freebsd-dev/sys/kern/kern_exit.c

936 lines
23 KiB
C
Raw Normal View History

/*-
1994-05-24 10:09:53 +00:00
* Copyright (c) 1982, 1986, 1989, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_exit.c 8.7 (Berkeley) 2/12/94
*/
2003-06-11 00:56:59 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include "opt_kdtrace.h"
#include "opt_ktrace.h"
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
1994-05-24 10:09:53 +00:00
#include <sys/proc.h>
#include <sys/pioctl.h>
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
#include <sys/jail.h>
1994-05-24 10:09:53 +00:00
#include <sys/tty.h>
#include <sys/wait.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
1994-05-24 10:09:53 +00:00
#include <sys/resourcevar.h>
#include <sys/sbuf.h>
#include <sys/signalvar.h>
#include <sys/sched.h>
#include <sys/sx.h>
#include <sys/syscallsubr.h>
#include <sys/syslog.h>
1994-05-24 10:09:53 +00:00
#include <sys/ptrace.h>
#include <sys/acct.h> /* for acct_process() function prototype */
#include <sys/filedesc.h>
#include <sys/sdt.h>
#include <sys/shm.h>
#include <sys/sem.h>
#ifdef KTRACE
#include <sys/ktrace.h>
#endif
#include <security/audit/audit.h>
#include <security/mac/mac_framework.h>
1994-05-24 10:09:53 +00:00
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/uma.h>
1994-05-24 10:09:53 +00:00
#ifdef KDTRACE_HOOKS
#include <sys/dtrace_bsd.h>
dtrace_execexit_func_t dtrace_fasttrap_exit;
#endif
SDT_PROVIDER_DECLARE(proc);
SDT_PROBE_DEFINE(proc, kernel, , exit);
SDT_PROBE_ARGTYPE(proc, kernel, , exit, 0, "int");
/* Required to be non-static for SysVR4 emulator */
MALLOC_DEFINE(M_ZOMBIE, "zombie", "zombie proc status");
/* Hook for NFS teardown procedure. */
void (*nlminfo_release_p)(struct proc *p);
1994-05-24 10:09:53 +00:00
/*
* exit -- death of process.
1994-05-24 10:09:53 +00:00
*/
void
2003-03-19 00:49:40 +00:00
sys_exit(struct thread *td, struct sys_exit_args *uap)
1994-05-24 10:09:53 +00:00
{
exit1(td, W_EXITCODE(uap->rval, 0));
1994-05-24 10:09:53 +00:00
/* NOTREACHED */
}
/*
* Exit: deallocate address space and other resources, change proc state to
* zombie, and unlink proc from allproc and parent's lists. Save exit status
* and rusage for wait(). Check for child processes and orphan them.
1994-05-24 10:09:53 +00:00
*/
void
2003-03-19 00:49:40 +00:00
exit1(struct thread *td, int rv)
1994-05-24 10:09:53 +00:00
{
struct proc *p, *nq, *q;
struct vnode *vtmp;
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
struct vnode *ttyvp = NULL;
#ifdef KTRACE
struct vnode *tracevp;
struct ucred *tracecred;
#endif
Locking for the per-process resource limits structure. - struct plimit includes a mutex to protect a reference count. The plimit structure is treated similarly to struct ucred in that is is always copy on write, so having a reference to a structure is sufficient to read from it without needing a further lock. - The proc lock protects the p_limit pointer and must be held while reading limits from a process to keep the limit structure from changing out from under you while reading from it. - Various global limits that are ints are not protected by a lock since int writes are atomic on all the archs we support and thus a lock wouldn't buy us anything. - All accesses to individual resource limits from a process are abstracted behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return either an rlimit, or the current or max individual limit of the specified resource from a process. - dosetrlimit() was renamed to kern_setrlimit() to match existing style of other similar syscall helper functions. - The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit() (it didn't used the stackgap when it should have) but uses lim_rlimit() and kern_setrlimit() instead. - The svr4 compat no longer uses the stackgap for resource limits calls, but uses lim_rlimit() and kern_setrlimit() instead. - The ibcs2 compat no longer uses the stackgap for resource limits. It also no longer uses the stackgap for accessing sysctl's for the ibcs2_sysconf() syscall but uses kernel_sysctl() instead. As a result, ibcs2_sysconf() no longer needs Giant. - The p_rlimit macro no longer exists. Submitted by: mtm (mostly, I only did a few cleanups and catchups) Tested on: i386 Compiled on: alpha, amd64
2004-02-04 21:52:57 +00:00
struct plimit *plim;
int locked;
1994-05-24 10:09:53 +00:00
mtx_assert(&Giant, MA_NOTOWNED);
p = td->td_proc;
/*
* XXX in case we're rebooting we just let init die in order to
* work around an unsolved stack overflow seen very late during
* shutdown on sparc64 when the gmirror worker process exists.
*/
if (p == initproc && rebooting == 0) {
printf("init died (signal %d, exit %d)\n",
1994-05-24 10:09:53 +00:00
WTERMSIG(rv), WEXITSTATUS(rv));
panic("Going nowhere without my init!");
}
/*
* MUST abort all other threads before proceeding past here.
*/
PROC_LOCK(p);
while (p->p_flag & P_HADTHREADS) {
/*
* First check if some other thread got here before us..
* if so, act apropriatly, (exit or suspend);
*/
thread_suspend_check(0);
/*
* Kill off the other threads. This requires
* some co-operation from other parts of the kernel
* so it may not be instantaneous. With this state set
* any thread entering the kernel from userspace will
* thread_exit() in trap(). Any thread attempting to
* sleep will return immediately with EINTR or EWOULDBLOCK
* which will hopefully force them to back out to userland
* freeing resources as they go. Any thread attempting
* to return to userland will thread_exit() from userret().
