freebsd-dev/sys/dev/drm2/i915/i915_debug.c

1684 lines
45 KiB
C
Raw Normal View History

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Keith Packard <keithp@keithp.com>
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/drm2/drmP.h>
#include <dev/drm2/drm.h>
#include <dev/drm2/i915/i915_drm.h>
#include <dev/drm2/i915/i915_drv.h>
#include <dev/drm2/i915/intel_drv.h>
#include <dev/drm2/i915/intel_ringbuffer.h>
#include <sys/sysctl.h>
enum {
ACTIVE_LIST,
FLUSHING_LIST,
INACTIVE_LIST,
PINNED_LIST,
DEFERRED_FREE_LIST,
};
static const char *
yesno(int v)
{
return (v ? "yes" : "no");
}
static int
i915_capabilities(struct drm_device *dev, struct sbuf *m, void *data)
{
const struct intel_device_info *info = INTEL_INFO(dev);
sbuf_printf(m, "gen: %d\n", info->gen);
if (HAS_PCH_SPLIT(dev))
sbuf_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
#define B(x) sbuf_printf(m, #x ": %s\n", yesno(info->x))
B(is_mobile);
B(is_i85x);
B(is_i915g);
B(is_i945gm);
B(is_g33);
B(need_gfx_hws);
B(is_g4x);
B(is_pineview);
B(has_fbc);
B(has_pipe_cxsr);
B(has_hotplug);
B(cursor_needs_physical);
B(has_overlay);
B(overlay_needs_physical);
B(supports_tv);
B(has_bsd_ring);
B(has_blt_ring);
B(has_llc);
#undef B
return (0);
}
static const char *
get_pin_flag(struct drm_i915_gem_object *obj)
{
if (obj->user_pin_count > 0)
return "P";
else if (obj->pin_count > 0)
return "p";
else
return " ";
}
static const char *
get_tiling_flag(struct drm_i915_gem_object *obj)
{
switch (obj->tiling_mode) {
default:
case I915_TILING_NONE: return (" ");
case I915_TILING_X: return ("X");
case I915_TILING_Y: return ("Y");
}
}
static const char *
cache_level_str(int type)
{
switch (type) {
case I915_CACHE_NONE: return " uncached";
case I915_CACHE_LLC: return " snooped (LLC)";
case I915_CACHE_LLC_MLC: return " snooped (LLC+MLC)";
default: return ("");
}
}
static void
describe_obj(struct sbuf *m, struct drm_i915_gem_object *obj)
{
sbuf_printf(m, "%p: %s%s %8zdKiB %04x %04x %d %d%s%s%s",
&obj->base,
get_pin_flag(obj),
get_tiling_flag(obj),
obj->base.size / 1024,
obj->base.read_domains,
obj->base.write_domain,
obj->last_rendering_seqno,
obj->last_fenced_seqno,
cache_level_str(obj->cache_level),
obj->dirty ? " dirty" : "",
obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
if (obj->base.name)
sbuf_printf(m, " (name: %d)", obj->base.name);
if (obj->fence_reg != I915_FENCE_REG_NONE)
sbuf_printf(m, " (fence: %d)", obj->fence_reg);
if (obj->gtt_space != NULL)
sbuf_printf(m, " (gtt offset: %08x, size: %08x)",
obj->gtt_offset, (unsigned int)obj->gtt_space->size);
if (obj->pin_mappable || obj->fault_mappable) {
char s[3], *t = s;
if (obj->pin_mappable)
*t++ = 'p';
if (obj->fault_mappable)
*t++ = 'f';
*t = '\0';
sbuf_printf(m, " (%s mappable)", s);
}
if (obj->ring != NULL)
sbuf_printf(m, " (%s)", obj->ring->name);
}
static int
i915_gem_object_list_info(struct drm_device *dev, struct sbuf *m, void *data)
{
uintptr_t list = (uintptr_t)data;
struct list_head *head;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
size_t total_obj_size, total_gtt_size;
int count;
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
switch (list) {
case ACTIVE_LIST:
sbuf_printf(m, "Active:\n");
head = &dev_priv->mm.active_list;
break;
case INACTIVE_LIST:
sbuf_printf(m, "Inactive:\n");
head = &dev_priv->mm.inactive_list;
break;
case PINNED_LIST:
sbuf_printf(m, "Pinned:\n");
head = &dev_priv->mm.pinned_list;
break;
case FLUSHING_LIST:
sbuf_printf(m, "Flushing:\n");
head = &dev_priv->mm.flushing_list;
break;
case DEFERRED_FREE_LIST:
sbuf_printf(m, "Deferred free:\n");
head = &dev_priv->mm.deferred_free_list;
break;
default:
DRM_UNLOCK(dev);
return (EINVAL);
}
total_obj_size = total_gtt_size = count = 0;
list_for_each_entry(obj, head, mm_list) {
sbuf_printf(m, " ");
describe_obj(m, obj);
sbuf_printf(m, "\n");
total_obj_size += obj->base.size;
total_gtt_size += obj->gtt_space->size;
count++;
}
DRM_UNLOCK(dev);
sbuf_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
count, total_obj_size, total_gtt_size);
return (0);
}
#define count_objects(list, member) do { \
list_for_each_entry(obj, list, member) { \
size += obj->gtt_space->size; \
++count; \
if (obj->map_and_fenceable) { \
mappable_size += obj->gtt_space->size; \
++mappable_count; \
} \
} \
} while (0)
static int
i915_gem_object_info(struct drm_device *dev, struct sbuf *m, void *data)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 count, mappable_count;
size_t size, mappable_size;
struct drm_i915_gem_object *obj;
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
sbuf_printf(m, "%u objects, %zu bytes\n",
dev_priv->mm.object_count,
dev_priv->mm.object_memory);
size = count = mappable_size = mappable_count = 0;
count_objects(&dev_priv->mm.gtt_list, gtt_list);
sbuf_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
count, mappable_count, size, mappable_size);
size = count = mappable_size = mappable_count = 0;
count_objects(&dev_priv->mm.active_list, mm_list);
count_objects(&dev_priv->mm.flushing_list, mm_list);
sbuf_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
count, mappable_count, size, mappable_size);
