freebsd-dev/sys/dev/aic7xxx/aic79xx_osm.c

2003 lines
50 KiB
C
Raw Normal View History

/*
* Bus independent FreeBSD shim for the aic7xxx based adaptec SCSI controllers
*
* Copyright (c) 1994-2002 Justin T. Gibbs.
* Copyright (c) 2001-2002 Adaptec Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU Public License ("GPL").
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: //depot/aic7xxx/freebsd/dev/aic7xxx/aic79xx_osm.c#22 $
*
* $FreeBSD$
*/
#include <dev/aic7xxx/aic79xx_osm.h>
#include <dev/aic7xxx/aic79xx_inline.h>
#include "opt_ddb.h"
#ifdef DDB
#include <ddb/ddb.h>
#endif
#ifndef AHD_TMODE_ENABLE
#define AHD_TMODE_ENABLE 0
#endif
#define ccb_scb_ptr spriv_ptr0
#if UNUSED
static void ahd_dump_targcmd(struct target_cmd *cmd);
#endif
static int ahd_modevent(module_t mod, int type, void *data);
static void ahd_action(struct cam_sim *sim, union ccb *ccb);
static void ahd_set_tran_settings(struct ahd_softc *ahd,
int our_id, char channel,
struct ccb_trans_settings *cts);
static void ahd_get_tran_settings(struct ahd_softc *ahd,
int our_id, char channel,
struct ccb_trans_settings *cts);
static void ahd_async(void *callback_arg, uint32_t code,
struct cam_path *path, void *arg);
static void ahd_execute_scb(void *arg, bus_dma_segment_t *dm_segs,
int nsegments, int error);
static void ahd_poll(struct cam_sim *sim);
static void ahd_setup_data(struct ahd_softc *ahd, struct cam_sim *sim,
struct ccb_scsiio *csio, struct scb *scb);
static void ahd_abort_ccb(struct ahd_softc *ahd, struct cam_sim *sim,
union ccb *ccb);
static int ahd_create_path(struct ahd_softc *ahd,
char channel, u_int target, u_int lun,
struct cam_path **path);
#if NOT_YET
static void ahd_set_recoveryscb(struct ahd_softc *ahd, struct scb *scb);
#endif
static int
ahd_create_path(struct ahd_softc *ahd, char channel, u_int target,
u_int lun, struct cam_path **path)
{
path_id_t path_id;
if (channel == 'B')
path_id = cam_sim_path(ahd->platform_data->sim_b);
else
path_id = cam_sim_path(ahd->platform_data->sim);
return (xpt_create_path(path, /*periph*/NULL,
path_id, target, lun));
}
int
ahd_map_int(struct ahd_softc *ahd)
{
int error;
/* Hook up our interrupt handler */
error = bus_setup_intr(ahd->dev_softc, ahd->platform_data->irq,
INTR_TYPE_CAM, ahd_platform_intr, ahd,
&ahd->platform_data->ih);
if (error != 0)
device_printf(ahd->dev_softc, "bus_setup_intr() failed: %d\n",
error);
return (error);
}
/*
* Attach all the sub-devices we can find
*/
int
ahd_attach(struct ahd_softc *ahd)
{
char ahd_info[256];
struct ccb_setasync csa;
struct cam_devq *devq;
struct cam_sim *sim;
struct cam_path *path;
long s;
int count;
count = 0;
sim = NULL;
ahd_controller_info(ahd, ahd_info);
printf("%s\n", ahd_info);
ahd_lock(ahd, &s);
/*
* Create the device queue for our SIM(s).
*/
devq = cam_simq_alloc(AHD_MAX_QUEUE);
if (devq == NULL)
goto fail;
/*
* Construct our SIM entry
*/
sim = cam_sim_alloc(ahd_action, ahd_poll, "ahd", ahd,
device_get_unit(ahd->dev_softc),
1, /*XXX*/256, devq);
if (sim == NULL) {
cam_simq_free(devq);
goto fail;
}
if (xpt_bus_register(sim, /*bus_id*/0) != CAM_SUCCESS) {
cam_sim_free(sim, /*free_devq*/TRUE);
sim = NULL;
goto fail;
}
if (xpt_create_path(&path, /*periph*/NULL,
cam_sim_path(sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(sim));
cam_sim_free(sim, /*free_devq*/TRUE);
sim = NULL;
goto fail;
}
xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;
csa.callback = ahd_async;
csa.callback_arg = sim;
xpt_action((union ccb *)&csa);
count++;
fail:
ahd->platform_data->sim = sim;
ahd->platform_data->path = path;
if (count != 0) {
/* We have to wait until after any system dumps... */
ahd->platform_data->eh =
EVENTHANDLER_REGISTER(shutdown_final, ahd_shutdown,
ahd, SHUTDOWN_PRI_DEFAULT);
ahd_intr_enable(ahd, TRUE);
}
ahd_unlock(ahd, &s);
return (count);
}
/*
* Catch an interrupt from the adapter
*/
void
ahd_platform_intr(void *arg)
{
struct ahd_softc *ahd;
ahd = (struct ahd_softc *)arg;
ahd_intr(ahd);
}
/*
* We have an scb which has been processed by the
* adaptor, now we look to see how the operation
* went.
*/
void
ahd_done(struct ahd_softc *ahd, struct scb *scb)
{
union ccb *ccb;
CAM_DEBUG(scb->io_ctx->ccb_h.path, CAM_DEBUG_TRACE,
("ahd_done - scb %d\n", SCB_GET_TAG(scb)));
ccb = scb->io_ctx;
LIST_REMOVE(scb, pending_links);
untimeout(ahd_timeout, (caddr_t)scb, ccb->ccb_h.timeout_ch);
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmasync_op_t op;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_POSTREAD;
else
op = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(ahd->buffer_dmat, scb->dmamap, op);
bus_dmamap_unload(ahd->buffer_dmat, scb->dmamap);
}
#ifdef AHD_TARGET_MODE
if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) {
struct cam_path *ccb_path;
/*
* If we have finally disconnected, clean up our
* pending device state.
* XXX - There may be error states that cause where
* we will remain connected.
*/
ccb_path = ccb->ccb_h.path;
if (ahd->pending_device != NULL
&& xpt_path_comp(ahd->pending_device->path, ccb_path) == 0) {
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) != 0) {
ahd->pending_device = NULL;
} else {
xpt_print_path(ccb->ccb_h.path);
printf("Still disconnected\n");
ahd_freeze_ccb(ccb);
}
}
if (ahd_get_transaction_status(scb) == CAM_REQ_INPROG)
ccb->ccb_h.status |= CAM_REQ_CMP;
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ahd_free_scb(ahd, scb);
xpt_done(ccb);
return;
}
#endif
/*
* If the recovery SCB completes, we have to be
* out of our timeout.
*/
if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
struct scb *list_scb;
/*
* We were able to complete the command successfully,
* so reinstate the timeouts for all other pending
* commands.
