freebsd-dev/stand/i386/cdboot/cdboot.S

595 lines
18 KiB
ArmAsm
Raw Normal View History

#
# Copyright (c) 2001 John Baldwin <jhb@FreeBSD.org>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#
# $FreeBSD$
#
# This program is a freestanding boot program to load an a.out binary
# from a CD-ROM booted with no emulation mode as described by the El
# Torito standard. Due to broken BIOSen that do not load the desired
# number of sectors, we try to fit this in as small a space as possible.
#
# Basically, we first create a set of boot arguments to pass to the loaded
# binary. Then we attempt to load /boot/loader from the CD we were booted
# off of.
#
#include <bootargs.h>
#
# Memory locations.
#
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
.set MEM_PAGE_SIZE,0x1000 # memory page size, 4k
.set MEM_ARG,0x900 # Arguments at start
.set MEM_ARG_BTX,0xa100 # Where we move them to so the
# BTX client can see them
.set MEM_ARG_SIZE,0x18 # Size of the arguments
.set MEM_BTX_ADDRESS,0x9000 # where BTX lives
.set MEM_BTX_ENTRY,0x9010 # where BTX starts to execute
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
.set MEM_BTX_OFFSET,MEM_PAGE_SIZE # offset of BTX in the loader
.set MEM_BTX_CLIENT,0xa000 # where BTX clients live
#
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
# a.out header fields
#
.set AOUT_TEXT,0x04 # text segment size
.set AOUT_DATA,0x08 # data segment size
.set AOUT_BSS,0x0c # zero'd BSS size
.set AOUT_SYMBOLS,0x10 # symbol table
.set AOUT_ENTRY,0x14 # entry point
.set AOUT_HEADER,MEM_PAGE_SIZE # size of the a.out header
#
# Segment selectors.
#
.set SEL_SDATA,0x8 # Supervisor data
.set SEL_RDATA,0x10 # Real mode data
.set SEL_SCODE,0x18 # PM-32 code
.set SEL_SCODE16,0x20 # PM-16 code
#
# BTX constants
#
.set INT_SYS,0x30 # BTX syscall interrupt
#
# Constants for reading from the CD.
#
.set ERROR_TIMEOUT,0x80 # BIOS timeout on read
.set NUM_RETRIES,3 # Num times to retry
.set SECTOR_SIZE,0x800 # size of a sector
.set SECTOR_SHIFT,11 # number of place to shift
.set BUFFER_LEN,0x100 # number of sectors in buffer
.set MAX_READ,0x10000 # max we can read at a time
.set MAX_READ_SEC,MAX_READ >> SECTOR_SHIFT
.set MEM_READ_BUFFER,0x9000 # buffer to read from CD
.set MEM_VOLDESC,MEM_READ_BUFFER # volume descriptor
.set MEM_DIR,MEM_VOLDESC+SECTOR_SIZE # Lookup buffer
.set VOLDESC_LBA,0x10 # LBA of vol descriptor
.set VD_PRIMARY,1 # Primary VD
.set VD_END,255 # VD Terminator
.set VD_ROOTDIR,156 # Offset of Root Dir Record
.set DIR_LEN,0 # Offset of Dir Record length
.set DIR_EA_LEN,1 # Offset of EA length
.set DIR_EXTENT,2 # Offset of 64-bit LBA
.set DIR_SIZE,10 # Offset of 64-bit length
.set DIR_NAMELEN,32 # Offset of 8-bit name len
.set DIR_NAME,33 # Offset of dir name
#
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
# We expect to be loaded by the BIOS at 0x7c00 (standard boot loader entry
# point)
#
.code16
.globl start
.org 0x0, 0x0
#
# Program start.
#
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
start: cld # string ops inc
xor %ax,%ax # zero %ax
mov %ax,%ss # setup the
mov $start,%sp # stack
mov %ax,%ds # setup the
mov %ax,%es # data segments
mov %dl,drive # Save BIOS boot device
mov $msg_welcome,%si # %ds:(%si) -> welcome message
call putstr # display the welcome message
#
# Setup the arguments that the loader is expecting from boot[12]
#
mov $msg_bootinfo,%si # %ds:(%si) -> boot args message
call putstr # display the message
mov $MEM_ARG,%bx # %ds:(%bx) -> boot args
mov %bx,%di # %es:(%di) -> boot args
xor %eax,%eax # zero %eax
mov $(MEM_ARG_SIZE/4),%cx # Size of arguments in 32-bit
# dwords
rep # Clear the arguments
stosl # to zero
mov drive,%dl # Store BIOS boot device
mov %dl,0x4(%bx) # in kargs->bootdev
orb $KARGS_FLAGS_CD,0x8(%bx) # kargs->bootflags |=
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
# KARGS_FLAGS_CD
#
# Load Volume Descriptor
#
mov $VOLDESC_LBA,%eax # Set LBA of first VD
load_vd: push %eax # Save %eax
mov $1,%dh # One sector
mov $MEM_VOLDESC,%ebx # Destination
call read # Read it in
cmpb $VD_PRIMARY,(%bx) # Primary VD?