* thread_exit() will unsuspend us when the last of the
* other threads exits.
* If there is already a thread singler after resumption,
* calling thread_single will fail; in that case, we just
* re-check all suspension request, the thread should
* either be suspended there or exit.
*/
if (! thread_single(SINGLE_EXIT))
break;
/*
* All other activity in this process is now stopped.
Refactor a bunch of scheduler code to give basically the same behaviour but with slightly cleaned up interfaces. The KSE structure has become the same as the "per thread scheduler private data" structure. In order to not make the diffs too great one is #defined as the other at this time. The KSE (or td_sched) structure is now allocated per thread and has no allocation code of its own. Concurrency for a KSEGRP is now kept track of via a simple pair of counters rather than using KSE structures as tokens. Since the KSE structure is different in each scheduler, kern_switch.c is now included at the end of each scheduler. Nothing outside the scheduler knows the contents of the KSE (aka td_sched) structure. The fields in the ksegrp structure that are to do with the scheduler's queueing mechanisms are now moved to the kg_sched structure. (per ksegrp scheduler private data structure). In other words how the scheduler queues and keeps track of threads is no-one's business except the scheduler's. This should allow people to write experimental schedulers with completely different internal structuring. A scheduler call sched_set_concurrency(kg, N) has been added that notifies teh scheduler that no more than N threads from that ksegrp should be allowed to be on concurrently scheduled. This is also used to enforce 'fainess' at this time so that a ksegrp with 10000 threads can not swamp a the run queue and force out a process with 1 thread, since the current code will not set the concurrency above NCPU, and both schedulers will not allow more than that many onto the system run queue at a time. Each scheduler should eventualy develop their own methods to do this now that they are effectively separated. Rejig libthr's kernel interface to follow the same code paths as linkse for scope system threads. This has slightly hurt libthr's performance but I will work to recover as much of it as I can. Thread exit code has been cleaned up greatly. exit and exec code now transitions a process back to 'standard non-threaded mode' before taking the next step. Reviewed by: scottl, peter MFC after: 1 week
2004-09-05 02:09:54 +00:00
* Threading support has been turned off.
*/
}
KASSERT(p->p_numthreads == 1,
("exit1: proc %p exiting with %d threads", p, p->p_numthreads));
Close some races between procfs/ptrace and exit(2): - Reorder the events in exit(2) slightly so that we trigger the S_EXIT stop event earlier. After we have signalled that, we set P_WEXIT and then wait for any processes with a hold on the vmspace via PHOLD to release it. PHOLD now KASSERT()'s that P_WEXIT is clear when it is invoked, and PRELE now does a wakeup if P_WEXIT is set and p_lock drops to zero. - Change proc_rwmem() to require that the processing read from has its vmspace held via PHOLD by the caller and get rid of all the junk to screw around with the vmspace reference count as we no longer need it. - In ptrace() and pseudofs(), treat a process with P_WEXIT set as if it doesn't exist. - Only do one PHOLD in kern_ptrace() now, and do it earlier so it covers FIX_SSTEP() (since on alpha at least this can end up calling proc_rwmem() to clear an earlier single-step simualted via a breakpoint). We only do one to avoid races. Also, by making the EINVAL error for unknown requests be part of the default: case in the switch, the various switch cases can now just break out to return which removes a _lot_ of duplicated PRELE and proc unlocks, etc. Also, it fixes at least one bug where a LWP ptrace command could return EINVAL with the proc lock still held. - Changed the locking for ptrace_single_step(), ptrace_set_pc(), and ptrace_clear_single_step() to always be called with the proc lock held (it was a mixed bag previously). Alpha and arm have to drop the lock while the mess around with breakpoints, but other archs avoid extra lock release/acquires in ptrace(). I did have to fix a couple of other consumers in kern_kse and a few other places to hold the proc lock and PHOLD. Tested by: ps (1 mostly, but some bits of 2-4 as well) MFC after: 1 week
2006-02-22 18:57:50 +00:00
/*
* Wakeup anyone in procfs' PIOCWAIT. They should have a hold
* on our vmspace, so we should block below until they have
* released their reference to us. Note that if they have
* requested S_EXIT stops we will block here until they ack
* via PIOCCONT.
*/
_STOPEVENT(p, S_EXIT, rv);
/*
* Note that we are exiting and do another wakeup of anyone in
* PIOCWAIT in case they aren't listening for S_EXIT stops or
* decided to wait again after we told them we are exiting.
*/
p->p_flag |= P_WEXIT;
Close some races between procfs/ptrace and exit(2): - Reorder the events in exit(2) slightly so that we trigger the S_EXIT stop event earlier. After we have signalled that, we set P_WEXIT and then wait for any processes with a hold on the vmspace via PHOLD to release it. PHOLD now KASSERT()'s that P_WEXIT is clear when it is invoked, and PRELE now does a wakeup if P_WEXIT is set and p_lock drops to zero. - Change proc_rwmem() to require that the processing read from has its vmspace held via PHOLD by the caller and get rid of all the junk to screw around with the vmspace reference count as we no longer need it. - In ptrace() and pseudofs(), treat a process with P_WEXIT set as if it doesn't exist. - Only do one PHOLD in kern_ptrace() now, and do it earlier so it covers FIX_SSTEP() (since on alpha at least this can end up calling proc_rwmem() to clear an earlier single-step simualted via a breakpoint). We only do one to avoid races. Also, by making the EINVAL error for unknown requests be part of the default: case in the switch, the various switch cases can now just break out to return which removes a _lot_ of duplicated PRELE and proc unlocks, etc. Also, it fixes at least one bug where a LWP ptrace command could return EINVAL with the proc lock still held. - Changed the locking for ptrace_single_step(), ptrace_set_pc(), and ptrace_clear_single_step() to always be called with the proc lock held (it was a mixed bag previously). Alpha and arm have to drop the lock while the mess around with breakpoints, but other archs avoid extra lock release/acquires in ptrace(). I did have to fix a couple of other consumers in kern_kse and a few other places to hold the proc lock and PHOLD. Tested by: ps (1 mostly, but some bits of 2-4 as well) MFC after: 1 week
2006-02-22 18:57:50 +00:00
wakeup(&p->p_stype);
/*
* Wait for any processes that have a hold on our vmspace to
* release their reference.
