2005-01-07 01:45:51 +00:00
|
|
|
/*-
|
1995-02-14 23:04:52 +00:00
|
|
|
* Copyright 1994, 1995 Massachusetts Institute of Technology
|
1994-11-02 04:42:14 +00:00
|
|
|
*
|
1995-02-14 23:04:52 +00:00
|
|
|
* Permission to use, copy, modify, and distribute this software and
|
|
|
|
* its documentation for any purpose and without fee is hereby
|
|
|
|
* granted, provided that both the above copyright notice and this
|
|
|
|
* permission notice appear in all copies, that both the above
|
|
|
|
* copyright notice and this permission notice appear in all
|
|
|
|
* supporting documentation, and that the name of M.I.T. not be used
|
|
|
|
* in advertising or publicity pertaining to distribution of the
|
|
|
|
* software without specific, written prior permission. M.I.T. makes
|
|
|
|
* no representations about the suitability of this software for any
|
|
|
|
* purpose. It is provided "as is" without express or implied
|
|
|
|
* warranty.
|
1995-05-30 08:16:23 +00:00
|
|
|
*
|
1995-02-14 23:04:52 +00:00
|
|
|
* THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
|
|
|
|
* ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
|
|
|
|
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
|
|
|
|
* SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
|
|
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
1994-11-02 04:42:14 +00:00
|
|
|
*/
|
|
|
|
|
2007-10-07 20:44:24 +00:00
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
1994-11-02 04:42:14 +00:00
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/kernel.h>
|
1995-11-09 20:23:09 +00:00
|
|
|
#include <sys/sysctl.h>
|
1994-11-02 04:42:14 +00:00
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <sys/mbuf.h>
|
|
|
|
|
|
|
|
#include <net/if.h>
|
2013-10-26 17:58:36 +00:00
|
|
|
#include <net/if_var.h>
|
1994-11-02 04:42:14 +00:00
|
|
|
#include <net/route.h>
|
MFP r287070,r287073: split radix implementation and route table structure.
There are number of radix consumers in kernel land (pf,ipfw,nfs,route)
with different requirements. In fact, first 3 don't have _any_ requirements
and first 2 does not use radix locking. On the other hand, routing
structure do have these requirements (rnh_gen, multipath, custom
to-be-added control plane functions, different locking).
Additionally, radix should not known anything about its consumers internals.
So, radix code now uses tiny 'struct radix_head' structure along with
internal 'struct radix_mask_head' instead of 'struct radix_node_head'.
Existing consumers still uses the same 'struct radix_node_head' with
slight modifications: they need to pass pointer to (embedded)
'struct radix_head' to all radix callbacks.
Routing code now uses new 'struct rib_head' with different locking macro:
RADIX_NODE_HEAD prefix was renamed to RIB_ (which stands for routing
information base).
New net/route_var.h header was added to hold routing subsystem internal
data. 'struct rib_head' was placed there. 'struct rtentry' will also
be moved there soon.
2016-01-25 06:33:15 +00:00
|
|
|
#include <net/route_var.h>
|
2009-08-01 19:26:27 +00:00
|
|
|
#include <net/vnet.h>
|
2008-12-02 21:37:28 +00:00
|
|
|
|
1994-11-02 04:42:14 +00:00
|
|
|
#include <netinet/in.h>
|
|
|
|
#include <netinet/in_var.h>
|
2012-10-10 19:06:11 +00:00
|
|
|
#include <netinet/ip.h>
|
|
|
|
#include <netinet/ip_icmp.h>
|
2001-03-19 09:16:16 +00:00
|
|
|
#include <netinet/ip_var.h>
|
1994-11-02 04:42:14 +00:00
|
|
|
|
2002-03-19 21:25:46 +00:00
|
|
|
extern int in_inithead(void **head, int off);
|
Introduce an infrastructure for dismantling vnet instances.
Vnet modules and protocol domains may now register destructor
functions to clean up and release per-module state. The destructor
mechanisms can be triggered by invoking "vimage -d", or a future
equivalent command which will be provided via the new jail framework.
