1290 lines
39 KiB
C
1290 lines
39 KiB
C
|
/* Definitions for computing resource usage of specific insns.
|
|||
|
Copyright (C) 1999 Free Software Foundation, Inc.
|
|||
|
|
|||
|
This file is part of GNU CC.
|
|||
|
|
|||
|
GNU CC is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 2, or (at your option)
|
|||
|
any later version.
|
|||
|
|
|||
|
GNU CC is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with GNU CC; see the file COPYING. If not, write to
|
|||
|
the Free Software Foundation, 59 Temple Place - Suite 330,
|
|||
|
Boston, MA 02111-1307, USA. */
|
|||
|
|
|||
|
#include "config.h"
|
|||
|
#include "toplev.h"
|
|||
|
#include "rtl.h"
|
|||
|
#include "hard-reg-set.h"
|
|||
|
#include "system.h"
|
|||
|
#include "basic-block.h"
|
|||
|
#include "regs.h"
|
|||
|
#include "flags.h"
|
|||
|
#include "output.h"
|
|||
|
#include "resource.h"
|
|||
|
|
|||
|
/* This structure is used to record liveness information at the targets or
|
|||
|
fallthrough insns of branches. We will most likely need the information
|
|||
|
at targets again, so save them in a hash table rather than recomputing them
|
|||
|
each time. */
|
|||
|
|
|||
|
struct target_info
|
|||
|
{
|
|||
|
int uid; /* INSN_UID of target. */
|
|||
|
struct target_info *next; /* Next info for same hash bucket. */
|
|||
|
HARD_REG_SET live_regs; /* Registers live at target. */
|
|||
|
int block; /* Basic block number containing target. */
|
|||
|
int bb_tick; /* Generation count of basic block info. */
|
|||
|
};
|
|||
|
|
|||
|
#define TARGET_HASH_PRIME 257
|
|||
|
|
|||
|
/* Indicates what resources are required at the beginning of the epilogue. */
|
|||
|
static struct resources start_of_epilogue_needs;
|
|||
|
|
|||
|
/* Indicates what resources are required at function end. */
|
|||
|
static struct resources end_of_function_needs;
|
|||
|
|
|||
|
/* Define the hash table itself. */
|
|||
|
static struct target_info **target_hash_table = NULL;
|
|||
|
|
|||
|
/* For each basic block, we maintain a generation number of its basic
|
|||
|
block info, which is updated each time we move an insn from the
|
|||
|
target of a jump. This is the generation number indexed by block
|
|||
|
number. */
|
|||
|
|
|||
|
static int *bb_ticks;
|
|||
|
|
|||
|
/* Marks registers possibly live at the current place being scanned by
|
|||
|
mark_target_live_regs. Used only by next two function. */
|
|||
|
|
|||
|
static HARD_REG_SET current_live_regs;
|
|||
|
|
|||
|
/* Marks registers for which we have seen a REG_DEAD note but no assignment.
|
|||
|
Also only used by the next two functions. */
|
|||
|
|
|||
|
static HARD_REG_SET pending_dead_regs;
|
|||
|
|
|||
|
static void update_live_status PROTO ((rtx, rtx));
|
|||
|
static int find_basic_block PROTO ((rtx));
|
|||
|
static rtx next_insn_no_annul PROTO ((rtx));
|
|||
|
static rtx find_dead_or_set_registers PROTO ((rtx, struct resources*,
|
|||
|
rtx*, int, struct resources,
|
|||
|
struct resources));
|
|||
|
|
|||
|
/* Utility function called from mark_target_live_regs via note_stores.
|
|||
|
It deadens any CLOBBERed registers and livens any SET registers. */
|
|||
|
|
|||
|
static void
|
|||
|
update_live_status (dest, x)
|
|||
|
rtx dest;
|
|||
|
rtx x;
|
|||
|
{
|
|||
|
int first_regno, last_regno;
|
|||
|
int i;
|
|||
|
|
|||
|
if (GET_CODE (dest) != REG
|
|||
|
&& (GET_CODE (dest) != SUBREG || GET_CODE (SUBREG_REG (dest)) != REG))
|
|||
|
return;
|
|||
|
|
|||
|
if (GET_CODE (dest) == SUBREG)
|
|||
|
first_regno = REGNO (SUBREG_REG (dest)) + SUBREG_WORD (dest);
|
|||
|
else
|
|||
|
first_regno = REGNO (dest);
|
|||
|
|
|||
|
last_regno = first_regno + HARD_REGNO_NREGS (first_regno, GET_MODE (dest));
|
|||
|
|
|||
|
if (GET_CODE (x) == CLOBBER)
|
|||
|
for (i = first_regno; i < last_regno; i++)
|
|||
|
CLEAR_HARD_REG_BIT (current_live_regs, i);
|
|||
|
else
|
|||
|
for (i = first_regno; i < last_regno; i++)
|
|||
|
{
|
|||
|
SET_HARD_REG_BIT (current_live_regs, i);
|
|||
|
CLEAR_HARD_REG_BIT (pending_dead_regs, i);
|
|||
|
}
|
|||
|
}
|
|||
|
/* Find the number of the basic block that starts closest to INSN. Return -1
|
|||
|
if we couldn't find such a basic block. */
|
|||
|
|
|||
|
static int
|
|||
|
find_basic_block (insn)
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
/* Scan backwards to the previous BARRIER. Then see if we can find a
|
|||
|
label that starts a basic block. Return the basic block number. */
|
|||
|
|
|||
|
for (insn = prev_nonnote_insn (insn);
|
|||
|
insn && GET_CODE (insn) != BARRIER;
|
|||
|
insn = prev_nonnote_insn (insn))
|
|||
|
;
|
|||
|
|
|||
|
/* The start of the function is basic block zero. */
|
|||
|
if (insn == 0)
|
|||
|
return 0;
|
|||
|
|
|||
|
/* See if any of the upcoming CODE_LABELs start a basic block. If we reach
|
|||
|
anything other than a CODE_LABEL or note, we can't find this code. */
|
|||
|
for (insn = next_nonnote_insn (insn);
|
|||
|
insn && GET_CODE (insn) == CODE_LABEL;
|
|||
|
insn = next_nonnote_insn (insn))
|
|||
|
{
|
|||
|
for (i = 0; i < n_basic_blocks; i++)
|
|||
|
if (insn == BLOCK_HEAD (i))
|
|||
|
return i;
|
|||
|
}
|
|||
|
|
|||
|
return -1;
|
|||
|
}
|
|||
|
|
|||
|
/* Similar to next_insn, but ignores insns in the delay slots of
|
|||
|
an annulled branch. */
|
|||
|
|
|||
|
static rtx
|
|||
|
next_insn_no_annul (insn)
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
if (insn)
|
|||
|
{
|
|||
|
/* If INSN is an annulled branch, skip any insns from the target
|
|||
|
of the branch. */
|
|||
|
if (INSN_ANNULLED_BRANCH_P (insn)
|
|||
|