*/
while (p->p_lock > 0)
msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0);
PROC_UNLOCK(p);
/* Drain the limit callout while we don't have the proc locked */
callout_drain(&p->p_limco);
#ifdef AUDIT
/*
* The Sun BSM exit token contains two components: an exit status as
* passed to exit(), and a return value to indicate what sort of exit
* it was. The exit status is WEXITSTATUS(rv), but it's not clear
* what the return value is.
*/
AUDIT_ARG_EXIT(WEXITSTATUS(rv), 0);
AUDIT_SYSCALL_EXIT(0, td);
#endif
/* Are we a task leader? */
if (p == p->p_leader) {
mtx_lock(&ppeers_lock);
q = p->p_peers;
while (q != NULL) {
PROC_LOCK(q);
psignal(q, SIGKILL);
PROC_UNLOCK(q);
q = q->p_peers;
}
2003-03-19 00:33:38 +00:00
while (p->p_peers != NULL)
msleep(p, &ppeers_lock, PWAIT, "exit1", 0);
mtx_unlock(&ppeers_lock);
}
2003-03-19 00:33:38 +00:00
/*
* Check if any loadable modules need anything done at process exit.
* E.g. SYSV IPC stuff
* XXX what if one of these generates an error?
*/
EVENTHANDLER_INVOKE(process_exit, p);
1994-05-24 10:09:53 +00:00
/*
* If parent is waiting for us to exit or exec,
* P_PPWAIT is set; we will wakeup the parent below.
*/
PROC_LOCK(p);
stopprofclock(p);
1994-05-24 10:09:53 +00:00
p->p_flag &= ~(P_TRACED | P_PPWAIT);
/*
* Stop the real interval timer. If the handler is currently
* executing, prevent it from rearming itself and let it finish.
*/
if (timevalisset(&p->p_realtimer.it_value) &&
callout_stop(&p->p_itcallout) == 0) {
timevalclear(&p->p_realtimer.it_interval);
msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0);
KASSERT(!timevalisset(&p->p_realtimer.it_value),
("realtime timer is still armed"));
}
PROC_UNLOCK(p);
1994-05-24 10:09:53 +00:00
/*
* Reset any sigio structures pointing to us as a result of
* F_SETOWN with our pid.
*/
funsetownlst(&p->p_sigiolst);
/*
* If this process has an nlminfo data area (for lockd), release it
*/
if (nlminfo_release_p != NULL && p->p_nlminfo != NULL)
(*nlminfo_release_p)(p);
1994-05-24 10:09:53 +00:00
/*
* Close open files and release open-file table.
* This may block!
*/
fdfree(td);
1994-05-24 10:09:53 +00:00
/*
* If this thread tickled GEOM, we need to wait for the giggling to
* stop before we return to userland
*/
if (td->td_pflags & TDP_GEOM)
g_waitidle();
/*
* Remove ourself from our leader's peer list and wake our leader.
*/
mtx_lock(&ppeers_lock);
if (p->p_leader->p_peers) {
q = p->p_leader;
while (q->p_peers != p)
q = q->p_peers;
q->p_peers = p->p_peers;
wakeup(p->p_leader);
}
mtx_unlock(&ppeers_lock);
vmspace_exit(td);
1994-05-24 10:09:53 +00:00
sx_xlock(&proctree_lock);
1994-05-24 10:09:53 +00:00
if (SESS_LEADER(p)) {
struct session *sp = p->p_session;
struct tty *tp;
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
/*
* s_ttyp is not zero'd; we use this to indicate that
* the session once had a controlling terminal. (for
* logging and informational purposes)
*/
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
SESS_LOCK(sp);
ttyvp = sp->s_ttyvp;
tp = sp->s_ttyp;
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
sp->s_ttyvp = NULL;
sp->s_ttydp = NULL;
sp->s_leader = NULL;
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
SESS_UNLOCK(sp);
/*
* Signal foreground pgrp and revoke access to
* controlling terminal if it has not been revoked
* already.
*
* Because the TTY may have been revoked in the mean
* time and could already have a new session associated
* with it, make sure we don't send a SIGHUP to a
* foreground process group that does not belong to this
* session.
