freebsd-dev/sys/contrib/dev/ath/ath_hal/ar9300/ar9300_xmit.c

974 lines
31 KiB
C
Raw Normal View History

/*
* Copyright (c) 2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_desc.h"
#include "ah_internal.h"
#include "ar9300/ar9300.h"
#include "ar9300/ar9300reg.h"
#include "ar9300/ar9300phy.h"
#include "ar9300/ar9300desc.h"
#define TU_TO_USEC(_tu) ((_tu) << 10)
#define ONE_EIGHTH_TU_TO_USEC(_tu8) ((_tu8) << 7)
/*
* Update Tx FIFO trigger level.
*
* Set b_inc_trig_level to TRUE to increase the trigger level.
* Set b_inc_trig_level to FALSE to decrease the trigger level.
*
* Returns TRUE if the trigger level was updated
*/
HAL_BOOL
ar9300_update_tx_trig_level(struct ath_hal *ah, HAL_BOOL b_inc_trig_level)
{
struct ath_hal_9300 *ahp = AH9300(ah);
u_int32_t txcfg, cur_level, new_level;
HAL_INT omask;
if (AH9300(ah)->ah_tx_trig_level >= MAX_TX_FIFO_THRESHOLD &&
b_inc_trig_level)
{
return AH_FALSE;
}
/*
* Disable interrupts while futzing with the fifo level.
*/
omask = ar9300_set_interrupts(ah, ahp->ah_mask_reg &~ HAL_INT_GLOBAL, 0);
txcfg = OS_REG_READ(ah, AR_TXCFG);
cur_level = MS(txcfg, AR_FTRIG);
new_level = cur_level;
if (b_inc_trig_level) { /* increase the trigger level */
if (cur_level < MAX_TX_FIFO_THRESHOLD) {
new_level++;
}
} else if (cur_level > MIN_TX_FIFO_THRESHOLD) {
new_level--;
}
if (new_level != cur_level) {
/* Update the trigger level */
OS_REG_WRITE(ah,
AR_TXCFG, (txcfg &~ AR_FTRIG) | SM(new_level, AR_FTRIG));
}
/* re-enable chip interrupts */
ar9300_set_interrupts(ah, omask, 0);
AH9300(ah)->ah_tx_trig_level = new_level;
return (new_level != cur_level);
}
/*
* Returns the value of Tx Trigger Level
*/
u_int16_t
ar9300_get_tx_trig_level(struct ath_hal *ah)
{
return (AH9300(ah)->ah_tx_trig_level);
}
/*
* Set the properties of the tx queue with the parameters
* from q_info.
*/
HAL_BOOL
ar9300_set_tx_queue_props(struct ath_hal *ah, int q, const HAL_TXQ_INFO *q_info)
{
struct ath_hal_9300 *ahp = AH9300(ah);
HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
if (q >= p_cap->halTotalQueues) {
HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: invalid queue num %u\n", __func__, q);
return AH_FALSE;
}
return ath_hal_setTxQProps(ah, &ahp->ah_txq[q], q_info);
}
/*
* Return the properties for the specified tx queue.
*/
HAL_BOOL
ar9300_get_tx_queue_props(struct ath_hal *ah, int q, HAL_TXQ_INFO *q_info)
{
struct ath_hal_9300 *ahp = AH9300(ah);
HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
if (q >= p_cap->halTotalQueues) {
HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: invalid queue num %u\n", __func__, q);
return AH_FALSE;
}
return ath_hal_getTxQProps(ah, q_info, &ahp->ah_txq[q]);
}
enum {
AH_TX_QUEUE_MINUS_OFFSET_BEACON = 1,
AH_TX_QUEUE_MINUS_OFFSET_CAB = 2,
AH_TX_QUEUE_MINUS_OFFSET_UAPSD = 3,
AH_TX_QUEUE_MINUS_OFFSET_PAPRD = 4,
};
/*
* Allocate and initialize a tx DCU/QCU combination.