*/
LIST_FOREACH(list_scb, &ahd->pending_scbs, pending_links) {
union ccb *ccb;
uint64_t time;
ccb = list_scb->io_ctx;
if (ccb->ccb_h.timeout == CAM_TIME_INFINITY)
continue;
time = ccb->ccb_h.timeout;
time *= hz;
time /= 1000;
ccb->ccb_h.timeout_ch =
timeout(ahd_timeout, list_scb, time);
}
if (ahd_get_transaction_status(scb) == CAM_BDR_SENT
|| ahd_get_transaction_status(scb) == CAM_REQ_ABORTED)
ahd_set_transaction_status(scb, CAM_CMD_TIMEOUT);
ahd_print_path(ahd, scb);
printf("no longer in timeout, status = %x\n",
ccb->ccb_h.status);
}
/* Don't clobber any existing error state */
if (ahd_get_transaction_status(scb) == CAM_REQ_INPROG) {
ccb->ccb_h.status |= CAM_REQ_CMP;
} else if ((scb->flags & SCB_SENSE) != 0) {
/*
* We performed autosense retrieval.
*
* Zero any sense not transferred by the
* device. The SCSI spec mandates that any
* untransfered data should be assumed to be
* zero. Complete the 'bounce' of sense information
* through buffers accessible via bus-space by
* copying it into the clients csio.
*/
memset(&ccb->csio.sense_data, 0, sizeof(ccb->csio.sense_data));
memcpy(&ccb->csio.sense_data,
ahd_get_sense_buf(ahd, scb),
/* XXX What size do we want to use??? */
sizeof(ccb->csio.sense_data)
- ccb->csio.sense_resid);
scb->io_ctx->ccb_h.status |= CAM_AUTOSNS_VALID;
} else if ((scb->flags & SCB_PKT_SENSE) != 0) {
struct scsi_status_iu_header *siu;
u_int sense_len;
int i;
/*
* Copy only the sense data into the provided buffer.
*/
siu = (struct scsi_status_iu_header *)scb->sense_data;
sense_len = MIN(scsi_4btoul(siu->sense_length),
sizeof(ccb->csio.sense_data));
memset(&ccb->csio.sense_data, 0, sizeof(ccb->csio.sense_data));
memcpy(&ccb->csio.sense_data,
ahd_get_sense_buf(ahd, scb) + SIU_SENSE_OFFSET(siu),
sense_len);
printf("Copied %d bytes of sense data offset %d:", sense_len,
SIU_SENSE_OFFSET(siu));
for (i = 0; i < sense_len; i++)
printf(" 0x%x", ((uint8_t *)&ccb->csio.sense_data)[i]);
printf("\n");
scb->io_ctx->ccb_h.status |= CAM_AUTOSNS_VALID;
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ahd_free_scb(ahd, scb);
xpt_done(ccb);
}
static void
ahd_action(struct cam_sim *sim, union ccb *ccb)
{
struct ahd_softc *ahd;
#ifdef AHD_TARGET_MODE
struct ahd_tmode_lstate *lstate;
#endif
u_int target_id;
u_int our_id;
long s;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("ahd_action\n"));
ahd = (struct ahd_softc *)cam_sim_softc(sim);
target_id = ccb->ccb_h.target_id;
our_id = SIM_SCSI_ID(ahd, sim);
switch (ccb->ccb_h.func_code) {
/* Common cases first */
#ifdef AHD_TARGET_MODE
case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
case XPT_CONT_TARGET_IO:/* Continue Host Target I/O Connection*/
{
struct ahd_tmode_tstate *tstate;
cam_status status;
status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate,
&lstate, TRUE);
if (status != CAM_REQ_CMP) {
if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) {
/* Response from the black hole device */
tstate = NULL;
lstate = ahd->black_hole;
} else {
ccb->ccb_h.status = status;
xpt_done(ccb);
break;
}
}
if (ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) {
ahd_lock(ahd, &s);
SLIST_INSERT_HEAD(&lstate->accept_tios, &ccb->ccb_h,
sim_links.sle);
ccb->ccb_h.status = CAM_REQ_INPROG;
if ((ahd->flags & AHD_TQINFIFO_BLOCKED) != 0)
ahd_run_tqinfifo(ahd, /*paused*/FALSE);
ahd_unlock(ahd, &s);
break;
}
/*
* The target_id represents the target we attempt to
* select. In target mode, this is the initiator of
* the original command.
*/
our_id = target_id;
target_id = ccb->csio.init_id;
/* FALLTHROUGH */
}
#endif
case XPT_SCSI_IO: /* Execute the requested I/O operation */
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
{
struct scb *scb;
struct hardware_scb *hscb;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
u_int col_idx;
if ((ahd->flags & AHD_INITIATORROLE) == 0
&& (ccb->ccb_h.func_code == XPT_SCSI_IO
|| ccb->ccb_h.func_code == XPT_RESET_DEV)) {
ccb->ccb_h.status = CAM_PROVIDE_FAIL;
xpt_done(ccb);
return;
}
/*
* get an scb to use.
*/
ahd_lock(ahd, &s);
tinfo = ahd_fetch_transinfo(ahd, 'A', our_id,
target_id, &tstate);
if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) == 0
|| (tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0
|| ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) {
col_idx = AHD_NEVER_COL_IDX;
} else {
col_idx = AHD_BUILD_COL_IDX(target_id,
ccb->ccb_h.target_lun);
}
if ((scb = ahd_get_scb(ahd, col_idx)) == NULL) {
xpt_freeze_simq(sim, /*count*/1);
ahd->flags |= AHD_RESOURCE_SHORTAGE;
ahd_unlock(ahd, &s);
ccb->ccb_h.status = CAM_REQUEUE_REQ;
xpt_done(ccb);
return;
}
ahd_unlock(ahd, &s);
hscb = scb->hscb;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_SUBTRACE,
("start scb(%p)\n", scb));
scb->io_ctx = ccb;
/*
* So we can find the SCB when an abort is requested
*/
ccb->ccb_h.ccb_scb_ptr = scb;
/*
* Put all the arguments for the xfer in the scb
*/
hscb->control = 0;
hscb->scsiid = BUILD_SCSIID(ahd, sim, target_id, our_id);
hscb->lun = ccb->ccb_h.target_lun;
if (ccb->ccb_h.func_code == XPT_RESET_DEV) {
hscb->cdb_len = 0;
scb->flags |= SCB_DEVICE_RESET;
hscb->control |= MK_MESSAGE;
ahd_execute_scb(scb, NULL, 0, 0);
} else {
#ifdef AHD_TARGET_MODE
if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) {
struct target_data *tdata;
tdata = &hscb->shared_data.tdata;
if (ahd->pending_device == lstate)
scb->flags |= SCB_TARGET_IMMEDIATE;
hscb->control |= TARGET_SCB;
tdata->target_phases = 0;
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) != 0) {
tdata->target_phases |= SPHASE_PENDING;
tdata->scsi_status =
ccb->csio.scsi_status;
}
if (ccb->ccb_h.flags & CAM_DIS_DISCONNECT)
tdata->target_phases |= NO_DISCONNECT;
tdata->initiator_tag =
ahd_htole16(ccb->csio.tag_id);
}
#endif
if (ccb->ccb_h.flags & CAM_TAG_ACTION_VALID)
hscb->control |= ccb->csio.tag_action;
ahd_setup_data(ahd, sim, &ccb->csio, scb);
}
break;
}
#ifdef AHD_TARGET_MODE
case XPT_NOTIFY_ACK:
case XPT_IMMED_NOTIFY:
{
struct ahd_tmode_tstate *tstate;
struct ahd_tmode_lstate *lstate;
cam_status status;
status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate,
&lstate, TRUE);