*/
if (tp != NULL) {
tty_lock(tp);
if (tp->t_session == sp)
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
tty_signal_pgrp(tp, SIGHUP);
tty_unlock(tp);
}
if (ttyvp != NULL) {
sx_xunlock(&proctree_lock);
if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
VOP_REVOKE(ttyvp, REVOKEALL);
VOP_UNLOCK(ttyvp, 0);
}
sx_xlock(&proctree_lock);
1994-05-24 10:09:53 +00:00
}
}
1994-05-24 10:09:53 +00:00
fixjobc(p, p->p_pgrp, 0);
sx_xunlock(&proctree_lock);
(void)acct_process(td);
Integrate the new MPSAFE TTY layer to the FreeBSD operating system. The last half year I've been working on a replacement TTY layer for the FreeBSD kernel. The new TTY layer was designed to improve the following: - Improved driver model: The old TTY layer has a driver model that is not abstract enough to make it friendly to use. A good example is the output path, where the device drivers directly access the output buffers. This means that an in-kernel PPP implementation must always convert network buffers into TTY buffers. If a PPP implementation would be built on top of the new TTY layer (still needs a hooks layer, though), it would allow the PPP implementation to directly hand the data to the TTY driver. - Improved hotplugging: With the old TTY layer, it isn't entirely safe to destroy TTY's from the system. This implementation has a two-step destructing design, where the driver first abandons the TTY. After all threads have left the TTY, the TTY layer calls a routine in the driver, which can be used to free resources (unit numbers, etc). The pts(4) driver also implements this feature, which means posix_openpt() will now return PTY's that are created on the fly. - Improved performance: One of the major improvements is the per-TTY mutex, which is expected to improve scalability when compared to the old Giant locking. Another change is the unbuffered copying to userspace, which is both used on TTY device nodes and PTY masters. Upgrading should be quite straightforward. Unlike previous versions, existing kernel configuration files do not need to be changed, except when they reference device drivers that are listed in UPDATING. Obtained from: //depot/projects/mpsafetty/... Approved by: philip (ex-mentor) Discussed: on the lists, at BSDCan, at the DevSummit Sponsored by: Snow B.V., the Netherlands dcons(4) fixed by: kan
2008-08-20 08:31:58 +00:00
/* Release the TTY now we've unlocked everything. */
if (ttyvp != NULL)
vrele(ttyvp);
1994-05-24 10:09:53 +00:00
#ifdef KTRACE
1995-05-30 08:16:23 +00:00
/*
* Disable tracing, then drain any pending records and release
* the trace file.
1994-05-24 10:09:53 +00:00
*/
if (p->p_traceflag != 0) {
PROC_LOCK(p);
mtx_lock(&ktrace_mtx);
p->p_traceflag = 0;
mtx_unlock(&ktrace_mtx);
PROC_UNLOCK(p);
ktrprocexit(td);
PROC_LOCK(p);
mtx_lock(&ktrace_mtx);
tracevp = p->p_tracevp;
p->p_tracevp = NULL;
tracecred = p->p_tracecred;
p->p_tracecred = NULL;
mtx_unlock(&ktrace_mtx);
PROC_UNLOCK(p);
if (tracevp != NULL) {
locked = VFS_LOCK_GIANT(tracevp->v_mount);
vrele(tracevp);
VFS_UNLOCK_GIANT(locked);
}
if (tracecred != NULL)
crfree(tracecred);
}
1994-05-24 10:09:53 +00:00
#endif
/*
* Release reference to text vnode
*/
if ((vtmp = p->p_textvp) != NULL) {
p->p_textvp = NULL;
locked = VFS_LOCK_GIANT(vtmp->v_mount);
vrele(vtmp);
VFS_UNLOCK_GIANT(locked);
}
/*
* Release our limits structure.
*/
Locking for the per-process resource limits structure. - struct plimit includes a mutex to protect a reference count. The plimit structure is treated similarly to struct ucred in that is is always copy on write, so having a reference to a structure is sufficient to read from it without needing a further lock. - The proc lock protects the p_limit pointer and must be held while reading limits from a process to keep the limit structure from changing out from under you while reading from it. - Various global limits that are ints are not protected by a lock since int writes are atomic on all the archs we support and thus a lock wouldn't buy us anything. - All accesses to individual resource limits from a process are abstracted behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return either an rlimit, or the current or max individual limit of the specified resource from a process. - dosetrlimit() was renamed to kern_setrlimit() to match existing style of other similar syscall helper functions. - The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit() (it didn't used the stackgap when it should have) but uses lim_rlimit() and kern_setrlimit() instead. - The svr4 compat no longer uses the stackgap for resource limits calls, but uses lim_rlimit() and kern_setrlimit() instead. - The ibcs2 compat no longer uses the stackgap for resource limits. It also no longer uses the stackgap for accessing sysctl's for the ibcs2_sysconf() syscall but uses kernel_sysctl() instead. As a result, ibcs2_sysconf() no longer needs Giant. - The p_rlimit macro no longer exists. Submitted by: mtm (mostly, I only did a few cleanups and catchups) Tested on: i386 Compiled on: alpha, amd64
2004-02-04 21:52:57 +00:00
PROC_LOCK(p);
plim = p->p_limit;
p->p_limit = NULL;
PROC_UNLOCK(p);
lim_free(plim);
1994-05-24 10:09:53 +00:00
/*
* Remove proc from allproc queue and pidhash chain.
* Place onto zombproc. Unlink from parent's child list.
*/
sx_xlock(&allproc_lock);
LIST_REMOVE(p, p_list);
LIST_INSERT_HEAD(&zombproc, p, p_list);
LIST_REMOVE(p, p_hash);
sx_xunlock(&allproc_lock);
1994-05-24 10:09:53 +00:00
/*
* Call machine-dependent code to release any
* machine-dependent resources other than the address space.
* The address space is released by "vmspace_exitfree(p)" in
* vm_waitproc().
*/
cpu_exit(td);
WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid);
2006-02-03 21:09:40 +00:00
/*
* Reparent all of our children to init.
*/
sx_xlock(&proctree_lock);
q = LIST_FIRST(&p->p_children);
if (q != NULL) /* only need this if any child is S_ZOMB */
wakeup(initproc);
for (; q != NULL; q = nq) {
nq = LIST_NEXT(q, p_sibling);
PROC_LOCK(q);
proc_reparent(q, initproc);
q->p_sigparent = SIGCHLD;
1994-05-24 10:09:53 +00:00
/*
* Traced processes are killed
* since their existence means someone is screwing up.
