1994-05-24 10:09:53 +00:00
|
|
|
/*
|
|
|
|
* Copyright (c) 1982, 1986, 1991, 1993
|
|
|
|
* The Regents of the University of California. All rights reserved.
|
|
|
|
* (c) UNIX System Laboratories, Inc.
|
|
|
|
* All or some portions of this file are derived from material licensed
|
|
|
|
* to the University of California by American Telephone and Telegraph
|
|
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by the University of
|
|
|
|
* California, Berkeley and its contributors.
|
|
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* @(#)kern_subr.c 8.3 (Berkeley) 1/21/94
|
1999-08-28 01:08:13 +00:00
|
|
|
* $FreeBSD$
|
1994-05-24 10:09:53 +00:00
|
|
|
*/
|
|
|
|
|
At long last, commit the zero copy sockets code.
MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes.
ti.4: Update the ti(4) man page to include information on the
TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options,
and also include information about the new character
device interface and the associated ioctls.
man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated
links.
jumbo.9: New man page describing the jumbo buffer allocator
interface and operation.
zero_copy.9: New man page describing the general characteristics of
the zero copy send and receive code, and what an
application author should do to take advantage of the
zero copy functionality.
NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS,
TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT.
conf/files: Add uipc_jumbo.c and uipc_cow.c.
conf/options: Add the 5 options mentioned above.
kern_subr.c: Receive side zero copy implementation. This takes
"disposable" pages attached to an mbuf, gives them to
a user process, and then recycles the user's page.
This is only active when ZERO_COPY_SOCKETS is turned on
and the kern.ipc.zero_copy.receive sysctl variable is
set to 1.
uipc_cow.c: Send side zero copy functions. Takes a page written
by the user and maps it copy on write and assigns it
kernel virtual address space. Removes copy on write
mapping once the buffer has been freed by the network
stack.
uipc_jumbo.c: Jumbo disposable page allocator code. This allocates
(optionally) disposable pages for network drivers that
want to give the user the option of doing zero copy
receive.
uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are
enabled if ZERO_COPY_SOCKETS is turned on.
Add zero copy send support to sosend() -- pages get
mapped into the kernel instead of getting copied if
they meet size and alignment restrictions.
uipc_syscalls.c:Un-staticize some of the sf* functions so that they
can be used elsewhere. (uipc_cow.c)
if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid
calling malloc() with M_WAITOK. Return an error if
the M_NOWAIT malloc fails.
The ti(4) driver and the wi(4) driver, at least, call
this with a mutex held. This causes witness warnings
for 'ifconfig -a' with a wi(4) or ti(4) board in the
system. (I've only verified for ti(4)).
ip_output.c: Fragment large datagrams so that each segment contains
a multiple of PAGE_SIZE amount of data plus headers.
This allows the receiver to potentially do page
flipping on receives.
if_ti.c: Add zero copy receive support to the ti(4) driver. If
TI_PRIVATE_JUMBOS is not defined, it now uses the
jumbo(9) buffer allocator for jumbo receive buffers.
Add a new character device interface for the ti(4)
driver for the new debugging interface. This allows
(a patched version of) gdb to talk to the Tigon board
and debug the firmware. There are also a few additional
debugging ioctls available through this interface.
Add header splitting support to the ti(4) driver.
Tweak some of the default interrupt coalescing
parameters to more useful defaults.
Add hooks for supporting transmit flow control, but
leave it turned off with a comment describing why it
is turned off.
if_tireg.h: Change the firmware rev to 12.4.11, since we're really
at 12.4.11 plus fixes from 12.4.13.
Add defines needed for debugging.
Remove the ti_stats structure, it is now defined in
sys/tiio.h.
ti_fw.h: 12.4.11 firmware.
ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13,
and my header splitting patches. Revision 12.4.13
doesn't handle 10/100 negotiation properly. (This
firmware is the same as what was in the tree previously,
with the addition of header splitting support.)
sys/jumbo.h: Jumbo buffer allocator interface.
sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to
indicate that the payload buffer can be thrown away /
flipped to a userland process.
socketvar.h: Add prototype for socow_setup.
tiio.h: ioctl interface to the character portion of the ti(4)
driver, plus associated structure/type definitions.
uio.h: Change prototype for uiomoveco() so that we'll know
whether the source page is disposable.
ufs_readwrite.c:Update for new prototype of uiomoveco().
vm_fault.c: In vm_fault(), check to see whether we need to do a page
based copy on write fault.
vm_object.c: Add a new function, vm_object_allocate_wait(). This
does the same thing that vm_object allocate does, except
that it gives the caller the opportunity to specify whether
it should wait on the uma_zalloc() of the object structre.
This allows vm objects to be allocated while holding a
mutex. (Without generating WITNESS warnings.)
vm_object_allocate() is implemented as a call to
vm_object_allocate_wait() with the malloc flag set to
M_WAITOK.
vm_object.h: Add prototype for vm_object_allocate_wait().
vm_page.c: Add page-based copy on write setup, clear and fault
routines.
vm_page.h: Add page based COW function prototypes and variable in
the vm_page structure.
Many thanks to Drew Gallatin, who wrote the zero copy send and receive
code, and to all the other folks who have tested and reviewed this code
over the years.
2002-06-26 03:37:47 +00:00
|
|
|
#include "opt_zero.h"
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
1999-02-22 16:57:48 +00:00
|
|
|
#include <sys/kernel.h>
|
2000-09-07 01:33:02 +00:00
|
|
|
#include <sys/ktr.h>
|
2001-05-01 08:13:21 +00:00
|
|
|
#include <sys/lock.h>
|
|
|
|
#include <sys/mutex.h>
|
1994-05-24 10:09:53 +00:00
|
|
|
#include <sys/proc.h>
|
|
|
|
#include <sys/malloc.h>
|
1999-02-02 12:11:01 +00:00
|
|
|
#include <sys/resourcevar.h>
|
2001-06-18 20:24:54 +00:00
|
|
|
#include <sys/sysctl.h>
|
VM level code cleanups.
1) Start using TSM.
Struct procs continue to point to upages structure, after being freed.
Struct vmspace continues to point to pte object and kva space for kstack.
u_map is now superfluous.
2) vm_map's don't need to be reference counted. They always exist either
in the kernel or in a vmspace. The vmspaces are managed by reference
counts.
3) Remove the "wired" vm_map nonsense.
4) No need to keep a cache of kernel stack kva's.
5) Get rid of strange looking ++var, and change to var++.
6) Change more data structures to use our "zone" allocator. Added
struct proc, struct vmspace and struct vnode. This saves a significant
amount of kva space and physical memory. Additionally, this enables
TSM for the zone managed memory.
7) Keep ioopt disabled for now.
8) Remove the now bogus "single use" map concept.
9) Use generation counts or id's for data structures residing in TSM, where
it allows us to avoid unneeded restart overhead during traversals, where
blocking might occur.
10) Account better for memory deficits, so the pageout daemon will be able
to make enough memory available (experimental.)
11) Fix some vnode locking problems. (From Tor, I think.)
12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp.
(experimental.)
13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c
code. Use generation counts, get rid of unneded collpase operations,
and clean up the cluster code.
14) Make vm_zone more suitable for TSM.
This commit is partially as a result of discussions and contributions from
other people, including DG, Tor Egge, PHK, and probably others that I
have forgotten to attribute (so let me know, if I forgot.)
This is not the infamous, final cleanup of the vnode stuff, but a necessary
step. Vnode mgmt should be correct, but things might still change, and
there is still some missing stuff (like ioopt, and physical backing of
non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
|
|
|
#include <sys/vnode.h>
|
1997-12-19 09:03:37 +00:00
|
|
|
|
|
|
|
#include <vm/vm.h>
|
|
|
|
#include <vm/vm_page.h>
|
|
|
|
#include <vm/vm_map.h>
|
2002-07-12 02:23:55 +00:00
|
|
|
#ifdef ZERO_COPY_SOCKETS
|
|
|
|
#include <vm/vm_param.h>
|
|
|
|
#endif
|
|
|
|
#if defined(ZERO_COPY_SOCKETS) || defined(ENABLE_VFS_IOOPT)
|
|
|
|
#include <vm/vm_object.h>
|
|
|
|
#endif
|
1994-05-24 10:09:53 +00:00
|
|
|
|
2001-06-18 20:24:54 +00:00
|
|
|
SYSCTL_INT(_kern, KERN_IOV_MAX, iov_max, CTLFLAG_RD, NULL, UIO_MAXIOV,
|
|
|
|
"Maximum number of elements in an I/O vector; sysconf(_SC_IOV_MAX)");
|
|
|
|
|
2002-07-12 02:23:55 +00:00
|
|
|
#if defined(ZERO_COPY_SOCKETS) || defined(ENABLE_VFS_IOOPT)
|
|
|
|
static int userspaceco(caddr_t cp, u_int cnt, struct uio *uio,
|
|
|
|
struct vm_object *obj, int disposable);
|
|
|
|
#endif
|
At long last, commit the zero copy sockets code.
MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes.
ti.4: Update the ti(4) man page to include information on the
TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options,
and also include information about the new character
device interface and the associated ioctls.
man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated
links.
jumbo.9: New man page describing the jumbo buffer allocator
interface and operation.
zero_copy.9: New man page describing the general characteristics of
the zero copy send and receive code, and what an
application author should do to take advantage of the
zero copy functionality.
NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS,
TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT.
conf/files: Add uipc_jumbo.c and uipc_cow.c.
conf/options: Add the 5 options mentioned above.
kern_subr.c: Receive side zero copy implementation. This takes
"disposable" pages attached to an mbuf, gives them to
a user process, and then recycles the user's page.
This is only active when ZERO_COPY_SOCKETS is turned on
and the kern.ipc.zero_copy.receive sysctl variable is
set to 1.
uipc_cow.c: Send side zero copy functions. Takes a page written
by the user and maps it copy on write and assigns it
kernel virtual address space. Removes copy on write
mapping once the buffer has been freed by the network
stack.
uipc_jumbo.c: Jumbo disposable page allocator code. This allocates
(optionally) disposable pages for network drivers that
want to give the user the option of doing zero copy
receive.
uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are
enabled if ZERO_COPY_SOCKETS is turned on.
Add zero copy send support to sosend() -- pages get
mapped into the kernel instead of getting copied if
they meet size and alignment restrictions.
uipc_syscalls.c:Un-staticize some of the sf* functions so that they
can be used elsewhere. (uipc_cow.c)
if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid
calling malloc() with M_WAITOK. Return an error if
the M_NOWAIT malloc fails.