*/
int
ar9300_setup_tx_queue(struct ath_hal *ah, HAL_TX_QUEUE type,
const HAL_TXQ_INFO *q_info)
{
struct ath_hal_9300 *ahp = AH9300(ah);
HAL_TX_QUEUE_INFO *qi;
HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
int q;
/* XXX move queue assignment to driver */
switch (type) {
case HAL_TX_QUEUE_BEACON:
/* highest priority */
q = p_cap->halTotalQueues - AH_TX_QUEUE_MINUS_OFFSET_BEACON;
break;
case HAL_TX_QUEUE_CAB:
/* next highest priority */
q = p_cap->halTotalQueues - AH_TX_QUEUE_MINUS_OFFSET_CAB;
break;
case HAL_TX_QUEUE_UAPSD:
q = p_cap->halTotalQueues - AH_TX_QUEUE_MINUS_OFFSET_UAPSD;
break;
case HAL_TX_QUEUE_PAPRD:
q = p_cap->halTotalQueues - AH_TX_QUEUE_MINUS_OFFSET_PAPRD;
break;
case HAL_TX_QUEUE_DATA:
/*
* don't infringe on top 4 queues, reserved for:
* beacon, CAB, UAPSD, PAPRD
*/
for (q = 0;
q < p_cap->halTotalQueues - AH_TX_QUEUE_MINUS_OFFSET_PAPRD;
q++)
{
if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE) {
break;
}
}
if (q == p_cap->halTotalQueues - 3) {
HALDEBUG(ah, HAL_DEBUG_QUEUE,
"%s: no available tx queue\n", __func__);
return -1;
}
break;
default:
HALDEBUG(ah, HAL_DEBUG_QUEUE,
"%s: bad tx queue type %u\n", __func__, type);
return -1;
}
HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: queue %u\n", __func__, q);
qi = &ahp->ah_txq[q];
if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) {
HALDEBUG(ah, HAL_DEBUG_QUEUE,
"%s: tx queue %u already active\n", __func__, q);
return -1;
}
OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO));
qi->tqi_type = type;
if (q_info == AH_NULL) {
/* by default enable OK+ERR+DESC+URN interrupts */
qi->tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
| HAL_TXQ_TXERRINT_ENABLE
| HAL_TXQ_TXDESCINT_ENABLE
| HAL_TXQ_TXURNINT_ENABLE;
qi->tqi_aifs = INIT_AIFS;
qi->tqi_cwmin = HAL_TXQ_USEDEFAULT; /* NB: do at reset */
qi->tqi_cwmax = INIT_CWMAX;
qi->tqi_shretry = INIT_SH_RETRY;
qi->tqi_lgretry = INIT_LG_RETRY;
qi->tqi_physCompBuf = 0;
} else {
qi->tqi_physCompBuf = q_info->tqi_compBuf;
(void) ar9300_set_tx_queue_props(ah, q, q_info);
}
/* NB: must be followed by ar9300_reset_tx_queue */
return q;
}
/*
* Update the h/w interrupt registers to reflect a tx q's configuration.
*/
static void
set_tx_q_interrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi)
{
struct ath_hal_9300 *ahp = AH9300(ah);
HALDEBUG(ah, HAL_DEBUG_INTERRUPT,
"%s: tx ok 0x%x err 0x%x eol 0x%x urn 0x%x\n",
__func__,
ahp->ah_tx_ok_interrupt_mask,
ahp->ah_tx_err_interrupt_mask,
ahp->ah_tx_eol_interrupt_mask,
ahp->ah_tx_urn_interrupt_mask);
OS_REG_WRITE(ah, AR_IMR_S0,
SM(ahp->ah_tx_ok_interrupt_mask, AR_IMR_S0_QCU_TXOK));
OS_REG_WRITE(ah, AR_IMR_S1,
SM(ahp->ah_tx_err_interrupt_mask, AR_IMR_S1_QCU_TXERR)
| SM(ahp->ah_tx_eol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
OS_REG_RMW_FIELD(ah,
AR_IMR_S2, AR_IMR_S2_QCU_TXURN, ahp->ah_tx_urn_interrupt_mask);
ahp->ah_mask2Reg = OS_REG_READ(ah, AR_IMR_S2);
}
/*
* Free a tx DCU/QCU combination.