&& NEXT_INSN (PREV_INSN (insn)) != insn)
|
|||
|
while (INSN_FROM_TARGET_P (NEXT_INSN (insn)))
|
|||
|
insn = NEXT_INSN (insn);
|
|||
|
|
|||
|
insn = NEXT_INSN (insn);
|
|||
|
if (insn && GET_CODE (insn) == INSN
|
|||
|
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
|
|||
|
insn = XVECEXP (PATTERN (insn), 0, 0);
|
|||
|
}
|
|||
|
|
|||
|
return insn;
|
|||
|
}
|
|||
|
|
|||
|
/* Given X, some rtl, and RES, a pointer to a `struct resource', mark
|
|||
|
which resources are references by the insn. If INCLUDE_DELAYED_EFFECTS
|
|||
|
is TRUE, resources used by the called routine will be included for
|
|||
|
CALL_INSNs. */
|
|||
|
|
|||
|
void
|
|||
|
mark_referenced_resources (x, res, include_delayed_effects)
|
|||
|
register rtx x;
|
|||
|
register struct resources *res;
|
|||
|
register int include_delayed_effects;
|
|||
|
{
|
|||
|
register enum rtx_code code = GET_CODE (x);
|
|||
|
register int i, j;
|
|||
|
register char *format_ptr;
|
|||
|
|
|||
|
/* Handle leaf items for which we set resource flags. Also, special-case
|
|||
|
CALL, SET and CLOBBER operators. */
|
|||
|
switch (code)
|
|||
|
{
|
|||
|
case CONST:
|
|||
|
case CONST_INT:
|
|||
|
case CONST_DOUBLE:
|
|||
|
case PC:
|
|||
|
case SYMBOL_REF:
|
|||
|
case LABEL_REF:
|
|||
|
return;
|
|||
|
|
|||
|
case SUBREG:
|
|||
|
if (GET_CODE (SUBREG_REG (x)) != REG)
|
|||
|
mark_referenced_resources (SUBREG_REG (x), res, 0);
|
|||
|
else
|
|||
|
{
|
|||
|
int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
|
|||
|
int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
|
|||
|
for (i = regno; i < last_regno; i++)
|
|||
|
SET_HARD_REG_BIT (res->regs, i);
|
|||
|
}
|
|||
|
return;
|
|||
|
|
|||
|
case REG:
|
|||
|
for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
|
|||
|
SET_HARD_REG_BIT (res->regs, REGNO (x) + i);
|
|||
|
return;
|
|||
|
|
|||
|
case MEM:
|
|||
|
/* If this memory shouldn't change, it really isn't referencing
|
|||
|
memory. */
|
|||
|
if (RTX_UNCHANGING_P (x))
|
|||
|
res->unch_memory = 1;
|
|||
|
else
|
|||
|
res->memory = 1;
|
|||
|
res->volatil |= MEM_VOLATILE_P (x);
|
|||
|
|
|||
|
/* Mark registers used to access memory. */
|
|||
|
mark_referenced_resources (XEXP (x, 0), res, 0);
|
|||
|
return;
|
|||
|
|
|||
|
case CC0:
|
|||
|
res->cc = 1;
|
|||
|
return;
|
|||
|
|
|||
|
case UNSPEC_VOLATILE:
|
|||
|
case ASM_INPUT:
|
|||
|
/* Traditional asm's are always volatile. */
|
|||
|
res->volatil = 1;
|
|||
|
return;
|
|||
|
|
|||
|
case TRAP_IF:
|
|||
|
res->volatil = 1;
|
|||
|
break;
|
|||
|
|
|||
|
case ASM_OPERANDS:
|
|||
|
res->volatil |= MEM_VOLATILE_P (x);
|
|||
|
|
|||
|
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
|
|||
|
We can not just fall through here since then we would be confused
|
|||
|
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
|
|||
|
traditional asms unlike their normal usage. */
|
|||
|
|
|||
|
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
|
|||
|
mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
|
|||
|
return;
|
|||
|
|
|||
|
case CALL:
|
|||
|
/* The first operand will be a (MEM (xxx)) but doesn't really reference
|
|||
|
memory. The second operand may be referenced, though. */
|
|||
|
mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
|
|||
|
mark_referenced_resources (XEXP (x, 1), res, 0);
|
|||
|
return;
|
|||
|
|
|||
|
case SET:
|
|||
|
/* Usually, the first operand of SET is set, not referenced. But
|
|||
|
registers used to access memory are referenced. SET_DEST is
|
|||
|
also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT. */
|
|||
|
|
|||
|
mark_referenced_resources (SET_SRC (x), res, 0);
|
|||
|
|
|||
|
x = SET_DEST (x);
|
|||
|
if (GET_CODE (x) == SIGN_EXTRACT || GET_CODE (x) == ZERO_EXTRACT)
|
|||
|
mark_referenced_resources (x, res, 0);
|
|||
|
else if (GET_CODE (x) == SUBREG)
|
|||
|
x = SUBREG_REG (x);
|
|||
|
if (GET_CODE (x) == MEM)
|
|||
|
mark_referenced_resources (XEXP (x, 0), res, 0);
|
|||
|
return;
|
|||
|
|
|||
|
case CLOBBER:
|
|||
|
return;
|
|||
|
|
|||
|
case CALL_INSN:
|
|||
|
if (include_delayed_effects)
|
|||
|
{
|
|||
|
/* A CALL references memory, the frame pointer if it exists, the
|
|||
|
stack pointer, any global registers and any registers given in
|
|||
|
USE insns immediately in front of the CALL.
|
|||
|
|
|||
|
However, we may have moved some of the parameter loading insns
|
|||
|
into the delay slot of this CALL. If so, the USE's for them
|
|||
|
don't count and should be skipped. */
|
|||
|
rtx insn = PREV_INSN (x);
|
|||
|
rtx sequence = 0;
|
|||
|
int seq_size = 0;
|
|||
|
rtx next = NEXT_INSN (x);
|
|||
|
int i;
|
|||
|
|
|||
|
/* If we are part of a delay slot sequence, point at the SEQUENCE. */
|
|||
|
if (NEXT_INSN (insn) != x)
|
|||
|
{
|
|||
|
next = NEXT_INSN (NEXT_INSN (insn));
|
|||
|
sequence = PATTERN (NEXT_INSN (insn));
|
|||
|
seq_size = XVECLEN (sequence, 0);
|
|||
|
if (GET_CODE (sequence) != SEQUENCE)
|
|||
|
abort ();
|
|||
|
}
|
|||
|
|
|||
|
res->memory = 1;
|
|||
|
SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
|
|||
|
if (frame_pointer_needed)
|
|||
|
{
|
|||
|
SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
|
|||
|
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
|||
|
SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
|
|||
|
#endif
|
|||
|
}
|
|||
|
|
|||
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|||
|
if (global_regs[i])
|
|||
|
SET_HARD_REG_BIT (res->regs, i);
|
|||
|
|
|||
|
/* Check for a NOTE_INSN_SETJMP. If it exists, then we must
|
|||
|
assume that this call can need any register.
