freebsd-dev/usr.sbin/keyserv/setkey.c

551 lines
11 KiB
C
Raw Normal View History

/*
* Sun RPC is a product of Sun Microsystems, Inc. and is provided for
* unrestricted use provided that this legend is included on all tape
* media and as a part of the software program in whole or part. Users
* may copy or modify Sun RPC without charge, but are not authorized
* to license or distribute it to anyone else except as part of a product or
* program developed by the user.
*
* SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
* WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun RPC is provided with no support and without any obligation on the
* part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
#ifndef lint
#if 0
static char sccsid[] = "@(#)setkey.c 1.11 94/04/25 SMI";
#endif
static const char rcsid[] =
1999-08-28 01:35:59 +00:00
"$FreeBSD$";
#endif /* not lint */
/*
* Copyright (c) 1986 - 1991 by Sun Microsystems, Inc.
*/
/*
* Do the real work of the keyserver.
* Store secret keys. Compute common keys,
* and use them to decrypt and encrypt DES keys.
* Cache the common keys, so the expensive computation is avoided.
*/
#include <mp.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <rpc/rpc.h>
#include <rpc/key_prot.h>
#include <rpc/des_crypt.h>
#include <rpc/des.h>
#include <sys/errno.h>
#include "keyserv.h"
static MINT *MODULUS;
static char *fetchsecretkey __P(( uid_t ));
static void writecache __P(( char *, char *, des_block * ));
static int readcache __P(( char *, char *, des_block * ));
static void extractdeskey __P (( MINT *, des_block * ));
static int storesecretkey __P(( uid_t, keybuf ));
static keystatus pk_crypt __P(( uid_t, char *, netobj *, des_block *, int));
static int nodefaultkeys = 0;
/*
* prohibit the nobody key on this machine k (the -d flag)
*/
void
pk_nodefaultkeys()
{
nodefaultkeys = 1;
}
/*
* Set the modulus for all our Diffie-Hellman operations
*/
void
setmodulus(modx)
char *modx;
{
MODULUS = xtom(modx);
}
/*
* Set the secretkey key for this uid
*/
keystatus
pk_setkey(uid, skey)
uid_t uid;
keybuf skey;
{
if (!storesecretkey(uid, skey)) {
return (KEY_SYSTEMERR);
}
return (KEY_SUCCESS);
}
/*
* Encrypt the key using the public key associated with remote_name and the
* secret key associated with uid.
*/
keystatus
pk_encrypt(uid, remote_name, remote_key, key)
uid_t uid;
char *remote_name;
netobj *remote_key;
des_block *key;
{
return (pk_crypt(uid, remote_name, remote_key, key, DES_ENCRYPT));
}
/*
* Decrypt the key using the public key associated with remote_name and the
* secret key associated with uid.
*/
keystatus
pk_decrypt(uid, remote_name, remote_key, key)
uid_t uid;
char *remote_name;
netobj *remote_key;
des_block *key;
{
return (pk_crypt(uid, remote_name, remote_key, key, DES_DECRYPT));
}
static int store_netname __P(( uid_t, key_netstarg * ));
static int fetch_netname __P(( uid_t, key_netstarg * ));
keystatus
pk_netput(uid, netstore)
uid_t uid;
key_netstarg *netstore;
{
if (!store_netname(uid, netstore)) {
return (KEY_SYSTEMERR);
}
return (KEY_SUCCESS);
}
keystatus
pk_netget(uid, netstore)
uid_t uid;
key_netstarg *netstore;
{
if (!fetch_netname(uid, netstore)) {
return (KEY_SYSTEMERR);
}
return (KEY_SUCCESS);
}
/*
* Do the work of pk_encrypt && pk_decrypt
*/
static keystatus
pk_crypt(uid, remote_name, remote_key, key, mode)
uid_t uid;
char *remote_name;
netobj *remote_key;
des_block *key;
int mode;
{
char *xsecret;
char xpublic[1024];
char xsecret_hold[1024];