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
xpt_done(ccb);
break;
}
SLIST_INSERT_HEAD(&lstate->immed_notifies, &ccb->ccb_h,
sim_links.sle);
ccb->ccb_h.status = CAM_REQ_INPROG;
ahd_send_lstate_events(ahd, lstate);
break;
}
case XPT_EN_LUN: /* Enable LUN as a target */
ahd_handle_en_lun(ahd, sim, ccb);
xpt_done(ccb);
break;
#endif
case XPT_ABORT: /* Abort the specified CCB */
{
ahd_abort_ccb(ahd, sim, ccb);
break;
}
case XPT_SET_TRAN_SETTINGS:
{
ahd_lock(ahd, &s);
ahd_set_tran_settings(ahd, SIM_SCSI_ID(ahd, sim),
SIM_CHANNEL(ahd, sim), &ccb->cts);
ahd_unlock(ahd, &s);
xpt_done(ccb);
break;
}
case XPT_GET_TRAN_SETTINGS:
/* Get default/user set transfer settings for the target */
{
ahd_lock(ahd, &s);
ahd_get_tran_settings(ahd, SIM_SCSI_ID(ahd, sim),
SIM_CHANNEL(ahd, sim), &ccb->cts);
ahd_unlock(ahd, &s);
xpt_done(ccb);
break;
}
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
uint32_t size_mb;
uint32_t secs_per_cylinder;
int extended;
ccg = &ccb->ccg;
size_mb = ccg->volume_size
/ ((1024L * 1024L) / ccg->block_size);
extended = ahd->flags & AHD_EXTENDED_TRANS_A;
if (size_mb > 1024 && extended) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
{
int found;
ahd_lock(ahd, &s);
found = ahd_reset_channel(ahd, SIM_CHANNEL(ahd, sim),
/*initiate reset*/TRUE);
ahd_unlock(ahd, &s);
if (bootverbose) {
xpt_print_path(SIM_PATH(ahd, sim));
printf("SCSI bus reset delivered. "
"%d SCBs aborted.\n", found);
}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE;
if ((ahd->features & AHD_WIDE) != 0)
cpi->hba_inquiry |= PI_WIDE_16;
if ((ahd->features & AHD_TARGETMODE) != 0) {
cpi->target_sprt = PIT_PROCESSOR
| PIT_DISCONNECT
| PIT_TERM_IO;
} else {
cpi->target_sprt = 0;
}
cpi->hba_misc = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = (ahd->features & AHD_WIDE) ? 15 : 7;
cpi->max_lun = AHD_NUM_LUNS - 1;
cpi->initiator_id = ahd->our_id;
if ((ahd->flags & AHD_RESET_BUS_A) == 0) {
cpi->hba_misc |= PIM_NOBUSRESET;
}
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Adaptec", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
#ifdef AHD_NEW_TRAN_SETTINGS
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_2;
cpi->transport = XPORT_SPI;
cpi->transport_version = 2;
cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
cpi->transport_version = 4;
cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_DT_ST;
#endif
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
ccb->ccb_h.status = CAM_PROVIDE_FAIL;
xpt_done(ccb);
break;
}
}
static void
ahd_set_tran_settings(struct ahd_softc *ahd, int our_id, char channel,
struct ccb_trans_settings *cts)
{
#ifdef AHD_NEW_TRAN_SETTINGS
struct ahd_devinfo devinfo;
struct ccb_trans_settings_scsi *scsi;
struct ccb_trans_settings_spi *spi;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
uint16_t *discenable;
uint16_t *tagenable;
u_int update_type;
scsi = &cts->proto_specific.scsi;
spi = &cts->xport_specific.spi;
ahd_compile_devinfo(&devinfo, SIM_SCSI_ID(ahd, sim),
cts->ccb_h.target_id,
cts->ccb_h.target_lun,
SIM_CHANNEL(ahd, sim),
ROLE_UNKNOWN);
tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
devinfo.our_scsiid,
devinfo.target, &tstate);
update_type = 0;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
update_type |= AHD_TRANS_GOAL;
discenable = &tstate->discenable;
tagenable = &tstate->tagenable;
tinfo->curr.protocol_version = cts->protocol_version;
tinfo->curr.transport_version = cts->transport_version;
tinfo->goal.protocol_version = cts->protocol_version;
tinfo->goal.transport_version = cts->transport_version;
} else if (cts->type == CTS_TYPE_USER_SETTINGS) {
update_type |= AHD_TRANS_USER;
discenable = &ahd->user_discenable;
tagenable = &ahd->user_tagenable;
tinfo->user.protocol_version = cts->protocol_version;
tinfo->user.transport_version = cts->transport_version;
} else {
cts->ccb_h.status = CAM_REQ_INVALID;
return;
}
if ((spi->valid & CTS_SPI_VALID_DISC) != 0) {
if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
*discenable |= devinfo.target_mask;
else
*discenable &= ~devinfo.target_mask;
}
if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
*tagenable |= devinfo.target_mask;
else
*tagenable &= ~devinfo.target_mask;
}
if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) {
ahd_validate_width(ahd, /*tinfo limit*/NULL,
&spi->bus_width, ROLE_UNKNOWN);
ahd_set_width(ahd, &devinfo, spi->bus_width,
update_type, /*paused*/FALSE);
}
if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) {
if (update_type == AHD_TRANS_USER)
spi->ppr_options = tinfo->user.ppr_options;
else
spi->ppr_options = tinfo->goal.ppr_options;
}
if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) {
if (update_type == AHD_TRANS_USER)
spi->sync_offset = tinfo->user.offset;
else
spi->sync_offset = tinfo->goal.offset;
}
if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
if (update_type == AHD_TRANS_USER)
spi->sync_period = tinfo->user.period;
else
spi->sync_period = tinfo->goal.period;
}
if (((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
|| ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)) {
u_int maxsync;
maxsync = AHD_SYNCRATE_MAX;
if (spi->bus_width != MSG_EXT_WDTR_BUS_16_BIT)
spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
if ((*discenable & devinfo.target_mask) == 0)
spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
ahd_find_syncrate(ahd, &spi->sync_period,
&spi->ppr_options, maxsync);
ahd_validate_offset(ahd, /*tinfo limit*/NULL,
spi->sync_period, &spi->sync_offset,
spi->bus_width, ROLE_UNKNOWN);
/* We use a period of 0 to represent async */
if (spi->sync_offset == 0) {
spi->sync_period = 0;
spi->ppr_options = 0;
}
ahd_set_syncrate(ahd, &devinfo, spi->sync_period,
spi->sync_offset, spi->ppr_options,
update_type, /*paused*/FALSE);
}
cts->ccb_h.status = CAM_REQ_CMP;
#else
struct ahd_devinfo devinfo;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
uint16_t *discenable;
uint16_t *tagenable;
u_int update_type;
ahd_compile_devinfo(&devinfo, SIM_SCSI_ID(ahd, sim),
cts->ccb_h.target_id,
cts->ccb_h.target_lun,
SIM_CHANNEL(ahd, sim),
ROLE_UNKNOWN);
tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