While this patch introduces numerous placeholder destructor functions,
many of those are currently incomplete, thus leaking memory or (even
worse) failing to stop all running timers. Many of such issues are
already known and will be incrementaly fixed over the next weeks in
smaller incremental commits.
Apart from introducing new fields in structs ifnet, domain, protosw
and vnet_net, which requires the kernel and modules to be rebuilt, this
change should have no impact on nooptions VIMAGE builds, since vnet
destructors can only be called in VIMAGE kernels. Moreover,
destructor functions should be in general compiled in only in
options VIMAGE builds, except for kernel modules which can be safely
kldunloaded at run time.
Bump __FreeBSD_version to 800097.
Reviewed by: bz, julian
Approved by: rwatson, kib (re), julian (mentor)
2009-06-08 17:15:40 +00:00
|
|
|
#ifdef VIMAGE
|
|
|
|
extern int in_detachhead(void **head, int off);
|
|
|
|
#endif
|
1995-12-02 19:38:06 +00:00
|
|
|
|
1994-11-02 04:42:14 +00:00
|
|
|
/*
|
|
|
|
* Do what we need to do when inserting a route.
|
|
|
|
*/
|
|
|
|
static struct radix_node *
|
MFP r287070,r287073: split radix implementation and route table structure.
There are number of radix consumers in kernel land (pf,ipfw,nfs,route)
with different requirements. In fact, first 3 don't have _any_ requirements
and first 2 does not use radix locking. On the other hand, routing
structure do have these requirements (rnh_gen, multipath, custom
to-be-added control plane functions, different locking).
Additionally, radix should not known anything about its consumers internals.
So, radix code now uses tiny 'struct radix_head' structure along with
internal 'struct radix_mask_head' instead of 'struct radix_node_head'.
Existing consumers still uses the same 'struct radix_node_head' with
slight modifications: they need to pass pointer to (embedded)
'struct radix_head' to all radix callbacks.
Routing code now uses new 'struct rib_head' with different locking macro:
RADIX_NODE_HEAD prefix was renamed to RIB_ (which stands for routing
information base).
New net/route_var.h header was added to hold routing subsystem internal
data. 'struct rib_head' was placed there. 'struct rtentry' will also
be moved there soon.
2016-01-25 06:33:15 +00:00
|
|
|
in_addroute(void *v_arg, void *n_arg, struct radix_head *head,
|
2007-05-10 15:58:48 +00:00
|
|
|
struct radix_node *treenodes)
|
1994-11-02 04:42:14 +00:00
|
|
|
{
|
|
|
|
struct rtentry *rt = (struct rtentry *)treenodes;
|
1995-07-10 15:39:16 +00:00
|
|
|
struct sockaddr_in *sin = (struct sockaddr_in *)rt_key(rt);
|
1994-11-02 04:42:14 +00:00
|
|
|
|
1996-05-06 17:42:13 +00:00
|
|
|
/*
|
|
|
|
* A little bit of help for both IP output and input:
|
|
|
|
* For host routes, we make sure that RTF_BROADCAST
|
|
|
|
* is set for anything that looks like a broadcast address.
|
|
|
|
* This way, we can avoid an expensive call to in_broadcast()
|
|
|
|
* in ip_output() most of the time (because the route passed
|
|
|
|
* to ip_output() is almost always a host route).
|
|
|
|
*
|
|
|
|
* We also do the same for local addresses, with the thought
|
|
|
|
* that this might one day be used to speed up ip_input().
|
|
|
|
*
|
|
|
|
* We also mark routes to multicast addresses as such, because
|
|
|
|
* it's easy to do and might be useful (but this is much more
|
2003-11-20 19:47:31 +00:00
|
|
|
* dubious since it's so easy to inspect the address).
|
1996-05-06 17:42:13 +00:00
|
|
|
*/
|
|
|
|
if (rt->rt_flags & RTF_HOST) {
|
Widen NET_EPOCH coverage.
When epoch(9) was introduced to network stack, it was basically
dropped in place of existing locking, which was mutexes and
rwlocks. For the sake of performance mutex covered areas were
as small as possible, so became epoch covered areas.
