_cnt) *
(sc->temp_high_val - 250) /
(sc->temp_room_cnt - sc->temp_high_cnt))));
}
static inline uint32_t
temp_to_count(struct imx6_anatop_softc *sc, uint32_t temp)
{
return ((sc->temp_room_cnt - sc->temp_high_cnt) *
(sc->temp_high_val - temp) / (sc->temp_high_val - 250) +
sc->temp_high_cnt);
}
static void
temp_update_count(struct imx6_anatop_softc *sc)
{
uint32_t val;
val = imx6_anatop_read_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0);
if (!(val & IMX6_ANALOG_TEMPMON_TEMPSENSE0_VALID))
return;
sc->temp_last_cnt =
(val & IMX6_ANALOG_TEMPMON_TEMPSENSE0_TEMP_CNT_MASK) >>
IMX6_ANALOG_TEMPMON_TEMPSENSE0_TEMP_CNT_SHIFT;
}
static int
temp_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
struct imx6_anatop_softc *sc = arg1;
uint32_t t;
temp_update_count(sc);
t = temp_from_count(sc, sc->temp_last_cnt) + TZ_ZEROC;
return (sysctl_handle_int(oidp, &t, 0, req));
}
static int
temp_throttle_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
struct imx6_anatop_softc *sc = arg1;
int err;
uint32_t temp;
temp = sc->temp_throttle_val + TZ_ZEROC;
err = sysctl_handle_int(oidp, &temp, 0, req);
if (temp < TZ_ZEROC)
return (ERANGE);
temp -= TZ_ZEROC;
if (err != 0 || req->newptr == NULL || temp == sc->temp_throttle_val)
return (err);
/* Value changed, update counts in softc and hardware. */
sc->temp_throttle_val = temp;
sc->temp_throttle_trigger_cnt = temp_to_count(sc, sc->temp_throttle_val);
sc->temp_throttle_reset_cnt = temp_to_count(sc, sc->temp_throttle_val - 100);
imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0_CLR,
IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_MASK);
imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0_SET,
(sc->temp_throttle_trigger_cnt <<
IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_SHIFT));
return (err);
}
static void
tempmon_gofast(struct imx6_anatop_softc *sc)
{
if (sc->cpu_curhz < sc->cpu_maxhz) {
vdd_set(sc, sc->cpu_maxmv);
cpufreq_set_clock(sc, sc->cpu_maxhz);
}
}
static void
tempmon_goslow(struct imx6_anatop_softc *sc)
{
if (sc->cpu_curhz > sc->cpu_minhz) {
cpufreq_set_clock(sc, sc->cpu_minhz);
vdd_set(sc, sc->cpu_minmv);
}
}
static int
tempmon_intr(void *arg)
{
struct imx6_anatop_softc *sc = arg;
/*
* XXX Note that this code doesn't currently run (for some mysterious
* reason we just never get an interrupt), so the real monitoring is
* done by tempmon_throttle_check().
*/
tempmon_goslow(sc);
/* XXX Schedule callout to speed back up eventually. */
return (FILTER_HANDLED);
}
static void
tempmon_throttle_check(void *arg)
{
struct imx6_anatop_softc *sc = arg;
/* Lower counts are higher temperatures. */
if (sc->temp_last_cnt < sc->temp_throttle_trigger_cnt)
tempmon_goslow(sc);
else if (sc->temp_last_cnt > (sc->temp_throttle_reset_cnt))
tempmon_gofast(sc);
callout_reset_sbt(&sc->temp_throttle_callout, sc->temp_throttle_delay,
0, tempmon_throttle_check, sc, 0);
}
static void
initialize_tempmon(struct imx6_anatop_softc *sc)
{
uint32_t cal;
struct sysctl_ctx_list *ctx;
/*
* Fetch calibration data: a sensor count at room temperature (25C),
* a sensor count at a high temperature, and that temperature
*/
cal = fsl_ocotp_read_4(FSL_OCOTP_ANA1);
sc->temp_room_cnt = (cal & 0xFFF00000) >> 20;
sc->temp_high_cnt = (cal & 0x000FFF00) >> 8;
sc->temp_high_val = (cal & 0x000000FF) * 10;
/*
* Throttle to a lower cpu freq at 10C below the "hot" temperature, and
* reset back to max cpu freq at 5C below the trigger.