The ti(4) driver and the wi(4) driver, at least, call
this with a mutex held. This causes witness warnings
for 'ifconfig -a' with a wi(4) or ti(4) board in the
system. (I've only verified for ti(4)).
ip_output.c: Fragment large datagrams so that each segment contains
a multiple of PAGE_SIZE amount of data plus headers.
This allows the receiver to potentially do page
flipping on receives.
if_ti.c: Add zero copy receive support to the ti(4) driver. If
TI_PRIVATE_JUMBOS is not defined, it now uses the
jumbo(9) buffer allocator for jumbo receive buffers.
Add a new character device interface for the ti(4)
driver for the new debugging interface. This allows
(a patched version of) gdb to talk to the Tigon board
and debug the firmware. There are also a few additional
debugging ioctls available through this interface.
Add header splitting support to the ti(4) driver.
Tweak some of the default interrupt coalescing
parameters to more useful defaults.
Add hooks for supporting transmit flow control, but
leave it turned off with a comment describing why it
is turned off.
if_tireg.h: Change the firmware rev to 12.4.11, since we're really
at 12.4.11 plus fixes from 12.4.13.
Add defines needed for debugging.
Remove the ti_stats structure, it is now defined in
sys/tiio.h.
ti_fw.h: 12.4.11 firmware.
ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13,
and my header splitting patches. Revision 12.4.13
doesn't handle 10/100 negotiation properly. (This
firmware is the same as what was in the tree previously,
with the addition of header splitting support.)
sys/jumbo.h: Jumbo buffer allocator interface.
sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to
indicate that the payload buffer can be thrown away /
flipped to a userland process.
socketvar.h: Add prototype for socow_setup.
tiio.h: ioctl interface to the character portion of the ti(4)
driver, plus associated structure/type definitions.
uio.h: Change prototype for uiomoveco() so that we'll know
whether the source page is disposable.
ufs_readwrite.c:Update for new prototype of uiomoveco().
vm_fault.c: In vm_fault(), check to see whether we need to do a page
based copy on write fault.
vm_object.c: Add a new function, vm_object_allocate_wait(). This
does the same thing that vm_object allocate does, except
that it gives the caller the opportunity to specify whether
it should wait on the uma_zalloc() of the object structre.
This allows vm objects to be allocated while holding a
mutex. (Without generating WITNESS warnings.)
vm_object_allocate() is implemented as a call to
vm_object_allocate_wait() with the malloc flag set to
M_WAITOK.
vm_object.h: Add prototype for vm_object_allocate_wait().
vm_page.c: Add page-based copy on write setup, clear and fault
routines.
vm_page.h: Add page based COW function prototypes and variable in
the vm_page structure.
Many thanks to Drew Gallatin, who wrote the zero copy send and receive
code, and to all the other folks who have tested and reviewed this code
over the years.
2002-06-26 03:37:47 +00:00
|
|
|
|
2002-07-12 02:23:55 +00:00
|
|
|
#ifdef ZERO_COPY_SOCKETS
|
At long last, commit the zero copy sockets code.
MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes.
ti.4: Update the ti(4) man page to include information on the
TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options,
and also include information about the new character
device interface and the associated ioctls.
man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated
links.
jumbo.9: New man page describing the jumbo buffer allocator
interface and operation.
zero_copy.9: New man page describing the general characteristics of
the zero copy send and receive code, and what an
application author should do to take advantage of the
zero copy functionality.
NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS,
TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT.
conf/files: Add uipc_jumbo.c and uipc_cow.c.
conf/options: Add the 5 options mentioned above.
kern_subr.c: Receive side zero copy implementation. This takes
"disposable" pages attached to an mbuf, gives them to
a user process, and then recycles the user's page.
This is only active when ZERO_COPY_SOCKETS is turned on
and the kern.ipc.zero_copy.receive sysctl variable is
set to 1.
uipc_cow.c: Send side zero copy functions. Takes a page written
by the user and maps it copy on write and assigns it
kernel virtual address space. Removes copy on write
mapping once the buffer has been freed by the network
stack.
uipc_jumbo.c: Jumbo disposable page allocator code. This allocates
(optionally) disposable pages for network drivers that
want to give the user the option of doing zero copy
receive.
uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are
enabled if ZERO_COPY_SOCKETS is turned on.
Add zero copy send support to sosend() -- pages get
mapped into the kernel instead of getting copied if
they meet size and alignment restrictions.
uipc_syscalls.c:Un-staticize some of the sf* functions so that they
can be used elsewhere. (uipc_cow.c)
if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid
calling malloc() with M_WAITOK. Return an error if
the M_NOWAIT malloc fails.
The ti(4) driver and the wi(4) driver, at least, call
this with a mutex held. This causes witness warnings
for 'ifconfig -a' with a wi(4) or ti(4) board in the
system. (I've only verified for ti(4)).
ip_output.c: Fragment large datagrams so that each segment contains
a multiple of PAGE_SIZE amount of data plus headers.
This allows the receiver to potentially do page
flipping on receives.
if_ti.c: Add zero copy receive support to the ti(4) driver. If
TI_PRIVATE_JUMBOS is not defined, it now uses the
jumbo(9) buffer allocator for jumbo receive buffers.
Add a new character device interface for the ti(4)
driver for the new debugging interface. This allows
(a patched version of) gdb to talk to the Tigon board
and debug the firmware. There are also a few additional
debugging ioctls available through this interface.
Add header splitting support to the ti(4) driver.
Tweak some of the default interrupt coalescing
parameters to more useful defaults.
Add hooks for supporting transmit flow control, but
leave it turned off with a comment describing why it
is turned off.
if_tireg.h: Change the firmware rev to 12.4.11, since we're really
at 12.4.11 plus fixes from 12.4.13.
Add defines needed for debugging.
Remove the ti_stats structure, it is now defined in
sys/tiio.h.
ti_fw.h: 12.4.11 firmware.
ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13,
and my header splitting patches. Revision 12.4.13
doesn't handle 10/100 negotiation properly. (This
firmware is the same as what was in the tree previously,
with the addition of header splitting support.)
sys/jumbo.h: Jumbo buffer allocator interface.
sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to
indicate that the payload buffer can be thrown away /
flipped to a userland process.
socketvar.h: Add prototype for socow_setup.
tiio.h: ioctl interface to the character portion of the ti(4)
driver, plus associated structure/type definitions.
uio.h: Change prototype for uiomoveco() so that we'll know
whether the source page is disposable.
ufs_readwrite.c:Update for new prototype of uiomoveco().
vm_fault.c: In vm_fault(), check to see whether we need to do a page
based copy on write fault.
vm_object.c: Add a new function, vm_object_allocate_wait(). This
does the same thing that vm_object allocate does, except
that it gives the caller the opportunity to specify whether
it should wait on the uma_zalloc() of the object structre.
This allows vm objects to be allocated while holding a
mutex. (Without generating WITNESS warnings.)
vm_object_allocate() is implemented as a call to
vm_object_allocate_wait() with the malloc flag set to
M_WAITOK.
vm_object.h: Add prototype for vm_object_allocate_wait().
vm_page.c: Add page-based copy on write setup, clear and fault
routines.
vm_page.h: Add page based COW function prototypes and variable in
the vm_page structure.
Many thanks to Drew Gallatin, who wrote the zero copy send and receive
code, and to all the other folks who have tested and reviewed this code
over the years.
2002-06-26 03:37:47 +00:00
|
|
|
/* Declared in uipc_socket.c */
|
|
|
|
extern int so_zero_copy_receive;
|
|
|
|
|
|
|
|
static int vm_pgmoveco(vm_map_t mapa, vm_object_t srcobj, vm_offset_t kaddr,
|
|
|
|
vm_offset_t uaddr);
|
|
|
|
|
|
|
|
static int
|
|
|
|
vm_pgmoveco(mapa, srcobj, kaddr, uaddr)
|
|
|
|
vm_map_t mapa;
|
|
|
|
vm_object_t srcobj;
|
|
|
|
vm_offset_t kaddr, uaddr;
|
|
|
|
{
|
|
|
|
vm_map_t map = mapa;
|
|
|
|
vm_page_t kern_pg, user_pg;
|
|
|
|
vm_object_t uobject;
|
|
|
|
vm_map_entry_t entry;
|
|
|
|
vm_pindex_t upindex, kpindex;
|
|
|
|
vm_prot_t prot;
|
|
|
|
boolean_t wired;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* First lookup the kernel page.