*/
if (q->p_flag & P_TRACED) {
struct thread *temp;
q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE);
FOREACH_THREAD_IN_PROC(q, temp)
temp->td_dbgflags &= ~TDB_SUSPEND;
1994-05-24 10:09:53 +00:00
psignal(q, SIGKILL);
}
PROC_UNLOCK(q);
1994-05-24 10:09:53 +00:00
}
/* Save exit status. */
PROC_LOCK(p);
1994-05-24 10:09:53 +00:00
p->p_xstat = rv;
Add code to support debugging threaded process. 1. Add tm_lwpid into kse_thr_mailbox to indicate which kernel thread current user thread is running on. Add tm_dflags into kse_thr_mailbox, the flags is written by debugger, it tells UTS and kernel what should be done when the process is being debugged, current, there two flags TMDF_SSTEP and TMDF_DONOTRUNUSER. TMDF_SSTEP is used to tell kernel to turn on single stepping, or turn off if it is not set. TMDF_DONOTRUNUSER is used to tell kernel to schedule upcall whenever possible, to UTS, it means do not run the user thread until debugger clears it, this behaviour is necessary because gdb wants to resume only one thread when the thread's pc is at a breakpoint, and thread needs to go forward, in order to avoid other threads sneak pass the breakpoints, it needs to remove breakpoint, only wants one thread to go. Also, add km_lwp to kse_mailbox, the lwp id is copied to kse_thr_mailbox at context switch time when process is not being debugged, so when process is attached, debugger can map kernel thread to user thread. 2. Add p_xthread to proc strcuture and td_xsig to thread structure. p_xthread is used by a thread when it wants to report event to debugger, every thread can set the pointer, especially, when it is used in ptracestop, it is the last thread reporting event will win the race. Every thread has a td_xsig to exchange signal with debugger, thread uses TDF_XSIG flag to indicate it is reporting signal to debugger, if the flag is not cleared, thread will keep retrying until it is cleared by debugger, p_xthread may be used by debugger to indicate CURRENT thread. The p_xstat is still in proc structure to keep wait() to work, in future, we may just use td_xsig. 3. Add TDF_DBSUSPEND flag, the flag is used by debugger to suspend a thread. When process stops, debugger can set the flag for thread, thread will check the flag in thread_suspend_check, enters a loop, unless it is cleared by debugger, process is detached or process is existing. The flag is also checked in ptracestop, so debugger can temporarily suspend a thread even if the thread wants to exchange signal. 4. Current, in ptrace, we always resume all threads, but if a thread has already a TDF_DBSUSPEND flag set by debugger, it won't run. Encouraged by: marcel, julian, deischen
2004-07-13 07:20:10 +00:00
p->p_xthread = td;
/* Tell the prison that we are gone. */
prison_proc_free(p->p_ucred->cr_prison);
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
#ifdef KDTRACE_HOOKS
/*
* Tell the DTrace fasttrap provider about the exit if it
* has declared an interest.
*/
if (dtrace_fasttrap_exit)
dtrace_fasttrap_exit(p);
#endif
/*
* Notify interested parties of our demise.
*/
KNOTE_LOCKED(&p->p_klist, NOTE_EXIT);
2004-09-22 15:24:33 +00:00
#ifdef KDTRACE_HOOKS
int reason = CLD_EXITED;
if (WCOREDUMP(rv))
reason = CLD_DUMPED;
else if (WIFSIGNALED(rv))
reason = CLD_KILLED;
SDT_PROBE(proc, kernel, , exit, reason, 0, 0, 0, 0);
#endif
/*
* Just delete all entries in the p_klist. At this point we won't
* report any more events, and there are nasty race conditions that
* can beat us if we don't.
*/
knlist_clear(&p->p_klist, 1);
1994-05-24 10:09:53 +00:00
/*
* Notify parent that we're gone. If parent has the PS_NOCLDWAIT
* flag set, or if the handler is set to SIG_IGN, notify process
* 1 instead (and hope it will handle this situation).
1994-05-24 10:09:53 +00:00
*/
PROC_LOCK(p->p_pptr);
mtx_lock(&p->p_pptr->p_sigacts->ps_mtx);
if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
struct proc *pp;
mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
pp = p->p_pptr;
PROC_UNLOCK(pp);
proc_reparent(p, initproc);
p->p_sigparent = SIGCHLD;
PROC_LOCK(p->p_pptr);
/*
* Notify parent, so in case he was wait(2)ing or
* executing waitpid(2) with our pid, he will
* continue.
*/
wakeup(pp);
} else
mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
if (p->p_pptr == initproc)
2002-10-02 23:12:01 +00:00
psignal(p->p_pptr, SIGCHLD);
else if (p->p_sigparent != 0) {
if (p->p_sigparent == SIGCHLD)
childproc_exited(p);
else /* LINUX thread */
psignal(p->p_pptr, p->p_sigparent);
}
sx_xunlock(&proctree_lock);
/*
* The state PRS_ZOMBIE prevents other proesses from sending
* signal to the process, to avoid memory leak, we free memory
* for signal queue at the time when the state is set.
*/
sigqueue_flush(&p->p_sigqueue);
sigqueue_flush(&td->td_sigqueue);
/*
2003-04-17 22:22:47 +00:00
* We have to wait until after acquiring all locks before
* changing p_state. We need to avoid all possible context
* switches (including ones from blocking on a mutex) while
* marked as a zombie. We also have to set the zombie state
* before we release the parent process' proc lock to avoid
* a lost wakeup. So, we first call wakeup, then we grab the
* sched lock, update the state, and release the parent process'
* proc lock.