devinfo.our_scsiid,
devinfo.target, &tstate);
update_type = 0;
if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
update_type |= AHD_TRANS_GOAL;
discenable = &tstate->discenable;
tagenable = &tstate->tagenable;
} else if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0) {
update_type |= AHD_TRANS_USER;
discenable = &ahd->user_discenable;
tagenable = &ahd->user_tagenable;
} else {
cts->ccb_h.status = CAM_REQ_INVALID;
return;
}
if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
*discenable |= devinfo.target_mask;
else
*discenable &= ~devinfo.target_mask;
}
if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
*tagenable |= devinfo.target_mask;
else
*tagenable &= ~devinfo.target_mask;
}
if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) {
ahd_validate_width(ahd, /*tinfo limit*/NULL,
&cts->bus_width, ROLE_UNKNOWN);
ahd_set_width(ahd, &devinfo, cts->bus_width,
update_type, /*paused*/FALSE);
}
if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0) {
if (update_type == AHD_TRANS_USER)
cts->sync_offset = tinfo->user.offset;
else
cts->sync_offset = tinfo->goal.offset;
}
if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0) {
if (update_type == AHD_TRANS_USER)
cts->sync_period = tinfo->user.period;
else
cts->sync_period = tinfo->goal.period;
}
if (((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0)
|| ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)
|| ((cts->valid & CCB_TRANS_TQ_VALID) != 0)
|| ((cts->valid & CCB_TRANS_DISC_VALID) != 0)) {
u_int ppr_options;
u_int maxsync;
maxsync = AHD_SYNCRATE_MAX;
ppr_options = 0;
if (cts->sync_period <= AHD_SYNCRATE_DT
&& cts->bus_width == MSG_EXT_WDTR_BUS_16_BIT) {
ppr_options = tinfo->user.ppr_options
| MSG_EXT_PPR_DT_REQ;
}
if ((*tagenable & devinfo.target_mask) == 0
|| (*discenable & devinfo.target_mask) == 0)
ppr_options &= ~MSG_EXT_PPR_IU_REQ;
ahd_find_syncrate(ahd, &cts->sync_period,
&ppr_options, maxsync);
ahd_validate_offset(ahd, /*tinfo limit*/NULL,
cts->sync_period, &cts->sync_offset,
MSG_EXT_WDTR_BUS_8_BIT,
ROLE_UNKNOWN);
/* We use a period of 0 to represent async */
if (cts->sync_offset == 0) {
cts->sync_period = 0;
ppr_options = 0;
}
if (ppr_options != 0
&& tinfo->user.transport_version >= 3) {
tinfo->goal.transport_version =
tinfo->user.transport_version;
tinfo->curr.transport_version =
tinfo->user.transport_version;
}
ahd_set_syncrate(ahd, &devinfo, cts->sync_period,
cts->sync_offset, ppr_options,
update_type, /*paused*/FALSE);
}
cts->ccb_h.status = CAM_REQ_CMP;
#endif
}
static void
ahd_get_tran_settings(struct ahd_softc *ahd, int our_id, char channel,
struct ccb_trans_settings *cts)
{
#ifdef AHD_NEW_TRAN_SETTINGS
struct ahd_devinfo devinfo;
struct ccb_trans_settings_scsi *scsi;
struct ccb_trans_settings_spi *spi;
struct ahd_initiator_tinfo *targ_info;
struct ahd_tmode_tstate *tstate;
struct ahd_transinfo *tinfo;
scsi = &cts->proto_specific.scsi;
spi = &cts->xport_specific.spi;
ahd_compile_devinfo(&devinfo, our_id,
cts->ccb_h.target_id,
cts->ccb_h.target_lun,
channel, ROLE_UNKNOWN);
targ_info = ahd_fetch_transinfo(ahd, devinfo.channel,
devinfo.our_scsiid,
devinfo.target, &tstate);
if (cts->type == CTS_TYPE_CURRENT_SETTINGS)
tinfo = &targ_info->curr;
else
tinfo = &targ_info->user;
scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
if (cts->type == CTS_TYPE_USER_SETTINGS) {
if ((ahd->user_discenable & devinfo.target_mask) != 0)
spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
if ((ahd->user_tagenable & devinfo.target_mask) != 0)
scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
} else {
if ((tstate->discenable & devinfo.target_mask) != 0)
spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
if ((tstate->tagenable & devinfo.target_mask) != 0)
scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
}
cts->protocol_version = tinfo->protocol_version;
cts->transport_version = tinfo->transport_version;
spi->sync_period = tinfo->period;
spi->sync_offset = tinfo->offset;
spi->bus_width = tinfo->width;
spi->ppr_options = tinfo->ppr_options;
cts->protocol = PROTO_SCSI;
cts->transport = XPORT_SPI;
spi->valid = CTS_SPI_VALID_SYNC_RATE
| CTS_SPI_VALID_SYNC_OFFSET
| CTS_SPI_VALID_BUS_WIDTH
| CTS_SPI_VALID_PPR_OPTIONS;
if (cts->ccb_h.target_lun != CAM_LUN_WILDCARD) {
scsi->valid = CTS_SCSI_VALID_TQ;
spi->valid |= CTS_SPI_VALID_DISC;
} else {
scsi->valid = 0;
}
cts->ccb_h.status = CAM_REQ_CMP;
#else
struct ahd_devinfo devinfo;
struct ahd_initiator_tinfo *targ_info;
struct ahd_tmode_tstate *tstate;
struct ahd_transinfo *tinfo;
ahd_compile_devinfo(&devinfo, our_id,
cts->ccb_h.target_id,
cts->ccb_h.target_lun,
channel, ROLE_UNKNOWN);
targ_info = ahd_fetch_transinfo(ahd, devinfo.channel,
devinfo.our_scsiid,
devinfo.target, &tstate);
if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0)
tinfo = &targ_info->curr;
else
tinfo = &targ_info->user;
cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) == 0) {
if ((ahd->user_discenable & devinfo.target_mask) != 0)
cts->flags |= CCB_TRANS_DISC_ENB;
if ((ahd->user_tagenable & devinfo.target_mask) != 0)
cts->flags |= CCB_TRANS_TAG_ENB;
} else {
if ((tstate->discenable & devinfo.target_mask) != 0)
cts->flags |= CCB_TRANS_DISC_ENB;
if ((tstate->tagenable & devinfo.target_mask) != 0)
cts->flags |= CCB_TRANS_TAG_ENB;
}
cts->sync_period = tinfo->period;
cts->sync_offset = tinfo->offset;
cts->bus_width = tinfo->width;
cts->valid = CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID
| CCB_TRANS_BUS_WIDTH_VALID;
if (cts->ccb_h.target_lun != CAM_LUN_WILDCARD)
cts->valid |= CCB_TRANS_DISC_VALID|CCB_TRANS_TQ_VALID;
cts->ccb_h.status = CAM_REQ_CMP;
#endif
}
static void
ahd_async(void *callback_arg, uint32_t code, struct cam_path *path, void *arg)
{
struct ahd_softc *ahd;
struct cam_sim *sim;
sim = (struct cam_sim *)callback_arg;
ahd = (struct ahd_softc *)cam_sim_softc(sim);
switch (code) {
case AC_LOST_DEVICE:
{
struct ahd_devinfo devinfo;
long s;
ahd_compile_devinfo(&devinfo, SIM_SCSI_ID(ahd, sim),
xpt_path_target_id(path),
xpt_path_lun_id(path),
SIM_CHANNEL(ahd, sim),
ROLE_UNKNOWN);
/*
* Revert to async/narrow transfers
* for the next device.
