freebsd-dev/sys/netinet/in_pcb.c

1196 lines
31 KiB
C
Raw Normal View History

1994-05-24 10:09:53 +00:00
/*
* Copyright (c) 1982, 1986, 1991, 1993, 1995
1994-05-24 10:09:53 +00:00
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
1999-08-28 01:08:13 +00:00
* $FreeBSD$
1994-05-24 10:09:53 +00:00
*/
#include "opt_ipsec.h"
#include "opt_inet6.h"
#include "opt_mac.h"
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/limits.h>
#include <sys/mac.h>
1994-05-24 10:09:53 +00:00
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
1994-05-24 10:09:53 +00:00
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/proc.h>
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <vm/uma.h>
1994-05-24 10:09:53 +00:00
#include <net/if.h>
#include <net/if_types.h>
1994-05-24 10:09:53 +00:00
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet/tcp_var.h>
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#endif /* INET6 */
#ifdef IPSEC
#include <netinet6/ipsec.h>
#include <netkey/key.h>
#endif /* IPSEC */
1994-05-24 10:09:53 +00:00
#ifdef FAST_IPSEC
#if defined(IPSEC) || defined(IPSEC_ESP)
#error "Bad idea: don't compile with both IPSEC and FAST_IPSEC!"
#endif
#include <netipsec/ipsec.h>
#include <netipsec/key.h>
#endif /* FAST_IPSEC */
1994-05-24 10:09:53 +00:00
struct in_addr zeroin_addr;
/*
* These configure the range of local port addresses assigned to
* "unspecified" outgoing connections/packets/whatever.
*/
int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */
int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */
int ipport_firstauto = IPPORT_HIFIRSTAUTO; /* 49152 */
int ipport_lastauto = IPPORT_HILASTAUTO; /* 65535 */
int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */
int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */
/*
* Reserved ports accessible only to root. There are significant
* security considerations that must be accounted for when changing these,
* but the security benefits can be great. Please be careful.
*/
int ipport_reservedhigh = IPPORT_RESERVED - 1; /* 1023 */
int ipport_reservedlow = 0;
#define RANGECHK(var, min, max) \
if ((var) < (min)) { (var) = (min); } \
else if ((var) > (max)) { (var) = (max); }
static int
sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
{
int error = sysctl_handle_int(oidp,
oidp->oid_arg1, oidp->oid_arg2, req);
if (!error) {
RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
RANGECHK(ipport_firstauto, IPPORT_RESERVED, USHRT_MAX);
RANGECHK(ipport_lastauto, IPPORT_RESERVED, USHRT_MAX);
RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, USHRT_MAX);
RANGECHK(ipport_hilastauto, IPPORT_RESERVED, USHRT_MAX);
}
return error;
}
#undef RANGECHK
SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW,
&ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW,
&ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW,
&ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW,
&ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW,
&ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW,
&ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedhigh, 0, "");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedlow, 0, "");
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
/*
* in_pcb.c: manage the Protocol Control Blocks.
*
* NOTE: It is assumed that most of these functions will be called at
* splnet(). XXX - There are, unfortunately, a few exceptions to this
* rule that should be fixed.
*/
/*
* Allocate a PCB and associate it with the socket.
*/
1994-05-24 10:09:53 +00:00
int
in_pcballoc(so, pcbinfo, td, type)
1994-05-24 10:09:53 +00:00
struct socket *so;
struct inpcbinfo *pcbinfo;
struct thread *td;
const char *type;
1994-05-24 10:09:53 +00:00
{
register struct inpcb *inp;
int error;
INP_INFO_WLOCK_ASSERT(pcbinfo);
error = 0;
inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT | M_ZERO);
1994-05-24 10:09:53 +00:00
if (inp == NULL)
return (ENOBUFS);
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
inp->inp_pcbinfo = pcbinfo;
1994-05-24 10:09:53 +00:00
inp->inp_socket = so;
#ifdef MAC
error = mac_init_inpcb(inp, M_NOWAIT);
if (error != 0)
goto out;
mac_create_inpcb_from_socket(so, inp);
#endif
- cleanup SP refcnt issue. - share policy-on-socket for listening socket. - don't copy policy-on-socket at all. secpolicy no longer contain spidx, which saves a lot of memory. - deep-copy pcb policy if it is an ipsec policy. assign ID field to all SPD entries. make it possible for racoon to grab SPD entry on pcb. - fixed the order of searching SA table for packets. - fixed to get a security association header. a mode is always needed to compare them. - fixed that the incorrect time was set to sadb_comb_{hard|soft}_usetime. - disallow port spec for tunnel mode policy (as we don't reassemble). - an user can define a policy-id. - clear enc/auth key before freeing. - fixed that the kernel crashed when key_spdacquire() was called because key_spdacquire() had been implemented imcopletely. - preparation for 64bit sequence number. - maintain ordered list of SA, based on SA id. - cleanup secasvar management; refcnt is key.c responsibility; alloc/free is keydb.c responsibility. - cleanup, avoid double-loop. - use hash for spi-based lookup. - mark persistent SP "persistent". XXX in theory refcnt should do the right thing, however, we have "spdflush" which would touch all SPs. another solution would be to de-register persistent SPs from sptree. - u_short -> u_int16_t - reduce kernel stack usage by auto variable secasindex. - clarify function name confusion. ipsec_*_policy -> ipsec_*_pcbpolicy. - avoid variable name confusion. (struct inpcbpolicy *)pcb_sp, spp (struct secpolicy **), sp (struct secpolicy *) - count number of ipsec encapsulations on ipsec4_output, so that we can tell ip_output() how to handle the packet further. - When the value of the ul_proto is ICMP or ICMPV6, the port field in "src" of the spidx specifies ICMP type, and the port field in "dst" of the spidx specifies ICMP code. - avoid from applying IPsec transport mode to the packets when the kernel forwards the packets. Tested by: nork Obtained from: KAME