size = count = mappable_size = mappable_count = 0;
count_objects(&dev_priv->mm.pinned_list, mm_list);
sbuf_printf(m, " %u [%u] pinned objects, %zu [%zu] bytes\n",
count, mappable_count, size, mappable_size);
size = count = mappable_size = mappable_count = 0;
count_objects(&dev_priv->mm.inactive_list, mm_list);
sbuf_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
count, mappable_count, size, mappable_size);
size = count = mappable_size = mappable_count = 0;
count_objects(&dev_priv->mm.deferred_free_list, mm_list);
sbuf_printf(m, " %u [%u] freed objects, %zu [%zu] bytes\n",
count, mappable_count, size, mappable_size);
size = count = mappable_size = mappable_count = 0;
list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
if (obj->fault_mappable) {
size += obj->gtt_space->size;
++count;
}
if (obj->pin_mappable) {
mappable_size += obj->gtt_space->size;
++mappable_count;
}
}
sbuf_printf(m, "%u pinned mappable objects, %zu bytes\n",
mappable_count, mappable_size);
sbuf_printf(m, "%u fault mappable objects, %zu bytes\n",
count, size);
sbuf_printf(m, "%zu [%zu] gtt total\n",
dev_priv->mm.gtt_total, dev_priv->mm.mappable_gtt_total);
DRM_UNLOCK(dev);
return (0);
}
static int
i915_gem_gtt_info(struct drm_device *dev, struct sbuf *m, void* data)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
size_t total_obj_size, total_gtt_size;
int count;
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
total_obj_size = total_gtt_size = count = 0;
list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
sbuf_printf(m, " ");
describe_obj(m, obj);
sbuf_printf(m, "\n");
total_obj_size += obj->base.size;
total_gtt_size += obj->gtt_space->size;
count++;
}
DRM_UNLOCK(dev);
sbuf_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
count, total_obj_size, total_gtt_size);
return (0);
}
static int
i915_gem_pageflip_info(struct drm_device *dev, struct sbuf *m, void *data)
{
struct intel_crtc *crtc;
struct drm_i915_gem_object *obj;
struct intel_unpin_work *work;
char pipe;
char plane;
if ((dev->driver->driver_features & DRIVER_MODESET) == 0)
return (0);
list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
pipe = pipe_name(crtc->pipe);
plane = plane_name(crtc->plane);
mtx_lock(&dev->event_lock);
work = crtc->unpin_work;
if (work == NULL) {
sbuf_printf(m, "No flip due on pipe %c (plane %c)\n",
pipe, plane);
} else {
if (!work->pending) {
sbuf_printf(m, "Flip queued on pipe %c (plane %c)\n",
pipe, plane);
} else {
sbuf_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
pipe, plane);
}
if (work->enable_stall_check)
sbuf_printf(m, "Stall check enabled, ");
else
sbuf_printf(m, "Stall check waiting for page flip ioctl, ");
sbuf_printf(m, "%d prepares\n", work->pending);
if (work->old_fb_obj) {
obj = work->old_fb_obj;
if (obj)
sbuf_printf(m, "Old framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
}
if (work->pending_flip_obj) {
obj = work->pending_flip_obj;
if (obj)
sbuf_printf(m, "New framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
}
}
mtx_unlock(&dev->event_lock);
}
return (0);
}
static int
i915_gem_request_info(struct drm_device *dev, struct sbuf *m, void *data)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_request *gem_request;
int count;
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
count = 0;
if (!list_empty(&dev_priv->rings[RCS].request_list)) {
sbuf_printf(m, "Render requests:\n");
list_for_each_entry(gem_request,
&dev_priv->rings[RCS].request_list,
list) {
sbuf_printf(m, " %d @ %d\n",
gem_request->seqno,
(int) (jiffies - gem_request->emitted_jiffies));
}
count++;
}
if (!list_empty(&dev_priv->rings[VCS].request_list)) {
sbuf_printf(m, "BSD requests:\n");
list_for_each_entry(gem_request,
&dev_priv->rings[VCS].request_list,
list) {
sbuf_printf(m, " %d @ %d\n",
gem_request->seqno,
(int) (jiffies - gem_request->emitted_jiffies));
}
count++;
}
if (!list_empty(&dev_priv->rings[BCS].request_list)) {
sbuf_printf(m, "BLT requests:\n");
list_for_each_entry(gem_request,
&dev_priv->rings[BCS].request_list,
list) {
sbuf_printf(m, " %d @ %d\n",
gem_request->seqno,
(int) (jiffies - gem_request->emitted_jiffies));
}
count++;
}
DRM_UNLOCK(dev);
if (count == 0)
sbuf_printf(m, "No requests\n");
return 0;
}
static void
i915_ring_seqno_info(struct sbuf *m, struct intel_ring_buffer *ring)
{
if (ring->get_seqno) {
sbuf_printf(m, "Current sequence (%s): %d\n",
ring->name, ring->get_seqno(ring));
sbuf_printf(m, "Waiter sequence (%s): %d\n",
ring->name, ring->waiting_seqno);
sbuf_printf(m, "IRQ sequence (%s): %d\n",
ring->name, ring->irq_seqno);
}
}
static int
i915_gem_seqno_info(struct drm_device *dev, struct sbuf *m, void *data)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int i;
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
for (i = 0; i < I915_NUM_RINGS; i++)
i915_ring_seqno_info(m, &dev_priv->rings[i]);
DRM_UNLOCK(dev);
return (0);
}
static int
i915_interrupt_info(struct drm_device *dev, struct sbuf *m, void *data)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int i, pipe;
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
if (!HAS_PCH_SPLIT(dev)) {
sbuf_printf(m, "Interrupt enable: %08x\n",