|
|
|
|
*/
|
|
|
|
kern_pg = PHYS_TO_VM_PAGE(vtophys(kaddr));
|
|
|
|
|
|
|
|
if ((vm_map_lookup(&map, uaddr,
|
|
|
|
VM_PROT_READ, &entry, &uobject,
|
|
|
|
&upindex, &prot, &wired)) != KERN_SUCCESS) {
|
|
|
|
return(EFAULT);
|
|
|
|
}
|
|
|
|
if ((user_pg = vm_page_lookup(uobject, upindex)) != NULL) {
|
|
|
|
vm_page_sleep_busy(user_pg, 1, "vm_pgmoveco");
|
|
|
|
pmap_remove(map->pmap, uaddr, uaddr+PAGE_SIZE);
|
|
|
|
vm_page_busy(user_pg);
|
|
|
|
vm_page_free(user_pg);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (kern_pg->busy || ((kern_pg->queue - kern_pg->pc) == PQ_FREE) ||
|
|
|
|
(kern_pg->hold_count != 0)|| (kern_pg->flags & PG_BUSY)) {
|
|
|
|
printf("vm_pgmoveco: pindex(%lu), busy(%d), PG_BUSY(%d), "
|
|
|
|
"hold(%d) paddr(0x%lx)\n", (u_long)kern_pg->pindex,
|
|
|
|
kern_pg->busy, (kern_pg->flags & PG_BUSY) ? 1 : 0,
|
|
|
|
kern_pg->hold_count, (u_long)kern_pg->phys_addr);
|
|
|
|
if ((kern_pg->queue - kern_pg->pc) == PQ_FREE)
|
|
|
|
panic("vm_pgmoveco: renaming free page");
|
|
|
|
else
|
|
|
|
panic("vm_pgmoveco: renaming busy page");
|
|
|
|
}
|
|
|
|
kpindex = kern_pg->pindex;
|
|
|
|
vm_page_busy(kern_pg);
|
|
|
|
vm_page_rename(kern_pg, uobject, upindex);
|
|
|
|
vm_page_flag_clear(kern_pg, PG_BUSY);
|
|
|
|
kern_pg->valid = VM_PAGE_BITS_ALL;
|
|
|
|
|
|
|
|
vm_map_lookup_done(map, entry);
|
|
|
|
return(KERN_SUCCESS);
|
|
|
|
}
|
|
|
|
#endif /* ZERO_COPY_SOCKETS */
|
|
|
|
|
1994-05-25 09:21:21 +00:00
|
|
|
int
|
1994-05-24 10:09:53 +00:00
|
|
|
uiomove(cp, n, uio)
|
|
|
|
register caddr_t cp;
|
|
|
|
register int n;
|
|
|
|
register struct uio *uio;
|
|
|
|
{
|
2001-09-12 08:38:13 +00:00
|
|
|
struct thread *td = curthread;
|
1994-05-24 10:09:53 +00:00
|
|
|
register struct iovec *iov;
|
|
|
|
u_int cnt;
|
1999-03-12 03:09:29 +00:00
|
|
|
int error = 0;
|
|
|
|
int save = 0;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
1999-01-08 17:31:30 +00:00
|
|
|
KASSERT(uio->uio_rw == UIO_READ || uio->uio_rw == UIO_WRITE,
|
1999-01-10 01:58:29 +00:00
|
|
|
("uiomove: mode"));
|
2001-09-12 08:38:13 +00:00
|
|
|
KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
|
1999-01-10 01:58:29 +00:00
|
|
|
("uiomove proc"));
|
1999-01-08 17:31:30 +00:00
|
|
|
|
2001-09-12 08:38:13 +00:00
|
|
|
if (td) {
|
2001-09-13 22:33:37 +00:00
|
|
|
mtx_lock_spin(&sched_lock);
|
2001-09-12 08:38:13 +00:00
|
|
|
save = td->td_flags & TDF_DEADLKTREAT;
|
|
|
|
td->td_flags |= TDF_DEADLKTREAT;
|
2001-09-13 22:33:37 +00:00
|
|
|
mtx_unlock_spin(&sched_lock);
|
1999-03-12 03:09:29 +00:00
|
|
|
}
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
while (n > 0 && uio->uio_resid) {
|
|
|
|
iov = uio->uio_iov;
|
|
|
|
cnt = iov->iov_len;
|
|
|
|
if (cnt == 0) {
|
|
|
|
uio->uio_iov++;
|
|
|
|
uio->uio_iovcnt--;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (cnt > n)
|
|
|
|
cnt = n;
|
1995-02-12 09:11:47 +00:00
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
switch (uio->uio_segflg) {
|
|
|
|
|
|
|
|
case UIO_USERSPACE:
|
2001-01-10 04:43:51 +00:00
|
|
|
if (ticks - PCPU_GET(switchticks) >= hogticks)
|
1999-02-02 12:11:01 +00:00
|
|
|
uio_yield();
|
1994-05-24 10:09:53 +00:00
|
|
|
if (uio->uio_rw == UIO_READ)
|
|
|
|
error = copyout(cp, iov->iov_base, cnt);
|
|
|
|
else
|
|
|
|
error = copyin(iov->iov_base, cp, cnt);
|
|
|
|
if (error)
|
2002-02-08 20:19:44 +00:00
|
|
|
goto out;
|
1994-05-24 10:09:53 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case UIO_SYSSPACE:
|
|
|
|
if (uio->uio_rw == UIO_READ)
|
2002-06-29 00:29:12 +00:00
|
|
|
bcopy(cp, iov->iov_base, cnt);
|
1994-05-24 10:09:53 +00:00
|
|
|
else
|
2002-06-29 00:29:12 +00:00
|
|
|
bcopy(iov->iov_base, cp, cnt);
|
1997-12-19 09:03:37 +00:00
|
|
|
break;
|
|
|
|
case UIO_NOCOPY:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
iov->iov_base += cnt;
|
|
|
|
iov->iov_len -= cnt;
|
|
|
|
uio->uio_resid -= cnt;
|
|
|
|
uio->uio_offset += cnt;
|
|
|
|
cp += cnt;
|
|
|
|
n -= cnt;
|
|
|
|
}
|
2002-02-08 20:19:44 +00:00
|
|
|
out:
|
2001-09-12 08:38:13 +00:00
|
|
|
if (td != curthread) printf("uiomove: IT CHANGED!");
|
|
|
|
td = curthread; /* Might things have changed in copyin/copyout? */
|
2001-09-13 22:33:37 +00:00
|
|
|
if (td) {
|
|
|
|
mtx_lock_spin(&sched_lock);
|
2001-09-12 08:38:13 +00:00
|
|
|
td->td_flags = (td->td_flags & ~TDF_DEADLKTREAT) | save;
|
2001-09-13 22:33:37 +00:00
|
|
|
mtx_unlock_spin(&sched_lock);
|
|
|
|
}
|
1999-03-12 03:09:29 +00:00
|
|
|
return (error);
|
1997-12-19 09:03:37 +00:00
|
|
|
}
|
|
|
|
|
At long last, commit the zero copy sockets code.
MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes.
ti.4: Update the ti(4) man page to include information on the
TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options,
and also include information about the new character
device interface and the associated ioctls.
man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated
links.
jumbo.9: New man page describing the jumbo buffer allocator
interface and operation.
zero_copy.9: New man page describing the general characteristics of
the zero copy send and receive code, and what an
application author should do to take advantage of the
zero copy functionality.
NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS,
TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT.
conf/files: Add uipc_jumbo.c and uipc_cow.c.
conf/options: Add the 5 options mentioned above.
kern_subr.c: Receive side zero copy implementation. This takes
"disposable" pages attached to an mbuf, gives them to
a user process, and then recycles the user's page.
This is only active when ZERO_COPY_SOCKETS is turned on
and the kern.ipc.zero_copy.receive sysctl variable is
set to 1.
uipc_cow.c: Send side zero copy functions. Takes a page written
by the user and maps it copy on write and assigns it
kernel virtual address space. Removes copy on write
mapping once the buffer has been freed by the network
stack.
uipc_jumbo.c: Jumbo disposable page allocator code. This allocates
(optionally) disposable pages for network drivers that
want to give the user the option of doing zero copy
receive.
uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are
enabled if ZERO_COPY_SOCKETS is turned on.
Add zero copy send support to sosend() -- pages get
mapped into the kernel instead of getting copied if
they meet size and alignment restrictions.
uipc_syscalls.c:Un-staticize some of the sf* functions so that they
can be used elsewhere. (uipc_cow.c)
if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid
calling malloc() with M_WAITOK. Return an error if
the M_NOWAIT malloc fails.
The ti(4) driver and the wi(4) driver, at least, call
this with a mutex held. This causes witness warnings
for 'ifconfig -a' with a wi(4) or ti(4) board in the
system. (I've only verified for ti(4)).
ip_output.c: Fragment large datagrams so that each segment contains
a multiple of PAGE_SIZE amount of data plus headers.
This allows the receiver to potentially do page
flipping on receives.
if_ti.c: Add zero copy receive support to the ti(4) driver. If
TI_PRIVATE_JUMBOS is not defined, it now uses the
jumbo(9) buffer allocator for jumbo receive buffers.
Add a new character device interface for the ti(4)
driver for the new debugging interface. This allows
(a patched version of) gdb to talk to the Tigon board
and debug the firmware. There are also a few additional
debugging ioctls available through this interface.
Add header splitting support to the ti(4) driver.
Tweak some of the default interrupt coalescing
parameters to more useful defaults.
Add hooks for supporting transmit flow control, but
leave it turned off with a comment describing why it
is turned off.
if_tireg.h: Change the firmware rev to 12.4.11, since we're really
at 12.4.11 plus fixes from 12.4.13.
Add defines needed for debugging.
Remove the ti_stats structure, it is now defined in
sys/tiio.h.
ti_fw.h: 12.4.11 firmware.
ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13,
and my header splitting patches. Revision 12.4.13
doesn't handle 10/100 negotiation properly. (This
firmware is the same as what was in the tree previously,
with the addition of header splitting support.)
sys/jumbo.h: Jumbo buffer allocator interface.
sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to
indicate that the payload buffer can be thrown away /
flipped to a userland process.
socketvar.h: Add prototype for socow_setup.
tiio.h: ioctl interface to the character portion of the ti(4)
driver, plus associated structure/type definitions.
uio.h: Change prototype for uiomoveco() so that we'll know
whether the source page is disposable.
ufs_readwrite.c:Update for new prototype of uiomoveco().
vm_fault.c: In vm_fault(), check to see whether we need to do a page
based copy on write fault.
vm_object.c: Add a new function, vm_object_allocate_wait(). This
does the same thing that vm_object allocate does, except
that it gives the caller the opportunity to specify whether
it should wait on the uma_zalloc() of the object structre.
This allows vm objects to be allocated while holding a
mutex. (Without generating WITNESS warnings.)
vm_object_allocate() is implemented as a call to
vm_object_allocate_wait() with the malloc flag set to
M_WAITOK.
vm_object.h: Add prototype for vm_object_allocate_wait().
vm_page.c: Add page-based copy on write setup, clear and fault
routines.
vm_page.h: Add page based COW function prototypes and variable in
the vm_page structure.
Many thanks to Drew Gallatin, who wrote the zero copy send and receive
code, and to all the other folks who have tested and reviewed this code
over the years.
2002-06-26 03:37:47 +00:00
|
|
|
#if defined(ENABLE_VFS_IOOPT) || defined(ZERO_COPY_SOCKETS)
|
2002-05-05 22:42:40 +00:00
|
|
|
/*
|
|
|
|
* Experimental support for zero-copy I/O
|
|
|
|
*/
|
At long last, commit the zero copy sockets code.
MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes.
ti.4: Update the ti(4) man page to include information on the
TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options,
and also include information about the new character
device interface and the associated ioctls.
man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated
links.
jumbo.9: New man page describing the jumbo buffer allocator
interface and operation.
zero_copy.9: New man page describing the general characteristics of
the zero copy send and receive code, and what an
application author should do to take advantage of the
zero copy functionality.
NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS,
TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT.
conf/files: Add uipc_jumbo.c and uipc_cow.c.
conf/options: Add the 5 options mentioned above.
kern_subr.c: Receive side zero copy implementation. This takes
"disposable" pages attached to an mbuf, gives them to
a user process, and then recycles the user's page.