*/
HAL_BOOL
ar9300_release_tx_queue(struct ath_hal *ah, u_int q)
{
struct ath_hal_9300 *ahp = AH9300(ah);
HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
HAL_TX_QUEUE_INFO *qi;
if (q >= p_cap->halTotalQueues) {
HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: invalid queue num %u\n", __func__, q);
return AH_FALSE;
}
qi = &ahp->ah_txq[q];
if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: inactive queue %u\n", __func__, q);
return AH_FALSE;
}
HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: release queue %u\n", __func__, q);
qi->tqi_type = HAL_TX_QUEUE_INACTIVE;
ahp->ah_tx_ok_interrupt_mask &= ~(1 << q);
ahp->ah_tx_err_interrupt_mask &= ~(1 << q);
ahp->ah_tx_eol_interrupt_mask &= ~(1 << q);
ahp->ah_tx_urn_interrupt_mask &= ~(1 << q);
set_tx_q_interrupts(ah, qi);
return AH_TRUE;
}
/*
* Set the retry, aifs, cwmin/max, ready_time regs for specified queue
* Assumes:
* phw_channel has been set to point to the current channel
*/
HAL_BOOL
ar9300_reset_tx_queue(struct ath_hal *ah, u_int q)
{
struct ath_hal_9300 *ahp = AH9300(ah);
// struct ath_hal_private *ap = AH_PRIVATE(ah);
HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
HAL_TX_QUEUE_INFO *qi;
u_int32_t cw_min, chan_cw_min, value;
if (q >= p_cap->halTotalQueues) {
HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: invalid queue num %u\n", __func__, q);
return AH_FALSE;
}
qi = &ahp->ah_txq[q];
if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: inactive queue %u\n", __func__, q);
return AH_TRUE; /* XXX??? */
}
HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: reset queue %u\n", __func__, q);
if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) {
/*
* Select cwmin according to channel type.
* NB: chan can be NULL during attach
*/
if (chan && IEEE80211_IS_CHAN_B(chan)) {
chan_cw_min = INIT_CWMIN_11B;
} else {
chan_cw_min = INIT_CWMIN;
}
/* make sure that the CWmin is of the form (2^n - 1) */
for (cw_min = 1; cw_min < chan_cw_min; cw_min = (cw_min << 1) | 1) {}
} else {
cw_min = qi->tqi_cwmin;
}
/* set cw_min/Max and AIFS values */
if (q > 3 || (!AH9300(ah)->ah_fccaifs))
/* values should not be overwritten if domain is FCC and manual rate
less than 24Mb is set, this check is making sure this */
{
OS_REG_WRITE(ah, AR_DLCL_IFS(q), SM(cw_min, AR_D_LCL_IFS_CWMIN)
| SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX)
| SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
}
/* Set retry limit values */
OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q),
SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
/* enable early termination on the QCU */
OS_REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
/* enable DCU to wait for next fragment from QCU */
if (AR_SREV_WASP(ah) && (AH_PRIVATE((ah))->ah_macRev <= AR_SREV_REVISION_WASP_12)) {
/* WAR for EV#85395: Wasp Rx overrun issue - reduces Tx queue backoff
* threshold to 1 to avoid Rx overruns - Fixed in Wasp 1.3 */
OS_REG_WRITE(ah, AR_DMISC(q),
AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
} else {
OS_REG_WRITE(ah, AR_DMISC(q),
AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
}
/* multiqueue support */
if (qi->tqi_cbrPeriod) {
OS_REG_WRITE(ah,
AR_QCBRCFG(q),
SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
SM(qi->tqi_cbrOverflowLimit,
AR_Q_CBRCFG_OVF_THRESH));
OS_REG_WRITE(ah, AR_QMISC(q),
OS_REG_READ(ah, AR_QMISC(q)) |
AR_Q_MISC_FSP_CBR |
(qi->tqi_cbrOverflowLimit ?
AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
}
if (qi->tqi_readyTime && (qi->tqi_type != HAL_TX_QUEUE_CAB)) {
OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
AR_Q_RDYTIMECFG_EN);
}
OS_REG_WRITE(ah, AR_DCHNTIME(q), SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
(qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
if (qi->tqi_burstTime &&
(qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE))
{
OS_REG_WRITE(ah, AR_QMISC(q), OS_REG_READ(ah, AR_QMISC(q)) |
AR_Q_MISC_RDYTIME_EXP_POLICY);
}
if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE) {
OS_REG_WRITE(ah, AR_DMISC(q), OS_REG_READ(ah, AR_DMISC(q)) |
AR_D_MISC_POST_FR_BKOFF_DIS);
}
if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE) {
OS_REG_WRITE(ah, AR_DMISC(q), OS_REG_READ(ah, AR_DMISC(q)) |
AR_D_MISC_FRAG_BKOFF_EN);
}
switch (qi->tqi_type) {
case HAL_TX_QUEUE_BEACON: /* beacon frames */
OS_REG_WRITE(ah, AR_QMISC(q),
OS_REG_READ(ah, AR_QMISC(q))
| AR_Q_MISC_FSP_DBA_GATED
| AR_Q_MISC_BEACON_USE
| AR_Q_MISC_CBR_INCR_DIS1);
OS_REG_WRITE(ah, AR_DMISC(q),
OS_REG_READ(ah, AR_DMISC(q))
| (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
| AR_D_MISC_BEACON_USE
| AR_D_MISC_POST_FR_BKOFF_DIS);
/* XXX cwmin and cwmax should be 0 for beacon queue */
if (AH_PRIVATE(ah)->ah_opmode != HAL_M_IBSS) {
OS_REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
| SM(0, AR_D_LCL_IFS_CWMAX)
| SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
}
break;
case HAL_TX_QUEUE_CAB: /* CAB frames */
/*
* No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY,
* bug #6079. There is an issue with the CAB Queue
* not properly refreshing the Tx descriptor if
* the TXE clear setting is used.
*/
OS_REG_WRITE(ah, AR_QMISC(q),
OS_REG_READ(ah, AR_QMISC(q))
| AR_Q_MISC_FSP_DBA_GATED
| AR_Q_MISC_CBR_INCR_DIS1
| AR_Q_MISC_CBR_INCR_DIS0);
value = TU_TO_USEC(qi->tqi_readyTime)
- (ah->ah_config.ah_sw_beacon_response_time
- ah->ah_config.ah_dma_beacon_response_time)
- ah->ah_config.ah_additional_swba_backoff;
OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), value | AR_Q_RDYTIMECFG_EN);
OS_REG_WRITE(ah, AR_DMISC(q), OS_REG_READ(ah, AR_DMISC(q))
| (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
break;
case HAL_TX_QUEUE_PSPOLL:
/*
* We may configure ps_poll QCU to be TIM-gated in the
* future; TIM_GATED bit is not enabled currently because
* of a hardware problem in Oahu that overshoots the TIM
* bitmap in beacon and may find matching associd bit in
* non-TIM elements and send PS-poll PS poll processing
* will be done in software
*/
OS_REG_WRITE(ah, AR_QMISC(q),
OS_REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_CBR_INCR_DIS1);
break;
case HAL_TX_QUEUE_UAPSD:
OS_REG_WRITE(ah, AR_DMISC(q), OS_REG_READ(ah, AR_DMISC(q))
| AR_D_MISC_POST_FR_BKOFF_DIS);
break;
default: /* NB: silence compiler */
break;
}
#ifndef AH_DISABLE_WME
/*
* Yes, this is a hack and not the right way to do it, but
* it does get the lockout bits and backoff set for the
* high-pri WME queues for testing. We need to either extend
* the meaning of queue_info->mode, or create something like
* queue_info->dcumode.
*/
if (qi->tqi_intFlags & HAL_TXQ_USE_LOCKOUT_BKOFF_DIS) {
OS_REG_WRITE(ah, AR_DMISC(q),
OS_REG_READ(ah, AR_DMISC(q)) |
SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
AR_D_MISC_ARB_LOCKOUT_CNTRL) |
AR_D_MISC_POST_FR_BKOFF_DIS);
}
#endif
OS_REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
/*
* Always update the secondary interrupt mask registers - this
* could be a new queue getting enabled in a running system or
* hw getting re-initialized during a reset!