je have_vd # Yes
pop %eax # Prepare to
inc %eax # try next
cmpb $VD_END,(%bx) # Last VD?
jne load_vd # No, read next
mov $msg_novd,%si # No VD
jmp error # Halt
have_vd: # Have Primary VD
#
# Try to look up the loader binary using the paths in the loader_paths
# array.
#
mov $loader_paths,%si # Point to start of array
lookup_path: push %si # Save file name pointer
call lookup # Try to find file
pop %di # Restore file name pointer
jnc lookup_found # Found this file
xor %al,%al # Look for next
mov $0xffff,%cx # path name by
repnz # scanning for
scasb # nul char
mov %di,%si # Point %si at next path
mov (%si),%al # Get first char of next path
or %al,%al # Is it double nul?
jnz lookup_path # No, try it.
mov $msg_failed,%si # Failed message
jmp error # Halt
lookup_found: # Found a loader file
#
# Load the binary into the buffer. Due to real mode addressing limitations
# we have to read it in 64k chunks.
#
mov DIR_SIZE(%bx),%eax # Read file length
add $SECTOR_SIZE-1,%eax # Convert length to sectors
shr $SECTOR_SHIFT,%eax
cmp $BUFFER_LEN,%eax
jbe load_sizeok
mov $msg_load2big,%si # Error message
call error
load_sizeok: movzbw %al,%cx # Num sectors to read
mov DIR_EXTENT(%bx),%eax # Load extent
xor %edx,%edx
mov DIR_EA_LEN(%bx),%dl
add %edx,%eax # Skip extended
mov $MEM_READ_BUFFER,%ebx # Read into the buffer
load_loop: mov %cl,%dh
cmp $MAX_READ_SEC,%cl # Truncate to max read size
jbe load_notrunc
mov $MAX_READ_SEC,%dh
load_notrunc: sub %dh,%cl # Update count
push %eax # Save
call read # Read it in
pop %eax # Restore
add $MAX_READ_SEC,%eax # Update LBA
add $MAX_READ,%ebx # Update dest addr
jcxz load_done # Done?
jmp load_loop # Keep going
load_done:
#
# Turn on the A20 address line
#
call seta20 # Turn A20 on
#
# Relocate the loader and BTX using a very lazy protected mode
#
mov $msg_relocate,%si # Display the
call putstr # relocation message
mov MEM_READ_BUFFER+AOUT_ENTRY,%edi # %edi is the destination
mov $(MEM_READ_BUFFER+AOUT_HEADER),%esi # %esi is
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
# the start of the text
# segment
mov MEM_READ_BUFFER+AOUT_TEXT,%ecx # %ecx = length of the text
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
# segment
push %edi # Save entry point for later
lgdt gdtdesc # setup our own gdt
cli # turn off interrupts
mov %cr0,%eax # Turn on
or $0x1,%al # protected
mov %eax,%cr0 # mode
ljmp $SEL_SCODE,$pm_start # long jump to clear the
# instruction pre-fetch queue
.code32
pm_start: mov $SEL_SDATA,%ax # Initialize
mov %ax,%ds # %ds and
mov %ax,%es # %es to a flat selector
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
rep # Relocate the
movsb # text segment
add $(MEM_PAGE_SIZE - 1),%edi # pad %edi out to a new page
and $~(MEM_PAGE_SIZE - 1),%edi # for the data segment
mov MEM_READ_BUFFER+AOUT_DATA,%ecx # size of the data segment
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
rep # Relocate the
movsb # data segment
mov MEM_READ_BUFFER+AOUT_BSS,%ecx # size of the bss
xor %eax,%eax # zero %eax
add $3,%cl # round %ecx up to
shr $2,%ecx # a multiple of 4
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
rep # zero the
stosl # bss
mov MEM_READ_BUFFER+AOUT_ENTRY,%esi # %esi -> relocated loader
add $MEM_BTX_OFFSET,%esi # %esi -> BTX in the loader
mov $MEM_BTX_ADDRESS,%edi # %edi -> where BTX needs to go
movzwl 0xa(%esi),%ecx # %ecx -> length of BTX
rep # Relocate
movsb # BTX
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
ljmp $SEL_SCODE16,$pm_16 # Jump to 16-bit PM
.code16
