1993-06-12 14:58:17 +00:00
|
|
|
/*-
|
1994-06-06 14:54:41 +00:00
|
|
|
* Copyright (C) 1994, David Greenman
|
|
|
|
* Copyright (c) 1990, 1993
|
|
|
|
* The Regents of the University of California. All rights reserved.
|
1993-06-12 14:58:17 +00:00
|
|
|
*
|
|
|
|
* This code is derived from software contributed to Berkeley by
|
|
|
|
* the University of Utah, and William Jolitz.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by the University of
|
|
|
|
* California, Berkeley and its contributors.
|
|
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
genassym.c:
Remove NKMEMCLUSTERS, it is no longer define or used.
locores.s:
Fix comment on PTDpde and APTDpde to be pde instead of pte
Add new equation for calculating location of Sysmap
Remove Bill's old #ifdef garbage for counting up memory,
that stuff will never be made to work and was just cluttering
up the file.
Add code that places the PTD, page table pages, and kernel
stack below the 640k ISA hole if there is room for it, otherwise
put this stuff all at 1MB. This fixes the 28K bogusity in
the boot blocks, that can now go away!
Fix the caclulation of where first is to be dependent on
NKPDE so that we can skip over the above mentioned areas.
The 28K thing is now 44K in size due to the increase in
kernel virtual memory space, but since we no longer have
to worry about that this is no big deal.
Use if NNPX > 0 instead of ifdef NPX for floating point code.
machdep.c
Change the calculation of for the buffer cache to be
20% of all memory above 2MB and add back the upper limit
of 2/5's of the VM_KMEM_SIZE so that we do not eat ALL
of the kernel memory space on large memory machines, note
that this will not even come into effect unless you have
more than 32MB. The current buffer cache limit is 6.7MB
due to this caclulation.
It seems that we where erroniously allocating bufpages pages
for buffer_map. buffer_map is UNUSED in this implementation
of the buffer cache, but since the map is referenced in
several if statements a quick fix was to simply allocate
1 vm page (but no real memory) to it.
pmap.h
Remove rcsid, don't want them in the kernel files!
Removed some cruft inside an #ifdef DEBUGx that caused
compiler errors if you where compiling this for debug.
Use the #defines for PD_SHIFT and PG_SHIFT in place of
constants.
trap.c:
Remove patch kit header and rcsid, fix $Id$.
Now include "npx.h" and use NNPX for controlling the
floating point code.
Remove a now completly invalid check for a maximum virtual
address, the virtual address now ends at 0xFFFFFFFF so
there is no more MAX!! (Thanks David, I completly missed
that one!)
vm_machdep.c
Remove patch kit header and rcsid, fix $Id$.
Now include "npx.h" and use NNPX for controlling the
floating point code.
Replace several 0xFE00000 constants with KERNBASE
1993-10-15 10:34:29 +00:00
|
|
|
* from: @(#)trap.c 7.4 (Berkeley) 5/13/91
|
1993-06-12 14:58:17 +00:00
|
|
|
*/
|
|
|
|
|
2003-06-11 00:56:59 +00:00
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
2003-07-31 01:36:24 +00:00
|
|
|
#include "opt_ktrace.h"
|
2002-10-02 02:42:38 +00:00
|
|
|
#include "opt_mac.h"
|
2001-06-29 19:51:37 +00:00
|
|
|
#ifdef __i386__
|
2001-01-19 13:19:02 +00:00
|
|
|
#include "opt_npx.h"
|
2001-06-29 19:51:37 +00:00
|
|
|
#endif
|
1996-01-03 21:42:35 +00:00
|
|
|
|
1994-05-25 09:21:21 +00:00
|
|
|
#include <sys/param.h>
|
2000-09-07 01:33:02 +00:00
|
|
|
#include <sys/bus.h>
|
1994-05-25 09:21:21 +00:00
|
|
|
#include <sys/kernel.h>
|
2001-06-29 19:51:37 +00:00
|
|
|
#include <sys/lock.h>
|
2002-10-02 02:42:38 +00:00
|
|
|
#include <sys/mac.h>
|
2000-10-20 07:58:15 +00:00
|
|
|
#include <sys/mutex.h>
|
2001-06-29 19:51:37 +00:00
|
|
|
#include <sys/proc.h>
|
Part 1 of KSE-III
The ability to schedule multiple threads per process
(one one cpu) by making ALL system calls optionally asynchronous.