des_block deskey;
int err;
MINT *public;
MINT *secret;
MINT *common;
char zero[8];
xsecret = fetchsecretkey(uid);
if (xsecret == NULL || xsecret[0] == 0) {
memset(zero, 0, sizeof (zero));
xsecret = xsecret_hold;
if (nodefaultkeys)
return (KEY_NOSECRET);
if (!getsecretkey("nobody", xsecret, zero) || xsecret[0] == 0) {
return (KEY_NOSECRET);
}
}
if (remote_key) {
memcpy(xpublic, remote_key->n_bytes, remote_key->n_len);
} else {
bzero((char *)&xpublic, sizeof(xpublic));
if (!getpublickey(remote_name, xpublic)) {
if (nodefaultkeys || !getpublickey("nobody", xpublic))
return (KEY_UNKNOWN);
}
}
if (!readcache(xpublic, xsecret, &deskey)) {
public = xtom(xpublic);
secret = xtom(xsecret);
/* Sanity Check on public and private keys */
if ((public == NULL) || (secret == NULL))
return (KEY_SYSTEMERR);
common = itom(0);
pow(public, secret, MODULUS, common);
extractdeskey(common, &deskey);
writecache(xpublic, xsecret, &deskey);
mfree(secret);
mfree(public);
mfree(common);
}
err = ecb_crypt((char *)&deskey, (char *)key, sizeof (des_block),
DES_HW | mode);
if (DES_FAILED(err)) {
return (KEY_SYSTEMERR);
}
return (KEY_SUCCESS);
}
keystatus
pk_get_conv_key(uid, xpublic, result)
uid_t uid;
keybuf xpublic;
cryptkeyres *result;
{
char *xsecret;
char xsecret_hold[1024];
MINT *public;
MINT *secret;
MINT *common;
char zero[8];
xsecret = fetchsecretkey(uid);
if (xsecret == NULL || xsecret[0] == 0) {
memset(zero, 0, sizeof (zero));
xsecret = xsecret_hold;
if (nodefaultkeys)
return (KEY_NOSECRET);
if (!getsecretkey("nobody", xsecret, zero) ||
xsecret[0] == 0)
return (KEY_NOSECRET);
}
if (!readcache(xpublic, xsecret, &result->cryptkeyres_u.deskey)) {
public = xtom(xpublic);
secret = xtom(xsecret);
/* Sanity Check on public and private keys */
if ((public == NULL) || (secret == NULL))
return (KEY_SYSTEMERR);
common = itom(0);
pow(public, secret, MODULUS, common);
extractdeskey(common, &result->cryptkeyres_u.deskey);
writecache(xpublic, xsecret, &result->cryptkeyres_u.deskey);
mfree(secret);
mfree(public);
mfree(common);
}
return (KEY_SUCCESS);
}
/*
* Choose middle 64 bits of the common key to use as our des key, possibly
* overwriting the lower order bits by setting parity.
*/
static void
extractdeskey(ck, deskey)
MINT *ck;
des_block *deskey;
{
MINT *a;
short r;
int i;
short base = (1 << 8);
char *k;
a = itom(0);
#ifdef SOLARIS_MP
_mp_move(ck, a);
#else
move(ck, a);
#endif
for (i = 0; i < ((KEYSIZE - 64) / 2) / 8; i++) {
sdiv(a, base, a, &r);
}
k = deskey->c;
for (i = 0; i < 8; i++) {
sdiv(a, base, a, &r);
*k++ = r;
}
mfree(a);
des_setparity((char *)deskey);
}
/*
* Key storage management
*/
#define KEY_ONLY 0
#define KEY_NAME 1
struct secretkey_netname_list {
uid_t uid;
key_netstarg keynetdata;
u_char sc_flag;
struct secretkey_netname_list *next;
};
static struct secretkey_netname_list *g_secretkey_netname;
/*
* Store the keys and netname for this uid
*/
static int
store_netname(uid, netstore)
uid_t uid;
key_netstarg *netstore;
{
struct secretkey_netname_list *new;
struct secretkey_netname_list **l;
for (l = &g_secretkey_netname; *l != NULL && (*l)->uid != uid;
l = &(*l)->next) {
}
if (*l == NULL) {
new = (struct secretkey_netname_list *)malloc(sizeof (*new));
if (new == NULL) {
return (0);
}
new->uid = uid;
new->next = NULL;
*l = new;
} else {
new = *l;
if (new->keynetdata.st_netname)
(void) free (new->keynetdata.st_netname);
}
memcpy(new->keynetdata.st_priv_key, netstore->st_priv_key,
HEXKEYBYTES);
memcpy(new->keynetdata.st_pub_key, netstore->st_pub_key, HEXKEYBYTES);