However, epoch doesn't introduce any contention, it just delays
memory reclaim. So, there is no point to minimise epoch covered
areas in sense of performance. Meanwhile entering/exiting epoch
also has non-zero CPU usage, so doing this less often is a win.
Not the least is also code maintainability. In the new paradigm
we can assume that at any stage of processing a packet, we are
inside network epoch. This makes coding both input and output
path way easier.
On output path we already enter epoch quite early - in the
ip_output(), in the ip6_output().
This patch does the same for the input path. All ISR processing,
network related callouts, other ways of packet injection to the
network stack shall be performed in net_epoch. Any leaf function
that walks network configuration now asserts epoch.
Tricky part is configuration code paths - ioctls, sysctls. They
also call into leaf functions, so some need to be changed.
This patch would introduce more epoch recursions (see EPOCH_TRACE)
than we had before. They will be cleaned up separately, as several
of them aren't trivial. Note, that unlike a lock recursion the
epoch recursion is safe and just wastes a bit of resources.
Reviewed by: gallatin, hselasky, cy, adrian, kristof
Differential Revision: https://reviews.freebsd.org/D19111
2019-10-07 22:40:05 +00:00
|
|
|
struct epoch_tracker et;
|
|
|
|
bool bcast;
|
|
|
|
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
|
|
bcast = in_broadcast(sin->sin_addr, rt->rt_ifp);
|
|
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
if (bcast)
|
1996-05-06 17:42:13 +00:00
|
|
|
rt->rt_flags |= RTF_BROADCAST;
|
Widen NET_EPOCH coverage.
When epoch(9) was introduced to network stack, it was basically
dropped in place of existing locking, which was mutexes and
rwlocks. For the sake of performance mutex covered areas were
as small as possible, so became epoch covered areas.
However, epoch doesn't introduce any contention, it just delays
memory reclaim. So, there is no point to minimise epoch covered
areas in sense of performance. Meanwhile entering/exiting epoch
also has non-zero CPU usage, so doing this less often is a win.
Not the least is also code maintainability. In the new paradigm
we can assume that at any stage of processing a packet, we are
inside network epoch. This makes coding both input and output
path way easier.
On output path we already enter epoch quite early - in the
ip_output(), in the ip6_output().
This patch does the same for the input path. All ISR processing,
network related callouts, other ways of packet injection to the
network stack shall be performed in net_epoch. Any leaf function
that walks network configuration now asserts epoch.
Tricky part is configuration code paths - ioctls, sysctls. They
also call into leaf functions, so some need to be changed.
This patch would introduce more epoch recursions (see EPOCH_TRACE)
than we had before. They will be cleaned up separately, as several
of them aren't trivial. Note, that unlike a lock recursion the
epoch recursion is safe and just wastes a bit of resources.
Reviewed by: gallatin, hselasky, cy, adrian, kristof
Differential Revision: https://reviews.freebsd.org/D19111
2019-10-07 22:40:05 +00:00
|
|
|
else if (satosin(rt->rt_ifa->ifa_addr)->sin_addr.s_addr ==
|
|
|
|
sin->sin_addr.s_addr)
|
2003-02-10 22:01:34 +00:00
|
|
|
rt->rt_flags |= RTF_LOCAL;
|
1995-01-23 02:02:50 +00:00
|
|
|
}
|
2003-11-20 19:47:31 +00:00
|
|
|
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
|
|
|
|
rt->rt_flags |= RTF_MULTICAST;
|
1994-11-02 04:42:14 +00:00
|
|
|
|
Make checks for rt_mtu generic:
Some virtual if drivers has (ab)used ifa ifa_rtrequest hook to enforce
route MTU to be not bigger that interface MTU. While ifa_rtrequest hooking
might be an option in some situation, it is not feasible to do MTU checks
there: generic (or per-domain) routing code is perfectly capable of doing
this.
We currrently have 3 places where MTU is altered:
1) route addition.