*/
wakeup(p->p_pptr);
cv_broadcast(&p->p_pwait);
sched_exit(p->p_pptr, td);
PROC_SLOCK(p);
p->p_state = PRS_ZOMBIE;
PROC_UNLOCK(p->p_pptr);
/*
2004-09-22 15:24:33 +00:00
* Hopefully no one will try to deliver a signal to the process this
* late in the game.
*/
knlist_destroy(&p->p_klist);
/*
* Save our children's rusage information in our exit rusage.
*/
ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux);
/*
* Make sure the scheduler takes this thread out of its tables etc.
* This will also release this thread's reference to the ucred.
2003-03-19 00:33:38 +00:00
* Other thread parts to release include pcb bits and such.
*/
thread_exit();
1994-05-24 10:09:53 +00:00
}
#ifndef _SYS_SYSPROTO_H_
struct abort2_args {
char *why;
int nargs;
void **args;
};
#endif
int
abort2(struct thread *td, struct abort2_args *uap)
{
struct proc *p = td->td_proc;
struct sbuf *sb;
void *uargs[16];
int error, i, sig;
/*
* Do it right now so we can log either proper call of abort2(), or
* note, that invalid argument was passed. 512 is big enough to
* handle 16 arguments' descriptions with additional comments.
*/
sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN);
sbuf_clear(sb);
sbuf_printf(sb, "%s(pid %d uid %d) aborted: ",
p->p_comm, p->p_pid, td->td_ucred->cr_uid);
/*
* Since we can't return from abort2(), send SIGKILL in cases, where
* abort2() was called improperly
*/
sig = SIGKILL;
/* Prevent from DoSes from user-space. */
if (uap->nargs < 0 || uap->nargs > 16)
goto out;
if (uap->nargs > 0) {
if (uap->args == NULL)
goto out;
error = copyin(uap->args, uargs, uap->nargs * sizeof(void *));
if (error != 0)
goto out;
}
/*
* Limit size of 'reason' string to 128. Will fit even when
* maximal number of arguments was chosen to be logged.
*/
if (uap->why != NULL) {
error = sbuf_copyin(sb, uap->why, 128);
if (error < 0)
goto out;
} else {
sbuf_printf(sb, "(null)");
}
if (uap->nargs > 0) {
sbuf_printf(sb, "(");
for (i = 0;i < uap->nargs; i++)
sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]);
sbuf_printf(sb, ")");
}
/*
* Final stage: arguments were proper, string has been
* successfully copied from userspace, and copying pointers
* from user-space succeed.
*/
sig = SIGABRT;
out:
if (sig == SIGKILL) {
sbuf_trim(sb);
sbuf_printf(sb, " (Reason text inaccessible)");
}
sbuf_cat(sb, "\n");
sbuf_finish(sb);
log(LOG_INFO, "%s", sbuf_data(sb));
sbuf_delete(sb);
exit1(td, W_EXITCODE(0, sig));
return (0);
}
#ifdef COMPAT_43
/*
* The dirty work is handled by kern_wait().
*/
int
2003-03-19 00:49:40 +00:00
owait(struct thread *td, struct owait_args *uap __unused)
1994-05-24 10:09:53 +00:00
{
int error, status;
1994-05-24 10:09:53 +00:00
error = kern_wait(td, WAIT_ANY, &status, 0, NULL);
if (error == 0)
td->td_retval[1] = status;
return (error);
1994-05-24 10:09:53 +00:00
}
#endif /* COMPAT_43 */
1994-05-24 10:09:53 +00:00
/*
* The dirty work is handled by kern_wait().
*/
int
2003-03-19 00:49:40 +00:00
wait4(struct thread *td, struct wait_args *uap)
1994-05-24 10:09:53 +00:00
{
Rework how we store process times in the kernel such that we always store the raw values including for child process statistics and only compute the system and user timevals on demand. - Fix the various kern_wait() syscall wrappers to only pass in a rusage pointer if they are going to use the result. - Add a kern_getrusage() function for the ABI syscalls to use so that they don't have to play stackgap games to call getrusage(). - Fix the svr4_sys_times() syscall to just call calcru() to calculate the times it needs rather than calling getrusage() twice with associated stackgap, etc. - Add a new rusage_ext structure to store raw time stats such as tick counts for user, system, and interrupt time as well as a bintime of the total runtime. A new p_rux field in struct proc replaces the same inline fields from struct proc (i.e. p_[isu]ticks, p_[isu]u, and p_runtime). A new p_crux field in struct proc contains the "raw" child time usage statistics. ruadd() has been changed to handle adding the associated rusage_ext structures as well as the values in rusage. Effectively, the values in rusage_ext replace the ru_utime and ru_stime values in struct rusage. These two fields in struct rusage are no longer used in the kernel. - calcru() has been split into a static worker function calcru1() that calculates appropriate timevals for user and system time as well as updating the rux_[isu]u fields of a passed in rusage_ext structure. calcru() uses a copy of the process' p_rux structure to compute the timevals after updating the runtime appropriately if any of the threads in that process are currently executing. It also now only locks sched_lock internally while doing the rux_runtime fixup. calcru() now only requires the caller to hold the proc lock and calcru1() only requires the proc lock internally. calcru() also no longer allows callers to ask for an interrupt timeval since none of them actually did. - calcru() now correctly handles threads executing on other CPUs. - A new calccru() function computes the child system and user timevals by calling calcru1() on p_crux. Note that this means that any code that wants child times must now call this function rather than reading from p_cru directly. This function also requires the proc lock. - This finishes the locking for rusage and friends so some of the Giant locks in exit1() and kern_wait() are now gone. - The locking in ttyinfo() has been tweaked so that a shared lock of the proctree lock is used to protect the process group rather than the process group lock. By holding this lock until the end of the function we now ensure that the process/thread that we pick to dump info about will no longer vanish while we are trying to output its info to the console. Submitted by: bde (mostly) MFC after: 1 month