This is only active when ZERO_COPY_SOCKETS is turned on
and the kern.ipc.zero_copy.receive sysctl variable is
set to 1.
uipc_cow.c: Send side zero copy functions. Takes a page written
by the user and maps it copy on write and assigns it
kernel virtual address space. Removes copy on write
mapping once the buffer has been freed by the network
stack.
uipc_jumbo.c: Jumbo disposable page allocator code. This allocates
(optionally) disposable pages for network drivers that
want to give the user the option of doing zero copy
receive.
uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are
enabled if ZERO_COPY_SOCKETS is turned on.
Add zero copy send support to sosend() -- pages get
mapped into the kernel instead of getting copied if
they meet size and alignment restrictions.
uipc_syscalls.c:Un-staticize some of the sf* functions so that they
can be used elsewhere. (uipc_cow.c)
if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid
calling malloc() with M_WAITOK. Return an error if
the M_NOWAIT malloc fails.
The ti(4) driver and the wi(4) driver, at least, call
this with a mutex held. This causes witness warnings
for 'ifconfig -a' with a wi(4) or ti(4) board in the
system. (I've only verified for ti(4)).
ip_output.c: Fragment large datagrams so that each segment contains
a multiple of PAGE_SIZE amount of data plus headers.
This allows the receiver to potentially do page
flipping on receives.
if_ti.c: Add zero copy receive support to the ti(4) driver. If
TI_PRIVATE_JUMBOS is not defined, it now uses the
jumbo(9) buffer allocator for jumbo receive buffers.
Add a new character device interface for the ti(4)
driver for the new debugging interface. This allows
(a patched version of) gdb to talk to the Tigon board
and debug the firmware. There are also a few additional
debugging ioctls available through this interface.
Add header splitting support to the ti(4) driver.
Tweak some of the default interrupt coalescing
parameters to more useful defaults.
Add hooks for supporting transmit flow control, but
leave it turned off with a comment describing why it
is turned off.
if_tireg.h: Change the firmware rev to 12.4.11, since we're really
at 12.4.11 plus fixes from 12.4.13.
Add defines needed for debugging.
Remove the ti_stats structure, it is now defined in
sys/tiio.h.
ti_fw.h: 12.4.11 firmware.
ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13,
and my header splitting patches. Revision 12.4.13
doesn't handle 10/100 negotiation properly. (This
firmware is the same as what was in the tree previously,
with the addition of header splitting support.)
sys/jumbo.h: Jumbo buffer allocator interface.
sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to
indicate that the payload buffer can be thrown away /
flipped to a userland process.
socketvar.h: Add prototype for socow_setup.
tiio.h: ioctl interface to the character portion of the ti(4)
driver, plus associated structure/type definitions.
uio.h: Change prototype for uiomoveco() so that we'll know
whether the source page is disposable.
ufs_readwrite.c:Update for new prototype of uiomoveco().
vm_fault.c: In vm_fault(), check to see whether we need to do a page
based copy on write fault.
vm_object.c: Add a new function, vm_object_allocate_wait(). This
does the same thing that vm_object allocate does, except
that it gives the caller the opportunity to specify whether
it should wait on the uma_zalloc() of the object structre.
This allows vm objects to be allocated while holding a
mutex. (Without generating WITNESS warnings.)
vm_object_allocate() is implemented as a call to
vm_object_allocate_wait() with the malloc flag set to
M_WAITOK.
vm_object.h: Add prototype for vm_object_allocate_wait().
vm_page.c: Add page-based copy on write setup, clear and fault
routines.
vm_page.h: Add page based COW function prototypes and variable in
the vm_page structure.
Many thanks to Drew Gallatin, who wrote the zero copy send and receive
code, and to all the other folks who have tested and reviewed this code
over the years.
2002-06-26 03:37:47 +00:00
|
|
|
static int
|
|
|
|
userspaceco(cp, cnt, uio, obj, disposable)
|
|
|
|
caddr_t cp;
|
|
|
|
u_int cnt;
|
|
|
|
struct uio *uio;
|
|
|
|
struct vm_object *obj;
|
|
|
|
int disposable;
|
|
|
|
{
|
|
|
|
struct iovec *iov;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
iov = uio->uio_iov;
|
|
|
|
|
|
|
|
#ifdef ZERO_COPY_SOCKETS
|
|
|
|
|
|
|
|
if (uio->uio_rw == UIO_READ) {
|
|
|
|
if ((so_zero_copy_receive != 0)
|
|
|
|
&& (obj != NULL)
|
|
|
|
&& ((cnt & PAGE_MASK) == 0)
|
|
|
|
&& ((((intptr_t) iov->iov_base) & PAGE_MASK) == 0)
|
|
|
|
&& ((uio->uio_offset & PAGE_MASK) == 0)
|
|
|
|
&& ((((intptr_t) cp) & PAGE_MASK) == 0)
|
|
|
|
&& (obj->type == OBJT_DEFAULT)
|
|
|
|
&& (disposable != 0)) {
|
|
|
|
/* SOCKET: use page-trading */
|
|
|
|
/*
|
|
|
|
* We only want to call vm_pgmoveco() on
|
|
|
|
* disposeable pages, since it gives the
|
|
|
|
* kernel page to the userland process.
|
|
|
|
*/
|
|
|
|
error = vm_pgmoveco(&curproc->p_vmspace->vm_map,
|
|
|
|
obj, (vm_offset_t)cp,
|
|
|
|
(vm_offset_t)iov->iov_base);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we get an error back, attempt
|
|
|
|
* to use copyout() instead. The
|
|
|
|
* disposable page should be freed
|
|
|
|
* automatically if we weren't able to move
|
|
|
|
* it into userland.
|
|
|
|
*/
|
|
|
|
if (error != 0)
|
|
|
|
error = copyout(cp, iov->iov_base, cnt);
|
|
|
|
#ifdef ENABLE_VFS_IOOPT
|
|
|
|
} else if ((vfs_ioopt != 0)
|
|
|
|
&& ((cnt & PAGE_MASK) == 0)
|
|
|
|
&& ((((intptr_t) iov->iov_base) & PAGE_MASK) == 0)
|
|
|
|
&& ((uio->uio_offset & PAGE_MASK) == 0)
|
|
|
|
&& ((((intptr_t) cp) & PAGE_MASK) == 0)) {
|
|
|
|
error = vm_uiomove(&curproc->p_vmspace->vm_map, obj,
|
|
|
|
uio->uio_offset, cnt,
|
|
|
|
(vm_offset_t) iov->iov_base, NULL);
|
|
|
|
#endif /* ENABLE_VFS_IOOPT */
|
|
|
|
} else {
|
|
|
|
error = copyout(cp, iov->iov_base, cnt);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
error = copyin(iov->iov_base, cp, cnt);
|
|
|
|
}
|
|
|
|
#else /* ZERO_COPY_SOCKETS */
|
|
|
|
if (uio->uio_rw == UIO_READ) {
|
|
|
|
#ifdef ENABLE_VFS_IOOPT
|
|
|
|
if ((vfs_ioopt != 0)
|
|
|
|
&& ((cnt & PAGE_MASK) == 0)
|
|
|
|
&& ((((intptr_t) iov->iov_base) & PAGE_MASK) == 0)
|
|
|
|
&& ((uio->uio_offset & PAGE_MASK) == 0)
|
|
|
|
&& ((((intptr_t) cp) & PAGE_MASK) == 0)) {
|
|
|
|
error = vm_uiomove(&curproc->p_vmspace->vm_map, obj,
|
|
|
|
uio->uio_offset, cnt,
|
|
|
|
(vm_offset_t) iov->iov_base, NULL);
|
|
|
|
} else
|
|
|
|
#endif /* ENABLE_VFS_IOOPT */
|
|
|
|
{
|
|
|
|
error = copyout(cp, iov->iov_base, cnt);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
error = copyin(iov->iov_base, cp, cnt);
|
|
|
|
}
|
|
|
|
#endif /* ZERO_COPY_SOCKETS */
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
1997-12-19 09:03:37 +00:00
|
|
|
int
|
At long last, commit the zero copy sockets code.
MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes.
ti.4: Update the ti(4) man page to include information on the
TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options,
and also include information about the new character
device interface and the associated ioctls.
man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated
links.
jumbo.9: New man page describing the jumbo buffer allocator
interface and operation.
zero_copy.9: New man page describing the general characteristics of
the zero copy send and receive code, and what an
application author should do to take advantage of the
zero copy functionality.
NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS,
TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT.
conf/files: Add uipc_jumbo.c and uipc_cow.c.
conf/options: Add the 5 options mentioned above.
kern_subr.c: Receive side zero copy implementation. This takes
"disposable" pages attached to an mbuf, gives them to
a user process, and then recycles the user's page.
This is only active when ZERO_COPY_SOCKETS is turned on
and the kern.ipc.zero_copy.receive sysctl variable is
set to 1.
uipc_cow.c: Send side zero copy functions. Takes a page written
by the user and maps it copy on write and assigns it
kernel virtual address space. Removes copy on write
mapping once the buffer has been freed by the network
stack.
uipc_jumbo.c: Jumbo disposable page allocator code. This allocates
(optionally) disposable pages for network drivers that
want to give the user the option of doing zero copy
receive.
uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are
enabled if ZERO_COPY_SOCKETS is turned on.
Add zero copy send support to sosend() -- pages get
mapped into the kernel instead of getting copied if
they meet size and alignment restrictions.
uipc_syscalls.c:Un-staticize some of the sf* functions so that they
can be used elsewhere. (uipc_cow.c)
if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid
calling malloc() with M_WAITOK. Return an error if
the M_NOWAIT malloc fails.
The ti(4) driver and the wi(4) driver, at least, call
this with a mutex held. This causes witness warnings
for 'ifconfig -a' with a wi(4) or ti(4) board in the
system. (I've only verified for ti(4)).
ip_output.c: Fragment large datagrams so that each segment contains
a multiple of PAGE_SIZE amount of data plus headers.
This allows the receiver to potentially do page
flipping on receives.
if_ti.c: Add zero copy receive support to the ti(4) driver. If
TI_PRIVATE_JUMBOS is not defined, it now uses the
jumbo(9) buffer allocator for jumbo receive buffers.
Add a new character device interface for the ti(4)
driver for the new debugging interface. This allows
(a patched version of) gdb to talk to the Tigon board
and debug the firmware. There are also a few additional
debugging ioctls available through this interface.
Add header splitting support to the ti(4) driver.
Tweak some of the default interrupt coalescing
parameters to more useful defaults.
Add hooks for supporting transmit flow control, but
leave it turned off with a comment describing why it
is turned off.
if_tireg.h: Change the firmware rev to 12.4.11, since we're really
at 12.4.11 plus fixes from 12.4.13.
Add defines needed for debugging.