|
|||
|
|
|||
|
This is done to be more conservative about how we handle setjmp.
|
|||
|
We assume that they both use and set all registers. Using all
|
|||
|
registers ensures that a register will not be considered dead
|
|||
|
just because it crosses a setjmp call. A register should be
|
|||
|
considered dead only if the setjmp call returns non-zero. */
|
|||
|
if (next && GET_CODE (next) == NOTE
|
|||
|
&& NOTE_LINE_NUMBER (next) == NOTE_INSN_SETJMP)
|
|||
|
SET_HARD_REG_SET (res->regs);
|
|||
|
|
|||
|
{
|
|||
|
rtx link;
|
|||
|
|
|||
|
for (link = CALL_INSN_FUNCTION_USAGE (x);
|
|||
|
link;
|
|||
|
link = XEXP (link, 1))
|
|||
|
if (GET_CODE (XEXP (link, 0)) == USE)
|
|||
|
{
|
|||
|
for (i = 1; i < seq_size; i++)
|
|||
|
{
|
|||
|
rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
|
|||
|
if (GET_CODE (slot_pat) == SET
|
|||
|
&& rtx_equal_p (SET_DEST (slot_pat),
|
|||
|
SET_DEST (XEXP (link, 0))))
|
|||
|
break;
|
|||
|
}
|
|||
|
if (i >= seq_size)
|
|||
|
mark_referenced_resources (SET_DEST (XEXP (link, 0)),
|
|||
|
res, 0);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* ... fall through to other INSN processing ... */
|
|||
|
|
|||
|
case INSN:
|
|||
|
case JUMP_INSN:
|
|||
|
|
|||
|
#ifdef INSN_REFERENCES_ARE_DELAYED
|
|||
|
if (! include_delayed_effects
|
|||
|
&& INSN_REFERENCES_ARE_DELAYED (x))
|
|||
|
return;
|
|||
|
#endif
|
|||
|
|
|||
|
/* No special processing, just speed up. */
|
|||
|
mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
|
|||
|
return;
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
/* Process each sub-expression and flag what it needs. */
|
|||
|
format_ptr = GET_RTX_FORMAT (code);
|
|||
|
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
|||
|
switch (*format_ptr++)
|
|||
|
{
|
|||
|
case 'e':
|
|||
|
mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
|
|||
|
break;
|
|||
|
|
|||
|
case 'E':
|
|||
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|||
|
mark_referenced_resources (XVECEXP (x, i, j), res,
|
|||
|
include_delayed_effects);
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* A subroutine of mark_target_live_regs. Search forward from TARGET
|
|||
|
looking for registers that are set before they are used. These are dead.
|
|||
|
Stop after passing a few conditional jumps, and/or a small
|
|||
|
number of unconditional branches. */
|
|||
|
|
|||
|
static rtx
|
|||
|
find_dead_or_set_registers (target, res, jump_target, jump_count, set, needed)
|
|||
|
rtx target;
|
|||
|
struct resources *res;
|
|||
|
rtx *jump_target;
|
|||
|
int jump_count;
|
|||
|
struct resources set, needed;
|
|||
|
{
|
|||
|
HARD_REG_SET scratch;
|
|||
|
rtx insn, next;
|
|||
|
rtx jump_insn = 0;
|
|||
|
int i;
|
|||
|
|
|||
|
for (insn = target; insn; insn = next)
|
|||
|
{
|
|||
|
rtx this_jump_insn = insn;
|
|||
|
|
|||
|
next = NEXT_INSN (insn);
|
|||
|
switch (GET_CODE (insn))
|
|||
|
{
|
|||
|
case CODE_LABEL:
|
|||
|
/* After a label, any pending dead registers that weren't yet
|
|||
|
used can be made dead. */
|
|||
|
AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
|
|||
|
AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
|
|||
|
CLEAR_HARD_REG_SET (pending_dead_regs);
|
|||
|
|
|||
|
continue;
|
|||
|
|
|||
|
case BARRIER:
|
|||
|
case NOTE:
|
|||
|
continue;
|
|||
|
|
|||
|
case INSN:
|
|||
|
if (GET_CODE (PATTERN (insn)) == USE)
|
|||
|
{
|
|||
|
/* If INSN is a USE made by update_block, we care about the
|
|||
|
underlying insn. Any registers set by the underlying insn
|
|||
|
are live since the insn is being done somewhere else. */
|
|||
|
if (GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
|
|||
|
mark_set_resources (XEXP (PATTERN (insn), 0), res, 0, 1);
|
|||
|
|
|||
|
/* All other USE insns are to be ignored. */
|
|||
|
continue;
|
|||
|
}
|
|||
|
else if (GET_CODE (PATTERN (insn)) == CLOBBER)
|
|||
|
continue;
|
|||
|
else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
|
|||
|
{
|
|||
|
/* An unconditional jump can be used to fill the delay slot
|
|||
|
of a call, so search for a JUMP_INSN in any position. */
|
|||
|
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
|||
|
{
|
|||
|
this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
|
|||
|
if (GET_CODE (this_jump_insn) == JUMP_INSN)
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (GET_CODE (this_jump_insn) == JUMP_INSN)
|
|||
|
{
|
|||
|
if (jump_count++ < 10)
|
|||
|
{
|
|||
|
if (simplejump_p (this_jump_insn)
|
|||
|
|| GET_CODE (PATTERN (this_jump_insn)) == RETURN)
|
|||
|
{
|
|||
|
next = JUMP_LABEL (this_jump_insn);
|
|||
|
if (jump_insn == 0)
|
|||
|
{
|
|||
|
jump_insn = insn;
|
|||
|
if (jump_target)
|
|||
|
*jump_target = JUMP_LABEL (this_jump_insn);
|
|||
|
}
|
|||
|
}
|
|||
|
else if (condjump_p (this_jump_insn)
|
|||
|
|| condjump_in_parallel_p (this_jump_insn))
|
|||
|
{
|
|||
|
struct resources target_set, target_res;
|
|||
|
struct resources fallthrough_res;
|
|||
|
|
|||
|
/* We can handle conditional branches here by following
|
|||
|
both paths, and then IOR the results of the two paths
|
|||
|
together, which will give us registers that are dead
|
|||
|
on both paths. Since this is expensive, we give it
|
|||
|
a much higher cost than unconditional branches. The
|
|||
|
cost was chosen so that we will follow at most 1
|
|||
|
conditional branch. */
|
|||
|
|
|||
|
jump_count += 4;
|
|||
|
if (jump_count >= 10)
|
|||
|
break;
|
|||
|
|
|||
|
mark_referenced_resources (insn, &needed, 1);
|
|||
|
|
|||
|
/* For an annulled branch, mark_set_resources ignores slots
|