In this case domain overrides radix _addroute callback (in[6]_addroute)
and all necessary checks/fixes are/can be done there.
2) route change (especially, GW change).
In this case, there are no explicit per-domain calls, but one can
override rte by setting ifa_rtrequest hook to domain handler
(inet6 does this).
3) ifconfig ifaceX mtu YYYY
In this case, we have no callbacks, but ip[6]_output performes runtime
checks and decreases rt_mtu if necessary.
Generally, the goals are to be able to handle all MTU changes in
control plane, not in runtime part, and properly deal with increased
interface MTU.
This commit changes the following:
* removes hooks setting MTU from drivers side
* adds proper per-doman MTU checks for case 1)
* adds generic MTU check for case 2)
* The latter is done by using new dom_ifmtu callback since
if_mtu denotes L3 interface MTU, e.g. maximum trasmitted _packet_ size.
However, IPv6 mtu might be different from if_mtu one (e.g. default 1280)
for some cases, so we need an abstract way to know maximum MTU size
for given interface and domain.
* moves rt_setmetrics() before MTU/ifa_rtrequest hooks since it copies
user-supplied data which must be checked.
* removes RT_LOCK_ASSERT() from other ifa_rtrequest hooks to be able to
use this functions on new non-inserted rte.
More changes will follow soon.
MFC after: 1 month
Sponsored by: Yandex LLC
2014-11-06 13:13:09 +00:00
|
|
|
if (rt->rt_ifp != NULL) {
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check route MTU:
|
|
|
|
* inherit interface MTU if not set or
|
|
|
|
* check if MTU is too large.
|
|
|
|
*/
|
|
|
|
if (rt->rt_mtu == 0) {
|
|
|
|
rt->rt_mtu = rt->rt_ifp->if_mtu;
|
|
|
|
} else if (rt->rt_mtu > rt->rt_ifp->if_mtu)
|
|
|
|
rt->rt_mtu = rt->rt_ifp->if_mtu;
|
|
|
|
}
|
1995-07-10 15:39:16 +00:00
|
|
|
|
This main goals of this project are:
1. separating L2 tables (ARP, NDP) from the L3 routing tables
2. removing as much locking dependencies among these layers as
possible to allow for some parallelism in the search operations
3. simplify the logic in the routing code,
The most notable end result is the obsolescent of the route
cloning (RTF_CLONING) concept, which translated into code reduction
in both IPv4 ARP and IPv6 NDP related modules, and size reduction in
struct rtentry{}. The change in design obsoletes the semantics of
RTF_CLONING, RTF_WASCLONE and RTF_LLINFO routing flags. The userland
applications such as "arp" and "ndp" have been modified to reflect
those changes. The output from "netstat -r" shows only the routing
entries.
Quite a few developers have contributed to this project in the
past: Glebius Smirnoff, Luigi Rizzo, Alessandro Cerri, and
Andre Oppermann. And most recently:
- Kip Macy revised the locking code completely, thus completing
the last piece of the puzzle, Kip has also been conducting
active functional testing
- Sam Leffler has helped me improving/refactoring the code, and
provided valuable reviews
- Julian Elischer setup the perforce tree for me and has helped
me maintaining that branch before the svn conversion
2008-12-15 06:10:57 +00:00
|
|
|
return (rn_addroute(v_arg, n_arg, head, treenodes));
|
1994-11-02 04:42:14 +00:00
|
|
|
}
|
|
|
|
|
Add code to allow the system to handle multiple routing tables.
This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)
Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.
From my notes:
-----
One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.
Constraints:
------------
I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.
One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".
One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.
This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.
Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.
To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.
The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.
The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.
In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.
One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).
You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.
This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.
Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.
Packets fall into one of a number of classes.
1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..
setfib -3 ping target.example.com # will use fib 3 for ping.
It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.
2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)
3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).
4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.
5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.
6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.
Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)
In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.
In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.
Early testing experience:
-------------------------
Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.
For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.
Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.
ipfw has grown 2 new keywords:
setfib N ip from anay to any
count ip from any to any fib N
In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.
SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.
Where to next:
--------------------
After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.
Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.