if (netstore->st_netname)
new->keynetdata.st_netname = strdup(netstore->st_netname);
else
new->keynetdata.st_netname = (char *)NULL;
new->sc_flag = KEY_NAME;
return (1);
}
/*
* Fetch the keys and netname for this uid
*/
static int
fetch_netname(uid, key_netst)
uid_t uid;
struct key_netstarg *key_netst;
{
struct secretkey_netname_list *l;
for (l = g_secretkey_netname; l != NULL; l = l->next) {
if ((l->uid == uid) && (l->sc_flag == KEY_NAME)){
memcpy(key_netst->st_priv_key,
l->keynetdata.st_priv_key, HEXKEYBYTES);
memcpy(key_netst->st_pub_key,
l->keynetdata.st_pub_key, HEXKEYBYTES);
if (l->keynetdata.st_netname)
key_netst->st_netname =
strdup(l->keynetdata.st_netname);
else
key_netst->st_netname = NULL;
return (1);
}
}
return (0);
}
static char *
fetchsecretkey(uid)
uid_t uid;
{
struct secretkey_netname_list *l;
for (l = g_secretkey_netname; l != NULL; l = l->next) {
if (l->uid == uid) {
return (l->keynetdata.st_priv_key);
}
}
return (NULL);
}
/*
* Store the secretkey for this uid
*/
static int
storesecretkey(uid, key)
uid_t uid;
keybuf key;
{
struct secretkey_netname_list *new;
struct secretkey_netname_list **l;
for (l = &g_secretkey_netname; *l != NULL && (*l)->uid != uid;
l = &(*l)->next) {
}
if (*l == NULL) {
new = (struct secretkey_netname_list *) malloc(sizeof (*new));
if (new == NULL) {
return (0);
}
new->uid = uid;
new->sc_flag = KEY_ONLY;
memset(new->keynetdata.st_pub_key, 0, HEXKEYBYTES);
new->keynetdata.st_netname = NULL;
new->next = NULL;
*l = new;
} else {
new = *l;
}
memcpy(new->keynetdata.st_priv_key, key,
HEXKEYBYTES);
return (1);
}
static int
hexdigit(val)
int val;
{
return ("0123456789abcdef"[val]);
}
void
bin2hex(bin, hex, size)
unsigned char *bin;
unsigned char *hex;
int size;
{
int i;
for (i = 0; i < size; i++) {
*hex++ = hexdigit(*bin >> 4);
*hex++ = hexdigit(*bin++ & 0xf);
}
}
static int
hexval(dig)
char dig;
{
if ('0' <= dig && dig <= '9') {
return (dig - '0');
} else if ('a' <= dig && dig <= 'f') {
return (dig - 'a' + 10);
} else if ('A' <= dig && dig <= 'F') {
return (dig - 'A' + 10);
} else {
return (-1);
}
}
void
hex2bin(hex, bin, size)
unsigned char *hex;
unsigned char *bin;
int size;
{
int i;
for (i = 0; i < size; i++) {
*bin = hexval(*hex++) << 4;
*bin++ |= hexval(*hex++);
}
}
/*
* Exponential caching management
*/
struct cachekey_list {
keybuf secret;
keybuf public;
des_block deskey;
struct cachekey_list *next;
};
static struct cachekey_list *g_cachedkeys;
/*
* cache result of expensive multiple precision exponential operation
*/
static void
writecache(pub, sec, deskey)
char *pub;
char *sec;
des_block *deskey;
{
struct cachekey_list *new;
new = (struct cachekey_list *) malloc(sizeof (struct cachekey_list));
if (new == NULL) {
return;
}
memcpy(new->public, pub, sizeof (keybuf));
memcpy(new->secret, sec, sizeof (keybuf));
new->deskey = *deskey;
new->next = g_cachedkeys;
g_cachedkeys = new;
}
/*
* Try to find the common key in the cache
*/
static int
readcache(pub, sec, deskey)
char *pub;
char *sec;
des_block *deskey;
{
struct cachekey_list *found;
register struct cachekey_list **l;
#define cachehit(pub, sec, list) \
(memcmp(pub, (list)->public, sizeof (keybuf)) == 0 && \
memcmp(sec, (list)->secret, sizeof (keybuf)) == 0)
for (l = &g_cachedkeys; (*l) != NULL && !cachehit(pub, sec, *l);
l = &(*l)->next)
;
if ((*l) == NULL) {
return (0);
}
found = *l;
(*l) = (*l)->next;
found->next = g_cachedkeys;
g_cachedkeys = found;
*deskey = found->deskey;
return (1);
}