pm_16: mov $SEL_RDATA,%ax # Initialize
mov %ax,%ds # %ds and
mov %ax,%es # %es to a real mode selector
mov %cr0,%eax # Turn off
and $~0x1,%al # protected
mov %eax,%cr0 # mode
ljmp $0,$pm_end # Long jump to clear the
# instruction pre-fetch queue
pm_end: sti # Turn interrupts back on now
#
# Copy the BTX client to MEM_BTX_CLIENT
#
xor %ax,%ax # zero %ax and set
mov %ax,%ds # %ds and %es
mov %ax,%es # to segment 0
mov $MEM_BTX_CLIENT,%di # Prepare to relocate
mov $btx_client,%si # the simple btx client
mov $(btx_client_end-btx_client),%cx # length of btx client
rep # Relocate the
movsb # simple BTX client
#
# Copy the boot[12] args to where the BTX client can see them
#
mov $MEM_ARG,%si # where the args are at now
mov $MEM_ARG_BTX,%di # where the args are moving to
mov $(MEM_ARG_SIZE/4),%cx # size of the arguments in longs
rep # Relocate
movsl # the words
#
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
# Save the entry point so the client can get to it later on
#
pop %eax # Restore saved entry point
stosl # and add it to the end of
# the arguments
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
#
# Now we just start up BTX and let it do the rest
#
mov $msg_jump,%si # Display the
call putstr # jump message
ljmp $0,$MEM_BTX_ENTRY # Jump to the BTX entry point
#
# Lookup the file in the path at [SI] from the root directory.
#
# Trashes: All but BX
# Returns: CF = 0 (success), BX = pointer to record
# CF = 1 (not found)
#
lookup: mov $VD_ROOTDIR+MEM_VOLDESC,%bx # Root directory record
push %si
mov $msg_lookup,%si # Display lookup message
call putstr
pop %si
push %si
call putstr
mov $msg_lookup2,%si
call putstr
pop %si
lookup_dir: lodsb # Get first char of path
cmp $0,%al # Are we done?
je lookup_done # Yes
cmp $'/',%al # Skip path separator.
je lookup_dir
dec %si # Undo lodsb side effect
call find_file # Lookup first path item
jnc lookup_dir # Try next component
mov $msg_lookupfail,%si # Not found message
call putstr
stc # Set carry
ret
jmp error
lookup_done: mov $msg_lookupok,%si # Success message
call putstr
clc # Clear carry
ret
#
# Lookup file at [SI] in directory whose record is at [BX].
#
# Trashes: All but returns
# Returns: CF = 0 (success), BX = pointer to record, SI = next path item
# CF = 1 (not found), SI = preserved
#
find_file: mov DIR_EXTENT(%bx),%eax # Load extent
xor %edx,%edx
mov DIR_EA_LEN(%bx),%dl
add %edx,%eax # Skip extended attributes
mov %eax,rec_lba # Save LBA
mov DIR_SIZE(%bx),%eax # Save size
mov %eax,rec_size
xor %cl,%cl # Zero length
push %si # Save
ff.namelen: inc %cl # Update length
lodsb # Read char
cmp $0,%al # Nul?
je ff.namedone # Yes
cmp $'/',%al # Path separator?
jnz ff.namelen # No, keep going
ff.namedone: dec %cl # Adjust length and save
mov %cl,name_len
pop %si # Restore
ff.load: mov rec_lba,%eax # Load LBA
mov $MEM_DIR,%ebx # Address buffer
mov $1,%dh # One sector
call read # Read directory block
incl rec_lba # Update LBA to next block
ff.scan: mov %ebx,%edx # Check for EOF
sub $MEM_DIR,%edx
cmp %edx,rec_size
ja ff.scan.1
stc # EOF reached
ret
ff.scan.1: cmpb $0,DIR_LEN(%bx) # Last record in block?
je ff.nextblock
push %si # Save
movzbw DIR_NAMELEN(%bx),%si # Find end of string
ff.checkver: cmpb $'0',DIR_NAME-1(%bx,%si) # Less than '0'?
jb ff.checkver.1
cmpb $'9',DIR_NAME-1(%bx,%si) # Greater than '9'?
ja ff.checkver.1
dec %si # Next char
jnz ff.checkver
jmp ff.checklen # All numbers in name, so
# no version
ff.checkver.1: movzbw DIR_NAMELEN(%bx),%cx
cmp %cx,%si # Did we find any digits?