2003-11-04 16:02:05 +00:00
#if defined(IPSEC) || defined(FAST_IPSEC)
#ifdef FAST_IPSEC
error = ipsec_init_policy(so, &inp->inp_sp);
- cleanup SP refcnt issue. - share policy-on-socket for listening socket. - don't copy policy-on-socket at all. secpolicy no longer contain spidx, which saves a lot of memory. - deep-copy pcb policy if it is an ipsec policy. assign ID field to all SPD entries. make it possible for racoon to grab SPD entry on pcb. - fixed the order of searching SA table for packets. - fixed to get a security association header. a mode is always needed to compare them. - fixed that the incorrect time was set to sadb_comb_{hard|soft}_usetime. - disallow port spec for tunnel mode policy (as we don't reassemble). - an user can define a policy-id. - clear enc/auth key before freeing. - fixed that the kernel crashed when key_spdacquire() was called because key_spdacquire() had been implemented imcopletely. - preparation for 64bit sequence number. - maintain ordered list of SA, based on SA id. - cleanup secasvar management; refcnt is key.c responsibility; alloc/free is keydb.c responsibility. - cleanup, avoid double-loop. - use hash for spi-based lookup. - mark persistent SP "persistent". XXX in theory refcnt should do the right thing, however, we have "spdflush" which would touch all SPs. another solution would be to de-register persistent SPs from sptree. - u_short -> u_int16_t - reduce kernel stack usage by auto variable secasindex. - clarify function name confusion. ipsec_*_policy -> ipsec_*_pcbpolicy. - avoid variable name confusion. (struct inpcbpolicy *)pcb_sp, spp (struct secpolicy **), sp (struct secpolicy *) - count number of ipsec encapsulations on ipsec4_output, so that we can tell ip_output() how to handle the packet further. - When the value of the ul_proto is ICMP or ICMPV6, the port field in "src" of the spidx specifies ICMP type, and the port field in "dst" of the spidx specifies ICMP code. - avoid from applying IPsec transport mode to the packets when the kernel forwards the packets. Tested by: nork Obtained from: KAME
2003-11-04 16:02:05 +00:00
#else
error = ipsec_init_pcbpolicy(so, &inp->inp_sp);
#endif
if (error != 0)
goto out;
#endif /*IPSEC*/
#if defined(INET6)
if (INP_SOCKAF(so) == AF_INET6) {
inp->inp_vflag |= INP_IPV6PROTO;
if (ip6_v6only)
inp->inp_flags |= IN6P_IPV6_V6ONLY;
}
#endif
LIST_INSERT_HEAD(pcbinfo->listhead, inp, inp_list);
pcbinfo->ipi_count++;
1994-05-24 10:09:53 +00:00
so->so_pcb = (caddr_t)inp;
INP_LOCK_INIT(inp, "inp", type);
#ifdef INET6
if (ip6_auto_flowlabel)
inp->inp_flags |= IN6P_AUTOFLOWLABEL;
#endif
#if defined(IPSEC) || defined(FAST_IPSEC) || defined(MAC)
out:
if (error != 0)
uma_zfree(pcbinfo->ipi_zone, inp);
#endif
return (error);
1994-05-24 10:09:53 +00:00
}
int
in_pcbbind(inp, nam, td)
1994-05-24 10:09:53 +00:00
register struct inpcb *inp;
struct sockaddr *nam;
struct thread *td;
1994-05-24 10:09:53 +00:00
{
int anonport, error;
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_LOCK_ASSERT(inp);
if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
return (EINVAL);
anonport = inp->inp_lport == 0 && (nam == NULL ||
((struct sockaddr_in *)nam)->sin_port == 0);
error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
&inp->inp_lport, td);
if (error)
return (error);
if (in_pcbinshash(inp) != 0) {
inp->inp_laddr.s_addr = INADDR_ANY;
inp->inp_lport = 0;
return (EAGAIN);
}
if (anonport)
inp->inp_flags |= INP_ANONPORT;
return (0);
}
/*
* Set up a bind operation on a PCB, performing port allocation
* as required, but do not actually modify the PCB. Callers can
* either complete the bind by setting inp_laddr/inp_lport and
* calling in_pcbinshash(), or they can just use the resulting
* port and address to authorise the sending of a once-off packet.
*
* On error, the values of *laddrp and *lportp are not changed.
*/
int
in_pcbbind_setup(inp, nam, laddrp, lportp, td)
struct inpcb *inp;
struct sockaddr *nam;
in_addr_t *laddrp;
u_short *lportp;
struct thread *td;
{
struct socket *so = inp->inp_socket;
unsigned short *lastport;
struct sockaddr_in *sin;
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct in_addr laddr;
1994-05-24 10:09:53 +00:00
u_short lport = 0;
int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
int error, prison = 0;
1994-05-24 10:09:53 +00:00
INP_INFO_WLOCK_ASSERT(pcbinfo);
INP_LOCK_ASSERT(inp);
if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */
1994-05-24 10:09:53 +00:00
return (EADDRNOTAVAIL);
laddr.s_addr = *laddrp;
if (nam != NULL && laddr.s_addr != INADDR_ANY)
1994-05-24 10:09:53 +00:00
return (EINVAL);
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
wild = 1;
1994-05-24 10:09:53 +00:00
if (nam) {
sin = (struct sockaddr_in *)nam;
if (nam->sa_len != sizeof (*sin))
1994-05-24 10:09:53 +00:00
return (EINVAL);
#ifdef notdef
/*
* We should check the family, but old programs
* incorrectly fail to initialize it.