*
* Since we don't differentiate between tx interrupts corresponding
* to individual queues - secondary tx mask regs are always unmasked;
* tx interrupts are enabled/disabled for all queues collectively
* using the primary mask reg
*/
if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE) {
ahp->ah_tx_ok_interrupt_mask |= (1 << q);
} else {
ahp->ah_tx_ok_interrupt_mask &= ~(1 << q);
}
if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE) {
ahp->ah_tx_err_interrupt_mask |= (1 << q);
} else {
ahp->ah_tx_err_interrupt_mask &= ~(1 << q);
}
if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE) {
ahp->ah_tx_eol_interrupt_mask |= (1 << q);
} else {
ahp->ah_tx_eol_interrupt_mask &= ~(1 << q);
}
if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE) {
ahp->ah_tx_urn_interrupt_mask |= (1 << q);
} else {
ahp->ah_tx_urn_interrupt_mask &= ~(1 << q);
}
set_tx_q_interrupts(ah, qi);
return AH_TRUE;
}
/*
* Get the TXDP for the specified queue
*/
u_int32_t
ar9300_get_tx_dp(struct ath_hal *ah, u_int q)
{
HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
return OS_REG_READ(ah, AR_QTXDP(q));
}
/*
* Set the tx_dp for the specified queue
*/
HAL_BOOL
ar9300_set_tx_dp(struct ath_hal *ah, u_int q, u_int32_t txdp)
{
HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
HALASSERT(AH9300(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
HALASSERT(txdp != 0);
OS_REG_WRITE(ah, AR_QTXDP(q), txdp);
return AH_TRUE;
}
/*
* Transmit Enable is read-only now
*/
HAL_BOOL
ar9300_start_tx_dma(struct ath_hal *ah, u_int q)
{
return AH_TRUE;
}
/*
* Return the number of pending frames or 0 if the specified
* queue is stopped.
*/
u_int32_t
ar9300_num_tx_pending(struct ath_hal *ah, u_int q)
{
u_int32_t npend;
HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
npend = OS_REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
if (npend == 0) {
/*
* Pending frame count (PFC) can momentarily go to zero
* while TXE remains asserted. In other words a PFC of
* zero is not sufficient to say that the queue has stopped.
*/
if (OS_REG_READ(ah, AR_Q_TXE) & (1 << q)) {
npend = 1; /* arbitrarily return 1 */
}
}
#ifdef DEBUG
if (npend && (AH9300(ah)->ah_txq[q].tqi_type == HAL_TX_QUEUE_CAB)) {
if (OS_REG_READ(ah, AR_Q_RDYTIMESHDN) & (1 << q)) {
HALDEBUG(ah, HAL_DEBUG_QUEUE, "RTSD on CAB queue\n");
/* Clear the ready_time shutdown status bits */
OS_REG_WRITE(ah, AR_Q_RDYTIMESHDN, 1 << q);
}
}
#endif
HALASSERT((npend == 0) ||
(AH9300(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE));
return npend;
}
/*
* Stop transmit on the specified queue
*/
HAL_BOOL
ar9300_stop_tx_dma(struct ath_hal *ah, u_int q, u_int timeout)
{
struct ath_hal_9300 *ahp = AH9300(ah);
/*
* If we call abort txdma instead, no need to stop RX.
* Otherwise, the RX logic might not be restarted properly.
*/
ahp->ah_abort_txdma_norx = AH_FALSE;
/*
* Directly call abort. It is better, hardware-wise, to stop all
* queues at once than individual ones.