2004-10-05 18:51:11 +00:00
struct rusage ru, *rup;
int error, status;
Rework how we store process times in the kernel such that we always store the raw values including for child process statistics and only compute the system and user timevals on demand. - Fix the various kern_wait() syscall wrappers to only pass in a rusage pointer if they are going to use the result. - Add a kern_getrusage() function for the ABI syscalls to use so that they don't have to play stackgap games to call getrusage(). - Fix the svr4_sys_times() syscall to just call calcru() to calculate the times it needs rather than calling getrusage() twice with associated stackgap, etc. - Add a new rusage_ext structure to store raw time stats such as tick counts for user, system, and interrupt time as well as a bintime of the total runtime. A new p_rux field in struct proc replaces the same inline fields from struct proc (i.e. p_[isu]ticks, p_[isu]u, and p_runtime). A new p_crux field in struct proc contains the "raw" child time usage statistics. ruadd() has been changed to handle adding the associated rusage_ext structures as well as the values in rusage. Effectively, the values in rusage_ext replace the ru_utime and ru_stime values in struct rusage. These two fields in struct rusage are no longer used in the kernel. - calcru() has been split into a static worker function calcru1() that calculates appropriate timevals for user and system time as well as updating the rux_[isu]u fields of a passed in rusage_ext structure. calcru() uses a copy of the process' p_rux structure to compute the timevals after updating the runtime appropriately if any of the threads in that process are currently executing. It also now only locks sched_lock internally while doing the rux_runtime fixup. calcru() now only requires the caller to hold the proc lock and calcru1() only requires the proc lock internally. calcru() also no longer allows callers to ask for an interrupt timeval since none of them actually did. - calcru() now correctly handles threads executing on other CPUs. - A new calccru() function computes the child system and user timevals by calling calcru1() on p_crux. Note that this means that any code that wants child times must now call this function rather than reading from p_cru directly. This function also requires the proc lock. - This finishes the locking for rusage and friends so some of the Giant locks in exit1() and kern_wait() are now gone. - The locking in ttyinfo() has been tweaked so that a shared lock of the proctree lock is used to protect the process group rather than the process group lock. By holding this lock until the end of the function we now ensure that the process/thread that we pick to dump info about will no longer vanish while we are trying to output its info to the console. Submitted by: bde (mostly) MFC after: 1 month
2004-10-05 18:51:11 +00:00
if (uap->rusage != NULL)
rup = &ru;
else
rup = NULL;
error = kern_wait(td, uap->pid, &status, uap->options, rup);
if (uap->status != NULL && error == 0)
error = copyout(&status, uap->status, sizeof(status));
if (uap->rusage != NULL && error == 0)
error = copyout(&ru, uap->rusage, sizeof(struct rusage));
return (error);
1994-05-24 10:09:53 +00:00
}
/*
* Reap the remains of a zombie process and optionally return status and
* rusage. Asserts and will release both the proctree_lock and the process
* lock as part of its work.
*/
static void
proc_reap(struct thread *td, struct proc *p, int *status, int options,
struct rusage *rusage)
{
struct proc *q, *t;
sx_assert(&proctree_lock, SA_XLOCKED);
PROC_LOCK_ASSERT(p, MA_OWNED);
PROC_SLOCK_ASSERT(p, MA_OWNED);
KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE"));
q = td->td_proc;
if (rusage) {
*rusage = p->p_ru;
calcru(p, &rusage->ru_utime, &rusage->ru_stime);
}
PROC_SUNLOCK(p);
td->td_retval[0] = p->p_pid;
if (status)
*status = p->p_xstat; /* convert to int */
if (options & WNOWAIT) {
/*
* Only poll, returning the status. Caller does not wish to
* release the proc struct just yet.
*/
PROC_UNLOCK(p);
sx_xunlock(&proctree_lock);
return;
}
PROC_LOCK(q);
sigqueue_take(p->p_ksi);
PROC_UNLOCK(q);
PROC_UNLOCK(p);
/*
* If we got the child via a ptrace 'attach', we need to give it back
* to the old parent.
*/
if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
PROC_LOCK(p);
p->p_oppid = 0;
proc_reparent(p, t);
PROC_UNLOCK(p);
tdsignal(t, NULL, SIGCHLD, p->p_ksi);
wakeup(t);
cv_broadcast(&p->p_pwait);
PROC_UNLOCK(t);
sx_xunlock(&proctree_lock);
return;
}
/*
* Remove other references to this process to ensure we have an
* exclusive reference.
*/
sx_xlock(&allproc_lock);
LIST_REMOVE(p, p_list); /* off zombproc */
sx_xunlock(&allproc_lock);
LIST_REMOVE(p, p_sibling);
leavepgrp(p);
sx_xunlock(&proctree_lock);
/*
* As a side effect of this lock, we know that all other writes to
* this proc are visible now, so no more locking is needed for p.
*/
PROC_LOCK(p);
p->p_xstat = 0; /* XXX: why? */
PROC_UNLOCK(p);
PROC_LOCK(q);
ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux);
PROC_UNLOCK(q);
/*
* Decrement the count of procs running with this uid.