je ff.checkdot # No
cmpb $';',DIR_NAME-1(%bx,%si) # Check for semicolon
jne ff.checkver.2
dec %si # Skip semicolon
mov %si,%cx
mov %cl,DIR_NAMELEN(%bx) # Adjust length
jmp ff.checkdot
ff.checkver.2: mov %cx,%si # Restore %si to end of string
ff.checkdot: cmpb $'.',DIR_NAME-1(%bx,%si) # Trailing dot?
jne ff.checklen # No
decb DIR_NAMELEN(%bx) # Adjust length
ff.checklen: pop %si # Restore
movzbw name_len,%cx # Load length of name
cmp %cl,DIR_NAMELEN(%bx) # Does length match?
je ff.checkname # Yes, check name
ff.nextrec: add DIR_LEN(%bx),%bl # Next record
adc $0,%bh
jmp ff.scan
ff.nextblock: subl $SECTOR_SIZE,rec_size # Adjust size
jnc ff.load # If subtract ok, keep going
ret # End of file, so not found
ff.checkname: lea DIR_NAME(%bx),%di # Address name in record
push %si # Save
repe cmpsb # Compare name
je ff.match # We have a winner!
pop %si # Restore
jmp ff.nextrec # Keep looking.
ff.match: add $2,%sp # Discard saved %si
clc # Clear carry
ret
#
# Load DH sectors starting at LBA EAX into [EBX].
#
# Trashes: EAX
#
read: push %si # Save
push %cx # Save since some BIOSs trash
mov %eax,edd_lba # LBA to read from
mov %ebx,%eax # Convert address
shr $4,%eax # to segment
mov %ax,edd_addr+0x2 # and store
read.retry: call twiddle # Entertain the user
push %dx # Save
mov $edd_packet,%si # Address Packet
mov %dh,edd_len # Set length
mov drive,%dl # BIOS Device
mov $0x42,%ah # BIOS: Extended Read
int $0x13 # Call BIOS
pop %dx # Restore
jc read.fail # Worked?
pop %cx # Restore
pop %si
ret # Return
read.fail: cmp $ERROR_TIMEOUT,%ah # Timeout?
je read.retry # Yes, Retry.
read.error: mov %ah,%al # Save error
mov $hex_error,%di # Format it
call hex8 # as hex
mov $msg_badread,%si # Display Read error message
#
# Display error message at [SI] and halt.
#
error: call putstr # Display message
halt: hlt
jmp halt # Spin
#
# Display a null-terminated string.
#
# Trashes: AX, SI
#
putstr: push %bx # Save
putstr.load: lodsb # load %al from %ds:(%si)
test %al,%al # stop at null
jnz putstr.putc # if the char != null, output it
pop %bx # Restore
ret # return when null is hit
putstr.putc: call putc # output char
jmp putstr.load # next char
#
# Display a single char.
#
putc: mov $0x7,%bx # attribute for output
mov $0xe,%ah # BIOS: put_char
int $0x10 # call BIOS, print char in %al
ret # Return to caller
#
# Output the "twiddle"
#
twiddle: push %ax # Save
push %bx # Save
mov twiddle_index,%al # Load index
mov $twiddle_chars,%bx # Address table
inc %al # Next
and $3,%al # char
mov %al,twiddle_index # Save index for next call
xlat # Get char
call putc # Output it
mov $8,%al # Backspace
call putc # Output it
pop %bx # Restore
pop %ax # Restore
ret
#
2006-04-11 17:36:08 +00:00
# Enable A20. Put an upper limit on the amount of time we wait for the
# keyboard controller to get ready (65K x ISA access time). If
2006-04-11 17:36:08 +00:00
# we wait more than that amount, the hardware is probably
# legacy-free and simply doesn't have a keyboard controller.
# Thus, the A20 line is already enabled.
#
seta20: cli # Disable interrupts
xor %cx,%cx # Clear
seta20.1: inc %cx # Increment, overflow?
jz seta20.3 # Yes
in $0x64,%al # Get status
test $0x2,%al # Busy?
jnz seta20.1 # Yes
mov $0xd1,%al # Command: Write
out %al,$0x64 # output port
seta20.2: in $0x64,%al # Get status
test $0x2,%al # Busy?