*/
if (sin->sin_family != AF_INET)
return (EAFNOSUPPORT);
#endif
if (sin->sin_addr.s_addr != INADDR_ANY)
if (prison_ip(td->td_ucred, 0, &sin->sin_addr.s_addr))
return(EINVAL);
if (sin->sin_port != *lportp) {
/* Don't allow the port to change. */
if (*lportp != 0)
return (EINVAL);
lport = sin->sin_port;
}
/* NB: lport is left as 0 if the port isn't being changed. */
1994-05-24 10:09:53 +00:00
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
/*
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
* allow complete duplication of binding if
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
* and a multicast address is bound on both
* new and duplicated sockets.
*/
if (so->so_options & SO_REUSEADDR)
reuseport = SO_REUSEADDR|SO_REUSEPORT;
} else if (sin->sin_addr.s_addr != INADDR_ANY) {
sin->sin_port = 0; /* yech... */
bzero(&sin->sin_zero, sizeof(sin->sin_zero));
1994-05-24 10:09:53 +00:00
if (ifa_ifwithaddr((struct sockaddr *)sin) == 0)
return (EADDRNOTAVAIL);
}
laddr = sin->sin_addr;
1994-05-24 10:09:53 +00:00
if (lport) {
struct inpcb *t;
/* GROSS */
if (ntohs(lport) <= ipport_reservedhigh &&
ntohs(lport) >= ipport_reservedlow &&
td && suser_cred(td->td_ucred, PRISON_ROOT))
return (EACCES);
if (td && jailed(td->td_ucred))
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
prison = 1;
if (so->so_cred->cr_uid != 0 &&
!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
t = in_pcblookup_local(inp->inp_pcbinfo,
sin->sin_addr, lport,
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
prison ? 0 : INPLOOKUP_WILDCARD);
/*
* XXX
* This entire block sorely needs a rewrite.
*/
if (t && (t->inp_vflag & INP_TIMEWAIT)) {
if ((ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
(intotw(t)->tw_so_options & SO_REUSEPORT) == 0) &&
(so->so_cred->cr_uid != intotw(t)->tw_cred->cr_uid))
return (EADDRINUSE);
} else
if (t &&
(ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
(t->inp_socket->so_options &
SO_REUSEPORT) == 0) &&
(so->so_cred->cr_uid !=
t->inp_socket->so_cred->cr_uid)) {
#if defined(INET6)
if (ntohl(sin->sin_addr.s_addr) !=
INADDR_ANY ||
ntohl(t->inp_laddr.s_addr) !=
INADDR_ANY ||
INP_SOCKAF(so) ==
INP_SOCKAF(t->inp_socket))
#endif /* defined(INET6) */
return (EADDRINUSE);
}
}
2001-02-28 09:38:48 +00:00
if (prison &&
prison_ip(td->td_ucred, 0, &sin->sin_addr.s_addr))
2001-02-28 09:38:48 +00:00
return (EADDRNOTAVAIL);
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
t = in_pcblookup_local(pcbinfo, sin->sin_addr,
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
lport, prison ? 0 : wild);
if (t && (t->inp_vflag & INP_TIMEWAIT)) {
if ((reuseport & intotw(t)->tw_so_options) == 0)
return (EADDRINUSE);
} else
if (t &&
(reuseport & t->inp_socket->so_options) == 0) {
#if defined(INET6)
if (ntohl(sin->sin_addr.s_addr) !=
INADDR_ANY ||
ntohl(t->inp_laddr.s_addr) !=
INADDR_ANY ||
INP_SOCKAF(so) ==
INP_SOCKAF(t->inp_socket))
#endif /* defined(INET6) */
return (EADDRINUSE);
}
1994-05-24 10:09:53 +00:00
}
}
if (*lportp != 0)
lport = *lportp;
if (lport == 0) {
u_short first, last;
int count;
if (laddr.s_addr != INADDR_ANY)
if (prison_ip(td->td_ucred, 0, &laddr.s_addr))
return (EINVAL);
if (inp->inp_flags & INP_HIGHPORT) {
first = ipport_hifirstauto; /* sysctl */
last = ipport_hilastauto;
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
lastport = &pcbinfo->lasthi;
} else if (inp->inp_flags & INP_LOWPORT) {
if (td && (error = suser_cred(td->td_ucred,
PRISON_ROOT)) != 0)
return error;
first = ipport_lowfirstauto; /* 1023 */
last = ipport_lowlastauto; /* 600 */
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
lastport = &pcbinfo->lastlow;
} else {
first = ipport_firstauto; /* sysctl */
last = ipport_lastauto;
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
lastport = &pcbinfo->lastport;
}
/*
* Simple check to ensure all ports are not used up causing
* a deadlock here.
*
* We split the two cases (up and down) so that the direction
* is not being tested on each round of the loop.