to come: ia64 and power-pc patches, patches for gdb, test program (in tools)
Reviewed by: Almost everyone who counts
(at various times, peter, jhb, matt, alfred, mini, bernd,
and a cast of thousands)
NOTE: this is still Beta code, and contains lots of debugging stuff.
expect slight instability in signals..
2002-06-29 17:26:22 +00:00
|
|
|
#include <sys/ktr.h>
|
1997-11-24 13:25:37 +00:00
|
|
|
#include <sys/resourcevar.h>
|
2002-10-12 05:32:24 +00:00
|
|
|
#include <sys/sched.h>
|
1997-11-24 13:25:37 +00:00
|
|
|
#include <sys/signalvar.h>
|
2001-06-29 19:51:37 +00:00
|
|
|
#include <sys/systm.h>
|
1995-12-07 12:48:31 +00:00
|
|
|
#include <sys/vmmeter.h>
|
2003-07-31 01:36:24 +00:00
|
|
|
#ifdef KTRACE
|
|
|
|
#include <sys/uio.h>
|
|
|
|
#include <sys/ktrace.h>
|
|
|
|
#endif
|
|
|
|
|
1994-05-25 09:21:21 +00:00
|
|
|
#include <machine/cpu.h>
|
1997-11-24 13:25:37 +00:00
|
|
|
#include <machine/pcb.h>
|
2000-12-12 01:14:32 +00:00
|
|
|
|
2001-06-29 19:51:37 +00:00
|
|
|
/*
|
|
|
|
* Define the code needed before returning to user mode, for
|
|
|
|
* trap and syscall.
|
2001-08-30 18:50:57 +00:00
|
|
|
*
|
|
|
|
* MPSAFE
|
2001-06-29 19:51:37 +00:00
|
|
|
*/
|
2001-01-24 09:53:49 +00:00
|
|
|
void
|
2006-02-08 08:09:17 +00:00
|
|
|
userret(struct thread *td, struct trapframe *frame)
|
1994-06-06 14:54:41 +00:00
|
|
|
{
|
2001-09-12 08:38:13 +00:00
|
|
|
struct proc *p = td->td_proc;
|
1994-06-06 14:54:41 +00:00
|
|
|
|
Part 1 of KSE-III
The ability to schedule multiple threads per process
(one one cpu) by making ALL system calls optionally asynchronous.
to come: ia64 and power-pc patches, patches for gdb, test program (in tools)
Reviewed by: Almost everyone who counts
(at various times, peter, jhb, matt, alfred, mini, bernd,
and a cast of thousands)
NOTE: this is still Beta code, and contains lots of debugging stuff.
expect slight instability in signals..
2002-06-29 17:26:22 +00:00
|
|
|
CTR3(KTR_SYSC, "userret: thread %p (pid %d, %s)", td, p->p_pid,
|
|
|
|
p->p_comm);
|
2004-03-05 17:35:28 +00:00
|
|
|
#ifdef DIAGNOSTIC
|
2003-02-01 12:17:09 +00:00
|
|
|
/* Check that we called signotify() enough. */
|
2001-06-22 23:05:11 +00:00
|
|
|
PROC_LOCK(p);
|
2002-04-04 17:49:48 +00:00
|
|
|
mtx_lock_spin(&sched_lock);
|
2003-03-31 22:49:17 +00:00
|
|
|
if (SIGPENDING(td) && ((td->td_flags & TDF_NEEDSIGCHK) == 0 ||
|
2003-02-17 09:55:10 +00:00
|
|
|
(td->td_flags & TDF_ASTPENDING) == 0))
|
2002-08-22 14:36:03 +00:00
|
|
|
printf("failed to set signal flags properly for ast()\n");
|
2002-04-04 17:49:48 +00:00
|
|
|
mtx_unlock_spin(&sched_lock);
|
2001-08-10 22:53:32 +00:00
|
|
|
PROC_UNLOCK(p);
|
2002-04-04 17:49:48 +00:00
|
|
|
#endif
|
2000-03-28 07:16:37 +00:00
|
|
|
|
Moderate rewrite of kernel ktrace code to attempt to generally improve
reliability when tracing fast-moving processes or writing traces to
slow file systems by avoiding unbounded queueuing and dropped records.