Remove the ti_stats structure, it is now defined in
sys/tiio.h.
ti_fw.h: 12.4.11 firmware.
ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13,
and my header splitting patches. Revision 12.4.13
doesn't handle 10/100 negotiation properly. (This
firmware is the same as what was in the tree previously,
with the addition of header splitting support.)
sys/jumbo.h: Jumbo buffer allocator interface.
sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to
indicate that the payload buffer can be thrown away /
flipped to a userland process.
socketvar.h: Add prototype for socow_setup.
tiio.h: ioctl interface to the character portion of the ti(4)
driver, plus associated structure/type definitions.
uio.h: Change prototype for uiomoveco() so that we'll know
whether the source page is disposable.
ufs_readwrite.c:Update for new prototype of uiomoveco().
vm_fault.c: In vm_fault(), check to see whether we need to do a page
based copy on write fault.
vm_object.c: Add a new function, vm_object_allocate_wait(). This
does the same thing that vm_object allocate does, except
that it gives the caller the opportunity to specify whether
it should wait on the uma_zalloc() of the object structre.
This allows vm objects to be allocated while holding a
mutex. (Without generating WITNESS warnings.)
vm_object_allocate() is implemented as a call to
vm_object_allocate_wait() with the malloc flag set to
M_WAITOK.
vm_object.h: Add prototype for vm_object_allocate_wait().
vm_page.c: Add page-based copy on write setup, clear and fault
routines.
vm_page.h: Add page based COW function prototypes and variable in
the vm_page structure.
Many thanks to Drew Gallatin, who wrote the zero copy send and receive
code, and to all the other folks who have tested and reviewed this code
over the years.
2002-06-26 03:37:47 +00:00
|
|
|
uiomoveco(cp, n, uio, obj, disposable)
|
1997-12-19 09:03:37 +00:00
|
|
|
caddr_t cp;
|
|
|
|
int n;
|
|
|
|
struct uio *uio;
|
|
|
|
struct vm_object *obj;
|
At long last, commit the zero copy sockets code.
MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes.
ti.4: Update the ti(4) man page to include information on the
TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options,
and also include information about the new character
device interface and the associated ioctls.
man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated
links.
jumbo.9: New man page describing the jumbo buffer allocator
interface and operation.
zero_copy.9: New man page describing the general characteristics of
the zero copy send and receive code, and what an
application author should do to take advantage of the
zero copy functionality.
NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS,
TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT.
conf/files: Add uipc_jumbo.c and uipc_cow.c.
conf/options: Add the 5 options mentioned above.
kern_subr.c: Receive side zero copy implementation. This takes
"disposable" pages attached to an mbuf, gives them to
a user process, and then recycles the user's page.
This is only active when ZERO_COPY_SOCKETS is turned on
and the kern.ipc.zero_copy.receive sysctl variable is
set to 1.
uipc_cow.c: Send side zero copy functions. Takes a page written
by the user and maps it copy on write and assigns it
kernel virtual address space. Removes copy on write
mapping once the buffer has been freed by the network
stack.
uipc_jumbo.c: Jumbo disposable page allocator code. This allocates
(optionally) disposable pages for network drivers that
want to give the user the option of doing zero copy
receive.
uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are
enabled if ZERO_COPY_SOCKETS is turned on.
Add zero copy send support to sosend() -- pages get
mapped into the kernel instead of getting copied if
they meet size and alignment restrictions.
uipc_syscalls.c:Un-staticize some of the sf* functions so that they
can be used elsewhere. (uipc_cow.c)
if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid
calling malloc() with M_WAITOK. Return an error if
the M_NOWAIT malloc fails.
The ti(4) driver and the wi(4) driver, at least, call
this with a mutex held. This causes witness warnings
for 'ifconfig -a' with a wi(4) or ti(4) board in the
system. (I've only verified for ti(4)).
ip_output.c: Fragment large datagrams so that each segment contains
a multiple of PAGE_SIZE amount of data plus headers.
This allows the receiver to potentially do page
flipping on receives.
if_ti.c: Add zero copy receive support to the ti(4) driver. If
TI_PRIVATE_JUMBOS is not defined, it now uses the
jumbo(9) buffer allocator for jumbo receive buffers.
Add a new character device interface for the ti(4)
driver for the new debugging interface. This allows
(a patched version of) gdb to talk to the Tigon board
and debug the firmware. There are also a few additional
debugging ioctls available through this interface.
Add header splitting support to the ti(4) driver.
Tweak some of the default interrupt coalescing
parameters to more useful defaults.
Add hooks for supporting transmit flow control, but
leave it turned off with a comment describing why it
is turned off.
if_tireg.h: Change the firmware rev to 12.4.11, since we're really
at 12.4.11 plus fixes from 12.4.13.
Add defines needed for debugging.
Remove the ti_stats structure, it is now defined in
sys/tiio.h.
ti_fw.h: 12.4.11 firmware.
ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13,
and my header splitting patches. Revision 12.4.13
doesn't handle 10/100 negotiation properly. (This
firmware is the same as what was in the tree previously,
with the addition of header splitting support.)
sys/jumbo.h: Jumbo buffer allocator interface.
sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to
indicate that the payload buffer can be thrown away /
flipped to a userland process.
socketvar.h: Add prototype for socow_setup.
tiio.h: ioctl interface to the character portion of the ti(4)
driver, plus associated structure/type definitions.
uio.h: Change prototype for uiomoveco() so that we'll know
whether the source page is disposable.
ufs_readwrite.c:Update for new prototype of uiomoveco().
vm_fault.c: In vm_fault(), check to see whether we need to do a page
based copy on write fault.
vm_object.c: Add a new function, vm_object_allocate_wait(). This
does the same thing that vm_object allocate does, except
that it gives the caller the opportunity to specify whether
it should wait on the uma_zalloc() of the object structre.
This allows vm objects to be allocated while holding a
mutex. (Without generating WITNESS warnings.)
vm_object_allocate() is implemented as a call to
vm_object_allocate_wait() with the malloc flag set to
M_WAITOK.
vm_object.h: Add prototype for vm_object_allocate_wait().
vm_page.c: Add page-based copy on write setup, clear and fault
routines.
vm_page.h: Add page based COW function prototypes and variable in
the vm_page structure.
Many thanks to Drew Gallatin, who wrote the zero copy send and receive
code, and to all the other folks who have tested and reviewed this code
over the years.
2002-06-26 03:37:47 +00:00
|
|
|
int disposable;
|
1997-12-19 09:03:37 +00:00
|
|
|
{
|
|
|
|
struct iovec *iov;
|
|
|
|
u_int cnt;
|
|
|
|
int error;
|
|
|
|
|
1999-01-08 17:31:30 +00:00
|
|
|
KASSERT(uio->uio_rw == UIO_READ || uio->uio_rw == UIO_WRITE,
|
1999-01-10 01:58:29 +00:00
|
|
|
("uiomoveco: mode"));
|
2001-09-12 08:38:13 +00:00
|
|
|
KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
|
1999-01-10 01:58:29 +00:00
|
|
|
("uiomoveco proc"));
|
1999-01-08 17:31:30 +00:00
|
|
|
|
1997-12-19 09:03:37 +00:00
|
|
|
while (n > 0 && uio->uio_resid) {
|
|
|
|
iov = uio->uio_iov;
|
|
|
|
cnt = iov->iov_len;
|
|
|
|
if (cnt == 0) {
|
|
|
|
uio->uio_iov++;
|
|
|
|
uio->uio_iovcnt--;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (cnt > n)
|
|
|
|
cnt = n;
|
|
|
|
|
|
|
|
switch (uio->uio_segflg) {
|
|
|
|
|
|
|
|
case UIO_USERSPACE:
|
2001-01-10 04:43:51 +00:00
|
|
|
if (ticks - PCPU_GET(switchticks) >= hogticks)
|
1999-02-02 12:11:01 +00:00
|
|
|
uio_yield();
|
At long last, commit the zero copy sockets code.
MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes.
ti.4: Update the ti(4) man page to include information on the
TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options,
and also include information about the new character
device interface and the associated ioctls.
man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated
links.
jumbo.9: New man page describing the jumbo buffer allocator
interface and operation.
zero_copy.9: New man page describing the general characteristics of
the zero copy send and receive code, and what an
application author should do to take advantage of the
zero copy functionality.
NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS,
TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT.
conf/files: Add uipc_jumbo.c and uipc_cow.c.
conf/options: Add the 5 options mentioned above.
kern_subr.c: Receive side zero copy implementation. This takes
"disposable" pages attached to an mbuf, gives them to
a user process, and then recycles the user's page.
This is only active when ZERO_COPY_SOCKETS is turned on
and the kern.ipc.zero_copy.receive sysctl variable is
set to 1.
uipc_cow.c: Send side zero copy functions. Takes a page written
by the user and maps it copy on write and assigns it
kernel virtual address space. Removes copy on write
mapping once the buffer has been freed by the network
stack.
uipc_jumbo.c: Jumbo disposable page allocator code. This allocates
(optionally) disposable pages for network drivers that
want to give the user the option of doing zero copy
receive.
uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are
enabled if ZERO_COPY_SOCKETS is turned on.
Add zero copy send support to sosend() -- pages get
mapped into the kernel instead of getting copied if
they meet size and alignment restrictions.
uipc_syscalls.c:Un-staticize some of the sf* functions so that they
can be used elsewhere. (uipc_cow.c)
if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid
calling malloc() with M_WAITOK. Return an error if
the M_NOWAIT malloc fails.
The ti(4) driver and the wi(4) driver, at least, call
this with a mutex held. This causes witness warnings
for 'ifconfig -a' with a wi(4) or ti(4) board in the
system. (I've only verified for ti(4)).
ip_output.c: Fragment large datagrams so that each segment contains
a multiple of PAGE_SIZE amount of data plus headers.
This allows the receiver to potentially do page
flipping on receives.
if_ti.c: Add zero copy receive support to the ti(4) driver. If
TI_PRIVATE_JUMBOS is not defined, it now uses the
jumbo(9) buffer allocator for jumbo receive buffers.
Add a new character device interface for the ti(4)
driver for the new debugging interface. This allows
(a patched version of) gdb to talk to the Tigon board
and debug the firmware. There are also a few additional
debugging ioctls available through this interface.
Add header splitting support to the ti(4) driver.
Tweak some of the default interrupt coalescing
parameters to more useful defaults.
Add hooks for supporting transmit flow control, but
leave it turned off with a comment describing why it
is turned off.
if_tireg.h: Change the firmware rev to 12.4.11, since we're really
at 12.4.11 plus fixes from 12.4.13.