*/
if (first > last) {
/*
* counting down
*/
count = first - last;
do {
if (count-- < 0) /* completely used? */
return (EADDRNOTAVAIL);
--*lastport;
if (*lastport > first || *lastport < last)
*lastport = first;
lport = htons(*lastport);
} while (in_pcblookup_local(pcbinfo, laddr, lport,
wild));
} else {
/*
* counting up
*/
count = last - first;
do {
if (count-- < 0) /* completely used? */
return (EADDRNOTAVAIL);
++*lastport;
if (*lastport < first || *lastport > last)
*lastport = first;
lport = htons(*lastport);
} while (in_pcblookup_local(pcbinfo, laddr, lport,
wild));
}
}
if (prison_ip(td->td_ucred, 0, &laddr.s_addr))
2001-12-13 04:01:23 +00:00
return (EINVAL);
*laddrp = laddr.s_addr;
*lportp = lport;
1994-05-24 10:09:53 +00:00
return (0);
}
/*
* Connect from a socket to a specified address.
* Both address and port must be specified in argument sin.
* If don't have a local address for this socket yet,
* then pick one.
*/
int
in_pcbconnect(inp, nam, td)
register struct inpcb *inp;
struct sockaddr *nam;
struct thread *td;
{
u_short lport, fport;
in_addr_t laddr, faddr;
int anonport, error;
lport = inp->inp_lport;
laddr = inp->inp_laddr.s_addr;
anonport = (lport == 0);
error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
NULL, td);
if (error)
return (error);
/* Do the initial binding of the local address if required. */
if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
inp->inp_lport = lport;
inp->inp_laddr.s_addr = laddr;
if (in_pcbinshash(inp) != 0) {
inp->inp_laddr.s_addr = INADDR_ANY;
inp->inp_lport = 0;
return (EAGAIN);
}
}
/* Commit the remaining changes. */
inp->inp_lport = lport;
inp->inp_laddr.s_addr = laddr;
inp->inp_faddr.s_addr = faddr;
inp->inp_fport = fport;
in_pcbrehash(inp);
- cleanup SP refcnt issue. - share policy-on-socket for listening socket. - don't copy policy-on-socket at all. secpolicy no longer contain spidx, which saves a lot of memory. - deep-copy pcb policy if it is an ipsec policy. assign ID field to all SPD entries. make it possible for racoon to grab SPD entry on pcb. - fixed the order of searching SA table for packets. - fixed to get a security association header. a mode is always needed to compare them. - fixed that the incorrect time was set to sadb_comb_{hard|soft}_usetime. - disallow port spec for tunnel mode policy (as we don't reassemble). - an user can define a policy-id. - clear enc/auth key before freeing. - fixed that the kernel crashed when key_spdacquire() was called because key_spdacquire() had been implemented imcopletely. - preparation for 64bit sequence number. - maintain ordered list of SA, based on SA id. - cleanup secasvar management; refcnt is key.c responsibility; alloc/free is keydb.c responsibility. - cleanup, avoid double-loop. - use hash for spi-based lookup. - mark persistent SP "persistent". XXX in theory refcnt should do the right thing, however, we have "spdflush" which would touch all SPs. another solution would be to de-register persistent SPs from sptree. - u_short -> u_int16_t - reduce kernel stack usage by auto variable secasindex. - clarify function name confusion. ipsec_*_policy -> ipsec_*_pcbpolicy. - avoid variable name confusion. (struct inpcbpolicy *)pcb_sp, spp (struct secpolicy **), sp (struct secpolicy *) - count number of ipsec encapsulations on ipsec4_output, so that we can tell ip_output() how to handle the packet further. - When the value of the ul_proto is ICMP or ICMPV6, the port field in "src" of the spidx specifies ICMP type, and the port field in "dst" of the spidx specifies ICMP code. - avoid from applying IPsec transport mode to the packets when the kernel forwards the packets. Tested by: nork Obtained from: KAME
2003-11-04 16:02:05 +00:00
#ifdef IPSEC
if (inp->inp_socket->so_type == SOCK_STREAM)
ipsec_pcbconn(inp->inp_sp);
#endif
if (anonport)
inp->inp_flags |= INP_ANONPORT;
return (0);
}
/*
* Set up for a connect from a socket to the specified address.
* On entry, *laddrp and *lportp should contain the current local
* address and port for the PCB; these are updated to the values
* that should be placed in inp_laddr and inp_lport to complete
* the connect.
*
* On success, *faddrp and *fportp will be set to the remote address
* and port. These are not updated in the error case.
*
* If the operation fails because the connection already exists,
* *oinpp will be set to the PCB of that connection so that the
* caller can decide to override it. In all other cases, *oinpp
* is set to NULL.
*/
int
in_pcbconnect_setup(inp, nam, laddrp, lportp, faddrp, fportp, oinpp, td)
register struct inpcb *inp;
struct sockaddr *nam;
in_addr_t *laddrp;
u_short *lportp;
in_addr_t *faddrp;
u_short *fportp;
struct inpcb **oinpp;
struct thread *td;
{
struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1994-05-24 10:09:53 +00:00
struct in_ifaddr *ia;
struct sockaddr_in sa;
struct ucred *cred;
struct inpcb *oinp;
struct in_addr laddr, faddr;
u_short lport, fport;
int error;
1994-05-24 10:09:53 +00:00
if (oinpp != NULL)
*oinpp = NULL;
if (nam->sa_len != sizeof (*sin))
1994-05-24 10:09:53 +00:00
return (EINVAL);
if (sin->sin_family != AF_INET)
return (EAFNOSUPPORT);
if (sin->sin_port == 0)
return (EADDRNOTAVAIL);
laddr.s_addr = *laddrp;
lport = *lportp;
faddr = sin->sin_addr;
fport = sin->sin_port;
cred = inp->inp_socket->so_cred;
if (laddr.s_addr == INADDR_ANY && jailed(cred)) {
bzero(&sa, sizeof(sa));
sa.sin_addr.s_addr = htonl(prison_getip(cred));
sa.sin_len = sizeof(sa);
sa.sin_family = AF_INET;
error = in_pcbbind_setup(inp, (struct sockaddr *)&sa,
&laddr.s_addr, &lport, td);
if (error)
return (error);
}
if (!TAILQ_EMPTY(&in_ifaddrhead)) {
1994-05-24 10:09:53 +00:00
/*
* If the destination address is INADDR_ANY,
* use the primary local address.