Record loss was previously possible when the global pool of records
become depleted as a result of record generation outstripping record
commit, which occurred quickly in many common situations.
These changes partially restore the 4.x model of committing ktrace
records at the point of trace generation (synchronous), but maintain
the 5.x deferred record commit behavior (asynchronous) for situations
where entering VFS and sleeping is not possible (i.e., in the
scheduler). Records are now queued per-process as opposed to
globally, with processes responsible for committing records from their
own context as required.
- Eliminate the ktrace worker thread and global record queue, as they
are no longer used. Keep the global free record list, as records
are still used.
- Add a per-process record queue, which will hold any asynchronously
generated records, such as from context switches. This replaces the
global queue as the place to submit asynchronous records to.
- When a record is committed asynchronously, simply queue it to the
process.
- When a record is committed synchronously, first drain any pending
per-process records in order to maintain ordering as best we can.
Currently ordering between competing threads is provided via a global
ktrace_sx, but a per-process flag or lock may be desirable in the
future.
- When a process returns to user space following a system call, trap,
signal delivery, etc, flush any pending records.
- When a process exits, flush any pending records.
- Assert on process tear-down that there are no pending records.
- Slightly abstract the notion of being "in ktrace", which is used to
prevent the recursive generation of records, as well as generating
traces for ktrace events.
Future work here might look at changing the set of events marked for
synchronous and asynchronous record generation, re-balancing queue
depth, timeliness of commit to disk, and so on. I.e., performing a
drain every (n) records.
MFC after: 1 month
Discussed with: jhb
Requested by: Marc Olzheim <marcolz at stack dot nl>
2005-11-13 13:27:44 +00:00
|
|
|
#ifdef KTRACE
|
|
|
|
KTRUSERRET(td);
|
|
|
|
#endif
|
|
|
|
|
2004-10-23 20:49:17 +00:00
|
|
|
/*
|
|
|
|
* If this thread tickled GEOM, we need to wait for the giggling to
|
|
|
|
* stop before we return to userland
|
|
|
|
*/
|
|
|
|
if (td->td_pflags & TDP_GEOM)
|
|
|
|
g_waitidle();
|
|
|
|
|
Part 1 of KSE-III
The ability to schedule multiple threads per process
(one one cpu) by making ALL system calls optionally asynchronous.
to come: ia64 and power-pc patches, patches for gdb, test program (in tools)
Reviewed by: Almost everyone who counts
(at various times, peter, jhb, matt, alfred, mini, bernd,
and a cast of thousands)
NOTE: this is still Beta code, and contains lots of debugging stuff.
expect slight instability in signals..
2002-06-29 17:26:22 +00:00
|
|
|
/*
|
2002-10-26 04:44:17 +00:00
|
|
|
* We need to check to see if we have to exit or wait due to a
|
|
|
|
* single threading requirement or some other STOP condition.
|
|
|
|
* Don't bother doing all the work if the stop bits are not set
|
|
|
|
* at this time.. If we miss it, we miss it.. no big deal.
|
|
|
|
*/
|
|
|
|
if (P_SHOULDSTOP(p)) {
|
|
|
|
PROC_LOCK(p);
|
|
|
|
thread_suspend_check(0); /* Can suspend or kill */
|
|
|
|
PROC_UNLOCK(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Do special thread processing, e.g. upcall tweaking and such.
|
Part 1 of KSE-III
The ability to schedule multiple threads per process
(one one cpu) by making ALL system calls optionally asynchronous.
to come: ia64 and power-pc patches, patches for gdb, test program (in tools)
Reviewed by: Almost everyone who counts
(at various times, peter, jhb, matt, alfred, mini, bernd,
and a cast of thousands)
NOTE: this is still Beta code, and contains lots of debugging stuff.
expect slight instability in signals..