|||
|
filled by instructions from the target. This is correct
|
|||
|
if the branch is not taken. Since we are following both
|
|||
|
paths from the branch, we must also compute correct info
|
|||
|
if the branch is taken. We do this by inverting all of
|
|||
|
the INSN_FROM_TARGET_P bits, calling mark_set_resources,
|
|||
|
and then inverting the INSN_FROM_TARGET_P bits again. */
|
|||
|
|
|||
|
if (GET_CODE (PATTERN (insn)) == SEQUENCE
|
|||
|
&& INSN_ANNULLED_BRANCH_P (this_jump_insn))
|
|||
|
{
|
|||
|
for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
|
|||
|
INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
|
|||
|
= ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
|
|||
|
|
|||
|
target_set = set;
|
|||
|
mark_set_resources (insn, &target_set, 0, 1);
|
|||
|
|
|||
|
for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
|
|||
|
INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
|
|||
|
= ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
|
|||
|
|
|||
|
mark_set_resources (insn, &set, 0, 1);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
mark_set_resources (insn, &set, 0, 1);
|
|||
|
target_set = set;
|
|||
|
}
|
|||
|
|
|||
|
target_res = *res;
|
|||
|
COPY_HARD_REG_SET (scratch, target_set.regs);
|
|||
|
AND_COMPL_HARD_REG_SET (scratch, needed.regs);
|
|||
|
AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
|
|||
|
|
|||
|
fallthrough_res = *res;
|
|||
|
COPY_HARD_REG_SET (scratch, set.regs);
|
|||
|
AND_COMPL_HARD_REG_SET (scratch, needed.regs);
|
|||
|
AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
|
|||
|
|
|||
|
find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
|
|||
|
&target_res, 0, jump_count,
|
|||
|
target_set, needed);
|
|||
|
find_dead_or_set_registers (next,
|
|||
|
&fallthrough_res, 0, jump_count,
|
|||
|
set, needed);
|
|||
|
IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
|
|||
|
AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
|
|||
|
break;
|
|||
|
}
|
|||
|
else
|
|||
|
break;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* Don't try this optimization if we expired our jump count
|
|||
|
above, since that would mean there may be an infinite loop
|
|||
|
in the function being compiled. */
|
|||
|
jump_insn = 0;
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
mark_referenced_resources (insn, &needed, 1);
|
|||
|
mark_set_resources (insn, &set, 0, 1);
|
|||
|
|
|||
|
COPY_HARD_REG_SET (scratch, set.regs);
|
|||
|
AND_COMPL_HARD_REG_SET (scratch, needed.regs);
|
|||
|
AND_COMPL_HARD_REG_SET (res->regs, scratch);
|
|||
|
}
|
|||
|
|
|||
|
return jump_insn;
|
|||
|
}
|
|||
|
|
|||
|
/* Given X, a part of an insn, and a pointer to a `struct resource',
|
|||
|
RES, indicate which resources are modified by the insn. If
|
|||
|
INCLUDE_DELAYED_EFFECTS is nonzero, also mark resources potentially
|
|||
|
set by the called routine.
|
|||
|
|
|||
|
If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
|
|||
|
objects are being referenced instead of set.
|
|||
|
|
|||
|
We never mark the insn as modifying the condition code unless it explicitly
|
|||
|
SETs CC0 even though this is not totally correct. The reason for this is
|
|||
|
that we require a SET of CC0 to immediately precede the reference to CC0.
|
|||
|
So if some other insn sets CC0 as a side-effect, we know it cannot affect
|
|||
|
our computation and thus may be placed in a delay slot. */
|
|||
|
|
|||
|
void
|
|||
|
mark_set_resources (x, res, in_dest, include_delayed_effects)
|
|||
|
register rtx x;
|
|||
|
register struct resources *res;
|
|||
|
int in_dest;
|
|||
|
int include_delayed_effects;
|
|||
|
{
|
|||
|
register enum rtx_code code;
|
|||
|
register int i, j;
|
|||
|
register char *format_ptr;
|
|||
|
|
|||
|
restart:
|
|||
|
|
|||
|
code = GET_CODE (x);
|
|||
|
|
|||
|
switch (code)
|
|||
|
{
|
|||
|
case NOTE:
|
|||
|
case BARRIER:
|
|||
|
case CODE_LABEL:
|
|||
|
case USE:
|
|||
|
case CONST_INT:
|
|||
|
case CONST_DOUBLE:
|
|||
|
case LABEL_REF:
|
|||
|
case SYMBOL_REF:
|
|||
|
case CONST:
|
|||
|
case PC:
|
|||
|
/* These don't set any resources. */
|
|||
|
return;
|
|||
|
|
|||
|
case CC0:
|
|||
|
if (in_dest)
|
|||
|
res->cc = 1;
|
|||
|
return;
|
|||
|
|
|||
|
case CALL_INSN:
|
|||
|
/* Called routine modifies the condition code, memory, any registers
|
|||
|
that aren't saved across calls, global registers and anything
|
|||
|
explicitly CLOBBERed immediately after the CALL_INSN. */
|
|||
|
|
|||
|
if (include_delayed_effects)
|
|||
|
{
|
|||
|
rtx next = NEXT_INSN (x);
|
|||
|
rtx prev = PREV_INSN (x);
|
|||
|
rtx link;
|
|||
|
|
|||
|
res->cc = res->memory = 1;
|
|||
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|||
|
if (call_used_regs[i] || global_regs[i])
|
|||
|
SET_HARD_REG_BIT (res->regs, i);
|
|||
|
|
|||
|
/* If X is part of a delay slot sequence, then NEXT should be
|
|||
|
the first insn after the sequence. */
|
|||
|
if (NEXT_INSN (prev) != x)
|
|||
|
next = NEXT_INSN (NEXT_INSN (prev));
|
|||
|
|
|||
|
for (link = CALL_INSN_FUNCTION_USAGE (x);
|
|||
|
link; link = XEXP (link, 1))
|
|||
|
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
|
|||
|
mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1, 0);
|
|||
|
|
|||
|
/* Check for a NOTE_INSN_SETJMP. If it exists, then we must
|
|||
|
assume that this call can clobber any register. */
|
|||
|
if (next && GET_CODE (next) == NOTE
|
|||
|
&& NOTE_LINE_NUMBER (next) == NOTE_INSN_SETJMP)
|
|||
|
SET_HARD_REG_SET (res->regs);
|
|||
|
}
|
|||
|
|
|||
|
/* ... and also what its RTL says it modifies, if anything. */