*/
ahd_lock(ahd, &s);
ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_GOAL|AHD_TRANS_CUR, /*paused*/FALSE);
ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
/*ppr_options*/0, AHD_TRANS_GOAL|AHD_TRANS_CUR,
/*paused*/FALSE);
ahd_unlock(ahd, &s);
break;
}
default:
break;
}
}
static void
ahd_execute_scb(void *arg, bus_dma_segment_t *dm_segs, int nsegments,
int error)
{
struct scb *scb;
union ccb *ccb;
struct ahd_softc *ahd;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
u_int mask;
u_long s;
scb = (struct scb *)arg;
ccb = scb->io_ctx;
ahd = scb->ahd_softc;
if (error != 0) {
if (error == EFBIG)
ahd_set_transaction_status(scb, CAM_REQ_TOO_BIG);
else
ahd_set_transaction_status(scb, CAM_REQ_CMP_ERR);
if (nsegments != 0)
bus_dmamap_unload(ahd->buffer_dmat, scb->dmamap);
ahd_lock(ahd, &s);
ahd_free_scb(ahd, scb);
ahd_unlock(ahd, &s);
xpt_done(ccb);
return;
}
scb->sg_count = 0;
if (nsegments != 0) {
void *sg;
bus_dmasync_op_t op;
u_int i;
/* Copy the segments into our SG list */
for (i = nsegments, sg = scb->sg_list; i > 0; i--) {
sg = ahd_sg_setup(ahd, scb, sg, dm_segs->ds_addr,
dm_segs->ds_len,
/*last*/i == 1);
dm_segs++;
}
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_PREREAD;
else
op = BUS_DMASYNC_PREWRITE;
bus_dmamap_sync(ahd->buffer_dmat, scb->dmamap, op);
if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) {
struct target_data *tdata;
tdata = &scb->hscb->shared_data.tdata;
tdata->target_phases |= DPHASE_PENDING;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
tdata->data_phase = P_DATAOUT;
else
tdata->data_phase = P_DATAIN;
}
}
ahd_lock(ahd, &s);
/*
* Last time we need to check if this SCB needs to
* be aborted.
*/
if (ahd_get_transaction_status(scb) != CAM_REQ_INPROG) {
if (nsegments != 0)
bus_dmamap_unload(ahd->buffer_dmat,
scb->dmamap);
ahd_free_scb(ahd, scb);
ahd_unlock(ahd, &s);
xpt_done(ccb);
return;
}
tinfo = ahd_fetch_transinfo(ahd, SCSIID_CHANNEL(ahd, scb->hscb->scsiid),
SCSIID_OUR_ID(scb->hscb->scsiid),
SCSIID_TARGET(ahd, scb->hscb->scsiid),
&tstate);
mask = SCB_GET_TARGET_MASK(ahd, scb);
if ((tstate->discenable & mask) != 0
&& (ccb->ccb_h.flags & CAM_DIS_DISCONNECT) == 0)
scb->hscb->control |= DISCENB;
if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0)
scb->flags |= SCB_PACKETIZED;
if ((ccb->ccb_h.flags & CAM_NEGOTIATE) != 0
&& (tinfo->goal.width != 0
|| tinfo->goal.period != 0
|| tinfo->goal.ppr_options != 0)) {
scb->flags |= SCB_NEGOTIATE;
scb->hscb->control |= MK_MESSAGE;
} else if ((tstate->auto_negotiate & mask) != 0) {
scb->flags |= SCB_AUTO_NEGOTIATE;
scb->hscb->control |= MK_MESSAGE;
}
LIST_INSERT_HEAD(&ahd->pending_scbs, scb, pending_links);
ccb->ccb_h.status |= CAM_SIM_QUEUED;
if (ccb->ccb_h.timeout != CAM_TIME_INFINITY) {
uint64_t time;
if (ccb->ccb_h.timeout == CAM_TIME_DEFAULT)
ccb->ccb_h.timeout = 5 * 1000;
time = ccb->ccb_h.timeout;
time *= hz;
time /= 1000;
ccb->ccb_h.timeout_ch =
timeout(ahd_timeout, (caddr_t)scb, time);
}
if ((scb->flags & SCB_TARGET_IMMEDIATE) != 0) {
/* Define a mapping from our tag to the SCB. */
ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
ahd_pause(ahd);
ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
ahd_unpause(ahd);
} else {
ahd_queue_scb(ahd, scb);
}
ahd_unlock(ahd, &s);
}
static void
ahd_poll(struct cam_sim *sim)
{
ahd_intr(cam_sim_softc(sim));
}
static void
ahd_setup_data(struct ahd_softc *ahd, struct cam_sim *sim,
struct ccb_scsiio *csio, struct scb *scb)
{
struct hardware_scb *hscb;
struct ccb_hdr *ccb_h;
hscb = scb->hscb;
ccb_h = &csio->ccb_h;
csio->resid = 0;
csio->sense_resid = 0;
if (ccb_h->func_code == XPT_SCSI_IO) {
hscb->cdb_len = csio->cdb_len;
if ((ccb_h->flags & CAM_CDB_POINTER) != 0) {
if (hscb->cdb_len > MAX_CDB_LEN
&& (ccb_h->flags & CAM_CDB_PHYS) == 0) {
u_long s;
ahd_set_transaction_status(scb,
CAM_REQ_INVALID);
ahd_lock(ahd, &s);
ahd_free_scb(ahd, scb);
ahd_unlock(ahd, &s);
xpt_done((union ccb *)csio);
return;
}
if ((ccb_h->flags & CAM_CDB_PHYS) != 0) {
hscb->shared_data.idata.cdbptr =
ahd_htole64((uintptr_t)csio->cdb_io.cdb_ptr);
} else {
memcpy(hscb->shared_data.idata.cdb,
csio->cdb_io.cdb_ptr,
hscb->cdb_len);
}
} else {
if (hscb->cdb_len > MAX_CDB_LEN) {
u_long s;
ahd_set_transaction_status(scb,
CAM_REQ_INVALID);
ahd_lock(ahd, &s);
ahd_free_scb(ahd, scb);
ahd_unlock(ahd, &s);
xpt_done((union ccb *)csio);
return;
}
memcpy(hscb->shared_data.idata.cdb,
csio->cdb_io.cdb_bytes, hscb->cdb_len);
}
}
/* Only use S/G if there is a transfer */
if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if ((ccb_h->flags & CAM_SCATTER_VALID) == 0) {
/* We've been given a pointer to a single buffer */
if ((ccb_h->flags & CAM_DATA_PHYS) == 0) {
int s;
int error;
s = splsoftvm();
error = bus_dmamap_load(ahd->buffer_dmat,
scb->dmamap,
csio->data_ptr,
csio->dxfer_len,
ahd_execute_scb,
scb, /*flags*/0);
if (error == EINPROGRESS) {
/*
* So as to maintain ordering,
* freeze the controller queue
* until our mapping is
* returned.