My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.
When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.
Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.
This work was sponsored by Ironport Systems/Cisco
Reviewed by: several including rwatson, bz and mlair (parts each)
Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
|
|
|
static int _in_rt_was_here;
|
1994-11-02 04:42:14 +00:00
|
|
|
/*
|
|
|
|
* Initialize our routing tree.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
in_inithead(void **head, int off)
|
|
|
|
{
|
MFP r287070,r287073: split radix implementation and route table structure.
There are number of radix consumers in kernel land (pf,ipfw,nfs,route)
with different requirements. In fact, first 3 don't have _any_ requirements
and first 2 does not use radix locking. On the other hand, routing
structure do have these requirements (rnh_gen, multipath, custom
to-be-added control plane functions, different locking).
Additionally, radix should not known anything about its consumers internals.
So, radix code now uses tiny 'struct radix_head' structure along with
internal 'struct radix_mask_head' instead of 'struct radix_node_head'.
Existing consumers still uses the same 'struct radix_node_head' with
slight modifications: they need to pass pointer to (embedded)
'struct radix_head' to all radix callbacks.
Routing code now uses new 'struct rib_head' with different locking macro:
RADIX_NODE_HEAD prefix was renamed to RIB_ (which stands for routing
information base).
New net/route_var.h header was added to hold routing subsystem internal
data. 'struct rib_head' was placed there. 'struct rtentry' will also
be moved there soon.
2016-01-25 06:33:15 +00:00
|
|
|
struct rib_head *rh;
|
1994-11-02 04:42:14 +00:00
|
|
|
|
MFP r287070,r287073: split radix implementation and route table structure.
There are number of radix consumers in kernel land (pf,ipfw,nfs,route)
with different requirements. In fact, first 3 don't have _any_ requirements
and first 2 does not use radix locking. On the other hand, routing
structure do have these requirements (rnh_gen, multipath, custom
to-be-added control plane functions, different locking).
Additionally, radix should not known anything about its consumers internals.
So, radix code now uses tiny 'struct radix_head' structure along with
internal 'struct radix_mask_head' instead of 'struct radix_node_head'.
Existing consumers still uses the same 'struct radix_node_head' with
slight modifications: they need to pass pointer to (embedded)
'struct radix_head' to all radix callbacks.
Routing code now uses new 'struct rib_head' with different locking macro:
RADIX_NODE_HEAD prefix was renamed to RIB_ (which stands for routing
information base).
New net/route_var.h header was added to hold routing subsystem internal
data. 'struct rib_head' was placed there. 'struct rtentry' will also
be moved there soon.
2016-01-25 06:33:15 +00:00
|
|
|
rh = rt_table_init(32);
|
|
|
|
if (rh == NULL)
|
|
|
|
return (0);
|
1994-11-02 04:42:14 +00:00
|
|
|
|
MFP r287070,r287073: split radix implementation and route table structure.
There are number of radix consumers in kernel land (pf,ipfw,nfs,route)
with different requirements. In fact, first 3 don't have _any_ requirements
and first 2 does not use radix locking. On the other hand, routing
structure do have these requirements (rnh_gen, multipath, custom
to-be-added control plane functions, different locking).
Additionally, radix should not known anything about its consumers internals.
So, radix code now uses tiny 'struct radix_head' structure along with
internal 'struct radix_mask_head' instead of 'struct radix_node_head'.
Existing consumers still uses the same 'struct radix_node_head' with
slight modifications: they need to pass pointer to (embedded)
'struct radix_head' to all radix callbacks.
Routing code now uses new 'struct rib_head' with different locking macro:
RADIX_NODE_HEAD prefix was renamed to RIB_ (which stands for routing
information base).
New net/route_var.h header was added to hold routing subsystem internal
data. 'struct rib_head' was placed there. 'struct rtentry' will also
be moved there soon.
2016-01-25 06:33:15 +00:00
|
|
|
rh->rnh_addaddr = in_addroute;
|
|
|
|
*head = (void *)rh;
|
2014-10-01 14:39:06 +00:00
|
|
|
|
Add code to allow the system to handle multiple routing tables.