Add defines needed for debugging.
Remove the ti_stats structure, it is now defined in
sys/tiio.h.
ti_fw.h: 12.4.11 firmware.
ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13,
and my header splitting patches. Revision 12.4.13
doesn't handle 10/100 negotiation properly. (This
firmware is the same as what was in the tree previously,
with the addition of header splitting support.)
sys/jumbo.h: Jumbo buffer allocator interface.
sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to
indicate that the payload buffer can be thrown away /
flipped to a userland process.
socketvar.h: Add prototype for socow_setup.
tiio.h: ioctl interface to the character portion of the ti(4)
driver, plus associated structure/type definitions.
uio.h: Change prototype for uiomoveco() so that we'll know
whether the source page is disposable.
ufs_readwrite.c:Update for new prototype of uiomoveco().
vm_fault.c: In vm_fault(), check to see whether we need to do a page
based copy on write fault.
vm_object.c: Add a new function, vm_object_allocate_wait(). This
does the same thing that vm_object allocate does, except
that it gives the caller the opportunity to specify whether
it should wait on the uma_zalloc() of the object structre.
This allows vm objects to be allocated while holding a
mutex. (Without generating WITNESS warnings.)
vm_object_allocate() is implemented as a call to
vm_object_allocate_wait() with the malloc flag set to
M_WAITOK.
vm_object.h: Add prototype for vm_object_allocate_wait().
vm_page.c: Add page-based copy on write setup, clear and fault
routines.
vm_page.h: Add page based COW function prototypes and variable in
the vm_page structure.
Many thanks to Drew Gallatin, who wrote the zero copy send and receive
code, and to all the other folks who have tested and reviewed this code
over the years.
2002-06-26 03:37:47 +00:00
|
|
|
|
|
|
|
error = userspaceco(cp, cnt, uio, obj, disposable);
|
|
|
|
|
1997-12-19 09:03:37 +00:00
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case UIO_SYSSPACE:
|
|
|
|
if (uio->uio_rw == UIO_READ)
|
2002-06-29 00:29:12 +00:00
|
|
|
bcopy(cp, iov->iov_base, cnt);
|
1997-12-19 09:03:37 +00:00
|
|
|
else
|
2002-06-29 00:29:12 +00:00
|
|
|
bcopy(iov->iov_base, cp, cnt);
|
1994-05-24 10:09:53 +00:00
|
|
|
break;
|
1995-04-04 02:01:13 +00:00
|
|
|
case UIO_NOCOPY:
|
|
|
|
break;
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
iov->iov_base += cnt;
|
|
|
|
iov->iov_len -= cnt;
|
|
|
|
uio->uio_resid -= cnt;
|
|
|
|
uio->uio_offset += cnt;
|
|
|
|
cp += cnt;
|
|
|
|
n -= cnt;
|
|
|
|
}
|
1995-02-12 09:11:47 +00:00
|
|
|
return (0);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
At long last, commit the zero copy sockets code.
MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes.
ti.4: Update the ti(4) man page to include information on the
TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options,
and also include information about the new character
device interface and the associated ioctls.
man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated
links.
jumbo.9: New man page describing the jumbo buffer allocator
interface and operation.
zero_copy.9: New man page describing the general characteristics of
the zero copy send and receive code, and what an
application author should do to take advantage of the
zero copy functionality.
NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS,
TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT.
conf/files: Add uipc_jumbo.c and uipc_cow.c.
conf/options: Add the 5 options mentioned above.
kern_subr.c: Receive side zero copy implementation. This takes
"disposable" pages attached to an mbuf, gives them to
a user process, and then recycles the user's page.
This is only active when ZERO_COPY_SOCKETS is turned on
and the kern.ipc.zero_copy.receive sysctl variable is
set to 1.
uipc_cow.c: Send side zero copy functions. Takes a page written
by the user and maps it copy on write and assigns it
kernel virtual address space. Removes copy on write
mapping once the buffer has been freed by the network
stack.
uipc_jumbo.c: Jumbo disposable page allocator code. This allocates
(optionally) disposable pages for network drivers that
want to give the user the option of doing zero copy
receive.
uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are
enabled if ZERO_COPY_SOCKETS is turned on.
Add zero copy send support to sosend() -- pages get
mapped into the kernel instead of getting copied if
they meet size and alignment restrictions.
uipc_syscalls.c:Un-staticize some of the sf* functions so that they
can be used elsewhere. (uipc_cow.c)
if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid
calling malloc() with M_WAITOK. Return an error if
the M_NOWAIT malloc fails.
The ti(4) driver and the wi(4) driver, at least, call
this with a mutex held. This causes witness warnings
for 'ifconfig -a' with a wi(4) or ti(4) board in the
system. (I've only verified for ti(4)).
ip_output.c: Fragment large datagrams so that each segment contains
a multiple of PAGE_SIZE amount of data plus headers.
This allows the receiver to potentially do page
flipping on receives.
if_ti.c: Add zero copy receive support to the ti(4) driver. If
TI_PRIVATE_JUMBOS is not defined, it now uses the
jumbo(9) buffer allocator for jumbo receive buffers.
Add a new character device interface for the ti(4)
driver for the new debugging interface. This allows
(a patched version of) gdb to talk to the Tigon board
and debug the firmware. There are also a few additional
debugging ioctls available through this interface.
Add header splitting support to the ti(4) driver.
Tweak some of the default interrupt coalescing
parameters to more useful defaults.
Add hooks for supporting transmit flow control, but
leave it turned off with a comment describing why it
is turned off.
if_tireg.h: Change the firmware rev to 12.4.11, since we're really
at 12.4.11 plus fixes from 12.4.13.
Add defines needed for debugging.
Remove the ti_stats structure, it is now defined in
sys/tiio.h.
ti_fw.h: 12.4.11 firmware.
ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13,
and my header splitting patches. Revision 12.4.13
doesn't handle 10/100 negotiation properly. (This
firmware is the same as what was in the tree previously,
with the addition of header splitting support.)
sys/jumbo.h: Jumbo buffer allocator interface.
sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to
indicate that the payload buffer can be thrown away /
flipped to a userland process.
socketvar.h: Add prototype for socow_setup.
tiio.h: ioctl interface to the character portion of the ti(4)
driver, plus associated structure/type definitions.
uio.h: Change prototype for uiomoveco() so that we'll know
whether the source page is disposable.
ufs_readwrite.c:Update for new prototype of uiomoveco().
vm_fault.c: In vm_fault(), check to see whether we need to do a page
based copy on write fault.
vm_object.c: Add a new function, vm_object_allocate_wait(). This
does the same thing that vm_object allocate does, except
that it gives the caller the opportunity to specify whether
it should wait on the uma_zalloc() of the object structre.
This allows vm objects to be allocated while holding a
mutex. (Without generating WITNESS warnings.)
vm_object_allocate() is implemented as a call to
vm_object_allocate_wait() with the malloc flag set to
M_WAITOK.
vm_object.h: Add prototype for vm_object_allocate_wait().
vm_page.c: Add page-based copy on write setup, clear and fault
routines.
vm_page.h: Add page based COW function prototypes and variable in
the vm_page structure.
Many thanks to Drew Gallatin, who wrote the zero copy send and receive
code, and to all the other folks who have tested and reviewed this code
over the years.
2002-06-26 03:37:47 +00:00
|
|
|
#endif /* ENABLE_VFS_IOOPT || ZERO_COPY_SOCKETS */
|
|
|
|
|
|
|
|
#ifdef ENABLE_VFS_IOOPT
|
1994-05-24 10:09:53 +00:00
|
|
|
|
2002-05-05 22:42:40 +00:00
|
|
|
/*
|
|
|
|
* Experimental support for zero-copy I/O
|
|
|
|
*/
|
Make our v_usecount vnode reference count work identically to the
original BSD code. The association between the vnode and the vm_object
no longer includes reference counts. The major difference is that
vm_object's are no longer freed gratuitiously from the vnode, and so
once an object is created for the vnode, it will last as long as the
vnode does.
When a vnode object reference count is incremented, then the underlying
vnode reference count is incremented also. The two "objects" are now
more intimately related, and so the interactions are now much less
complex.
When vnodes are now normally placed onto the free queue with an object still
attached. The rundown of the object happens at vnode rundown time, and
happens with exactly the same filesystem semantics of the original VFS
code. There is absolutely no need for vnode_pager_uncache and other
travesties like that anymore.
A side-effect of these changes is that SMP locking should be much simpler,
the I/O copyin/copyout optimizations work, NFS should be more ponderable,
and further work on layered filesystems should be less frustrating, because
of the totally coherent management of the vnode objects and vnodes.
Please be careful with your system while running this code, but I would
greatly appreciate feedback as soon a reasonably possible.
1998-01-06 05:26:17 +00:00
|
|
|
int
|
|
|
|
uioread(n, uio, obj, nread)
|
|
|
|
int n;
|
|
|
|
struct uio *uio;
|
|
|
|
struct vm_object *obj;
|
|
|
|
int *nread;
|
|
|
|
{
|
|
|
|
int npagesmoved;
|
|
|
|
struct iovec *iov;
|
|
|
|
u_int cnt, tcnt;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
*nread = 0;
|
1998-02-05 03:32:49 +00:00
|
|
|
if (vfs_ioopt < 2)
|
VM level code cleanups.
1) Start using TSM.
Struct procs continue to point to upages structure, after being freed.
Struct vmspace continues to point to pte object and kva space for kstack.
u_map is now superfluous.
2) vm_map's don't need to be reference counted. They always exist either
in the kernel or in a vmspace. The vmspaces are managed by reference
counts.
3) Remove the "wired" vm_map nonsense.
4) No need to keep a cache of kernel stack kva's.
5) Get rid of strange looking ++var, and change to var++.
6) Change more data structures to use our "zone" allocator. Added
struct proc, struct vmspace and struct vnode. This saves a significant
amount of kva space and physical memory. Additionally, this enables
TSM for the zone managed memory.
7) Keep ioopt disabled for now.
8) Remove the now bogus "single use" map concept.
9) Use generation counts or id's for data structures residing in TSM, where
it allows us to avoid unneeded restart overhead during traversals, where
blocking might occur.
10) Account better for memory deficits, so the pageout daemon will be able
to make enough memory available (experimental.)
11) Fix some vnode locking problems. (From Tor, I think.)
12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp.
(experimental.)
13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c
code. Use generation counts, get rid of unneded collpase operations,
and clean up the cluster code.
14) Make vm_zone more suitable for TSM.