* If the supplied address is INADDR_BROADCAST,
* and the primary interface supports broadcast,
* choose the broadcast address for that interface.
*/
if (faddr.s_addr == INADDR_ANY)
faddr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr;
else if (faddr.s_addr == (u_long)INADDR_BROADCAST &&
(TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags &
IFF_BROADCAST))
faddr = satosin(&TAILQ_FIRST(
&in_ifaddrhead)->ia_broadaddr)->sin_addr;
1994-05-24 10:09:53 +00:00
}
if (laddr.s_addr == INADDR_ANY) {
struct route sro;
1994-05-24 10:09:53 +00:00
sro.ro_rt = NULL;
1994-05-24 10:09:53 +00:00
ia = (struct in_ifaddr *)0;
1995-05-30 08:16:23 +00:00
/*
* If route is known our src addr is taken from the i/f,
* else punt.
1994-05-24 10:09:53 +00:00
*/
if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) {
/* Find out route to destination */
bzero(&sro.ro_dst, sizeof(struct sockaddr_in));
sro.ro_dst.sa_family = AF_INET;
sro.ro_dst.sa_len = sizeof(struct sockaddr_in);
((struct sockaddr_in *)&sro.ro_dst)->sin_addr = faddr;
rtalloc_ign(&sro, RTF_CLONING);
}
1994-05-24 10:09:53 +00:00
/*
* If we found a route, use the address
* corresponding to the outgoing interface
* unless it is the loopback (in case a route
* to our address on another net goes to loopback).
*/
if (sro.ro_rt && !(sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK))
ia = ifatoia(sro.ro_rt->rt_ifa);
if (sro.ro_rt)
RTFREE(sro.ro_rt);
1994-05-24 10:09:53 +00:00
if (ia == 0) {
bzero(&sa, sizeof(sa));
sa.sin_addr = faddr;
sa.sin_len = sizeof(sa);
sa.sin_family = AF_INET;
1994-05-24 10:09:53 +00:00
ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sa)));
1994-05-24 10:09:53 +00:00
if (ia == 0)
ia = ifatoia(ifa_ifwithnet(sintosa(&sa)));
1994-05-24 10:09:53 +00:00
if (ia == 0)
ia = TAILQ_FIRST(&in_ifaddrhead);
1994-05-24 10:09:53 +00:00
if (ia == 0)
return (EADDRNOTAVAIL);
}
/*
* If the destination address is multicast and an outgoing
* interface has been set as a multicast option, use the
* address of that interface as our source address.
*/
if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1994-05-24 10:09:53 +00:00
inp->inp_moptions != NULL) {
struct ip_moptions *imo;
struct ifnet *ifp;
imo = inp->inp_moptions;
if (imo->imo_multicast_ifp != NULL) {
ifp = imo->imo_multicast_ifp;
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link)
1994-05-24 10:09:53 +00:00
if (ia->ia_ifp == ifp)
break;
if (ia == 0)
return (EADDRNOTAVAIL);
}
}
laddr = ia->ia_addr.sin_addr;
}
oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
0, NULL);
if (oinp != NULL) {
if (oinpp != NULL)
*oinpp = oinp;
1994-05-24 10:09:53 +00:00
return (EADDRINUSE);
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
}
if (lport == 0) {
error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, td);
if (error)
return (error);
1994-05-24 10:09:53 +00:00
}
*laddrp = laddr.s_addr;
*lportp = lport;
*faddrp = faddr.s_addr;
*fportp = fport;
1994-05-24 10:09:53 +00:00
return (0);
}
void
1994-05-24 10:09:53 +00:00
in_pcbdisconnect(inp)
struct inpcb *inp;
{
INP_LOCK_ASSERT(inp);
1994-05-24 10:09:53 +00:00
inp->inp_faddr.s_addr = INADDR_ANY;
inp->inp_fport = 0;
in_pcbrehash(inp);
if (inp->inp_socket->so_state & SS_NOFDREF)
1994-05-24 10:09:53 +00:00
in_pcbdetach(inp);
- cleanup SP refcnt issue. - share policy-on-socket for listening socket. - don't copy policy-on-socket at all. secpolicy no longer contain spidx, which saves a lot of memory. - deep-copy pcb policy if it is an ipsec policy. assign ID field to all SPD entries. make it possible for racoon to grab SPD entry on pcb. - fixed the order of searching SA table for packets. - fixed to get a security association header. a mode is always needed to compare them. - fixed that the incorrect time was set to sadb_comb_{hard|soft}_usetime. - disallow port spec for tunnel mode policy (as we don't reassemble). - an user can define a policy-id. - clear enc/auth key before freeing. - fixed that the kernel crashed when key_spdacquire() was called because key_spdacquire() had been implemented imcopletely. - preparation for 64bit sequence number. - maintain ordered list of SA, based on SA id. - cleanup secasvar management; refcnt is key.c responsibility; alloc/free is keydb.c responsibility. - cleanup, avoid double-loop. - use hash for spi-based lookup. - mark persistent SP "persistent". XXX in theory refcnt should do the right thing, however, we have "spdflush" which would touch all SPs. another solution would be to de-register persistent SPs from sptree. - u_short -> u_int16_t - reduce kernel stack usage by auto variable secasindex. - clarify function name confusion. ipsec_*_policy -> ipsec_*_pcbpolicy. - avoid variable name confusion. (struct inpcbpolicy *)pcb_sp, spp (struct secpolicy **), sp (struct secpolicy *) - count number of ipsec encapsulations on ipsec4_output, so that we can tell ip_output() how to handle the packet further. - When the value of the ul_proto is ICMP or ICMPV6, the port field in "src" of the spidx specifies ICMP type, and the port field in "dst" of the spidx specifies ICMP code. - avoid from applying IPsec transport mode to the packets when the kernel forwards the packets. Tested by: nork Obtained from: KAME