*/
sc->temp_throttle_val = sc->temp_high_val - 100;
sc->temp_throttle_trigger_cnt =
temp_to_count(sc, sc->temp_throttle_val);
sc->temp_throttle_reset_cnt =
temp_to_count(sc, sc->temp_throttle_val - 50);
/*
* Set the sensor to sample automatically at 16Hz (32.768KHz/0x800), set
* the throttle count, and begin making measurements.
*/
imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE1, 0x0800);
imx6_anatop_write_4(IMX6_ANALOG_TEMPMON_TEMPSENSE0,
(sc->temp_throttle_trigger_cnt <<
IMX6_ANALOG_TEMPMON_TEMPSENSE0_ALARM_SHIFT) |
IMX6_ANALOG_TEMPMON_TEMPSENSE0_MEASURE);
/*
* XXX Note that the alarm-interrupt feature isn't working yet, so
* we'll use a callout handler to check at 10Hz. Make sure we have an
* initial temperature reading before starting up the callouts so we
* don't get a bogus reading of zero.
*/
while (sc->temp_last_cnt == 0)
temp_update_count(sc);
sc->temp_throttle_delay = 100 * SBT_1MS;
callout_init(&sc->temp_throttle_callout, 0);
callout_reset_sbt(&sc->temp_throttle_callout, sc->temp_throttle_delay,
0, tempmon_throttle_check, sc, 0);
ctx = device_get_sysctl_ctx(sc->dev);
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD, sc, 0,
temp_sysctl_handler, "IK", "Current die temperature");
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
OID_AUTO, "throttle_temperature", CTLTYPE_INT | CTLFLAG_RW, sc,
0, temp_throttle_sysctl_handler, "IK",
"Throttle CPU when exceeding this temperature");
}
static int
imx6_anatop_detach(device_t dev)
{
return (EBUSY);
}
static int
imx6_anatop_attach(device_t dev)
{
struct imx6_anatop_softc *sc;
int err;
sc = device_get_softc(dev);
sc->dev = dev;
/* Allocate bus_space resources. */
if (bus_alloc_resources(dev, imx6_anatop_spec, sc->res)) {
device_printf(dev, "Cannot allocate resources\n");
err = ENXIO;
goto out;
}
err = bus_setup_intr(dev, sc->res[IRQRES], INTR_TYPE_MISC | INTR_MPSAFE,
tempmon_intr, NULL, sc, &sc->temp_intrhand);
if (err != 0)
goto out;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(sc->dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
OID_AUTO, "cpu_voltage", CTLFLAG_RD,
&sc->cpu_curmv, 0, "Current CPU voltage in millivolts");
imx6_anatop_sc = sc;
/*
* Other code seen on the net sets this SELFBIASOFF flag around the same
* time the temperature sensor is set up, although it's unclear how the
* two are related (if at all).
*/
imx6_anatop_write_4(IMX6_ANALOG_PMU_MISC0_SET,
IMX6_ANALOG_PMU_MISC0_SELFBIASOFF);
cpufreq_initialize(sc);
initialize_tempmon(sc);
err = 0;
out:
if (err != 0) {
bus_release_resources(dev, imx6_anatop_spec, sc->res);
}
return (err);
}
static int
imx6_anatop_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_is_compatible(dev, "fsl,imx6q-anatop") == 0)
return (ENXIO);
device_set_desc(dev, "Freescale i.MX6 Analog PLLs and Power");
return (BUS_PROBE_DEFAULT);
}
uint32_t
imx6_get_cpu_clock()
{
uint32_t div;
div = imx6_anatop_read_4(IMX6_ANALOG_CCM_PLL_ARM) &
IMX6_ANALOG_CCM_PLL_ARM_DIV_MASK;
return (cpufreq_hz_from_div(imx6_anatop_sc, div));
}
static device_method_t imx6_anatop_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, imx6_anatop_probe),
DEVMETHOD(device_attach, imx6_anatop_attach),
DEVMETHOD(device_detach, imx6_anatop_detach),
DEVMETHOD_END
};
static driver_t imx6_anatop_driver = {
"imx6_anatop",
imx6_anatop_methods,
sizeof(struct imx6_anatop_softc)
};
static devclass_t imx6_anatop_devclass;
DRIVER_MODULE(imx6_anatop, simplebus, imx6_anatop_driver, imx6_anatop_devclass, 0, 0);