freebsd-dev/sys/ia64/include/proc.h

43 lines
1.6 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2003 The FreeBSD Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
2001-12-06 18:17:02 +00:00
#ifndef _MACHINE_PROC_H_
#define _MACHINE_PROC_H_
struct mdthread {
Improve SMP support: o Allocate a VHPT per CPU. The VHPT is a hash table that the CPU uses to look up translations it can't find in the TLB. As such, the VHPT serves as a level 1 cache (the TLB being a level 0 cache) and best results are obtained when it's not shared between CPUs. The collision chain (i.e. the hash bucket) is shared between CPUs, as all buckets together constitute our collection of PTEs. To achieve this, the collision chain does not point to the first PTE in the list anymore, but to a hash bucket head structure. The head structure contains the pointer to the first PTE in the list, as well as a mutex to lock the bucket. Thus, each bucket is locked independently of each other. With at least 1024 buckets in the VHPT, this provides for sufficiently finei-grained locking to make the ssolution scalable to large SMP machines. o Add synchronisation to the lazy FP context switching. We do this with a seperate per-thread lock. On SMP machines the lazy high FP context switching without synchronisation caused inconsistent state, which resulted in a panic. Since the use of the high FP registers is not common, it's possible that races exist. The ia64 package build has proven to be a good stress test, so this will get plenty of exercise in the near future. o Don't use the local ID of the processor we want to send the IPI to as the argument to ipi_send(). use the struct pcpu pointer instead. The reason for this is that IPI delivery is unreliable. It has been observed that sending an IPI to a CPU causes it to receive a stray external interrupt. As such, we need a way to make the delivery reliable. The intended solution is to queue requests in the target CPU's per-CPU structure and use a single IPI to inform the CPU that there's a new entry in the queue. If that IPI gets lost, the CPU can check it's queue at any convenient time (such as for each clock interrupt). This also allows us to send requests to a CPU without interrupting it, if such would be beneficial. With these changes SMP is almost working. There are still some random process crashes and the machine can hang due to having the IPI lost that deals with the high FP context switch. The overhead of introducing the hash bucket head structure results in a performance degradation of about 1% for UP (extra pointer indirection). This is surprisingly small and is offset by gaining reasonably/good scalable SMP support.
2005-08-06 20:28:19 +00:00
struct mtx md_highfp_mtx;
Divorce critical sections from spinlocks. Critical sections as denoted by critical_enter() and critical_exit() are now solely a mechanism for deferring kernel preemptions. They no longer have any affect on interrupts. This means that standalone critical sections are now very cheap as they are simply unlocked integer increments and decrements for the common case. Spin mutexes now use a separate KPI implemented in MD code: spinlock_enter() and spinlock_exit(). This KPI is responsible for providing whatever MD guarantees are needed to ensure that a thread holding a spin lock won't be preempted by any other code that will try to lock the same lock. For now all archs continue to block interrupts in a "spinlock section" as they did formerly in all critical sections. Note that I've also taken this opportunity to push a few things into MD code rather than MI. For example, critical_fork_exit() no longer exists. Instead, MD code ensures that new threads have the correct state when they are created. Also, we no longer try to fixup the idlethreads for APs in MI code. Instead, each arch sets the initial curthread and adjusts the state of the idle thread it borrows in order to perform the initial context switch. This change is largely a big NOP, but the cleaner separation it provides will allow for more efficient alternative locking schemes in other parts of the kernel (bare critical sections rather than per-CPU spin mutexes for per-CPU data for example). Reviewed by: grehan, cognet, arch@, others Tested on: i386, alpha, sparc64, powerpc, arm, possibly more
2005-04-04 21:53:56 +00:00
int md_spinlock_count; /* (k) */