2003-11-04 16:02:05 +00:00
#ifdef IPSEC
ipsec_pcbdisconn(inp->inp_sp);
#endif
1994-05-24 10:09:53 +00:00
}
void
1994-05-24 10:09:53 +00:00
in_pcbdetach(inp)
struct inpcb *inp;
{
struct socket *so = inp->inp_socket;
struct inpcbinfo *ipi = inp->inp_pcbinfo;
1994-05-24 10:09:53 +00:00
INP_LOCK_ASSERT(inp);
- cleanup SP refcnt issue. - share policy-on-socket for listening socket. - don't copy policy-on-socket at all. secpolicy no longer contain spidx, which saves a lot of memory. - deep-copy pcb policy if it is an ipsec policy. assign ID field to all SPD entries. make it possible for racoon to grab SPD entry on pcb. - fixed the order of searching SA table for packets. - fixed to get a security association header. a mode is always needed to compare them. - fixed that the incorrect time was set to sadb_comb_{hard|soft}_usetime. - disallow port spec for tunnel mode policy (as we don't reassemble). - an user can define a policy-id. - clear enc/auth key before freeing. - fixed that the kernel crashed when key_spdacquire() was called because key_spdacquire() had been implemented imcopletely. - preparation for 64bit sequence number. - maintain ordered list of SA, based on SA id. - cleanup secasvar management; refcnt is key.c responsibility; alloc/free is keydb.c responsibility. - cleanup, avoid double-loop. - use hash for spi-based lookup. - mark persistent SP "persistent". XXX in theory refcnt should do the right thing, however, we have "spdflush" which would touch all SPs. another solution would be to de-register persistent SPs from sptree. - u_short -> u_int16_t - reduce kernel stack usage by auto variable secasindex. - clarify function name confusion. ipsec_*_policy -> ipsec_*_pcbpolicy. - avoid variable name confusion. (struct inpcbpolicy *)pcb_sp, spp (struct secpolicy **), sp (struct secpolicy *) - count number of ipsec encapsulations on ipsec4_output, so that we can tell ip_output() how to handle the packet further. - When the value of the ul_proto is ICMP or ICMPV6, the port field in "src" of the spidx specifies ICMP type, and the port field in "dst" of the spidx specifies ICMP code. - avoid from applying IPsec transport mode to the packets when the kernel forwards the packets. Tested by: nork Obtained from: KAME
2003-11-04 16:02:05 +00:00
#if defined(IPSEC) || defined(FAST_IPSEC)
ipsec4_delete_pcbpolicy(inp);
#endif /*IPSEC*/
inp->inp_gencnt = ++ipi->ipi_gencnt;
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
in_pcbremlists(inp);
if (so) {
so->so_pcb = 0;
sotryfree(so);
}
1994-05-24 10:09:53 +00:00
if (inp->inp_options)
(void)m_free(inp->inp_options);
ip_freemoptions(inp->inp_moptions);
inp->inp_vflag = 0;
INP_LOCK_DESTROY(inp);
#ifdef MAC
mac_destroy_inpcb(inp);
#endif
uma_zfree(ipi->ipi_zone, inp);
1994-05-24 10:09:53 +00:00
}
struct sockaddr *
in_sockaddr(port, addr_p)
in_port_t port;
struct in_addr *addr_p;
{
struct sockaddr_in *sin;
MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
M_WAITOK | M_ZERO);
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr = *addr_p;
sin->sin_port = port;
return (struct sockaddr *)sin;
}
/*
* The wrapper function will pass down the pcbinfo for this function to lock.
* The socket must have a valid
* (i.e., non-nil) PCB, but it should be impossible to get an invalid one
* except through a kernel programming error, so it is acceptable to panic
* (or in this case trap) if the PCB is invalid. (Actually, we don't trap
* because there actually /is/ a programming error somewhere... XXX)
*/
int
in_setsockaddr(so, nam, pcbinfo)
struct socket *so;
struct sockaddr **nam;
struct inpcbinfo *pcbinfo;
1994-05-24 10:09:53 +00:00
{
int s;
register struct inpcb *inp;
struct in_addr addr;
in_port_t port;
s = splnet();
INP_INFO_RLOCK(pcbinfo);
inp = sotoinpcb(so);
if (!inp) {
INP_INFO_RUNLOCK(pcbinfo);
splx(s);
return ECONNRESET;
}
INP_LOCK(inp);
port = inp->inp_lport;
addr = inp->inp_laddr;
INP_UNLOCK(inp);
INP_INFO_RUNLOCK(pcbinfo);
splx(s);
*nam = in_sockaddr(port, &addr);
return 0;
1994-05-24 10:09:53 +00:00
}
/*
* The wrapper function will pass down the pcbinfo for this function to lock.