*/
xpt_freeze_simq(sim,
/*count*/1);
scb->io_ctx->ccb_h.status |=
CAM_RELEASE_SIMQ;
}
splx(s);
} else {
struct bus_dma_segment seg;
/* Pointer to physical buffer */
if (csio->dxfer_len > AHD_MAXTRANSFER_SIZE)
panic("ahd_setup_data - Transfer size "
"larger than can device max");
seg.ds_addr = (bus_addr_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len;
ahd_execute_scb(scb, &seg, 1, 0);
}
} else {
struct bus_dma_segment *segs;
if ((ccb_h->flags & CAM_DATA_PHYS) != 0)
panic("ahd_setup_data - Physical segment "
"pointers unsupported");
if ((ccb_h->flags & CAM_SG_LIST_PHYS) == 0)
panic("ahd_setup_data - Virtual segment "
"addresses unsupported");
/* Just use the segments provided */
segs = (struct bus_dma_segment *)csio->data_ptr;
ahd_execute_scb(scb, segs, csio->sglist_cnt, 0);
}
} else {
ahd_execute_scb(scb, NULL, 0, 0);
}
}
#if NOT_YET
static void
ahd_set_recoveryscb(struct ahd_softc *ahd, struct scb *scb) {
if ((scb->flags & SCB_RECOVERY_SCB) == 0) {
struct scb *list_scb;
scb->flags |= SCB_RECOVERY_SCB;
/*
* Take all queued, but not sent SCBs out of the equation.
* Also ensure that no new CCBs are queued to us while we
* try to fix this problem.
*/
if ((scb->io_ctx->ccb_h.status & CAM_RELEASE_SIMQ) == 0) {
xpt_freeze_simq(SCB_GET_SIM(ahd, scb), /*count*/1);
scb->io_ctx->ccb_h.status |= CAM_RELEASE_SIMQ;
}
/*
* Go through all of our pending SCBs and remove
* any scheduled timeouts for them. We will reschedule
* them after we've successfully fixed this problem.
*/
LIST_FOREACH(list_scb, &ahd->pending_scbs, pending_links) {
union ccb *ccb;
ccb = list_scb->io_ctx;
untimeout(ahd_timeout, list_scb, ccb->ccb_h.timeout_ch);
}
}
}
#endif
void
ahd_timeout(void *arg)
{
struct scb *scb;
struct ahd_softc *ahd;
ahd_mode_state saved_modes;
long s;
int target;
int lun;
char channel;
#if NOT_YET
int i;
int found;
u_int last_phase;
#endif
scb = (struct scb *)arg;
ahd = (struct ahd_softc *)scb->ahd_softc;
ahd_lock(ahd, &s);
ahd_pause_and_flushwork(ahd);
saved_modes = ahd_save_modes(ahd);
#if 0
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, SCSISIGO, ACKO);
printf("set ACK\n");
ahd_outb(ahd, SCSISIGO, 0);
printf("clearing Ack\n");
ahd_restore_modes(ahd, saved_modes);
#endif
if ((scb->flags & SCB_ACTIVE) == 0) {
/* Previous timeout took care of me already */
printf("%s: Timedout SCB already complete. "
"Interrupts may not be functioning.\n", ahd_name(ahd));
ahd_unpause(ahd);
ahd_unlock(ahd, &s);
return;
}
target = SCB_GET_TARGET(ahd, scb);
channel = SCB_GET_CHANNEL(ahd, scb);
lun = SCB_GET_LUN(scb);
ahd_print_path(ahd, scb);
printf("SCB 0x%x - timed out\n", SCB_GET_TAG(scb));
ahd_dump_card_state(ahd);
ahd_reset_channel(ahd, SIM_CHANNEL(ahd, sim),
/*initiate reset*/TRUE);
ahd_unlock(ahd, &s);
return;
#if NOT_YET
last_phase = ahd_inb(ahd, LASTPHASE);
if (scb->sg_count > 0) {
for (i = 0; i < scb->sg_count; i++) {
printf("sg[%d] - Addr 0x%x : Length %d\n",
i,
((struct ahd_dma_seg *)scb->sg_list)[i].addr,
((struct ahd_dma_seg *)scb->sg_list)[i].len
& AHD_SG_LEN_MASK);
}
}
if (scb->flags & (SCB_DEVICE_RESET|SCB_ABORT)) {
/*
* Been down this road before.
* Do a full bus reset.
*/
bus_reset:
ahd_set_transaction_status(scb, CAM_CMD_TIMEOUT);
found = ahd_reset_channel(ahd, channel, /*Initiate Reset*/TRUE);
printf("%s: Issued Channel %c Bus Reset. "
"%d SCBs aborted\n", ahd_name(ahd), channel, found);
} else {
/*
* If we are a target, transition to bus free and report
* the timeout.
*
* The target/initiator that is holding up the bus may not
* be the same as the one that triggered this timeout
* (different commands have different timeout lengths).
* If the bus is idle and we are actiing as the initiator
* for this request, queue a BDR message to the timed out
* target. Otherwise, if the timed out transaction is
* active:
* Initiator transaction:
* Stuff the message buffer with a BDR message and assert
* ATN in the hopes that the target will let go of the bus
* and go to the mesgout phase. If this fails, we'll
* get another timeout 2 seconds later which will attempt
* a bus reset.
*
* Target transaction:
* Transition to BUS FREE and report the error.
* It's good to be the target!
*/
u_int active_scb_index;
u_int saved_scbptr;
saved_scbptr = ahd_get_scbptr(ahd);
active_scb_index = saved_scbptr;
if (last_phase != P_BUSFREE
&& (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) == 0
&& (active_scb_index < ahd->scb_data.numscbs)) {
struct scb *active_scb;
/*
* If the active SCB is not us, assume that
* the active SCB has a longer timeout than
* the timedout SCB, and wait for the active
* SCB to timeout.
*/
active_scb = ahd_lookup_scb(ahd, active_scb_index);
if (active_scb != scb) {
struct ccb_hdr *ccbh;
uint64_t newtimeout;
ahd_print_path(ahd, scb);
printf("Other SCB Timeout%s",
(scb->flags & SCB_OTHERTCL_TIMEOUT) != 0
? " again\n" : "\n");
scb->flags |= SCB_OTHERTCL_TIMEOUT;
newtimeout =
MAX(active_scb->io_ctx->ccb_h.timeout,
scb->io_ctx->ccb_h.timeout);
newtimeout *= hz;
newtimeout /= 1000;
ccbh = &scb->io_ctx->ccb_h;
scb->io_ctx->ccb_h.timeout_ch =
timeout(ahd_timeout, scb, newtimeout);
ahd_unpause(ahd);
ahd_unlock(ahd, &s);
return;
}
/* It's us */
if ((scb->hscb->control & TARGET_SCB) != 0) {
/*
* Send back any queued up transactions
* and properly record the error condition.