|
|||
|
|
|||
|
case JUMP_INSN:
|
|||
|
case INSN:
|
|||
|
|
|||
|
/* An insn consisting of just a CLOBBER (or USE) is just for flow
|
|||
|
and doesn't actually do anything, so we ignore it. */
|
|||
|
|
|||
|
#ifdef INSN_SETS_ARE_DELAYED
|
|||
|
if (! include_delayed_effects
|
|||
|
&& INSN_SETS_ARE_DELAYED (x))
|
|||
|
return;
|
|||
|
#endif
|
|||
|
|
|||
|
x = PATTERN (x);
|
|||
|
if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
|
|||
|
goto restart;
|
|||
|
return;
|
|||
|
|
|||
|
case SET:
|
|||
|
/* If the source of a SET is a CALL, this is actually done by
|
|||
|
the called routine. So only include it if we are to include the
|
|||
|
effects of the calling routine. */
|
|||
|
|
|||
|
mark_set_resources (SET_DEST (x), res,
|
|||
|
(include_delayed_effects
|
|||
|
|| GET_CODE (SET_SRC (x)) != CALL),
|
|||
|
0);
|
|||
|
|
|||
|
mark_set_resources (SET_SRC (x), res, 0, 0);
|
|||
|
return;
|
|||
|
|
|||
|
case CLOBBER:
|
|||
|
mark_set_resources (XEXP (x, 0), res, 1, 0);
|
|||
|
return;
|
|||
|
|
|||
|
case SEQUENCE:
|
|||
|
for (i = 0; i < XVECLEN (x, 0); i++)
|
|||
|
if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
|
|||
|
&& INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
|
|||
|
mark_set_resources (XVECEXP (x, 0, i), res, 0,
|
|||
|
include_delayed_effects);
|
|||
|
return;
|
|||
|
|
|||
|
case POST_INC:
|
|||
|
case PRE_INC:
|
|||
|
case POST_DEC:
|
|||
|
case PRE_DEC:
|
|||
|
mark_set_resources (XEXP (x, 0), res, 1, 0);
|
|||
|
return;
|
|||
|
|
|||
|
case ZERO_EXTRACT:
|
|||
|
mark_set_resources (XEXP (x, 0), res, in_dest, 0);
|
|||
|
mark_set_resources (XEXP (x, 1), res, 0, 0);
|
|||
|
mark_set_resources (XEXP (x, 2), res, 0, 0);
|
|||
|
return;
|
|||
|
|
|||
|
case MEM:
|
|||
|
if (in_dest)
|
|||
|
{
|
|||
|
res->memory = 1;
|
|||
|
res->unch_memory |= RTX_UNCHANGING_P (x);
|
|||
|
res->volatil |= MEM_VOLATILE_P (x);
|
|||
|
}
|
|||
|
|
|||
|
mark_set_resources (XEXP (x, 0), res, 0, 0);
|
|||
|
return;
|
|||
|
|
|||
|
case SUBREG:
|
|||
|
if (in_dest)
|
|||
|
{
|
|||
|
if (GET_CODE (SUBREG_REG (x)) != REG)
|
|||
|
mark_set_resources (SUBREG_REG (x), res,
|
|||
|
in_dest, include_delayed_effects);
|
|||
|
else
|
|||
|
{
|
|||
|
int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
|
|||
|
int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
|
|||
|
for (i = regno; i < last_regno; i++)
|
|||
|
SET_HARD_REG_BIT (res->regs, i);
|
|||
|
}
|
|||
|
}
|
|||
|
return;
|
|||
|
|
|||
|
case REG:
|
|||
|
if (in_dest)
|
|||
|
for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
|
|||
|
SET_HARD_REG_BIT (res->regs, REGNO (x) + i);
|
|||
|
return;
|
|||
|
|
|||
|
case UNSPEC_VOLATILE:
|
|||
|
case ASM_INPUT:
|
|||
|
/* Traditional asm's are always volatile. */
|
|||
|
res->volatil = 1;
|
|||
|
return;
|
|||
|
|
|||
|
case TRAP_IF:
|
|||
|
res->volatil = 1;
|
|||
|
break;
|
|||
|
|
|||
|
case ASM_OPERANDS:
|
|||
|
res->volatil |= MEM_VOLATILE_P (x);
|
|||
|
|
|||
|
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
|
|||
|
We can not just fall through here since then we would be confused
|
|||
|
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
|
|||
|
traditional asms unlike their normal usage. */
|
|||
|
|
|||
|
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
|
|||
|
mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest, 0);
|
|||
|
return;
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
/* Process each sub-expression and flag what it needs. */
|
|||
|
format_ptr = GET_RTX_FORMAT (code);
|
|||
|
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
|||
|
switch (*format_ptr++)
|
|||
|
{
|
|||
|
case 'e':
|
|||
|
mark_set_resources (XEXP (x, i), res, in_dest, include_delayed_effects);
|
|||
|
break;
|
|||
|
|
|||
|
case 'E':
|
|||
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|||
|
mark_set_resources (XVECEXP (x, i, j), res, in_dest,
|
|||
|
include_delayed_effects);
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Set the resources that are live at TARGET.
|
|||
|
|
|||
|
If TARGET is zero, we refer to the end of the current function and can
|
|||
|
return our precomputed value.
|
|||
|
|
|||
|
Otherwise, we try to find out what is live by consulting the basic block
|
|||
|
information. This is tricky, because we must consider the actions of
|
|||
|
reload and jump optimization, which occur after the basic block information
|
|||
|
has been computed.
|
|||
|
|
|||
|
Accordingly, we proceed as follows::
|
|||
|
|
|||
|
We find the previous BARRIER and look at all immediately following labels
|
|||
|
(with no intervening active insns) to see if any of them start a basic
|
|||
|
block. If we hit the start of the function first, we use block 0.
|
|||
|
|
|||
|
Once we have found a basic block and a corresponding first insns, we can
|
|||
|
accurately compute the live status from basic_block_live_regs and
|
|||
|
reg_renumber. (By starting at a label following a BARRIER, we are immune
|
|||
|
to actions taken by reload and jump.) Then we scan all insns between
|
|||
|
that point and our target. For each CLOBBER (or for call-clobbered regs
|
|||
|
when we pass a CALL_INSN), mark the appropriate registers are dead. For
|
|||
|
a SET, mark them as live.
|
|||
|
|
|||
|
We have to be careful when using REG_DEAD notes because they are not
|
|||
|
updated by such things as find_equiv_reg. So keep track of registers
|
|||
|
marked as dead that haven't been assigned to, and mark them dead at the
|
|||
|
next CODE_LABEL since reload and jump won't propagate values across labels.