This commit is partially as a result of discussions and contributions from
other people, including DG, Tor Egge, PHK, and probably others that I
have forgotten to attribute (so let me know, if I forgot.)
This is not the infamous, final cleanup of the vnode stuff, but a necessary
step. Vnode mgmt should be correct, but things might still change, and
there is still some missing stuff (like ioopt, and physical backing of
non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
|
|
|
return 0;
|
1998-02-05 03:32:49 +00:00
|
|
|
|
Make our v_usecount vnode reference count work identically to the
original BSD code. The association between the vnode and the vm_object
no longer includes reference counts. The major difference is that
vm_object's are no longer freed gratuitiously from the vnode, and so
once an object is created for the vnode, it will last as long as the
vnode does.
When a vnode object reference count is incremented, then the underlying
vnode reference count is incremented also. The two "objects" are now
more intimately related, and so the interactions are now much less
complex.
When vnodes are now normally placed onto the free queue with an object still
attached. The rundown of the object happens at vnode rundown time, and
happens with exactly the same filesystem semantics of the original VFS
code. There is absolutely no need for vnode_pager_uncache and other
travesties like that anymore.
A side-effect of these changes is that SMP locking should be much simpler,
the I/O copyin/copyout optimizations work, NFS should be more ponderable,
and further work on layered filesystems should be less frustrating, because
of the totally coherent management of the vnode objects and vnodes.
Please be careful with your system while running this code, but I would
greatly appreciate feedback as soon a reasonably possible.
1998-01-06 05:26:17 +00:00
|
|
|
error = 0;
|
|
|
|
|
|
|
|
while (n > 0 && uio->uio_resid) {
|
|
|
|
iov = uio->uio_iov;
|
|
|
|
cnt = iov->iov_len;
|
|
|
|
if (cnt == 0) {
|
|
|
|
uio->uio_iov++;
|
|
|
|
uio->uio_iovcnt--;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (cnt > n)
|
|
|
|
cnt = n;
|
|
|
|
|
|
|
|
if ((uio->uio_segflg == UIO_USERSPACE) &&
|
1998-07-15 02:32:35 +00:00
|
|
|
((((intptr_t) iov->iov_base) & PAGE_MASK) == 0) &&
|
Make our v_usecount vnode reference count work identically to the
original BSD code. The association between the vnode and the vm_object
no longer includes reference counts. The major difference is that
vm_object's are no longer freed gratuitiously from the vnode, and so
once an object is created for the vnode, it will last as long as the
vnode does.
When a vnode object reference count is incremented, then the underlying
vnode reference count is incremented also. The two "objects" are now
more intimately related, and so the interactions are now much less
complex.
When vnodes are now normally placed onto the free queue with an object still
attached. The rundown of the object happens at vnode rundown time, and
happens with exactly the same filesystem semantics of the original VFS
code. There is absolutely no need for vnode_pager_uncache and other
travesties like that anymore.
A side-effect of these changes is that SMP locking should be much simpler,
the I/O copyin/copyout optimizations work, NFS should be more ponderable,
and further work on layered filesystems should be less frustrating, because
of the totally coherent management of the vnode objects and vnodes.
Please be careful with your system while running this code, but I would
greatly appreciate feedback as soon a reasonably possible.
1998-01-06 05:26:17 +00:00
|
|
|
((uio->uio_offset & PAGE_MASK) == 0) ) {
|
|
|
|
|
|
|
|
if (cnt < PAGE_SIZE)
|
|
|
|
break;
|
|
|
|
|
|
|
|
cnt &= ~PAGE_MASK;
|
|
|
|
|
2001-01-10 04:43:51 +00:00
|
|
|
if (ticks - PCPU_GET(switchticks) >= hogticks)
|
1999-02-02 12:11:01 +00:00
|
|
|
uio_yield();
|
Make our v_usecount vnode reference count work identically to the
original BSD code. The association between the vnode and the vm_object
no longer includes reference counts. The major difference is that
vm_object's are no longer freed gratuitiously from the vnode, and so
once an object is created for the vnode, it will last as long as the
vnode does.
When a vnode object reference count is incremented, then the underlying
vnode reference count is incremented also. The two "objects" are now
more intimately related, and so the interactions are now much less
complex.
When vnodes are now normally placed onto the free queue with an object still
attached. The rundown of the object happens at vnode rundown time, and
happens with exactly the same filesystem semantics of the original VFS
code. There is absolutely no need for vnode_pager_uncache and other
travesties like that anymore.
A side-effect of these changes is that SMP locking should be much simpler,
the I/O copyin/copyout optimizations work, NFS should be more ponderable,
and further work on layered filesystems should be less frustrating, because
of the totally coherent management of the vnode objects and vnodes.
Please be careful with your system while running this code, but I would
greatly appreciate feedback as soon a reasonably possible.
1998-01-06 05:26:17 +00:00
|
|
|
error = vm_uiomove(&curproc->p_vmspace->vm_map, obj,
|
|
|
|
uio->uio_offset, cnt,
|
|
|
|
(vm_offset_t) iov->iov_base, &npagesmoved);
|
|
|
|
|
|
|
|
if (npagesmoved == 0)
|
|
|
|
break;
|
|
|
|
|
|
|
|
tcnt = npagesmoved * PAGE_SIZE;
|
1998-08-04 09:21:04 +00:00
|
|
|
cnt = tcnt;
|
Make our v_usecount vnode reference count work identically to the
original BSD code. The association between the vnode and the vm_object
no longer includes reference counts. The major difference is that
vm_object's are no longer freed gratuitiously from the vnode, and so
once an object is created for the vnode, it will last as long as the
vnode does.
When a vnode object reference count is incremented, then the underlying
vnode reference count is incremented also. The two "objects" are now
more intimately related, and so the interactions are now much less
complex.
When vnodes are now normally placed onto the free queue with an object still
attached. The rundown of the object happens at vnode rundown time, and
happens with exactly the same filesystem semantics of the original VFS
code. There is absolutely no need for vnode_pager_uncache and other
travesties like that anymore.
A side-effect of these changes is that SMP locking should be much simpler,
the I/O copyin/copyout optimizations work, NFS should be more ponderable,
and further work on layered filesystems should be less frustrating, because
of the totally coherent management of the vnode objects and vnodes.
Please be careful with your system while running this code, but I would
greatly appreciate feedback as soon a reasonably possible.
1998-01-06 05:26:17 +00:00
|
|
|
|
|
|
|
if (error)
|
|
|
|
break;
|
|
|
|
|
|
|
|
iov->iov_base += cnt;
|
|
|
|
iov->iov_len -= cnt;
|
|
|
|
uio->uio_resid -= cnt;
|
|
|
|
uio->uio_offset += cnt;
|
|
|
|
*nread += cnt;
|
|
|
|
n -= cnt;
|
|
|
|
} else {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return error;
|
|
|
|
}
|
At long last, commit the zero copy sockets code.
MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes.
ti.4: Update the ti(4) man page to include information on the
TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options,
and also include information about the new character
device interface and the associated ioctls.
man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated
links.
jumbo.9: New man page describing the jumbo buffer allocator
interface and operation.
zero_copy.9: New man page describing the general characteristics of
the zero copy send and receive code, and what an
application author should do to take advantage of the
zero copy functionality.
NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS,
TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT.
conf/files: Add uipc_jumbo.c and uipc_cow.c.
conf/options: Add the 5 options mentioned above.
kern_subr.c: Receive side zero copy implementation. This takes
"disposable" pages attached to an mbuf, gives them to
a user process, and then recycles the user's page.
This is only active when ZERO_COPY_SOCKETS is turned on
and the kern.ipc.zero_copy.receive sysctl variable is
set to 1.
uipc_cow.c: Send side zero copy functions. Takes a page written
by the user and maps it copy on write and assigns it
kernel virtual address space. Removes copy on write
mapping once the buffer has been freed by the network
stack.
uipc_jumbo.c: Jumbo disposable page allocator code. This allocates
(optionally) disposable pages for network drivers that
want to give the user the option of doing zero copy
receive.
uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are
enabled if ZERO_COPY_SOCKETS is turned on.
Add zero copy send support to sosend() -- pages get
mapped into the kernel instead of getting copied if
they meet size and alignment restrictions.
uipc_syscalls.c:Un-staticize some of the sf* functions so that they
can be used elsewhere. (uipc_cow.c)
if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid
calling malloc() with M_WAITOK. Return an error if
the M_NOWAIT malloc fails.
The ti(4) driver and the wi(4) driver, at least, call
this with a mutex held. This causes witness warnings
for 'ifconfig -a' with a wi(4) or ti(4) board in the
system. (I've only verified for ti(4)).
ip_output.c: Fragment large datagrams so that each segment contains
a multiple of PAGE_SIZE amount of data plus headers.
This allows the receiver to potentially do page
flipping on receives.
if_ti.c: Add zero copy receive support to the ti(4) driver. If
TI_PRIVATE_JUMBOS is not defined, it now uses the
jumbo(9) buffer allocator for jumbo receive buffers.
Add a new character device interface for the ti(4)
driver for the new debugging interface. This allows
(a patched version of) gdb to talk to the Tigon board
and debug the firmware. There are also a few additional
debugging ioctls available through this interface.
Add header splitting support to the ti(4) driver.
Tweak some of the default interrupt coalescing
parameters to more useful defaults.
Add hooks for supporting transmit flow control, but
leave it turned off with a comment describing why it
is turned off.
if_tireg.h: Change the firmware rev to 12.4.11, since we're really
at 12.4.11 plus fixes from 12.4.13.
Add defines needed for debugging.
Remove the ti_stats structure, it is now defined in
sys/tiio.h.
ti_fw.h: 12.4.11 firmware.
ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13,
and my header splitting patches. Revision 12.4.13
doesn't handle 10/100 negotiation properly. (This
firmware is the same as what was in the tree previously,
with the addition of header splitting support.)
sys/jumbo.h: Jumbo buffer allocator interface.
sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to
indicate that the payload buffer can be thrown away /
flipped to a userland process.
socketvar.h: Add prototype for socow_setup.
tiio.h: ioctl interface to the character portion of the ti(4)
driver, plus associated structure/type definitions.
uio.h: Change prototype for uiomoveco() so that we'll know
whether the source page is disposable.
ufs_readwrite.c:Update for new prototype of uiomoveco().
vm_fault.c: In vm_fault(), check to see whether we need to do a page
based copy on write fault.
vm_object.c: Add a new function, vm_object_allocate_wait(). This
does the same thing that vm_object allocate does, except
that it gives the caller the opportunity to specify whether
it should wait on the uma_zalloc() of the object structre.