*/
(void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
/*
* Free credentials, arguments, and sigacts.
*/
crfree(p->p_ucred);
p->p_ucred = NULL;
pargs_drop(p->p_args);
p->p_args = NULL;
sigacts_free(p->p_sigacts);
p->p_sigacts = NULL;
/*
* Do any thread-system specific cleanups.
*/
thread_wait(p);
/*
* Give vm and machine-dependent layer a chance to free anything that
* cpu_exit couldn't release while still running in process context.
*/
vm_waitproc(p);
#ifdef MAC
mac_proc_destroy(p);
#endif
KASSERT(FIRST_THREAD_IN_PROC(p),
("proc_reap: no residual thread!"));
uma_zfree(proc_zone, p);
sx_xlock(&allproc_lock);
nprocs--;
sx_xunlock(&allproc_lock);
}
int
2004-09-22 15:24:33 +00:00
kern_wait(struct thread *td, pid_t pid, int *status, int options,
struct rusage *rusage)
1994-05-24 10:09:53 +00:00
{
struct proc *p, *q;
int error, nfound;
1994-05-24 10:09:53 +00:00
AUDIT_ARG_PID(pid);
AUDIT_ARG_VALUE(options);
q = td->td_proc;
if (pid == 0) {
PROC_LOCK(q);
pid = -q->p_pgid;
PROC_UNLOCK(q);
}
if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WNOWAIT|WLINUXCLONE))
return (EINVAL);
1994-05-24 10:09:53 +00:00
loop:
if (q->p_flag & P_STATCHILD) {
PROC_LOCK(q);
q->p_flag &= ~P_STATCHILD;
PROC_UNLOCK(q);
}
1994-05-24 10:09:53 +00:00
nfound = 0;
sx_xlock(&proctree_lock);
LIST_FOREACH(p, &q->p_children, p_sibling) {
PROC_LOCK(p);
if (pid != WAIT_ANY &&
p->p_pid != pid && p->p_pgid != -pid) {
PROC_UNLOCK(p);
continue;
}
if (p_canwait(td, p)) {
PROC_UNLOCK(p);
1994-05-24 10:09:53 +00:00
continue;
}
/*
2003-03-19 00:33:38 +00:00
* This special case handles a kthread spawned by linux_clone
* (see linux_misc.c). The linux_wait4 and linux_waitpid
* functions need to be able to distinguish between waiting
* on a process and waiting on a thread. It is a thread if
* p_sigparent is not SIGCHLD, and the WLINUXCLONE option
* signifies we want to wait for threads and not processes.
*/
if ((p->p_sigparent != SIGCHLD) ^
((options & WLINUXCLONE) != 0)) {
PROC_UNLOCK(p);
continue;
}
1994-05-24 10:09:53 +00:00
nfound++;
PROC_SLOCK(p);
if (p->p_state == PRS_ZOMBIE) {
proc_reap(td, p, status, options, rusage);
return (0);
1994-05-24 10:09:53 +00:00
}
if ((p->p_flag & P_STOPPED_SIG) &&
(p->p_suspcount == p->p_numthreads) &&
(p->p_flag & P_WAITED) == 0 &&
(p->p_flag & P_TRACED || options & WUNTRACED)) {
PROC_SUNLOCK(p);
1994-05-24 10:09:53 +00:00
p->p_flag |= P_WAITED;
sx_xunlock(&proctree_lock);
td->td_retval[0] = p->p_pid;
if (status)
*status = W_STOPCODE(p->p_xstat);
PROC_LOCK(q);
sigqueue_take(p->p_ksi);
PROC_UNLOCK(q);
PROC_UNLOCK(p);
return (0);
1994-05-24 10:09:53 +00:00
}
PROC_SUNLOCK(p);
if (options & WCONTINUED && (p->p_flag & P_CONTINUED)) {
sx_xunlock(&proctree_lock);
td->td_retval[0] = p->p_pid;
p->p_flag &= ~P_CONTINUED;
PROC_LOCK(q);
sigqueue_take(p->p_ksi);
PROC_UNLOCK(q);
PROC_UNLOCK(p);
if (status)
*status = SIGCONT;
return (0);
}
PROC_UNLOCK(p);
1994-05-24 10:09:53 +00:00
}
if (nfound == 0) {
sx_xunlock(&proctree_lock);
return (ECHILD);
}
if (options & WNOHANG) {
sx_xunlock(&proctree_lock);
td->td_retval[0] = 0;
return (0);
}
PROC_LOCK(q);
sx_xunlock(&proctree_lock);
if (q->p_flag & P_STATCHILD) {
q->p_flag &= ~P_STATCHILD;
error = 0;
} else
error = msleep(q, &q->p_mtx, PWAIT | PCATCH, "wait", 0);
PROC_UNLOCK(q);
if (error)
return (error);
1994-05-24 10:09:53 +00:00
goto loop;
}
/*
* Make process 'parent' the new parent of process 'child'.
* Must be called with an exclusive hold of proctree lock.
1994-05-24 10:09:53 +00:00
*/
void
2003-03-19 00:49:40 +00:00
proc_reparent(struct proc *child, struct proc *parent)
1994-05-24 10:09:53 +00:00
{
sx_assert(&proctree_lock, SX_XLOCKED);
PROC_LOCK_ASSERT(child, MA_OWNED);
1994-05-24 10:09:53 +00:00
if (child->p_pptr == parent)
return;
PROC_LOCK(child->p_pptr);
sigqueue_take(child->p_ksi);
PROC_UNLOCK(child->p_pptr);
LIST_REMOVE(child, p_sibling);
LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1994-05-24 10:09:53 +00:00
child->p_pptr = parent;
}