I915_READ(IER));
sbuf_printf(m, "Interrupt identity: %08x\n",
I915_READ(IIR));
sbuf_printf(m, "Interrupt mask: %08x\n",
I915_READ(IMR));
for_each_pipe(pipe)
sbuf_printf(m, "Pipe %c stat: %08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
} else {
sbuf_printf(m, "North Display Interrupt enable: %08x\n",
I915_READ(DEIER));
sbuf_printf(m, "North Display Interrupt identity: %08x\n",
I915_READ(DEIIR));
sbuf_printf(m, "North Display Interrupt mask: %08x\n",
I915_READ(DEIMR));
sbuf_printf(m, "South Display Interrupt enable: %08x\n",
I915_READ(SDEIER));
sbuf_printf(m, "South Display Interrupt identity: %08x\n",
I915_READ(SDEIIR));
sbuf_printf(m, "South Display Interrupt mask: %08x\n",
I915_READ(SDEIMR));
sbuf_printf(m, "Graphics Interrupt enable: %08x\n",
I915_READ(GTIER));
sbuf_printf(m, "Graphics Interrupt identity: %08x\n",
I915_READ(GTIIR));
sbuf_printf(m, "Graphics Interrupt mask: %08x\n",
I915_READ(GTIMR));
}
sbuf_printf(m, "Interrupts received: %d\n",
atomic_read(&dev_priv->irq_received));
for (i = 0; i < I915_NUM_RINGS; i++) {
if (IS_GEN6(dev) || IS_GEN7(dev)) {
sbuf_printf(m, "Graphics Interrupt mask (%s): %08x\n",
dev_priv->rings[i].name,
I915_READ_IMR(&dev_priv->rings[i]));
}
i915_ring_seqno_info(m, &dev_priv->rings[i]);
}
DRM_UNLOCK(dev);
return (0);
}
static int
i915_gem_fence_regs_info(struct drm_device *dev, struct sbuf *m, void *data)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int i;
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
sbuf_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
sbuf_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
for (i = 0; i < dev_priv->num_fence_regs; i++) {
struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
sbuf_printf(m, "Fenced object[%2d] = ", i);
if (obj == NULL)
sbuf_printf(m, "unused");
else
describe_obj(m, obj);
sbuf_printf(m, "\n");
}
DRM_UNLOCK(dev);
return (0);
}
static int
i915_hws_info(struct drm_device *dev, struct sbuf *m, void *data)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
const volatile u32 *hws;
int i;
ring = &dev_priv->rings[(uintptr_t)data];
hws = (volatile u32 *)ring->status_page.page_addr;
if (hws == NULL)
return (0);
for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
sbuf_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
i * 4,
hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
}
return (0);
}
static int
i915_ringbuffer_data(struct drm_device *dev, struct sbuf *m, void *data)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
ring = &dev_priv->rings[(uintptr_t)data];
if (!ring->obj) {
sbuf_printf(m, "No ringbuffer setup\n");
} else {
u8 *virt = ring->virtual_start;
uint32_t off;
for (off = 0; off < ring->size; off += 4) {
uint32_t *ptr = (uint32_t *)(virt + off);
sbuf_printf(m, "%08x : %08x\n", off, *ptr);
}
}
DRM_UNLOCK(dev);
return (0);
}
static int
i915_ringbuffer_info(struct drm_device *dev, struct sbuf *m, void *data)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
ring = &dev_priv->rings[(uintptr_t)data];
if (ring->size == 0)
return (0);
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
sbuf_printf(m, "Ring %s:\n", ring->name);
sbuf_printf(m, " Head : %08x\n", I915_READ_HEAD(ring) & HEAD_ADDR);
sbuf_printf(m, " Tail : %08x\n", I915_READ_TAIL(ring) & TAIL_ADDR);
sbuf_printf(m, " Size : %08x\n", ring->size);
sbuf_printf(m, " Active : %08x\n", intel_ring_get_active_head(ring));
sbuf_printf(m, " NOPID : %08x\n", I915_READ_NOPID(ring));
if (IS_GEN6(dev) || IS_GEN7(dev)) {
sbuf_printf(m, " Sync 0 : %08x\n", I915_READ_SYNC_0(ring));
sbuf_printf(m, " Sync 1 : %08x\n", I915_READ_SYNC_1(ring));
}
sbuf_printf(m, " Control : %08x\n", I915_READ_CTL(ring));
sbuf_printf(m, " Start : %08x\n", I915_READ_START(ring));
DRM_UNLOCK(dev);
return (0);
}
static const char *
ring_str(int ring)
{
switch (ring) {
case RCS: return (" render");
case VCS: return (" bsd");
case BCS: return (" blt");
default: return ("");
}
}
static const char *
pin_flag(int pinned)
{
if (pinned > 0)
return (" P");
else if (pinned < 0)
return (" p");
else
return ("");
}
static const char *tiling_flag(int tiling)
{
switch (tiling) {
default:
case I915_TILING_NONE: return "";
case I915_TILING_X: return " X";
case I915_TILING_Y: return " Y";
}
}
static const char *dirty_flag(int dirty)
{
return dirty ? " dirty" : "";
}
static const char *purgeable_flag(int purgeable)
{
return purgeable ? " purgeable" : "";
}
static void print_error_buffers(struct sbuf *m, const char *name,
struct drm_i915_error_buffer *err, int count)
{
sbuf_printf(m, "%s [%d]:\n", name, count);
while (count--) {
sbuf_printf(m, " %08x %8u %04x %04x %08x%s%s%s%s%s%s%s",
err->gtt_offset,
err->size,
err->read_domains,
err->write_domain,
err->seqno,
pin_flag(err->pinned),
tiling_flag(err->tiling),
dirty_flag(err->dirty),
purgeable_flag(err->purgeable),
err->ring != -1 ? " " : "",
ring_str(err->ring),
cache_level_str(err->cache_level));
if (err->name)
sbuf_printf(m, " (name: %d)", err->name);
if (err->fence_reg != I915_FENCE_REG_NONE)
sbuf_printf(m, " (fence: %d)", err->fence_reg);
sbuf_printf(m, "\n");
err++;
}
}
static void