*/
int
in_setpeeraddr(so, nam, pcbinfo)
struct socket *so;
struct sockaddr **nam;
struct inpcbinfo *pcbinfo;
1994-05-24 10:09:53 +00:00
{
int s;
register struct inpcb *inp;
struct in_addr addr;
in_port_t port;
s = splnet();
INP_INFO_RLOCK(pcbinfo);
inp = sotoinpcb(so);
if (!inp) {
INP_INFO_RUNLOCK(pcbinfo);
splx(s);
return ECONNRESET;
}
INP_LOCK(inp);
port = inp->inp_fport;
addr = inp->inp_faddr;
INP_UNLOCK(inp);
INP_INFO_RUNLOCK(pcbinfo);
splx(s);
*nam = in_sockaddr(port, &addr);
return 0;
1994-05-24 10:09:53 +00:00
}
void
in_pcbnotifyall(pcbinfo, faddr, errno, notify)
struct inpcbinfo *pcbinfo;
1994-05-24 10:09:53 +00:00
struct in_addr faddr;
int errno;
struct inpcb *(*notify)(struct inpcb *, int);
{
struct inpcb *inp, *ninp;
struct inpcbhead *head;
int s;
s = splnet();
INP_INFO_WLOCK(pcbinfo);
head = pcbinfo->listhead;
for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) {
INP_LOCK(inp);
ninp = LIST_NEXT(inp, inp_list);
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0) {
INP_UNLOCK(inp);
continue;
}
#endif
if (inp->inp_faddr.s_addr != faddr.s_addr ||
inp->inp_socket == NULL) {
INP_UNLOCK(inp);
continue;
}
if ((*notify)(inp, errno))
INP_UNLOCK(inp);
}
INP_INFO_WUNLOCK(pcbinfo);
splx(s);
}
void
in_pcbpurgeif0(pcbinfo, ifp)
struct inpcbinfo *pcbinfo;
struct ifnet *ifp;
{
struct inpcb *inp;
struct ip_moptions *imo;
int i, gap;
/* why no splnet here? XXX */
INP_INFO_RLOCK(pcbinfo);
LIST_FOREACH(inp, pcbinfo->listhead, inp_list) {
INP_LOCK(inp);
imo = inp->inp_moptions;
if ((inp->inp_vflag & INP_IPV4) &&
imo != NULL) {
/*
* Unselect the outgoing interface if it is being
* detached.
*/
if (imo->imo_multicast_ifp == ifp)
imo->imo_multicast_ifp = NULL;
/*
* Drop multicast group membership if we joined
* through the interface being detached.
*/
for (i = 0, gap = 0; i < imo->imo_num_memberships;
i++) {
if (imo->imo_membership[i]->inm_ifp == ifp) {
in_delmulti(imo->imo_membership[i]);
gap++;
} else if (gap != 0)
imo->imo_membership[i - gap] =
imo->imo_membership[i];
}
imo->imo_num_memberships -= gap;
}
INP_UNLOCK(inp);
}
INP_INFO_RUNLOCK(pcbinfo);
}
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
/*
* Lookup a PCB based on the local address and port.
*/
1994-05-24 10:09:53 +00:00
struct inpcb *
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay)
struct inpcbinfo *pcbinfo;
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
struct in_addr laddr;
u_int lport_arg;
int wild_okay;
1994-05-24 10:09:53 +00:00
{
register struct inpcb *inp;
1994-05-24 10:09:53 +00:00
int matchwild = 3, wildcard;
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
u_short lport = lport_arg;
INP_INFO_WLOCK_ASSERT(pcbinfo);
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
if (!wild_okay) {
struct inpcbhead *head;
/*
* Look for an unconnected (wildcard foreign addr) PCB that
* matches the local address and port we're looking for.
*/
head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
1999-12-21 11:14:12 +00:00
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
if (inp->inp_faddr.s_addr == INADDR_ANY &&
inp->inp_laddr.s_addr == laddr.s_addr &&
inp->inp_lport == lport) {
/*
* Found.
*/
return (inp);
}
}
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
/*
* Not found.
*/
return (NULL);
} else {
struct inpcbporthead *porthash;
struct inpcbport *phd;
struct inpcb *match = NULL;
/*
* Best fit PCB lookup.
*
* First see if this local port is in use by looking on the
* port hash list.
*/
retrylookup:
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport,
pcbinfo->porthashmask)];
LIST_FOREACH(phd, porthash, phd_hash) {
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
if (phd->phd_port == lport)
1994-05-24 10:09:53 +00:00
break;
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
}
if (phd != NULL) {
/*
* Port is in use by one or more PCBs. Look for best
* fit.
*/
LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
wildcard = 0;
#ifdef INET6
1999-12-21 11:14:12 +00:00
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
/*
* Clean out old time_wait sockets if they
* are clogging up needed local ports.
*/
if ((inp->inp_vflag & INP_TIMEWAIT) != 0) {
if (tcp_twrecycleable((struct tcptw *)inp->inp_ppcb)) {
INP_LOCK(inp);
tcp_twclose((struct tcptw *)inp->inp_ppcb, 0);
match = NULL;
goto retrylookup;
}
}
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
if (inp->inp_faddr.s_addr != INADDR_ANY)
wildcard++;
if (inp->inp_laddr.s_addr != INADDR_ANY) {
if (laddr.s_addr == INADDR_ANY)
wildcard++;
else if (inp->inp_laddr.s_addr != laddr.s_addr)
continue;
} else {
if (laddr.s_addr != INADDR_ANY)
wildcard++;
}
if (wildcard < matchwild) {
match = inp;
matchwild = wildcard;
if (matchwild == 0) {
break;
}
}
}
1994-05-24 10:09:53 +00:00
}
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
return (match);
1994-05-24 10:09:53 +00:00
}
}
/*
* Lookup PCB in hash list.