|
|||
|
|
|||
|
If we cannot find the start of a basic block (should be a very rare
|
|||
|
case, if it can happen at all), mark everything as potentially live.
|
|||
|
|
|||
|
Next, scan forward from TARGET looking for things set or clobbered
|
|||
|
before they are used. These are not live.
|
|||
|
|
|||
|
Because we can be called many times on the same target, save our results
|
|||
|
in a hash table indexed by INSN_UID. This is only done if the function
|
|||
|
init_resource_info () was invoked before we are called. */
|
|||
|
|
|||
|
void
|
|||
|
mark_target_live_regs (insns, target, res)
|
|||
|
rtx insns;
|
|||
|
rtx target;
|
|||
|
struct resources *res;
|
|||
|
{
|
|||
|
int b = -1;
|
|||
|
int i;
|
|||
|
struct target_info *tinfo = NULL;
|
|||
|
rtx insn;
|
|||
|
rtx jump_insn = 0;
|
|||
|
rtx jump_target;
|
|||
|
HARD_REG_SET scratch;
|
|||
|
struct resources set, needed;
|
|||
|
|
|||
|
/* Handle end of function. */
|
|||
|
if (target == 0)
|
|||
|
{
|
|||
|
*res = end_of_function_needs;
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
/* We have to assume memory is needed, but the CC isn't. */
|
|||
|
res->memory = 1;
|
|||
|
res->volatil = res->unch_memory = 0;
|
|||
|
res->cc = 0;
|
|||
|
|
|||
|
/* See if we have computed this value already. */
|
|||
|
if (target_hash_table != NULL)
|
|||
|
{
|
|||
|
for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
|
|||
|
tinfo; tinfo = tinfo->next)
|
|||
|
if (tinfo->uid == INSN_UID (target))
|
|||
|
break;
|
|||
|
|
|||
|
/* Start by getting the basic block number. If we have saved
|
|||
|
information, we can get it from there unless the insn at the
|
|||
|
start of the basic block has been deleted. */
|
|||
|
if (tinfo && tinfo->block != -1
|
|||
|
&& ! INSN_DELETED_P (BLOCK_HEAD (tinfo->block)))
|
|||
|
b = tinfo->block;
|
|||
|
}
|
|||
|
|
|||
|
if (b == -1)
|
|||
|
b = find_basic_block (target);
|
|||
|
|
|||
|
if (target_hash_table != NULL)
|
|||
|
{
|
|||
|
if (tinfo)
|
|||
|
{
|
|||
|
/* If the information is up-to-date, use it. Otherwise, we will
|
|||
|
update it below. */
|
|||
|
if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
|
|||
|
{
|
|||
|
COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
|
|||
|
return;
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* Allocate a place to put our results and chain it into the
|
|||
|
hash table. */
|
|||
|
tinfo = (struct target_info *) oballoc (sizeof (struct target_info));
|
|||
|
tinfo->uid = INSN_UID (target);
|
|||
|
tinfo->block = b;
|
|||
|
tinfo->next = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
|
|||
|
target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
CLEAR_HARD_REG_SET (pending_dead_regs);
|
|||
|
|
|||
|
/* If we found a basic block, get the live registers from it and update
|
|||
|
them with anything set or killed between its start and the insn before
|
|||
|
TARGET. Otherwise, we must assume everything is live. */
|
|||
|
if (b != -1)
|
|||
|
{
|
|||
|
regset regs_live = BASIC_BLOCK (b)->global_live_at_start;
|
|||
|
int j;
|
|||
|
int regno;
|
|||
|
rtx start_insn, stop_insn;
|
|||
|
|
|||
|
/* Compute hard regs live at start of block -- this is the real hard regs
|
|||
|
marked live, plus live pseudo regs that have been renumbered to
|
|||
|
hard regs. */
|
|||
|
|
|||
|
REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
|
|||
|
|
|||
|
EXECUTE_IF_SET_IN_REG_SET
|
|||
|
(regs_live, FIRST_PSEUDO_REGISTER, i,
|
|||
|
{
|
|||
|
if ((regno = reg_renumber[i]) >= 0)
|
|||
|
for (j = regno;
|
|||
|
j < regno + HARD_REGNO_NREGS (regno,
|
|||
|
PSEUDO_REGNO_MODE (i));
|
|||
|
j++)
|
|||
|
SET_HARD_REG_BIT (current_live_regs, j);
|
|||
|
});
|
|||
|
|
|||
|
/* Get starting and ending insn, handling the case where each might
|
|||
|
be a SEQUENCE. */
|
|||
|
start_insn = (b == 0 ? insns : BLOCK_HEAD (b));
|
|||
|
stop_insn = target;
|
|||
|
|
|||
|
if (GET_CODE (start_insn) == INSN
|
|||
|
&& GET_CODE (PATTERN (start_insn)) == SEQUENCE)
|
|||
|
start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
|
|||
|
|
|||
|
if (GET_CODE (stop_insn) == INSN
|
|||
|
&& GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
|
|||
|
stop_insn = next_insn (PREV_INSN (stop_insn));
|
|||
|
|
|||
|
for (insn = start_insn; insn != stop_insn;
|
|||
|
insn = next_insn_no_annul (insn))
|
|||
|
{
|
|||
|
rtx link;
|
|||
|
rtx real_insn = insn;
|
|||
|
|
|||
|
/* If this insn is from the target of a branch, it isn't going to
|
|||
|
be used in the sequel. If it is used in both cases, this
|
|||
|
test will not be true. */
|
|||
|
if (INSN_FROM_TARGET_P (insn))
|
|||
|
continue;
|
|||
|
|
|||
|
/* If this insn is a USE made by update_block, we care about the
|
|||
|
underlying insn. */
|
|||
|
if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE
|
|||
|
&& GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
|
|||
|
real_insn = XEXP (PATTERN (insn), 0);
|
|||
|
|
|||
|
if (GET_CODE (real_insn) == CALL_INSN)
|
|||
|
{
|
|||
|
/* CALL clobbers all call-used regs that aren't fixed except
|
|||
|
sp, ap, and fp. Do this before setting the result of the
|
|||
|
call live. */
|
|||
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|||
|
if (call_used_regs[i]
|
|||
|
&& i != STACK_POINTER_REGNUM && i != FRAME_POINTER_REGNUM
|
|||
|
&& i != ARG_POINTER_REGNUM
|
|||
|
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
|||
|
&& i != HARD_FRAME_POINTER_REGNUM
|
|||
|
#endif
|
|||
|
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
|||
|
&& ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
|
|||
|
#endif
|
|||
|
#ifdef PIC_OFFSET_TABLE_REGNUM
|
|||
|
&& ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
|
|||
|
#endif
|
|||
|
)
|
|||
|
CLEAR_HARD_REG_BIT (current_live_regs, i);
|
|||
|
|
|||
|
/* A CALL_INSN sets any global register live, since it may
|
|||
|
have been modified by the call. */
|
|||
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|||
|
if (global_regs[i])
|
|||
|
SET_HARD_REG_BIT (current_live_regs, i);
|
|||
|
}
|
|||
|
|
|||
|
/* Mark anything killed in an insn to be deadened at the next
|
|||
|
label. Ignore USE insns; the only REG_DEAD notes will be for
|
|||
|
parameters. But they might be early. A CALL_INSN will usually
|
|||
|
clobber registers used for parameters. It isn't worth bothering
|
|||
|
with the unlikely case when it won't. */
|
|||
|
if ((GET_CODE (real_insn) == INSN
|
|||
|
&& GET_CODE (PATTERN (real_insn)) != USE
|
|||
|
&& GET_CODE (PATTERN (real_insn)) != CLOBBER)
|
|||
|
|| GET_CODE (real_insn) == JUMP_INSN
|
|||
|
|| GET_CODE (real_insn) == CALL_INSN)
|
|||
|
{
|
|||
|
for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
|
|||
|
if (REG_NOTE_KIND (link) == REG_DEAD
|
|||
|
&& GET_CODE (XEXP (link, 0)) == REG
|
|||
|
&& REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
|
|||
|
{
|
|||
|
int first_regno = REGNO (XEXP (link, 0));
|
|||
|
int last_regno
|
|||
|
= (first_regno
|
|||
|
+ HARD_REGNO_NREGS (first_regno,
|
|||
|
GET_MODE (XEXP (link, 0))));
|
|||
|
|
|||
|
for (i = first_regno; i < last_regno; i++)
|
|||
|
SET_HARD_REG_BIT (pending_dead_regs, i);
|
|||
|
}
|
|||
|
|
|||
|
note_stores (PATTERN (real_insn), update_live_status);
|
|||
|
|
|||
|
/* If any registers were unused after this insn, kill them.