2002-06-29 17:26:22 +00:00
|
|
|
*/
|
2004-03-13 22:31:39 +00:00
|
|
|
if (p->p_flag & P_SA)
|
2002-09-23 06:14:30 +00:00
|
|
|
thread_userret(td, frame);
|
2003-02-01 12:17:09 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Charge system time if profiling.
|
|
|
|
*/
|
2003-04-22 20:54:04 +00:00
|
|
|
if (p->p_flag & P_PROFIL) {
|
2003-02-01 12:17:09 +00:00
|
|
|
|
2006-02-08 08:09:17 +00:00
|
|
|
addupc_task(td, TRAPF_PC(frame), td->td_pticks * psratio);
|
2003-02-01 12:17:09 +00:00
|
|
|
}
|
2004-12-30 20:30:58 +00:00
|
|
|
|
2004-12-26 07:30:35 +00:00
|
|
|
/*
|
|
|
|
* Let the scheduler adjust our priority etc.
|
|
|
|
*/
|
|
|
|
sched_userret(td);
|
2005-03-24 09:35:38 +00:00
|
|
|
KASSERT(td->td_locks == 0,
|
|
|
|
("userret: Returning with %d locks held.", td->td_locks));
|
1994-06-06 14:54:41 +00:00
|
|
|
}
|
1993-06-12 14:58:17 +00:00
|
|
|
|
|
|
|
/*
|
2001-06-29 19:51:37 +00:00
|
|
|
* Process an asynchronous software trap.
|
|
|
|
* This is relatively easy.
|
2001-08-10 22:53:32 +00:00
|
|
|
* This function will return with preemption disabled.
|
1993-06-12 14:58:17 +00:00
|
|
|
*/
|
2000-09-07 01:33:02 +00:00
|
|
|
void
|
Part 1 of KSE-III
The ability to schedule multiple threads per process
(one one cpu) by making ALL system calls optionally asynchronous.
to come: ia64 and power-pc patches, patches for gdb, test program (in tools)
Reviewed by: Almost everyone who counts
(at various times, peter, jhb, matt, alfred, mini, bernd,
and a cast of thousands)
NOTE: this is still Beta code, and contains lots of debugging stuff.
expect slight instability in signals..
2002-06-29 17:26:22 +00:00
|
|
|
ast(struct trapframe *framep)
|
2000-09-07 01:33:02 +00:00
|
|
|
{
|
2002-10-01 14:16:50 +00:00
|
|
|
struct thread *td;
|
|
|
|
struct proc *p;
|
|
|
|
struct ksegrp *kg;
|
2004-02-04 21:52:57 +00:00
|
|
|
struct rlimit rlim;
|
2001-08-10 22:53:32 +00:00
|
|
|
int sflag;
|
2001-09-12 08:38:13 +00:00
|
|
|
int flags;
|
2002-04-04 17:49:48 +00:00
|
|
|
int sig;
|
2001-05-22 21:20:49 +00:00
|
|
|
#if defined(DEV_NPX) && !defined(SMP)
|
|
|
|
int ucode;
|
1. Change prototype of trapsignal and sendsig to use ksiginfo_t *, most
changes in MD code are trivial, before this change, trapsignal and
sendsig use discrete parameters, now they uses member fields of
ksiginfo_t structure. For sendsig, this change allows us to pass
POSIX realtime signal value to user code.
2. Remove cpu_thread_siginfo, it is no longer needed because we now always
generate ksiginfo_t data and feed it to libpthread.
3. Add p_sigqueue to proc structure to hold shared signals which were
blocked by all threads in the proc.