*/
return ar9300_abort_tx_dma(ah);
#if 0
#define AH_TX_STOP_DMA_TIMEOUT 4000 /* usec */
#define AH_TIME_QUANTUM 100 /* usec */
u_int wait;
HALASSERT(q < AH_PRIVATE(ah)->ah_caps.hal_total_queues);
HALASSERT(AH9300(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
if (timeout == 0) {
timeout = AH_TX_STOP_DMA_TIMEOUT;
}
OS_REG_WRITE(ah, AR_Q_TXD, 1 << q);
for (wait = timeout / AH_TIME_QUANTUM; wait != 0; wait--) {
if (ar9300_num_tx_pending(ah, q) == 0) {
break;
}
OS_DELAY(AH_TIME_QUANTUM); /* XXX get actual value */
}
#ifdef AH_DEBUG
if (wait == 0) {
HALDEBUG(ah, HAL_DEBUG_QUEUE,
"%s: queue %u DMA did not stop in 100 msec\n", __func__, q);
HALDEBUG(ah, HAL_DEBUG_QUEUE,
"%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n",
__func__,
OS_REG_READ(ah, AR_QSTS(q)),
OS_REG_READ(ah, AR_Q_TXE),
OS_REG_READ(ah, AR_Q_TXD),
OS_REG_READ(ah, AR_QCBRCFG(q)));
HALDEBUG(ah, HAL_DEBUG_QUEUE,
"%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n",
__func__,
OS_REG_READ(ah, AR_QMISC(q)),
OS_REG_READ(ah, AR_QRDYTIMECFG(q)),
OS_REG_READ(ah, AR_Q_RDYTIMESHDN));
}
#endif /* AH_DEBUG */
/* 2413+ and up can kill packets at the PCU level */
if (ar9300_num_tx_pending(ah, q)) {
u_int32_t tsf_low, j;
HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: Num of pending TX Frames %d on Q %d\n",
__func__, ar9300_num_tx_pending(ah, q), q);
/* Kill last PCU Tx Frame */
/* TODO - save off and restore current values of Q1/Q2? */
for (j = 0; j < 2; j++) {
tsf_low = OS_REG_READ(ah, AR_TSF_L32);
OS_REG_WRITE(ah, AR_QUIET2, SM(10, AR_QUIET2_QUIET_DUR));
OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100);
OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, tsf_low >> 10);
OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == (tsf_low >> 10)) {
break;
}
HALDEBUG(ah, HAL_DEBUG_QUEUE,
"%s: TSF have moved while trying to set "
"quiet time TSF: 0x%08x\n",
__func__, tsf_low);
/* TSF shouldn't count twice or reg access is taking forever */
HALASSERT(j < 1);
}
OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
/* Allow the quiet mechanism to do its work */
OS_DELAY(200);
OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
/* Verify all transmit is dead */
wait = timeout / AH_TIME_QUANTUM;
while (ar9300_num_tx_pending(ah, q)) {
if ((--wait) == 0) {
HALDEBUG(ah, HAL_DEBUG_TX,
"%s: Failed to stop Tx DMA in %d msec "
"after killing last frame\n",
__func__, timeout / 1000);
break;
}
OS_DELAY(AH_TIME_QUANTUM);
}
OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
}
OS_REG_WRITE(ah, AR_Q_TXD, 0);
return (wait != 0);
#undef AH_TX_STOP_DMA_TIMEOUT
#undef AH_TIME_QUANTUM
#endif
}
/*
* Really Stop transmit on the specified queue
*/
HAL_BOOL
ar9300_stop_tx_dma_indv_que(struct ath_hal *ah, u_int q, u_int timeout)
{
#define AH_TX_STOP_DMA_TIMEOUT 4000 /* usec */
#define AH_TIME_QUANTUM 100 /* usec */
u_int wait;
HALASSERT(q < AH_PRIVATE(ah)->ah_caps.hal_total_queues);
HALASSERT(AH9300(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
if (timeout == 0) {
timeout = AH_TX_STOP_DMA_TIMEOUT;
}
OS_REG_WRITE(ah, AR_Q_TXD, 1 << q);
for (wait = timeout / AH_TIME_QUANTUM; wait != 0; wait--) {
if (ar9300_num_tx_pending(ah, q) == 0) {
break;
}
OS_DELAY(AH_TIME_QUANTUM); /* XXX get actual value */
}
#ifdef AH_DEBUG
if (wait == 0) {
HALDEBUG(ah, HAL_DEBUG_QUEUE,
"%s: queue %u DMA did not stop in 100 msec\n", __func__, q);
HALDEBUG(ah, HAL_DEBUG_QUEUE,
"%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n",
__func__,
OS_REG_READ(ah, AR_QSTS(q)),
OS_REG_READ(ah, AR_Q_TXE),
OS_REG_READ(ah, AR_Q_TXD),
OS_REG_READ(ah, AR_QCBRCFG(q)));
HALDEBUG(ah, HAL_DEBUG_QUEUE,
"%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n",
__func__,
OS_REG_READ(ah, AR_QMISC(q)),
OS_REG_READ(ah, AR_QRDYTIMECFG(q)),
OS_REG_READ(ah, AR_Q_RDYTIMESHDN));
}
#endif /* AH_DEBUG */
/* 2413+ and up can kill packets at the PCU level */
if (ar9300_num_tx_pending(ah, q)) {