i915_ring_error_state(struct sbuf *m, struct drm_device *dev,
struct drm_i915_error_state *error, unsigned ring)
{
sbuf_printf(m, "%s command stream:\n", ring_str(ring));
sbuf_printf(m, " HEAD: 0x%08x\n", error->head[ring]);
sbuf_printf(m, " TAIL: 0x%08x\n", error->tail[ring]);
sbuf_printf(m, " ACTHD: 0x%08x\n", error->acthd[ring]);
sbuf_printf(m, " IPEIR: 0x%08x\n", error->ipeir[ring]);
sbuf_printf(m, " IPEHR: 0x%08x\n", error->ipehr[ring]);
sbuf_printf(m, " INSTDONE: 0x%08x\n", error->instdone[ring]);
if (ring == RCS && INTEL_INFO(dev)->gen >= 4) {
sbuf_printf(m, " INSTDONE1: 0x%08x\n", error->instdone1);
sbuf_printf(m, " BBADDR: 0x%08jx\n", (uintmax_t)error->bbaddr);
}
if (INTEL_INFO(dev)->gen >= 4)
sbuf_printf(m, " INSTPS: 0x%08x\n", error->instps[ring]);
sbuf_printf(m, " INSTPM: 0x%08x\n", error->instpm[ring]);
if (INTEL_INFO(dev)->gen >= 6) {
sbuf_printf(m, " FADDR: 0x%08x\n", error->faddr[ring]);
sbuf_printf(m, " FAULT_REG: 0x%08x\n", error->fault_reg[ring]);
sbuf_printf(m, " SYNC_0: 0x%08x\n",
error->semaphore_mboxes[ring][0]);
sbuf_printf(m, " SYNC_1: 0x%08x\n",
error->semaphore_mboxes[ring][1]);
}
sbuf_printf(m, " seqno: 0x%08x\n", error->seqno[ring]);
sbuf_printf(m, " ring->head: 0x%08x\n", error->cpu_ring_head[ring]);
sbuf_printf(m, " ring->tail: 0x%08x\n", error->cpu_ring_tail[ring]);
}
static int i915_error_state(struct drm_device *dev, struct sbuf *m,
void *unused)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_error_state *error;
int i, j, page, offset, elt;
mtx_lock(&dev_priv->error_lock);
if (!dev_priv->first_error) {
sbuf_printf(m, "no error state collected\n");
goto out;
}
error = dev_priv->first_error;
sbuf_printf(m, "Time: %jd s %jd us\n", (intmax_t)error->time.tv_sec,
(intmax_t)error->time.tv_usec);
sbuf_printf(m, "PCI ID: 0x%04x\n", dev->pci_device);
sbuf_printf(m, "EIR: 0x%08x\n", error->eir);
sbuf_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er);
for (i = 0; i < dev_priv->num_fence_regs; i++)
sbuf_printf(m, " fence[%d] = %08jx\n", i,
(uintmax_t)error->fence[i]);
if (INTEL_INFO(dev)->gen >= 6) {
sbuf_printf(m, "ERROR: 0x%08x\n", error->error);
sbuf_printf(m, "DONE_REG: 0x%08x\n", error->done_reg);
}
i915_ring_error_state(m, dev, error, RCS);
if (HAS_BLT(dev))
i915_ring_error_state(m, dev, error, BCS);
if (HAS_BSD(dev))
i915_ring_error_state(m, dev, error, VCS);
if (error->active_bo)
print_error_buffers(m, "Active",
error->active_bo,
error->active_bo_count);
if (error->pinned_bo)
print_error_buffers(m, "Pinned",
error->pinned_bo,
error->pinned_bo_count);
for (i = 0; i < DRM_ARRAY_SIZE(error->ring); i++) {
struct drm_i915_error_object *obj;
if ((obj = error->ring[i].batchbuffer)) {
sbuf_printf(m, "%s --- gtt_offset = 0x%08x\n",
dev_priv->rings[i].name,
obj->gtt_offset);
offset = 0;
for (page = 0; page < obj->page_count; page++) {
for (elt = 0; elt < PAGE_SIZE/4; elt++) {
sbuf_printf(m, "%08x : %08x\n",
offset, obj->pages[page][elt]);
offset += 4;
}
}
}
if (error->ring[i].num_requests) {
sbuf_printf(m, "%s --- %d requests\n",
dev_priv->rings[i].name,
error->ring[i].num_requests);
for (j = 0; j < error->ring[i].num_requests; j++) {
sbuf_printf(m, " seqno 0x%08x, emitted %ld, tail 0x%08x\n",
error->ring[i].requests[j].seqno,
error->ring[i].requests[j].jiffies,
error->ring[i].requests[j].tail);
}
}
if ((obj = error->ring[i].ringbuffer)) {
sbuf_printf(m, "%s --- ringbuffer = 0x%08x\n",
dev_priv->rings[i].name,
obj->gtt_offset);
offset = 0;
for (page = 0; page < obj->page_count; page++) {
for (elt = 0; elt < PAGE_SIZE/4; elt++) {
sbuf_printf(m, "%08x : %08x\n",
offset,
obj->pages[page][elt]);
offset += 4;
}
}
}
}
if (error->overlay)
intel_overlay_print_error_state(m, error->overlay);
if (error->display)
intel_display_print_error_state(m, dev, error->display);
out:
mtx_unlock(&dev_priv->error_lock);
return (0);
}
static int
i915_rstdby_delays(struct drm_device *dev, struct sbuf *m, void *unused)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u16 crstanddelay;
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
crstanddelay = I915_READ16(CRSTANDVID);
DRM_UNLOCK(dev);
sbuf_printf(m, "w/ctx: %d, w/o ctx: %d\n",
(crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
return 0;
}
static int
i915_cur_delayinfo(struct drm_device *dev, struct sbuf *m, void *unused)
{
drm_i915_private_t *dev_priv = dev->dev_private;
if (IS_GEN5(dev)) {
u16 rgvswctl = I915_READ16(MEMSWCTL);
u16 rgvstat = I915_READ16(MEMSTAT_ILK);
sbuf_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
sbuf_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
sbuf_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
MEMSTAT_VID_SHIFT);
sbuf_printf(m, "Current P-state: %d\n",
(rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
} else if (IS_GEN6(dev)) {
u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
u32 rpstat;
u32 rpupei, rpcurup, rpprevup;
u32 rpdownei, rpcurdown, rpprevdown;
int max_freq;
/* RPSTAT1 is in the GT power well */
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
gen6_gt_force_wake_get(dev_priv);
rpstat = I915_READ(GEN6_RPSTAT1);
rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