|
|||
|
These notes will always be accurate. */
|
|||
|
for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
|
|||
|
if (REG_NOTE_KIND (link) == REG_UNUSED
|
|||
|
&& GET_CODE (XEXP (link, 0)) == REG
|
|||
|
&& REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
|
|||
|
{
|
|||
|
int first_regno = REGNO (XEXP (link, 0));
|
|||
|
int last_regno
|
|||
|
= (first_regno
|
|||
|
+ HARD_REGNO_NREGS (first_regno,
|
|||
|
GET_MODE (XEXP (link, 0))));
|
|||
|
|
|||
|
for (i = first_regno; i < last_regno; i++)
|
|||
|
CLEAR_HARD_REG_BIT (current_live_regs, i);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
else if (GET_CODE (real_insn) == CODE_LABEL)
|
|||
|
{
|
|||
|
/* A label clobbers the pending dead registers since neither
|
|||
|
reload nor jump will propagate a value across a label. */
|
|||
|
AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
|
|||
|
CLEAR_HARD_REG_SET (pending_dead_regs);
|
|||
|
}
|
|||
|
|
|||
|
/* The beginning of the epilogue corresponds to the end of the
|
|||
|
RTL chain when there are no epilogue insns. Certain resources
|
|||
|
are implicitly required at that point. */
|
|||
|
else if (GET_CODE (real_insn) == NOTE
|
|||
|
&& NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
|
|||
|
IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
|
|||
|
}
|
|||
|
|
|||
|
COPY_HARD_REG_SET (res->regs, current_live_regs);
|
|||
|
if (tinfo != NULL)
|
|||
|
{
|
|||
|
tinfo->block = b;
|
|||
|
tinfo->bb_tick = bb_ticks[b];
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
/* We didn't find the start of a basic block. Assume everything
|
|||
|
in use. This should happen only extremely rarely. */
|
|||
|
SET_HARD_REG_SET (res->regs);
|
|||
|
|
|||
|
CLEAR_RESOURCE (&set);
|
|||
|
CLEAR_RESOURCE (&needed);
|
|||
|
|
|||
|
jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
|
|||
|
set, needed);
|
|||
|
|
|||
|
/* If we hit an unconditional branch, we have another way of finding out
|
|||
|
what is live: we can see what is live at the branch target and include
|
|||
|
anything used but not set before the branch. The only things that are
|
|||
|
live are those that are live using the above test and the test below. */
|
|||
|
|
|||
|
if (jump_insn)
|
|||
|
{
|
|||
|
struct resources new_resources;
|
|||
|
rtx stop_insn = next_active_insn (jump_insn);
|
|||
|
|
|||
|
mark_target_live_regs (insns, next_active_insn (jump_target),
|
|||
|
&new_resources);
|
|||
|
CLEAR_RESOURCE (&set);
|
|||
|
CLEAR_RESOURCE (&needed);
|
|||
|
|
|||
|
/* Include JUMP_INSN in the needed registers. */
|
|||
|
for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
|
|||
|
{
|
|||
|
mark_referenced_resources (insn, &needed, 1);
|
|||
|
|
|||
|
COPY_HARD_REG_SET (scratch, needed.regs);
|
|||
|
AND_COMPL_HARD_REG_SET (scratch, set.regs);
|
|||
|
IOR_HARD_REG_SET (new_resources.regs, scratch);
|
|||
|
|
|||
|
mark_set_resources (insn, &set, 0, 1);
|
|||
|
}
|
|||
|
|
|||
|
AND_HARD_REG_SET (res->regs, new_resources.regs);
|
|||
|
}
|
|||
|
|
|||
|
if (tinfo != NULL)
|
|||
|
{
|
|||
|
COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Initialize the resources required by mark_target_live_regs ().