Improve SMP support: o Allocate a VHPT per CPU. The VHPT is a hash table that the CPU uses to look up translations it can't find in the TLB. As such, the VHPT serves as a level 1 cache (the TLB being a level 0 cache) and best results are obtained when it's not shared between CPUs. The collision chain (i.e. the hash bucket) is shared between CPUs, as all buckets together constitute our collection of PTEs. To achieve this, the collision chain does not point to the first PTE in the list anymore, but to a hash bucket head structure. The head structure contains the pointer to the first PTE in the list, as well as a mutex to lock the bucket. Thus, each bucket is locked independently of each other. With at least 1024 buckets in the VHPT, this provides for sufficiently finei-grained locking to make the ssolution scalable to large SMP machines. o Add synchronisation to the lazy FP context switching. We do this with a seperate per-thread lock. On SMP machines the lazy high FP context switching without synchronisation caused inconsistent state, which resulted in a panic. Since the use of the high FP registers is not common, it's possible that races exist. The ia64 package build has proven to be a good stress test, so this will get plenty of exercise in the near future. o Don't use the local ID of the processor we want to send the IPI to as the argument to ipi_send(). use the struct pcpu pointer instead. The reason for this is that IPI delivery is unreliable. It has been observed that sending an IPI to a CPU causes it to receive a stray external interrupt. As such, we need a way to make the delivery reliable. The intended solution is to queue requests in the target CPU's per-CPU structure and use a single IPI to inform the CPU that there's a new entry in the queue. If that IPI gets lost, the CPU can check it's queue at any convenient time (such as for each clock interrupt). This also allows us to send requests to a CPU without interrupting it, if such would be beneficial. With these changes SMP is almost working. There are still some random process crashes and the machine can hang due to having the IPI lost that deals with the high FP context switch. The overhead of introducing the hash bucket head structure results in a performance degradation of about 1% for UP (extra pointer indirection). This is surprisingly small and is offset by gaining reasonably/good scalable SMP support.
2005-08-06 20:28:19 +00:00
int md_saved_intr; /* (k) */
};
struct mdproc {
Revamp of the syscall path, exception and context handling. The prime objectives are: o Implement a syscall path based on the epc inststruction (see sys/ia64/ia64/syscall.s). o Revisit the places were we need to save and restore registers and define those contexts in terms of the register sets (see sys/ia64/include/_regset.h). Secundairy objectives: o Remove the requirement to use contigmalloc for kernel stacks. o Better handling of the high FP registers for SMP systems. o Switch to the new cpu_switch() and cpu_throw() semantics. o Add a good unwinder to reconstruct contexts for the rare cases we need to (see sys/contrib/ia64/libuwx) Many files are affected by this change. Functionally it boils down to: o The EPC syscall doesn't preserve registers it does not need to preserve and places the arguments differently on the stack. This affects libc and truss. o The address of the kernel page directory (kptdir) had to be unstaticized for use by the nested TLB fault handler. The name has been changed to ia64_kptdir to avoid conflicts. The renaming affects libkvm. o The trapframe only contains the special registers and the scratch registers. For syscalls using the EPC syscall path no scratch registers are saved. This affects all places where the trapframe is accessed. Most notably the unaligned access handler, the signal delivery code and the debugger. o Context switching only partly saves the special registers and the preserved registers. This affects cpu_switch() and triggered the move to the new semantics, which additionally affects cpu_throw(). o The high FP registers are either in the PCB or on some CPU. context switching for them is done lazily. This affects trap(). o The mcontext has room for all registers, but not all of them have to be defined in all cases. This mostly affects signal delivery code now. The *context syscalls are as of yet still unimplemented. Many details went into the removal of the requirement to use contigmalloc for kernel stacks. The details are mostly CPU specific and limited to exception_save() and exception_restore(). The few places where we create, destroy or switch stacks were mostly simplified by not having to construct physical addresses and additionally saving the virtual addresses for later use. Besides more efficient context saving and restoring, which of course yields a noticable speedup, this also fixes the dreaded SMP bootup problem as a side-effect. The details of which are still not fully understood. This change includes all the necessary backward compatibility code to have it handle older userland binaries that use the break instruction for syscalls. Support for break-based syscalls has been pessimized in favor of a clean implementation. Due to the overall better performance of the kernel, this will still be notived as an improvement if it's noticed at all. Approved by: re@ (jhb)
2003-05-16 21:26:42 +00:00
int __dummy; /* Avoid having an empty struct. */
};
2001-12-06 18:17:02 +00:00
#endif /* !_MACHINE_PROC_H_ */