*/
struct inpcb *
in_pcblookup_hash(pcbinfo, faddr, fport_arg, laddr, lport_arg, wildcard,
ifp)
struct inpcbinfo *pcbinfo;
struct in_addr faddr, laddr;
u_int fport_arg, lport_arg;
int wildcard;
struct ifnet *ifp;
{
struct inpcbhead *head;
register struct inpcb *inp;
u_short fport = fport_arg, lport = lport_arg;
INP_INFO_RLOCK_ASSERT(pcbinfo);
/*
* First look for an exact match.
*/
head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
1999-12-21 11:14:12 +00:00
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr == faddr.s_addr &&
inp->inp_laddr.s_addr == laddr.s_addr &&
inp->inp_fport == fport &&
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
inp->inp_lport == lport) {
/*
* Found.
*/
return (inp);
}
}
if (wildcard) {
struct inpcb *local_wild = NULL;
#if defined(INET6)
struct inpcb *local_wild_mapped = NULL;
#endif /* defined(INET6) */
head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
1999-12-21 11:14:12 +00:00
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr == INADDR_ANY &&
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
inp->inp_lport == lport) {
if (ifp && ifp->if_type == IFT_FAITH &&
(inp->inp_flags & INP_FAITH) == 0)
continue;
if (inp->inp_laddr.s_addr == laddr.s_addr)
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
return (inp);
else if (inp->inp_laddr.s_addr == INADDR_ANY) {
#if defined(INET6)
if (INP_CHECK_SOCKAF(inp->inp_socket,
AF_INET6))
local_wild_mapped = inp;
else
#endif /* defined(INET6) */
local_wild = inp;
}
}
}
#if defined(INET6)
if (local_wild == NULL)
return (local_wild_mapped);
#endif /* defined(INET6) */
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
return (local_wild);
}
/*
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
* Not found.
*/
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
return (NULL);
}
/*
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
* Insert PCB onto various hash lists.
*/
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
int
in_pcbinshash(inp)
struct inpcb *inp;
{
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
struct inpcbhead *pcbhash;
struct inpcbporthead *pcbporthash;
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct inpcbport *phd;
u_int32_t hashkey_faddr;
INP_INFO_WLOCK_ASSERT(pcbinfo);
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
else
#endif /* INET6 */
hashkey_faddr = inp->inp_faddr.s_addr;
pcbhash = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr,
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)];
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
pcbporthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(inp->inp_lport,
pcbinfo->porthashmask)];
/*
* Go through port list and look for a head for this lport.
*/
LIST_FOREACH(phd, pcbporthash, phd_hash) {
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
if (phd->phd_port == inp->inp_lport)
break;
}
/*
* If none exists, malloc one and tack it on.
*/
if (phd == NULL) {
MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT);
if (phd == NULL) {
return (ENOBUFS); /* XXX */
}
phd->phd_port = inp->inp_lport;
LIST_INIT(&phd->phd_pcblist);
LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
}
inp->inp_phd = phd;
LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
return (0);
}
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
/*
* Move PCB to the proper hash bucket when { faddr, fport } have been
* changed. NOTE: This does not handle the case of the lport changing (the
* hashed port list would have to be updated as well), so the lport must
* not change after in_pcbinshash() has been called.
*/
void
in_pcbrehash(inp)
struct inpcb *inp;
{
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct inpcbhead *head;
u_int32_t hashkey_faddr;
INP_INFO_WLOCK_ASSERT(pcbinfo);
/* XXX? INP_LOCK_ASSERT(inp); */
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
else
#endif /* INET6 */
hashkey_faddr = inp->inp_faddr.s_addr;
head = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr,
inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)];
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
LIST_REMOVE(inp, inp_hash);
LIST_INSERT_HEAD(head, inp, inp_hash);
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
}
/*
* Remove PCB from various lists.
*/
void
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
in_pcbremlists(inp)
struct inpcb *inp;
{
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
INP_INFO_WLOCK_ASSERT(pcbinfo);
INP_LOCK_ASSERT(inp);
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
if (inp->inp_lport) {
struct inpcbport *phd = inp->inp_phd;
LIST_REMOVE(inp, inp_hash);
LIST_REMOVE(inp, inp_portlist);
if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
LIST_REMOVE(phd, phd_hash);
free(phd, M_PCB);
}
}
LIST_REMOVE(inp, inp_list);
pcbinfo->ipi_count--;
}
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
/*
* A set label operation has occurred at the socket layer, propagate the
* label change into the in_pcb for the socket.
*/
void
in_pcbsosetlabel(so)
struct socket *so;
{
#ifdef MAC
struct inpcb *inp;
/* XXX: Will assert socket lock when we have them. */
inp = (struct inpcb *)so->so_pcb;
INP_LOCK(inp);
mac_inpcb_sosetlabel(so, inp);
INP_UNLOCK(inp);
#endif
}
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
int
prison_xinpcb(struct thread *td, struct inpcb *inp)
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
{
if (!jailed(td->td_ucred))
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
return (0);
if (ntohl(inp->inp_laddr.s_addr) == prison_getip(td->td_ucred))
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
return (0);
return (1);
}