rpcurup = I915_READ(GEN6_RP_CUR_UP);
rpprevup = I915_READ(GEN6_RP_PREV_UP);
rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
gen6_gt_force_wake_put(dev_priv);
DRM_UNLOCK(dev);
sbuf_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
sbuf_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
sbuf_printf(m, "Render p-state ratio: %d\n",
(gt_perf_status & 0xff00) >> 8);
sbuf_printf(m, "Render p-state VID: %d\n",
gt_perf_status & 0xff);
sbuf_printf(m, "Render p-state limit: %d\n",
rp_state_limits & 0xff);
sbuf_printf(m, "CAGF: %dMHz\n", ((rpstat & GEN6_CAGF_MASK) >>
GEN6_CAGF_SHIFT) * 50);
sbuf_printf(m, "RP CUR UP EI: %dus\n", rpupei &
GEN6_CURICONT_MASK);
sbuf_printf(m, "RP CUR UP: %dus\n", rpcurup &
GEN6_CURBSYTAVG_MASK);
sbuf_printf(m, "RP PREV UP: %dus\n", rpprevup &
GEN6_CURBSYTAVG_MASK);
sbuf_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
GEN6_CURIAVG_MASK);
sbuf_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
GEN6_CURBSYTAVG_MASK);
sbuf_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
GEN6_CURBSYTAVG_MASK);
max_freq = (rp_state_cap & 0xff0000) >> 16;
sbuf_printf(m, "Lowest (RPN) frequency: %dMHz\n",
max_freq * 50);
max_freq = (rp_state_cap & 0xff00) >> 8;
sbuf_printf(m, "Nominal (RP1) frequency: %dMHz\n",
max_freq * 50);
max_freq = rp_state_cap & 0xff;
sbuf_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
max_freq * 50);
} else {
sbuf_printf(m, "no P-state info available\n");
}
return 0;
}
static int
i915_delayfreq_table(struct drm_device *dev, struct sbuf *m, void *unused)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u32 delayfreq;
int i;
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
for (i = 0; i < 16; i++) {
delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
sbuf_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
(delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
}
DRM_UNLOCK(dev);
return (0);
}
static inline int
MAP_TO_MV(int map)
{
return 1250 - (map * 25);
}
static int
i915_inttoext_table(struct drm_device *dev, struct sbuf *m, void *unused)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u32 inttoext;
int i;
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
for (i = 1; i <= 32; i++) {
inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
sbuf_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
}
DRM_UNLOCK(dev);
return (0);
}
static int
ironlake_drpc_info(struct drm_device *dev, struct sbuf *m)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u32 rgvmodectl;
u32 rstdbyctl;
u16 crstandvid;
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
rgvmodectl = I915_READ(MEMMODECTL);
rstdbyctl = I915_READ(RSTDBYCTL);
crstandvid = I915_READ16(CRSTANDVID);
DRM_UNLOCK(dev);
sbuf_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
"yes" : "no");
sbuf_printf(m, "Boost freq: %d\n",
(rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
MEMMODE_BOOST_FREQ_SHIFT);
sbuf_printf(m, "HW control enabled: %s\n",
rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
sbuf_printf(m, "SW control enabled: %s\n",
rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
sbuf_printf(m, "Gated voltage change: %s\n",
rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
sbuf_printf(m, "Starting frequency: P%d\n",
(rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
sbuf_printf(m, "Max P-state: P%d\n",
(rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
sbuf_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
sbuf_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
sbuf_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
sbuf_printf(m, "Render standby enabled: %s\n",
(rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
sbuf_printf(m, "Current RS state: ");
switch (rstdbyctl & RSX_STATUS_MASK) {
case RSX_STATUS_ON:
sbuf_printf(m, "on\n");
break;
case RSX_STATUS_RC1:
sbuf_printf(m, "RC1\n");
break;
case RSX_STATUS_RC1E:
sbuf_printf(m, "RC1E\n");
break;
case RSX_STATUS_RS1:
sbuf_printf(m, "RS1\n");
break;
case RSX_STATUS_RS2:
sbuf_printf(m, "RS2 (RC6)\n");
break;
case RSX_STATUS_RS3:
sbuf_printf(m, "RC3 (RC6+)\n");
break;
default:
sbuf_printf(m, "unknown\n");
break;
}
return 0;
}
static int
gen6_drpc_info(struct drm_device *dev, struct sbuf *m)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u32 rpmodectl1, gt_core_status, rcctl1;
unsigned forcewake_count;
int count=0;
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
mtx_lock(&dev_priv->gt_lock);
forcewake_count = dev_priv->forcewake_count;
mtx_unlock(&dev_priv->gt_lock);
if (forcewake_count) {
sbuf_printf(m, "RC information inaccurate because userspace "
"holds a reference \n");
} else {
/* NB: we cannot use forcewake, else we read the wrong values */
while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
DRM_UDELAY(10);
sbuf_printf(m, "RC information accurate: %s\n", yesno(count < 51));
}
gt_core_status = DRM_READ32(dev_priv->mmio_map, GEN6_GT_CORE_STATUS);
trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4);
rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
rcctl1 = I915_READ(GEN6_RC_CONTROL);
DRM_UNLOCK(dev);
sbuf_printf(m, "Video Turbo Mode: %s\n",
yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
sbuf_printf(m, "HW control enabled: %s\n",
yesno(rpmodectl1 & GEN6_RP_ENABLE));
sbuf_printf(m, "SW control enabled: %s\n",
yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
GEN6_RP_MEDIA_SW_MODE));
sbuf_printf(m, "RC1e Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
sbuf_printf(m, "RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
sbuf_printf(m, "Deep RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
sbuf_printf(m, "Deepest RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
sbuf_printf(m, "Current RC state: ");
switch (gt_core_status & GEN6_RCn_MASK) {
case GEN6_RC0:
if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
sbuf_printf(m, "Core Power Down\n");
else
sbuf_printf(m, "on\n");
break;
case GEN6_RC3:
sbuf_printf(m, "RC3\n");
break;
case GEN6_RC6:
sbuf_printf(m, "RC6\n");
break;
case GEN6_RC7:
sbuf_printf(m, "RC7\n");
break;
default:
sbuf_printf(m, "Unknown\n");
break;
}
sbuf_printf(m, "Core Power Down: %s\n",
yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
return 0;
}
static int i915_drpc_info(struct drm_device *dev, struct sbuf *m, void *unused)
{
if (IS_GEN6(dev) || IS_GEN7(dev))
return (gen6_drpc_info(dev, m));
else
return (ironlake_drpc_info(dev, m));
}
static int
i915_fbc_status(struct drm_device *dev, struct sbuf *m, void *unused)
{
drm_i915_private_t *dev_priv = dev->dev_private;
if (!I915_HAS_FBC(dev)) {
sbuf_printf(m, "FBC unsupported on this chipset");
return 0;
}
if (intel_fbc_enabled(dev)) {
sbuf_printf(m, "FBC enabled");
} else {
sbuf_printf(m, "FBC disabled: ");
switch (dev_priv->no_fbc_reason) {
case FBC_NO_OUTPUT:
sbuf_printf(m, "no outputs");
break;
case FBC_STOLEN_TOO_SMALL:
sbuf_printf(m, "not enough stolen memory");
break;
case FBC_UNSUPPORTED_MODE:
sbuf_printf(m, "mode not supported");
break;
case FBC_MODE_TOO_LARGE:
sbuf_printf(m, "mode too large");
break;
case FBC_BAD_PLANE:
sbuf_printf(m, "FBC unsupported on plane");
break;
case FBC_NOT_TILED:
sbuf_printf(m, "scanout buffer not tiled");
break;
case FBC_MULTIPLE_PIPES:
sbuf_printf(m, "multiple pipes are enabled");
break;
default:
sbuf_printf(m, "unknown reason");
}
}
return 0;
}
static int
i915_sr_status(struct drm_device *dev, struct sbuf *m, void *unused)
{
drm_i915_private_t *dev_priv = dev->dev_private;
bool sr_enabled = false;
if (HAS_PCH_SPLIT(dev))
sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
else if (IS_I915GM(dev))
sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
else if (IS_PINEVIEW(dev))
sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
sbuf_printf(m, "self-refresh: %s",
sr_enabled ? "enabled" : "disabled");
return (0);
}
static int i915_ring_freq_table(struct drm_device *dev, struct sbuf *m,
void *unused)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int gpu_freq, ia_freq;
if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
sbuf_printf(m, "unsupported on this chipset");
return (0);
}
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
sbuf_printf(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\n");
for (gpu_freq = dev_priv->min_delay; gpu_freq <= dev_priv->max_delay;
gpu_freq++) {
I915_WRITE(GEN6_PCODE_DATA, gpu_freq);
I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
GEN6_PCODE_READ_MIN_FREQ_TABLE);
if (_intel_wait_for(dev,
(I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
10, 1, "915frq")) {
DRM_ERROR("pcode read of freq table timed out\n");
continue;
}
ia_freq = I915_READ(GEN6_PCODE_DATA);
sbuf_printf(m, "%d\t\t%d\n", gpu_freq * 50, ia_freq * 100);
}
DRM_UNLOCK(dev);
return (0);
}
static int
i915_emon_status(struct drm_device *dev, struct sbuf *m, void *unused)
{
drm_i915_private_t *dev_priv = dev->dev_private;
unsigned long temp, chipset, gfx;
if (!IS_GEN5(dev)) {
sbuf_printf(m, "Not supported\n");
return (0);
}
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
temp = i915_mch_val(dev_priv);
chipset = i915_chipset_val(dev_priv);
gfx = i915_gfx_val(dev_priv);
DRM_UNLOCK(dev);
sbuf_printf(m, "GMCH temp: %ld\n", temp);
sbuf_printf(m, "Chipset power: %ld\n", chipset);
sbuf_printf(m, "GFX power: %ld\n", gfx);
sbuf_printf(m, "Total power: %ld\n", chipset + gfx);
return (0);
}
static int
i915_gfxec(struct drm_device *dev, struct sbuf *m, void *unused)
{
drm_i915_private_t *dev_priv = dev->dev_private;
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
sbuf_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
DRM_UNLOCK(dev);
return (0);
}
#if 0
static int
i915_opregion(struct drm_device *dev, struct sbuf *m, void *unused)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_opregion *opregion = &dev_priv->opregion;
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
if (opregion->header)
seq_write(m, opregion->header, OPREGION_SIZE);
DRM_UNLOCK(dev);
return 0;
}
#endif
static int
i915_gem_framebuffer_info(struct drm_device *dev, struct sbuf *m, void *data)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_fbdev *ifbdev;
struct intel_framebuffer *fb;
if (sx_xlock_sig(&dev->dev_struct_lock))
return (EINTR);
ifbdev = dev_priv->fbdev;
if (ifbdev == NULL) {
DRM_UNLOCK(dev);