|
|||
|
This should be invoked before the first call to mark_target_live_regs. */
|
|||
|
|
|||
|
void
|
|||
|
init_resource_info (epilogue_insn)
|
|||
|
rtx epilogue_insn;
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
/* Indicate what resources are required to be valid at the end of the current
|
|||
|
function. The condition code never is and memory always is. If the
|
|||
|
frame pointer is needed, it is and so is the stack pointer unless
|
|||
|
EXIT_IGNORE_STACK is non-zero. If the frame pointer is not needed, the
|
|||
|
stack pointer is. Registers used to return the function value are
|
|||
|
needed. Registers holding global variables are needed. */
|
|||
|
|
|||
|
end_of_function_needs.cc = 0;
|
|||
|
end_of_function_needs.memory = 1;
|
|||
|
end_of_function_needs.unch_memory = 0;
|
|||
|
CLEAR_HARD_REG_SET (end_of_function_needs.regs);
|
|||
|
|
|||
|
if (frame_pointer_needed)
|
|||
|
{
|
|||
|
SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
|
|||
|
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
|||
|
SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
|
|||
|
#endif
|
|||
|
#ifdef EXIT_IGNORE_STACK
|
|||
|
if (! EXIT_IGNORE_STACK
|
|||
|
|| current_function_sp_is_unchanging)
|
|||
|
#endif
|
|||
|
SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
|
|||
|
}
|
|||
|
else
|
|||
|
SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
|
|||
|
|
|||
|
if (current_function_return_rtx != 0)
|
|||
|
mark_referenced_resources (current_function_return_rtx,
|
|||
|
&end_of_function_needs, 1);
|
|||
|
|
|||
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|||
|
if (global_regs[i]
|
|||
|
#ifdef EPILOGUE_USES
|
|||
|
|| EPILOGUE_USES (i)
|
|||
|
#endif
|
|||
|
)
|
|||
|
SET_HARD_REG_BIT (end_of_function_needs.regs, i);
|
|||
|
|
|||
|
/* The registers required to be live at the end of the function are
|
|||
|
represented in the flow information as being dead just prior to
|
|||
|
reaching the end of the function. For example, the return of a value
|
|||
|
might be represented by a USE of the return register immediately
|
|||
|
followed by an unconditional jump to the return label where the
|
|||
|
return label is the end of the RTL chain. The end of the RTL chain
|
|||
|
is then taken to mean that the return register is live.
|
|||
|
|
|||
|
This sequence is no longer maintained when epilogue instructions are
|
|||
|
added to the RTL chain. To reconstruct the original meaning, the
|
|||
|
start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
|
|||
|
point where these registers become live (start_of_epilogue_needs).
|
|||
|
If epilogue instructions are present, the registers set by those
|
|||
|
instructions won't have been processed by flow. Thus, those
|
|||
|
registers are additionally required at the end of the RTL chain
|
|||
|
(end_of_function_needs). */
|
|||
|
|
|||
|
start_of_epilogue_needs = end_of_function_needs;
|
|||
|
|
|||
|
while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
|
|||
|
mark_set_resources (epilogue_insn, &end_of_function_needs, 0, 1);
|
|||
|
|
|||
|
/* Allocate and initialize the tables used by mark_target_live_regs. */
|
|||
|
target_hash_table
|
|||
|
= (struct target_info **) xmalloc ((TARGET_HASH_PRIME
|
|||
|
* sizeof (struct target_info *)));
|
|||
|
bzero ((char *) target_hash_table,
|
|||
|
TARGET_HASH_PRIME * sizeof (struct target_info *));
|
|||
|
|
|||
|
bb_ticks = (int *) xmalloc (n_basic_blocks * sizeof (int));
|
|||
|
bzero ((char *) bb_ticks, n_basic_blocks * sizeof (int));
|
|||
|
}
|
|||
|
|
|||
|
/* Free up the resources allcated to mark_target_live_regs (). This
|
|||
|
should be invoked after the last call to mark_target_live_regs (). */
|
|||
|
|
|||
|
void
|
|||
|
free_resource_info ()
|
|||
|
{
|
|||
|
if (target_hash_table != NULL)
|
|||
|
{
|
|||
|
free (target_hash_table);
|
|||
|
target_hash_table = NULL;
|
|||
|
}
|
|||
|
|
|||
|
if (bb_ticks != NULL)
|
|||
|
{
|
|||
|
free (bb_ticks);
|
|||
|
bb_ticks = NULL;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Clear any hashed information that we have stored for INSN. */
|
|||
|
|
|||
|
void
|
|||
|
clear_hashed_info_for_insn (insn)
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
struct target_info *tinfo;
|
|||
|
|
|||
|
if (target_hash_table != NULL)
|
|||
|
{
|
|||
|
for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
|
|||
|
tinfo; tinfo = tinfo->next)
|
|||
|
if (tinfo->uid == INSN_UID (insn))
|
|||
|
break;
|
|||
|
|
|||
|
if (tinfo)
|
|||
|
tinfo->block = -1;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Increment the tick count for the basic block that contains INSN. */
|
|||
|
|
|||
|
void
|
|||
|
incr_ticks_for_insn (insn)
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
int b = find_basic_block (insn);
|
|||
|
|
|||
|
if (b != -1)
|
|||
|
bb_ticks[b]++;
|
|||
|
}
|
|||
|
|
|||
|
/* Add TRIAL to the set of resources used at the end of the current
|
|||
|
function. */
|
|||
|
void
|
|||
|
mark_end_of_function_resources (trial, include_delayed_effects)
|
|||
|
rtx trial;
|
|||
|
int include_delayed_effects;
|
|||
|
{
|
|||
|
mark_referenced_resources (trial, &end_of_function_needs,
|
|||
|
include_delayed_effects);
|
|||
|
}
|
|||
|
|
|||
|
/* Try to find an available hard register of mode MODE at
|
|||
|
CURRENT_INSN, matching the register class in CLASS_STR. Registers
|
|||
|
that already have bits set in REG_SET will not be considered.
|
|||
|
|
|||
|
If an appropriate register is available, it will be returned and the
|
|||
|
corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
|
|||
|
returned. */
|
|||
|
|
|||
|
rtx
|
|||
|
find_free_register (current_insn, class_str, mode, reg_set)
|
|||
|
rtx current_insn;
|
|||
|
char *class_str;
|
|||
|
int mode;
|
|||
|
HARD_REG_SET *reg_set;
|
|||
|
{
|
|||
|
int i, j;
|
|||
|
struct resources used;
|
|||
|
unsigned char clet = class_str[0];
|
|||
|
enum reg_class class
|
|||
|
= (clet == 'r' ? GENERAL_REGS : REG_CLASS_FROM_LETTER (clet));
|
|||
|
|
|||
|
mark_target_live_regs (get_insns (), current_insn, &used);
|
|||
|
|
|||
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|||
|
{
|
|||
|
int success = 1;
|
|||
|
|
|||
|
if (! TEST_HARD_REG_BIT (reg_class_contents[class], i))
|
|||
|
continue;
|
|||
|
for (j = HARD_REGNO_NREGS (i, mode) - 1; j >= 0; j--)
|
|||
|
{
|
|||
|
if (TEST_HARD_REG_BIT (*reg_set, i + j)
|
|||
|
|| TEST_HARD_REG_BIT (used.regs, i + j))
|
|||
|
{
|
|||
|
success = 0;
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
if (success)
|
|||
|
{
|
|||
|
for (j = HARD_REGNO_NREGS (i, mode) - 1; j >= 0; j--)
|
|||
|
{
|
|||
|
SET_HARD_REG_BIT (*reg_set, i + j);
|
|||
|
}
|
|||
|
return gen_rtx_REG (mode, i);
|
|||
|
}
|
|||
|
}
|
|||
|
return NULL_RTX;
|
|||
|
}
|