This allows vm objects to be allocated while holding a
mutex. (Without generating WITNESS warnings.)
vm_object_allocate() is implemented as a call to
vm_object_allocate_wait() with the malloc flag set to
M_WAITOK.
vm_object.h: Add prototype for vm_object_allocate_wait().
vm_page.c: Add page-based copy on write setup, clear and fault
routines.
vm_page.h: Add page based COW function prototypes and variable in
the vm_page structure.
Many thanks to Drew Gallatin, who wrote the zero copy send and receive
code, and to all the other folks who have tested and reviewed this code
over the years.
2002-06-26 03:37:47 +00:00
|
|
|
#endif /* ENABLE_VFS_IOOPT */
|
1999-07-08 06:06:00 +00:00
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
|
|
|
* Give next character to user as result of read.
|
|
|
|
*/
|
1994-05-25 09:21:21 +00:00
|
|
|
int
|
1994-05-24 10:09:53 +00:00
|
|
|
ureadc(c, uio)
|
|
|
|
register int c;
|
|
|
|
register struct uio *uio;
|
|
|
|
{
|
|
|
|
register struct iovec *iov;
|
|
|
|
|
|
|
|
again:
|
|
|
|
if (uio->uio_iovcnt == 0 || uio->uio_resid == 0)
|
|
|
|
panic("ureadc");
|
|
|
|
iov = uio->uio_iov;
|
|
|
|
if (iov->iov_len == 0) {
|
|
|
|
uio->uio_iovcnt--;
|
|
|
|
uio->uio_iov++;
|
|
|
|
goto again;
|
|
|
|
}
|
|
|
|
switch (uio->uio_segflg) {
|
|
|
|
|
|
|
|
case UIO_USERSPACE:
|
|
|
|
if (subyte(iov->iov_base, c) < 0)
|
|
|
|
return (EFAULT);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case UIO_SYSSPACE:
|
|
|
|
*iov->iov_base = c;
|
|
|
|
break;
|
|
|
|
|
1995-04-30 05:11:46 +00:00
|
|
|
case UIO_NOCOPY:
|
|
|
|
break;
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
iov->iov_base++;
|
|
|
|
iov->iov_len--;
|
|
|
|
uio->uio_resid--;
|
|
|
|
uio->uio_offset++;
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* General routine to allocate a hash table.
|
|
|
|
*/
|
|
|
|
void *
|
|
|
|
hashinit(elements, type, hashmask)
|
1997-10-10 18:14:23 +00:00
|
|
|
int elements;
|
|
|
|
struct malloc_type *type;
|
1994-05-24 10:09:53 +00:00
|
|
|
u_long *hashmask;
|
|
|
|
{
|
|
|
|
long hashsize;
|
2000-05-26 02:09:24 +00:00
|
|
|
LIST_HEAD(generic, generic) *hashtbl;
|
1994-05-24 10:09:53 +00:00
|
|
|
int i;
|
|
|
|
|
|
|
|
if (elements <= 0)
|
1995-05-08 23:11:12 +00:00
|
|
|
panic("hashinit: bad elements");
|
1994-05-24 10:09:53 +00:00
|
|
|
for (hashsize = 1; hashsize <= elements; hashsize <<= 1)
|
|
|
|
continue;
|
|
|
|
hashsize >>= 1;
|
|
|
|
hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), type, M_WAITOK);
|
|
|
|
for (i = 0; i < hashsize; i++)
|
|
|
|
LIST_INIT(&hashtbl[i]);
|
|
|
|
*hashmask = hashsize - 1;
|
|
|
|
return (hashtbl);
|
|
|
|
}
|
1995-04-04 02:01:13 +00:00
|
|
|
|
2002-06-30 02:07:26 +00:00
|
|
|
void
|
|
|
|
hashdestroy(vhashtbl, type, hashmask)
|
|
|
|
void *vhashtbl;
|
|
|
|
struct malloc_type *type;
|
|
|
|
u_long hashmask;
|
|
|
|
{
|
|
|
|
LIST_HEAD(generic, generic) *hashtbl, *hp;
|
|
|
|
|
|
|
|
hashtbl = vhashtbl;
|
|
|
|
for (hp = hashtbl; hp <= &hashtbl[hashmask]; hp++)
|
|
|
|
if (!LIST_EMPTY(hp))
|
|
|
|
panic("hashdestroy: hash not empty");
|
|
|
|
free(hashtbl, type);
|
|
|
|
}
|
|
|
|
|
1995-04-09 01:19:25 +00:00
|
|
|
static int primes[] = { 1, 13, 31, 61, 127, 251, 509, 761, 1021, 1531, 2039,
|
|
|
|
2557, 3067, 3583, 4093, 4603, 5119, 5623, 6143, 6653,
|
1995-04-04 02:01:13 +00:00
|
|
|
7159, 7673, 8191, 12281, 16381, 24571, 32749 };
|
1997-05-28 00:47:27 +00:00
|
|
|
#define NPRIMES (sizeof(primes) / sizeof(primes[0]))
|
1995-04-04 02:01:13 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* General routine to allocate a prime number sized hash table.
|
|
|
|
*/
|
|
|
|
void *
|
|
|
|
phashinit(elements, type, nentries)
|
1997-10-10 18:14:23 +00:00
|
|
|
int elements;
|
|
|
|
struct malloc_type *type;
|
1995-04-04 02:01:13 +00:00
|
|
|
u_long *nentries;
|
|
|
|
{
|
|
|
|
long hashsize;
|
2000-05-26 02:09:24 +00:00
|
|
|
LIST_HEAD(generic, generic) *hashtbl;
|
1995-04-04 02:01:13 +00:00
|
|
|
int i;
|
|
|
|
|
|
|
|
if (elements <= 0)
|
1995-05-08 23:11:12 +00:00
|
|
|
panic("phashinit: bad elements");
|
1995-04-04 02:01:13 +00:00
|
|
|
for (i = 1, hashsize = primes[1]; hashsize <= elements;) {
|
|
|
|
i++;
|
|
|
|
if (i == NPRIMES)
|
|
|
|
break;
|
|
|
|
hashsize = primes[i];
|
|
|
|
}
|
|
|
|
hashsize = primes[i - 1];
|
|
|
|
hashtbl = malloc((u_long)hashsize * sizeof(*hashtbl), type, M_WAITOK);
|
|
|
|
for (i = 0; i < hashsize; i++)
|
|
|
|
LIST_INIT(&hashtbl[i]);
|
|
|
|
*nentries = hashsize;
|
|
|
|
return (hashtbl);
|
|
|
|
}
|
1999-02-02 12:11:01 +00:00
|
|
|
|
2001-09-26 06:54:32 +00:00
|
|
|
void
|
1999-02-02 12:11:01 +00:00
|
|
|
uio_yield()
|
|
|
|
{
|
2001-09-12 08:38:13 +00:00
|
|
|
struct thread *td;
|
1999-02-02 12:11:01 +00:00
|
|
|
|
2001-09-12 08:38:13 +00:00
|
|
|
td = curthread;
|
Change and clean the mutex lock interface.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
|
|
|
mtx_lock_spin(&sched_lock);
|
Change the preemption code for software interrupt thread schedules and
mutex releases to not require flags for the cases when preemption is
not allowed:
The purpose of the MTX_NOSWITCH and SWI_NOSWITCH flags is to prevent
switching to a higher priority thread on mutex releease and swi schedule,
respectively when that switch is not safe. Now that the critical section
API maintains a per-thread nesting count, the kernel can easily check
whether or not it should switch without relying on flags from the
programmer. This fixes a few bugs in that all current callers of
swi_sched() used SWI_NOSWITCH, when in fact, only the ones called from
fast interrupt handlers and the swi_sched of softclock needed this flag.
Note that to ensure that swi_sched()'s in clock and fast interrupt
handlers do not switch, these handlers have to be explicitly wrapped
in critical_enter/exit pairs. Presently, just wrapping the handlers is
sufficient, but in the future with the fully preemptive kernel, the
interrupt must be EOI'd before critical_exit() is called. (critical_exit()
can switch due to a deferred preemption in a fully preemptive kernel.)
I've tested the changes to the interrupt code on i386 and alpha. I have
not tested ia64, but the interrupt code is almost identical to the alpha
code, so I expect it will work fine. PowerPC and ARM do not yet have
interrupt code in the tree so they shouldn't be broken. Sparc64 is
broken, but that's been ok'd by jake and tmm who will be fixing the
interrupt code for sparc64 shortly.
Reviewed by: peter
Tested on: i386, alpha
2002-01-05 08:47:13 +00:00
|
|
|
DROP_GIANT();
|
2002-02-11 20:37:54 +00:00
|
|
|
td->td_priority = td->td_ksegrp->kg_user_pri; /* XXXKSE */
|
2001-09-12 08:38:13 +00:00
|
|
|
td->td_proc->p_stats->p_ru.ru_nivcsw++;
|
1999-02-02 12:11:01 +00:00
|
|
|
mi_switch();
|
Change and clean the mutex lock interface.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
|
|
|
mtx_unlock_spin(&sched_lock);
|
2000-11-16 02:16:44 +00:00
|
|
|
PICKUP_GIANT();
|
1999-02-02 12:11:01 +00:00
|
|
|
}
|
2001-02-16 14:31:49 +00:00
|
|
|
|
|
|
|
int
|
|
|
|
copyinfrom(const void *src, void *dst, size_t len, int seg)
|
|
|
|
{
|
|
|
|
int error = 0;
|
|
|
|
|
|
|
|
switch (seg) {
|
|
|
|
case UIO_USERSPACE:
|
|
|
|
error = copyin(src, dst, len);
|
|
|
|
break;
|
|
|
|
case UIO_SYSSPACE:
|
|
|
|
bcopy(src, dst, len);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
panic("copyinfrom: bad seg %d\n", seg);
|
|
|
|
}
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
copyinstrfrom(const void *src, void *dst, size_t len, size_t *copied, int seg)
|
|
|
|
{
|
|
|
|
int error = 0;
|
|
|
|
|
|
|
|
switch (seg) {
|
|
|
|
case UIO_USERSPACE:
|
|
|
|
error = copyinstr(src, dst, len, copied);
|
|
|
|
break;
|
|
|
|
case UIO_SYSSPACE:
|
|
|
|
error = copystr(src, dst, len, copied);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
panic("copyinstrfrom: bad seg %d\n", seg);
|
|
|
|
}
|
|
|
|
return (error);
|
|
|
|
}
|