u_int32_t tsf_low, j;
HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: Num of pending TX Frames %d on Q %d\n",
__func__, ar9300_num_tx_pending(ah, q), q);
/* Kill last PCU Tx Frame */
/* TODO - save off and restore current values of Q1/Q2? */
for (j = 0; j < 2; j++) {
tsf_low = OS_REG_READ(ah, AR_TSF_L32);
OS_REG_WRITE(ah, AR_QUIET2, SM(10, AR_QUIET2_QUIET_DUR));
OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100);
OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, tsf_low >> 10);
OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == (tsf_low >> 10)) {
break;
}
HALDEBUG(ah, HAL_DEBUG_QUEUE,
"%s: TSF have moved while trying to set "
"quiet time TSF: 0x%08x\n",
__func__, tsf_low);
/* TSF shouldn't count twice or reg access is taking forever */
HALASSERT(j < 1);
}
OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
/* Allow the quiet mechanism to do its work */
OS_DELAY(200);
OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
/* Verify all transmit is dead */
wait = timeout / AH_TIME_QUANTUM;
while (ar9300_num_tx_pending(ah, q)) {
if ((--wait) == 0) {
HALDEBUG(ah, HAL_DEBUG_TX,
"%s: Failed to stop Tx DMA in %d msec "
"after killing last frame\n",
__func__, timeout / 1000);
break;
}
OS_DELAY(AH_TIME_QUANTUM);
}
OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
}
OS_REG_WRITE(ah, AR_Q_TXD, 0);
return (wait != 0);
#undef AH_TX_STOP_DMA_TIMEOUT
#undef AH_TIME_QUANTUM
}
/*
* Abort transmit on all queues
*/
#define AR9300_ABORT_LOOPS 1000
#define AR9300_ABORT_WAIT 5
#define NEXT_TBTT_NOW 10
HAL_BOOL
ar9300_abort_tx_dma(struct ath_hal *ah)
{
struct ath_hal_9300 *ahp = AH9300(ah);
int i, q;
u_int32_t nexttbtt, nextdba, tsf_tbtt, tbtt, dba;
HAL_BOOL stopped;
HAL_BOOL status = AH_TRUE;
if (ahp->ah_abort_txdma_norx) {
/*
* First of all, make sure RX has been stopped
*/
if (ar9300_get_power_mode(ah) != HAL_PM_FULL_SLEEP) {
/* Need to stop RX DMA before reset otherwise chip might hang */
stopped = ar9300_set_rx_abort(ah, AH_TRUE); /* abort and disable PCU */
ar9300_set_rx_filter(ah, 0);
stopped &= ar9300_stop_dma_receive(ah, 0); /* stop and disable RX DMA */
if (!stopped) {
/*
* During the transition from full sleep to reset,
* recv DMA regs are not available to be read
*/
HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
"%s[%d]: ar9300_stop_dma_receive failed\n", __func__, __LINE__);
//We still continue to stop TX dma
//return AH_FALSE;
}
} else {
HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
"%s[%d]: Chip is already in full sleep\n", __func__, __LINE__);
}
}
/*
* set txd on all queues
*/
OS_REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
/*
* set tx abort bits (also disable rx)
*/
OS_REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
/* Add a new receipe from K31 code */
OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH | AR_DIAG_RX_DIS |
AR_DIAG_RX_ABORT | AR_DIAG_FORCE_RX_CLEAR);
/* beacon Q flush */
nexttbtt = OS_REG_READ(ah, AR_NEXT_TBTT_TIMER);
nextdba = OS_REG_READ(ah, AR_NEXT_DMA_BEACON_ALERT);
//printk("%s[%d]:dba: %d, nt: %d \n", __func__, __LINE__, nextdba, nexttbtt);
tsf_tbtt = OS_REG_READ(ah, AR_TSF_L32);
tbtt = tsf_tbtt + NEXT_TBTT_NOW;
dba = tsf_tbtt;
OS_REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, dba);
OS_REG_WRITE(ah, AR_NEXT_TBTT_TIMER, tbtt);
OS_REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
/*
* Let TXE (all queues) clear before waiting for any pending frames
* This is needed before starting the RF_BUS GRANT sequence other wise causes kernel
* panic
*/
for(i = 0; i < AR9300_ABORT_LOOPS; i++) {
if(OS_REG_READ(ah, AR_Q_TXE) == 0) {
break;
}
OS_DELAY(AR9300_ABORT_WAIT);
}
if (i == AR9300_ABORT_LOOPS) {
HALDEBUG(ah, HAL_DEBUG_TX, "%s[%d] reached max wait on TXE\n",
__func__, __LINE__);
}
/*
* wait on all tx queues
* This need to be checked in the last to gain extra 50 usec. on avg.