*/
ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
SCB_GET_CHANNEL(ahd, scb),
SCB_GET_LUN(scb),
SCB_GET_TAG(scb),
ROLE_TARGET,
CAM_CMD_TIMEOUT);
/* Will clear us from the bus */
ahd_restart(ahd);
ahd_unlock(ahd, &s);
return;
}
ahd_set_recoveryscb(ahd, active_scb);
ahd_outb(ahd, MSG_OUT, HOST_MSG);
ahd_outb(ahd, SCSISIGO, last_phase|ATNO);
ahd_print_path(ahd, active_scb);
printf("BDR message in message buffer\n");
active_scb->flags |= SCB_DEVICE_RESET;
active_scb->io_ctx->ccb_h.timeout_ch =
timeout(ahd_timeout, (caddr_t)active_scb, 2 * hz);
ahd_unpause(ahd);
} else {
int disconnected;
/* XXX Shouldn't panic. Just punt instead? */
if ((scb->hscb->control & TARGET_SCB) != 0)
panic("Timed-out target SCB but bus idle");
if (last_phase != P_BUSFREE
&& (ahd_inb(ahd, SSTAT0) & TARGET) != 0) {
/* XXX What happened to the SCB? */
/* Hung target selection. Goto busfree */
printf("%s: Hung target selection\n",
ahd_name(ahd));
ahd_restart(ahd);
ahd_unlock(ahd, &s);
return;
}
if (ahd_search_qinfifo(ahd, target, channel, lun,
SCB_GET_TAG(scb), ROLE_INITIATOR,
/*status*/0, SEARCH_COUNT) > 0) {
disconnected = FALSE;
} else {
disconnected = TRUE;
}
if (disconnected) {
ahd_set_recoveryscb(ahd, scb);
/*
* Actually re-queue this SCB in an attempt
* to select the device before it reconnects.
* In either case (selection or reselection),
* we will now issue a target reset to the
* timed-out device.
*
* Set the MK_MESSAGE control bit indicating
* that we desire to send a message. We
* also set the disconnected flag since
* in the paging case there is no guarantee
* that our SCB control byte matches the
* version on the card. We don't want the
* sequencer to abort the command thinking
* an unsolicited reselection occurred.
*/
scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
scb->flags |= SCB_DEVICE_RESET;
/*
* The sequencer will never re-reference the
* in-core SCB. To make sure we are notified
* during reslection, set the MK_MESSAGE flag
* in the card's copy of the SCB.
*/
ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
ahd_outb(ahd, SCB_CONTROL,
ahd_inb(ahd, SCB_CONTROL)|MK_MESSAGE);
/*
* Clear out any entries in the QINFIFO first
* so we are the next SCB for this target
* to run.
*/
ahd_search_qinfifo(ahd,
SCB_GET_TARGET(ahd, scb),
channel, SCB_GET_LUN(scb),
SCB_LIST_NULL,
ROLE_INITIATOR,
CAM_REQUEUE_REQ,
SEARCH_COMPLETE);
ahd_print_path(ahd, scb);
printf("Queuing a BDR SCB\n");
ahd_qinfifo_requeue_tail(ahd, scb);
ahd_set_scbptr(ahd, saved_scbptr);
scb->io_ctx->ccb_h.timeout_ch =
timeout(ahd_timeout, (caddr_t)scb, 2 * hz);
ahd_unpause(ahd);
} else {
/* Go "immediatly" to the bus reset */
/* This shouldn't happen */
ahd_set_recoveryscb(ahd, scb);
ahd_print_path(ahd, scb);
printf("SCB %d: Immediate reset. "
"Flags = 0x%x\n", SCB_GET_TAG(scb),
scb->flags);
goto bus_reset;
}
}
}
ahd_unlock(ahd, &s);
#endif
}
static void
ahd_abort_ccb(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
{
union ccb *abort_ccb;
abort_ccb = ccb->cab.abort_ccb;
switch (abort_ccb->ccb_h.func_code) {
#ifdef AHD_TARGET_MODE
case XPT_ACCEPT_TARGET_IO:
case XPT_IMMED_NOTIFY:
case XPT_CONT_TARGET_IO:
{
struct ahd_tmode_tstate *tstate;
struct ahd_tmode_lstate *lstate;
struct ccb_hdr_slist *list;
cam_status status;
status = ahd_find_tmode_devs(ahd, sim, abort_ccb, &tstate,
&lstate, TRUE);
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
break;
}
if (abort_ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO)
list = &lstate->accept_tios;
else if (abort_ccb->ccb_h.func_code == XPT_IMMED_NOTIFY)
list = &lstate->immed_notifies;
else
list = NULL;
if (list != NULL) {
struct ccb_hdr *curelm;
int found;
curelm = SLIST_FIRST(list);
found = 0;
if (curelm == &abort_ccb->ccb_h) {
found = 1;
SLIST_REMOVE_HEAD(list, sim_links.sle);
} else {
while(curelm != NULL) {
struct ccb_hdr *nextelm;
nextelm =
SLIST_NEXT(curelm, sim_links.sle);
if (nextelm == &abort_ccb->ccb_h) {
found = 1;
SLIST_NEXT(curelm,
sim_links.sle) =
SLIST_NEXT(nextelm,
sim_links.sle);
break;
}
curelm = nextelm;
}
}
if (found) {
abort_ccb->ccb_h.status = CAM_REQ_ABORTED;
xpt_done(abort_ccb);
ccb->ccb_h.status = CAM_REQ_CMP;
} else {
xpt_print_path(abort_ccb->ccb_h.path);
printf("Not found\n");
ccb->ccb_h.status = CAM_PATH_INVALID;
}
break;
}
/* FALLTHROUGH */
}
#endif
case XPT_SCSI_IO:
/* XXX Fully implement the hard ones */
ccb->ccb_h.status = CAM_UA_ABORT;
break;
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
}
void
ahd_send_async(struct ahd_softc *ahd, char channel, u_int target,
u_int lun, ac_code code, void *opt_arg)
{
struct ccb_trans_settings cts;
struct cam_path *path;
void *arg;
int error;
arg = NULL;
error = ahd_create_path(ahd, channel, target, lun, &path);
if (error != CAM_REQ_CMP)
return;
switch (code) {
case AC_TRANSFER_NEG:
{
#ifdef AHD_NEW_TRAN_SETTINGS
struct ccb_trans_settings_scsi *scsi;
cts.type = CTS_TYPE_CURRENT_SETTINGS;
scsi = &cts.proto_specific.scsi;
#else
cts.flags = CCB_TRANS_CURRENT_SETTINGS;
#endif
cts.ccb_h.path = path;
cts.ccb_h.target_id = target;
cts.ccb_h.target_lun = lun;
ahd_get_tran_settings(ahd, ahd->our_id, channel, &cts);
arg = &cts;
#ifdef AHD_NEW_TRAN_SETTINGS
scsi->valid &= ~CTS_SCSI_VALID_TQ;
scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
#else
cts.valid &= ~CCB_TRANS_TQ_VALID;
cts.flags &= ~CCB_TRANS_TAG_ENB;
#endif
if (opt_arg == NULL)
break;
if (*((ahd_queue_alg *)opt_arg) == AHD_QUEUE_TAGGED)
#ifdef AHD_NEW_TRAN_SETTINGS
scsi->flags |= ~CTS_SCSI_FLAGS_TAG_ENB;
scsi->valid |= CTS_SCSI_VALID_TQ;
#else
cts.flags |= CCB_TRANS_TAG_ENB;