jnz seta20.2 # Yes
mov $0xdf,%al # Enable
out %al,$0x60 # A20
seta20.3: sti # Enable interrupts
ret # To caller
#
# Convert AL to hex, saving the result to [EDI].
#
hex8: pushl %eax # Save
shrb $0x4,%al # Do upper
call hex8.1 # 4
popl %eax # Restore
hex8.1: andb $0xf,%al # Get lower 4
cmpb $0xa,%al # Convert
sbbb $0x69,%al # to hex
das # digit
orb $0x20,%al # To lower case
stosb # Save char
ret # (Recursive)
#
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
# BTX client to start btxldr
#
.code32
btx_client: mov $(MEM_ARG_BTX-MEM_BTX_CLIENT+MEM_ARG_SIZE-4), %esi
# %ds:(%esi) -> end
# of boot[12] args
mov $(MEM_ARG_SIZE/4),%ecx # Number of words to push
std # Go backwards
push_arg: lodsl # Read argument
push %eax # Push it onto the stack
loop push_arg # Push all of the arguments
cld # In case anyone depends on this
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
pushl MEM_ARG_BTX-MEM_BTX_CLIENT+MEM_ARG_SIZE # Entry point of
# the loader
push %eax # Emulate a near call
mov $0x1,%eax # 'exec' system call
int $INT_SYS # BTX system call
btx_client_end:
.code16
2001-08-09 18:07:45 +00:00
.p2align 4
#
# Global descriptor table.
#
gdt: .word 0x0,0x0,0x0,0x0 # Null entry
.word 0xffff,0x0,0x9200,0xcf # SEL_SDATA
.word 0xffff,0x0,0x9200,0x0 # SEL_RDATA
.word 0xffff,0x0,0x9a00,0xcf # SEL_SCODE (32-bit)
2001-08-09 18:07:45 +00:00
.word 0xffff,0x0,0x9a00,0x8f # SEL_SCODE16 (16-bit)
gdt.1:
#
# Pseudo-descriptors.
#
gdtdesc: .word gdt.1-gdt-1 # Limit
Mega i386 loader commit. - Don't hard code 0x10000 as the entry point for the loader. Instead add src/sys/boot/i386/Makefile.inc which defines a make variable with the entry point for the loader. Move the loader's entry point up to 0x20000, which makes PXE happy. - Don't try to use cpp to parse btxldr for the optional BTXLDR_VERBOSE, instead use m4 to achieve this. Also, add a BTXLDR_VERBOSE knob in the btxldr Makefile to turn this option on. - Redo parts of cdldr's Makefile so that it now builds and installs cdboot instead of having i386/loader/Makefile do that. Also, add in some more variables to make the pxeldr Makefile almost identical and thus to ease maintainability. - Teach cdldr about the a.out format. Cdldr now parsers the a.out header of the loader binary and relocates it based on that. The entry point of the loader no longer has to be hardcoded into cdldr. Also, the boot info table from mkisofs is no longer required to get a useful cdboot. - Update the lsdev function for BIOS disks to parse other file systems (such as DOS FAT) that we currently support. This is still buggy as it assumes that a floppy with a DOS boot sector actually has a MBR and parses it as such. I'll be fixing this in the future. - The biggie: Add in support for booting off of PXE-enabled network adapters. Currently, we use the TFTP API provided by the PXE BIOS. Eventually we will switch to using the low-level NIC driver thus allowing both TFTP and NFS to be used, but for now it's just TFTP. Submitted by: ps, alfred Testing by: Benno Rice <benno@netizen.com.au>
2000-03-28 01:19:53 +00:00
.long gdt # Base
#
# EDD Packet
#
edd_packet: .byte 0x10 # Length
.byte 0 # Reserved
edd_len: .byte 0x0 # Num to read
.byte 0 # Reserved
edd_addr: .word 0x0,0x0 # Seg:Off
edd_lba: .quad 0x0 # LBA
2001-08-09 18:07:45 +00:00
drive: .byte 0
#
# State for searching dir
#
rec_lba: .long 0x0 # LBA (adjusted for EA)
rec_size: .long 0x0 # File size
name_len: .byte 0x0 # Length of current name
twiddle_index: .byte 0x0
msg_welcome: .asciz "CD Loader 1.2\r\n\n"
msg_bootinfo: .asciz "Building the boot loader arguments\r\n"
msg_relocate: .asciz "Relocating the loader and the BTX\r\n"
msg_jump: .asciz "Starting the BTX loader\r\n"
msg_badread: .ascii "Read Error: 0x"
hex_error: .asciz "00\r\n"
msg_novd: .asciz "Could not find Primary Volume Descriptor\r\n"
msg_lookup: .asciz "Looking up "
msg_lookup2: .asciz "... "
msg_lookupok: .asciz "Found\r\n"
msg_lookupfail: .asciz "File not found\r\n"
msg_load2big: .asciz "File too big\r\n"
msg_failed: .asciz "Boot failed\r\n"
twiddle_chars: .ascii "|/-\\"
loader_paths: .asciz "/BOOT/LOADER"
.asciz "/boot/loader"
.byte 0