This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)
Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.
From my notes:
-----
One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.
Constraints:
------------
I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.
One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".
One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.
This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.
Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.
To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.
The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.
The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.
In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.
One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).
You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.
This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.
Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.
Packets fall into one of a number of classes.
1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..
setfib -3 ping target.example.com # will use fib 3 for ping.
It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.
2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)
3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).
4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.
5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.
6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.
Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)
In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.
In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.
Early testing experience:
-------------------------
Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.
For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.
Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.
ipfw has grown 2 new keywords:
setfib N ip from anay to any
count ip from any to any fib N
In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.
SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.
Where to next:
--------------------
After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.
Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.
My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.
When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.
Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.
This work was sponsored by Ironport Systems/Cisco
Reviewed by: several including rwatson, bz and mlair (parts each)
Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
|
|
|
if (_in_rt_was_here == 0 ) {
|
|
|
|
_in_rt_was_here = 1;
|
|
|
|
}
|
1994-11-02 04:42:14 +00:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
Introduce an infrastructure for dismantling vnet instances.
Vnet modules and protocol domains may now register destructor
functions to clean up and release per-module state. The destructor
mechanisms can be triggered by invoking "vimage -d", or a future
equivalent command which will be provided via the new jail framework.
While this patch introduces numerous placeholder destructor functions,
many of those are currently incomplete, thus leaking memory or (even
worse) failing to stop all running timers. Many of such issues are
already known and will be incrementaly fixed over the next weeks in
smaller incremental commits.
Apart from introducing new fields in structs ifnet, domain, protosw
and vnet_net, which requires the kernel and modules to be rebuilt, this
change should have no impact on nooptions VIMAGE builds, since vnet
destructors can only be called in VIMAGE kernels. Moreover,
destructor functions should be in general compiled in only in
options VIMAGE builds, except for kernel modules which can be safely
kldunloaded at run time.
Bump __FreeBSD_version to 800097.
Reviewed by: bz, julian
Approved by: rwatson, kib (re), julian (mentor)
2009-06-08 17:15:40 +00:00
|
|
|
#ifdef VIMAGE
|
|
|
|
int
|
|
|
|
in_detachhead(void **head, int off)
|
|
|
|
{
|
|
|
|
|
2016-02-03 21:56:51 +00:00
|
|
|
rt_table_destroy((struct rib_head *)(*head));
|
|
|
|
return (1);
|
Introduce an infrastructure for dismantling vnet instances.
Vnet modules and protocol domains may now register destructor
functions to clean up and release per-module state. The destructor
mechanisms can be triggered by invoking "vimage -d", or a future
equivalent command which will be provided via the new jail framework.
While this patch introduces numerous placeholder destructor functions,
many of those are currently incomplete, thus leaking memory or (even
worse) failing to stop all running timers. Many of such issues are
already known and will be incrementaly fixed over the next weeks in
smaller incremental commits.
Apart from introducing new fields in structs ifnet, domain, protosw
and vnet_net, which requires the kernel and modules to be rebuilt, this
change should have no impact on nooptions VIMAGE builds, since vnet
destructors can only be called in VIMAGE kernels. Moreover,
destructor functions should be in general compiled in only in
options VIMAGE builds, except for kernel modules which can be safely
kldunloaded at run time.
Bump __FreeBSD_version to 800097.
Reviewed by: bz, julian
Approved by: rwatson, kib (re), julian (mentor)
2009-06-08 17:15:40 +00:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
1997-02-13 19:46:45 +00:00
|
|
|
/*
|
2001-05-11 14:37:34 +00:00
|
|
|
* This zaps old routes when the interface goes down or interface
|
|
|
|
* address is deleted. In the latter case, it deletes static routes
|
|
|
|
* that point to this address. If we don't do this, we may end up
|
|
|
|
* using the old address in the future. The ones we always want to
|
|
|
|
* get rid of are things like ARP entries, since the user might down
|
|
|
|
* the interface, walk over to a completely different network, and
|
|
|
|
* plug back in.