cts.valid |= CCB_TRANS_TQ_VALID;
#endif
break;
}
case AC_SENT_BDR:
case AC_BUS_RESET:
break;
default:
panic("ahd_send_async: Unexpected async event");
}
xpt_async(code, path, arg);
xpt_free_path(path);
}
void
ahd_platform_set_tags(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo, int enable)
{
}
int
ahd_platform_alloc(struct ahd_softc *ahd, void *platform_arg)
{
ahd->platform_data = malloc(sizeof(struct ahd_platform_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ahd->platform_data == NULL)
return (ENOMEM);
return (0);
}
void
ahd_platform_free(struct ahd_softc *ahd)
{
struct ahd_platform_data *pdata;
pdata = ahd->platform_data;
if (pdata != NULL) {
if (pdata->regs[0] != NULL)
bus_release_resource(ahd->dev_softc,
pdata->regs_res_type[0],
pdata->regs_res_id[0],
pdata->regs[0]);
if (pdata->regs[1] != NULL)
bus_release_resource(ahd->dev_softc,
pdata->regs_res_type[1],
pdata->regs_res_id[1],
pdata->regs[1]);
if (pdata->irq != NULL)
bus_release_resource(ahd->dev_softc,
pdata->irq_res_type,
0, pdata->irq);
if (pdata->sim_b != NULL) {
xpt_async(AC_LOST_DEVICE, pdata->path_b, NULL);
xpt_free_path(pdata->path_b);
xpt_bus_deregister(cam_sim_path(pdata->sim_b));
cam_sim_free(pdata->sim_b, /*free_devq*/TRUE);
}
if (pdata->sim != NULL) {
xpt_async(AC_LOST_DEVICE, pdata->path, NULL);
xpt_free_path(pdata->path);
xpt_bus_deregister(cam_sim_path(pdata->sim));
cam_sim_free(pdata->sim, /*free_devq*/TRUE);
}
if (pdata->eh != NULL)
EVENTHANDLER_DEREGISTER(shutdown_final, pdata->eh);
free(ahd->platform_data, M_DEVBUF);
}
}
int
ahd_softc_comp(struct ahd_softc *lahd, struct ahd_softc *rahd)
{
/* We don't sort softcs under FreeBSD so report equal always */
return (0);
}
int
ahd_detach(device_t dev)
{
struct ahd_softc *ahd;
u_long l;
u_long s;
ahd_list_lock(&l);
device_printf(dev, "detaching device\n");
ahd = device_get_softc(dev);
ahd = ahd_find_softc(ahd);
if (ahd == NULL) {
device_printf(dev, "aic7xxx already detached\n");
ahd_list_unlock(&l);
return (ENOENT);
}
ahd_lock(ahd, &s);
ahd_intr_enable(ahd, FALSE);
bus_teardown_intr(dev, ahd->platform_data->irq, ahd->platform_data->ih);
ahd_unlock(ahd, &s);
ahd_free(ahd);
ahd_list_unlock(&l);
return (0);
}
#if UNUSED
static void
ahd_dump_targcmd(struct target_cmd *cmd)
{
uint8_t *byte;
uint8_t *last_byte;
int i;
byte = &cmd->initiator_channel;
/* Debugging info for received commands */
last_byte = &cmd[1].initiator_channel;
i = 0;
while (byte < last_byte) {
if (i == 0)
printf("\t");
printf("%#x", *byte++);
i++;
if (i == 8) {
printf("\n");
i = 0;
} else {
printf(", ");
}
}
}
#endif
static int
ahd_modevent(module_t mod, int type, void *data)
{
/* XXX Deal with busy status on unload. */
return 0;
}
static moduledata_t ahd_mod = {
"ahd",
ahd_modevent,
NULL
};
/********************************** DDB Hooks *********************************/
#ifdef DDB
static struct ahd_softc *ahd_ddb_softc;
static int ahd_ddb_paused;
static int ahd_ddb_paused_on_entry;
DB_COMMAND(ahd_set_unit, ahd_ddb_set_unit)
{
struct ahd_softc *list_ahd;
ahd_ddb_softc = NULL;
TAILQ_FOREACH(list_ahd, &ahd_tailq, links) {
if (list_ahd->unit == addr)
ahd_ddb_softc = list_ahd;
}
if (ahd_ddb_softc == NULL)
db_error("No matching softc found!\n");
}
DB_COMMAND(ahd_pause, ahd_ddb_pause)
{
if (ahd_ddb_softc == NULL) {
db_error("Must set unit with ahd_set_unit first!\n");
return;
}
if (ahd_ddb_paused == 0) {
ahd_ddb_paused++;
if (ahd_is_paused(ahd_ddb_softc)) {
ahd_ddb_paused_on_entry++;
return;
}
ahd_pause(ahd_ddb_softc);
}
}
DB_COMMAND(ahd_unpause, ahd_ddb_unpause)
{
if (ahd_ddb_softc == NULL) {
db_error("Must set unit with ahd_set_unit first!\n");
return;
}
if (ahd_ddb_paused != 0) {
ahd_ddb_paused = 0;
if (ahd_ddb_paused_on_entry)
return;
ahd_unpause(ahd_ddb_softc);
} else if (ahd_ddb_paused_on_entry != 0) {
/* Two unpauses to clear a paused on entry. */
ahd_ddb_paused_on_entry = 0;
ahd_unpause(ahd_ddb_softc);
}
}
DB_COMMAND(ahd_in, ahd_ddb_in)
{
int c;
int size;
if (ahd_ddb_softc == NULL) {
db_error("Must set unit with ahd_set_unit first!\n");
return;
}
if (have_addr == 0)
return;
size = 1;
while ((c = *modif++) != '\0') {
switch (c) {
case 'b':
size = 1;
break;
case 'w':
size = 2;
break;
case 'l':
size = 4;
break;
}
}
if (count <= 0)
count = 1;
while (--count >= 0) {
db_printf("%04x (M)%x: \t", addr,
ahd_inb(ahd_ddb_softc, MODE_PTR));
switch (size) {
case 1:
db_printf("%02x\n", ahd_inb(ahd_ddb_softc, addr));
break;
case 2:
db_printf("%04x\n", ahd_inw(ahd_ddb_softc, addr));
break;
case 4:
db_printf("%08x\n", ahd_inl(ahd_ddb_softc, addr));
break;
}
}
}
DB_SET(ahd_out, ahd_ddb_out, db_cmd_set, CS_MORE, NULL)
{
db_expr_t old_value;
db_expr_t new_value;
int size;
if (ahd_ddb_softc == NULL) {
db_error("Must set unit with ahd_set_unit first!\n");
return;
}
switch (modif[0]) {
case '\0':
case 'b':
size = 1;
break;
case 'h':
size = 2;
break;
case 'l':
size = 4;
break;
default:
db_error("Unknown size\n");
return;
}
while (db_expression(&new_value)) {
switch (size) {
default:
case 1:
old_value = ahd_inb(ahd_ddb_softc, addr);
ahd_outb(ahd_ddb_softc, addr, new_value);
break;
case 2:
old_value = ahd_inw(ahd_ddb_softc, addr);
ahd_outw(ahd_ddb_softc, addr, new_value);
break;
case 4:
old_value = ahd_inl(ahd_ddb_softc, addr);
ahd_outl(ahd_ddb_softc, addr, new_value);
break;
}
db_printf("%04x (M)%x: \t0x%x\t=\t0x%x",
addr, ahd_inb(ahd_ddb_softc, MODE_PTR),
old_value, new_value);
addr += size;
}
db_skip_to_eol();
}
#endif
DECLARE_MODULE(ahd, ahd_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE);
MODULE_DEPEND(ahd, cam, 1, 1, 1);
MODULE_VERSION(ahd, 1);