* Currently checked first since we dont have a previous channel information currently.
* Which is needed to revert the rf changes.
*/
for (q = AR_NUM_QCU - 1; q >= 0; q--) {
for (i = 0; i < AR9300_ABORT_LOOPS; i++) {
if (!(ar9300_num_tx_pending(ah, q))) {
break;
}
OS_DELAY(AR9300_ABORT_WAIT);
}
if (i == AR9300_ABORT_LOOPS) {
status = AH_FALSE;
HALDEBUG(ah, HAL_DEBUG_UNMASKABLE,
"ABORT LOOP finsihsed for Q: %d, num_pending: %d \n",
q, ar9300_num_tx_pending(ah, q));
goto exit;
}
}
/* Updating the beacon alert register with correct value */
OS_REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, nextdba);
OS_REG_WRITE(ah, AR_NEXT_TBTT_TIMER, nexttbtt);
exit:
/*
* clear tx abort bits
*/
OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
/* Added a new receipe from K31 code */
OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH | AR_DIAG_RX_DIS |
AR_DIAG_RX_ABORT | AR_DIAG_FORCE_RX_CLEAR);
OS_REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
/*
* clear txd
*/
OS_REG_WRITE(ah, AR_Q_TXD, 0);
ahp->ah_abort_txdma_norx = AH_TRUE;
return status;
}
/*
* Determine which tx queues need interrupt servicing.
*/
void
ar9300_get_tx_intr_queue(struct ath_hal *ah, u_int32_t *txqs)
{
HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE,
"ar9300_get_tx_intr_queue: Should not be called\n");
#if 0
struct ath_hal_9300 *ahp = AH9300(ah);
*txqs &= ahp->ah_intr_txqs;
ahp->ah_intr_txqs &= ~(*txqs);
#endif
}
void
ar9300_reset_tx_status_ring(struct ath_hal *ah)
{
struct ath_hal_9300 *ahp = AH9300(ah);
ahp->ts_tail = 0;
/* Zero out the status descriptors */
OS_MEMZERO((void *)ahp->ts_ring, ahp->ts_size * sizeof(struct ar9300_txs));
HALDEBUG(ah, HAL_DEBUG_QUEUE,
"%s: TS Start 0x%x End 0x%x Virt %p, Size %d\n", __func__,
ahp->ts_paddr_start, ahp->ts_paddr_end, ahp->ts_ring, ahp->ts_size);
OS_REG_WRITE(ah, AR_Q_STATUS_RING_START, ahp->ts_paddr_start);
OS_REG_WRITE(ah, AR_Q_STATUS_RING_END, ahp->ts_paddr_end);
}
void
ar9300_setup_tx_status_ring(struct ath_hal *ah, void *ts_start,
u_int32_t ts_paddr_start, u_int16_t size)
{
struct ath_hal_9300 *ahp = AH9300(ah);
ahp->ts_paddr_start = ts_paddr_start;
ahp->ts_paddr_end = ts_paddr_start + (size * sizeof(struct ar9300_txs));
ahp->ts_size = size;
ahp->ts_ring = (struct ar9300_txs *)ts_start;
ar9300_reset_tx_status_ring(ah);
}