|
1997-02-13 19:46:45 +00:00
|
|
|
*/
|
|
|
|
struct in_ifadown_arg {
|
|
|
|
struct ifaddr *ifa;
|
2001-05-11 14:37:34 +00:00
|
|
|
int del;
|
1997-02-13 19:46:45 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static int
|
2015-11-30 05:51:14 +00:00
|
|
|
in_ifadownkill(const struct rtentry *rt, void *xap)
|
1997-02-13 19:46:45 +00:00
|
|
|
{
|
|
|
|
struct in_ifadown_arg *ap = xap;
|
|
|
|
|
2015-11-30 05:51:14 +00:00
|
|
|
if (rt->rt_ifa != ap->ifa)
|
2010-07-31 15:31:23 +00:00
|
|
|
return (0);
|
2015-08-08 18:14:59 +00:00
|
|
|
|
2015-11-30 05:51:14 +00:00
|
|
|
if ((rt->rt_flags & RTF_STATIC) != 0 && ap->del == 0)
|
|
|
|
return (0);
|
2015-08-08 18:14:59 +00:00
|
|
|
|
2015-11-30 05:51:14 +00:00
|
|
|
return (1);
|
2015-08-08 18:14:59 +00:00
|
|
|
}
|
|
|
|
|
2013-11-01 10:29:10 +00:00
|
|
|
void
|
2001-05-11 14:37:34 +00:00
|
|
|
in_ifadown(struct ifaddr *ifa, int delete)
|
1997-02-13 19:46:45 +00:00
|
|
|
{
|
|
|
|
struct in_ifadown_arg arg;
|
|
|
|
|
2013-11-01 10:29:10 +00:00
|
|
|
KASSERT(ifa->ifa_addr->sa_family == AF_INET,
|
|
|
|
("%s: wrong family", __func__));
|
1997-02-13 19:46:45 +00:00
|
|
|
|
2015-08-08 18:14:59 +00:00
|
|
|
arg.ifa = ifa;
|
|
|
|
arg.del = delete;
|
|
|
|
|
2015-11-30 05:51:14 +00:00
|
|
|
rt_foreach_fib_walk_del(AF_INET, in_ifadownkill, &arg);
|
2015-08-08 18:14:59 +00:00
|
|
|
ifa->ifa_flags &= ~IFA_ROUTE; /* XXXlocking? */
|
1997-02-13 19:46:45 +00:00
|
|
|
}
|
Add code to allow the system to handle multiple routing tables.
This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)
Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.
From my notes:
-----
One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.
Constraints:
------------
I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.
One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".
One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.
This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.
Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.
To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.
The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.
The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.
In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.
One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).
You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.
This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.
Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.
Packets fall into one of a number of classes.
1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..
setfib -3 ping target.example.com # will use fib 3 for ping.
It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.
2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)
3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).
4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.
5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.
6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.
Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)
In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.
In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.
Early testing experience:
-------------------------
Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.
For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.
Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.
ipfw has grown 2 new keywords:
setfib N ip from anay to any
count ip from any to any fib N
In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.
SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.
Where to next:
--------------------
After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.
Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.
My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.
When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.
Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.
This work was sponsored by Ironport Systems/Cisco
Reviewed by: several including rwatson, bz and mlair (parts each)
Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* inet versions of rt functions. These have fib extensions and
|
|
|
|
* for now will just reference the _fib variants.
|
|
|
|
* eventually this order will be reversed,
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
in_rtalloc_ign(struct route *ro, u_long ignflags, u_int fibnum)
|
|
|
|
{
|
|
|
|
rtalloc_ign_fib(ro, ignflags, fibnum);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
in_rtredirect(struct sockaddr *dst,
|
|
|
|
struct sockaddr *gateway,
|
|
|
|
struct sockaddr *netmask,
|
|
|
|
int flags,
|
|
|
|
struct sockaddr *src,
|
|
|
|
u_int fibnum)
|
|
|
|
{
|
|
|
|
rtredirect_fib(dst, gateway, netmask, flags, src, fibnum);
|
|
|
|
}
|
|
|
|
|