return (0);
}
fb = to_intel_framebuffer(ifbdev->helper.fb);
sbuf_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, obj ",
fb->base.width,
fb->base.height,
fb->base.depth,
fb->base.bits_per_pixel);
describe_obj(m, fb->obj);
sbuf_printf(m, "\n");
list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
if (&fb->base == ifbdev->helper.fb)
continue;
sbuf_printf(m, "user size: %d x %d, depth %d, %d bpp, obj ",
fb->base.width,
fb->base.height,
fb->base.depth,
fb->base.bits_per_pixel);
describe_obj(m, fb->obj);
sbuf_printf(m, "\n");
}
DRM_UNLOCK(dev);
return (0);
}
static int
i915_context_status(struct drm_device *dev, struct sbuf *m, void *data)
{
drm_i915_private_t *dev_priv;
int ret;
if ((dev->driver->driver_features & DRIVER_MODESET) == 0)
return (0);
dev_priv = dev->dev_private;
ret = sx_xlock_sig(&dev->mode_config.mutex);
if (ret != 0)
return (EINTR);
if (dev_priv->pwrctx != NULL) {
sbuf_printf(m, "power context ");
describe_obj(m, dev_priv->pwrctx);
sbuf_printf(m, "\n");
}
if (dev_priv->renderctx != NULL) {
sbuf_printf(m, "render context ");
describe_obj(m, dev_priv->renderctx);
sbuf_printf(m, "\n");
}
sx_xunlock(&dev->mode_config.mutex);
return (0);
}
static int
i915_gen6_forcewake_count_info(struct drm_device *dev, struct sbuf *m,
void *data)
{
struct drm_i915_private *dev_priv;
unsigned forcewake_count;
dev_priv = dev->dev_private;
mtx_lock(&dev_priv->gt_lock);
forcewake_count = dev_priv->forcewake_count;
mtx_unlock(&dev_priv->gt_lock);
sbuf_printf(m, "forcewake count = %u\n", forcewake_count);
return (0);
}
static const char *
swizzle_string(unsigned swizzle)
{
switch(swizzle) {
case I915_BIT_6_SWIZZLE_NONE:
return "none";
case I915_BIT_6_SWIZZLE_9:
return "bit9";
case I915_BIT_6_SWIZZLE_9_10:
return "bit9/bit10";
case I915_BIT_6_SWIZZLE_9_11:
return "bit9/bit11";
case I915_BIT_6_SWIZZLE_9_10_11:
return "bit9/bit10/bit11";
case I915_BIT_6_SWIZZLE_9_17:
return "bit9/bit17";
case I915_BIT_6_SWIZZLE_9_10_17:
return "bit9/bit10/bit17";
case I915_BIT_6_SWIZZLE_UNKNOWN:
return "unknown";
}
return "bug";
}
static int
i915_swizzle_info(struct drm_device *dev, struct sbuf *m, void *data)
{
struct drm_i915_private *dev_priv;
int ret;
dev_priv = dev->dev_private;
ret = sx_xlock_sig(&dev->dev_struct_lock);
if (ret != 0)
return (EINTR);
sbuf_printf(m, "bit6 swizzle for X-tiling = %s\n",
swizzle_string(dev_priv->mm.bit_6_swizzle_x));
sbuf_printf(m, "bit6 swizzle for Y-tiling = %s\n",
swizzle_string(dev_priv->mm.bit_6_swizzle_y));
if (IS_GEN3(dev) || IS_GEN4(dev)) {
sbuf_printf(m, "DDC = 0x%08x\n",
I915_READ(DCC));
sbuf_printf(m, "C0DRB3 = 0x%04x\n",
I915_READ16(C0DRB3));
sbuf_printf(m, "C1DRB3 = 0x%04x\n",
I915_READ16(C1DRB3));
} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
sbuf_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
I915_READ(MAD_DIMM_C0));
sbuf_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
I915_READ(MAD_DIMM_C1));
sbuf_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
I915_READ(MAD_DIMM_C2));
sbuf_printf(m, "TILECTL = 0x%08x\n",
I915_READ(TILECTL));
sbuf_printf(m, "ARB_MODE = 0x%08x\n",
I915_READ(ARB_MODE));
sbuf_printf(m, "DISP_ARB_CTL = 0x%08x\n",
I915_READ(DISP_ARB_CTL));
}
DRM_UNLOCK(dev);
return (0);
}
static int
i915_ppgtt_info(struct drm_device *dev, struct sbuf *m, void *data)
{
struct drm_i915_private *dev_priv;
struct intel_ring_buffer *ring;
int i, ret;
dev_priv = dev->dev_private;
ret = sx_xlock_sig(&dev->dev_struct_lock);
if (ret != 0)
return (EINTR);
if (INTEL_INFO(dev)->gen == 6)
sbuf_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
for (i = 0; i < I915_NUM_RINGS; i++) {
ring = &dev_priv->rings[i];
sbuf_printf(m, "%s\n", ring->name);
if (INTEL_INFO(dev)->gen == 7)
sbuf_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
sbuf_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
sbuf_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
sbuf_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
}
if (dev_priv->mm.aliasing_ppgtt) {
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
sbuf_printf(m, "aliasing PPGTT:\n");
sbuf_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
}
sbuf_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
DRM_UNLOCK(dev);
return (0);
}
static int
i915_debug_set_wedged(SYSCTL_HANDLER_ARGS)
{
struct drm_device *dev;
drm_i915_private_t *dev_priv;
int error, wedged;
dev = arg1;
dev_priv = dev->dev_private;
if (dev_priv == NULL)
return (EBUSY);
wedged = dev_priv->mm.wedged;
error = sysctl_handle_int(oidp, &wedged, 0, req);
if (error || !req->newptr)
return (error);
DRM_INFO("Manually setting wedged to %d\n", wedged);
i915_handle_error(dev, wedged);
return (error);
}
static int
i915_max_freq(SYSCTL_HANDLER_ARGS)
{
struct drm_device *dev;
drm_i915_private_t *dev_priv;
int error, max_freq;
dev = arg1;
dev_priv = dev->dev_private;
if (dev_priv == NULL)
return (EBUSY);
max_freq = dev_priv->max_delay * 50;
error = sysctl_handle_int(oidp, &max_freq, 0, req);
if (error || !req->newptr)
return (error);
DRM_DEBUG("Manually setting max freq to %d\n", max_freq);
/*
* Turbo will still be enabled, but won't go above the set value.
*/
dev_priv->max_delay = max_freq / 50;
gen6_set_rps(dev, max_freq / 50);
return (error);
}
static int
i915_cache_sharing(SYSCTL_HANDLER_ARGS)
{
struct drm_device *dev;
drm_i915_private_t *dev_priv;
int error, snpcr, cache_sharing;
dev = arg1;
dev_priv = dev->dev_private;
if (dev_priv == NULL)
return (EBUSY);
DRM_LOCK(dev);
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
DRM_UNLOCK(dev);
cache_sharing = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
error = sysctl_handle_int(oidp, &cache_sharing, 0, req);
if (error || !req->newptr)
return (error);
if (cache_sharing < 0 || cache_sharing > 3)
return (EINVAL);
DRM_DEBUG("Manually setting uncore sharing to %d\n", cache_sharing);
DRM_LOCK(dev);
/* Update the cache sharing policy here as well */
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
snpcr &= ~GEN6_MBC_SNPCR_MASK;
snpcr |= (cache_sharing << GEN6_MBC_SNPCR_SHIFT);
I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
DRM_UNLOCK(dev);
return (0);
}
static struct i915_info_sysctl_list {
const char *name;
int (*ptr)(struct drm_device *dev, struct sbuf *m, void *data);
int flags;
void *data;
} i915_info_sysctl_list[] = {
{"i915_capabilities", i915_capabilities, 0},
{"i915_gem_objects", i915_gem_object_info, 0},
{"i915_gem_gtt", i915_gem_gtt_info, 0},
{"i915_gem_active", i915_gem_object_list_info, 0, (void *)ACTIVE_LIST},
{"i915_gem_flushing", i915_gem_object_list_info, 0,
(void *)FLUSHING_LIST},
{"i915_gem_inactive", i915_gem_object_list_info, 0,
(void *)INACTIVE_LIST},
{"i915_gem_pinned", i915_gem_object_list_info, 0,
(void *)PINNED_LIST},
{"i915_gem_deferred_free", i915_gem_object_list_info, 0,
(void *)DEFERRED_FREE_LIST},
{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
{"i915_gem_request", i915_gem_request_info, 0},
{"i915_gem_seqno", i915_gem_seqno_info, 0},
{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
{"i915_gem_interrupt", i915_interrupt_info, 0},
{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
{"i915_ringbuffer_data", i915_ringbuffer_data, 0, (void *)RCS},
{"i915_ringbuffer_info", i915_ringbuffer_info, 0, (void *)RCS},
{"i915_bsd_ringbuffer_data", i915_ringbuffer_data, 0, (void *)VCS},
{"i915_bsd_ringbuffer_info", i915_ringbuffer_info, 0, (void *)VCS},
{"i915_blt_ringbuffer_data", i915_ringbuffer_data, 0, (void *)BCS},
{"i915_blt_ringbuffer_info", i915_ringbuffer_info, 0, (void *)BCS},
{"i915_error_state", i915_error_state, 0},
{"i915_rstdby_delays", i915_rstdby_delays, 0},
{"i915_cur_delayinfo", i915_cur_delayinfo, 0},
{"i915_delayfreq_table", i915_delayfreq_table, 0},
{"i915_inttoext_table", i915_inttoext_table, 0},
{"i915_drpc_info", i915_drpc_info, 0},
{"i915_emon_status", i915_emon_status, 0},
{"i915_ring_freq_table", i915_ring_freq_table, 0},
{"i915_gfxec", i915_gfxec, 0},
{"i915_fbc_status", i915_fbc_status, 0},
{"i915_sr_status", i915_sr_status, 0},
#if 0
{"i915_opregion", i915_opregion, 0},
#endif
{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
{"i915_context_status", i915_context_status, 0},
{"i915_gen6_forcewake_count_info", i915_gen6_forcewake_count_info, 0},
{"i915_swizzle_info", i915_swizzle_info, 0},
{"i915_ppgtt_info", i915_ppgtt_info, 0},
};
struct i915_info_sysctl_thunk {
struct drm_device *dev;
int idx;
void *arg;
};
static int
i915_info_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
struct sbuf m;
struct i915_info_sysctl_thunk *thunk;
struct drm_device *dev;
drm_i915_private_t *dev_priv;
int error;
thunk = arg1;
dev = thunk->dev;
dev_priv = dev->dev_private;
if (dev_priv == NULL)
return (EBUSY);
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
sbuf_new_for_sysctl(&m, NULL, 128, req);
error = i915_info_sysctl_list[thunk->idx].ptr(dev, &m,
thunk->arg);
if (error == 0)
error = sbuf_finish(&m);
sbuf_delete(&m);
return (error);
}
extern int i915_gem_sync_exec_requests;
extern int i915_fix_mi_batchbuffer_end;
extern int i915_intr_pf;
extern long i915_gem_wired_pages_cnt;
int
i915_sysctl_init(struct drm_device *dev, struct sysctl_ctx_list *ctx,
struct sysctl_oid *top)
{
struct sysctl_oid *oid, *info;
struct i915_info_sysctl_thunk *thunks;
int i, error;
thunks = malloc(sizeof(*thunks) * DRM_ARRAY_SIZE(i915_info_sysctl_list),
DRM_MEM_DRIVER, M_WAITOK | M_ZERO);
for (i = 0; i < DRM_ARRAY_SIZE(i915_info_sysctl_list); i++) {
thunks[i].dev = dev;
thunks[i].idx = i;
thunks[i].arg = i915_info_sysctl_list[i].data;
}
dev->sysctl_private = thunks;
info = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "info",
CTLFLAG_RW, NULL, NULL);
if (info == NULL)
return (ENOMEM);
for (i = 0; i < DRM_ARRAY_SIZE(i915_info_sysctl_list); i++) {
oid = SYSCTL_ADD_OID(ctx, SYSCTL_CHILDREN(info), OID_AUTO,
i915_info_sysctl_list[i].name, CTLTYPE_STRING | CTLFLAG_RD,
&thunks[i], 0, i915_info_sysctl_handler, "A", NULL);
if (oid == NULL)
return (ENOMEM);
}
oid = SYSCTL_ADD_LONG(ctx, SYSCTL_CHILDREN(info), OID_AUTO,
"i915_gem_wired_pages", CTLFLAG_RD, &i915_gem_wired_pages_cnt,
NULL);
oid = SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "wedged",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, dev, 0,
i915_debug_set_wedged, "I", NULL);
if (oid == NULL)
return (ENOMEM);
oid = SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "max_freq",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, dev, 0, i915_max_freq,
"I", NULL);
if (oid == NULL)
return (ENOMEM);
oid = SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(top), OID_AUTO,
"cache_sharing", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, dev,
0, i915_cache_sharing, "I", NULL);
if (oid == NULL)
return (ENOMEM);
oid = SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "sync_exec",
CTLFLAG_RW, &i915_gem_sync_exec_requests, 0, NULL);
if (oid == NULL)
return (ENOMEM);
oid = SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "fix_mi",
CTLFLAG_RW, &i915_fix_mi_batchbuffer_end, 0, NULL);
if (oid == NULL)
return (ENOMEM);
oid = SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "intr_pf",
CTLFLAG_RW, &i915_intr_pf, 0, NULL);
if (oid == NULL)
return (ENOMEM);
error = drm_add_busid_modesetting(dev, ctx, top);
if (error != 0)
return (error);
return (0);
}
void
i915_sysctl_cleanup(struct drm_device *dev)
{
free(dev->sysctl_private, DRM_MEM_DRIVER);
}