4. Add td_sigqueue to thread structure to hold all signals delivered to
thread.
5. i386 and amd64 now return POSIX standard si_code, other arches will
be fixed.
6. In this sigqueue implementation, pending signal set is kept as before,
an extra siginfo list holds additional siginfo_t data for signals.
kernel code uses psignal() still behavior as before, it won't be failed
even under memory pressure, only exception is when deleting a signal,
we should call sigqueue_delete to remove signal from sigqueue but
not SIGDELSET. Current there is no kernel code will deliver a signal
with additional data, so kernel should be as stable as before,
a ksiginfo can carry more information, for example, allow signal to
be delivered but throw away siginfo data if memory is not enough.
SIGKILL and SIGSTOP have fast path in sigqueue_add, because they can
not be caught or masked.
The sigqueue() syscall allows user code to queue a signal to target
process, if resource is unavailable, EAGAIN will be returned as
specification said.
Just before thread exits, signal queue memory will be freed by
sigqueue_flush.
Current, all signals are allowed to be queued, not only realtime signals.
Earlier patch reviewed by: jhb, deischen
Tested on: i386, amd64
2005-10-14 12:43:47 +00:00
|
|
|
ksiginfo_t ksi;
|
2001-05-22 21:20:49 +00:00
|
|
|
#endif
|
2000-09-07 01:33:02 +00:00
|
|
|
|
2002-10-01 14:16:50 +00:00
|
|
|
td = curthread;
|
|
|
|
p = td->td_proc;
|
2002-10-02 16:39:39 +00:00
|
|
|
kg = td->td_ksegrp;
|
|
|
|
|
Part 1 of KSE-III
The ability to schedule multiple threads per process
(one one cpu) by making ALL system calls optionally asynchronous.
to come: ia64 and power-pc patches, patches for gdb, test program (in tools)
Reviewed by: Almost everyone who counts
(at various times, peter, jhb, matt, alfred, mini, bernd,
and a cast of thousands)
NOTE: this is still Beta code, and contains lots of debugging stuff.
expect slight instability in signals..
2002-06-29 17:26:22 +00:00
|
|
|
CTR3(KTR_SYSC, "ast: thread %p (pid %d, %s)", td, p->p_pid,
|
|
|
|
p->p_comm);
|
2001-02-22 18:05:15 +00:00
|
|
|
KASSERT(TRAPF_USERMODE(framep), ("ast in kernel mode"));
|
2003-03-04 21:03:05 +00:00
|
|
|
WITNESS_WARN(WARN_PANIC, NULL, "Returning to user mode");
|
2001-08-10 22:53:32 +00:00
|
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
2002-04-04 17:49:48 +00:00
|
|
|
mtx_assert(&sched_lock, MA_NOTOWNED);
|
2002-03-29 16:45:03 +00:00
|
|
|
td->td_frame = framep;
|
2006-02-08 08:09:17 +00:00
|
|
|
td->td_pticks = 0;
|
2002-10-01 14:16:50 +00:00
|
|
|
|
2004-08-08 22:28:33 +00:00
|
|
|
if ((p->p_flag & P_SA) && (td->td_mailbox == NULL))
|
2004-08-31 07:34:54 +00:00
|
|
|
thread_user_enter(td);
|
2004-09-22 15:24:33 +00:00
|
|
|
|
2002-03-29 16:45:03 +00:00
|
|
|
/*
|
|
|
|
* This updates the p_sflag's for the checks below in one
|
|
|
|
* "atomic" operation with turning off the astpending flag.
|
|
|
|
* If another AST is triggered while we are handling the
|
|
|
|
* AST's saved in sflag, the astpending flag will be set and
|
|
|
|
* ast() will be called again.
|
|
|
|
*/
|
|
|
|
mtx_lock_spin(&sched_lock);
|
2003-02-17 09:55:10 +00:00
|
|
|
flags = td->td_flags;
|
2002-10-01 14:16:50 +00:00
|
|
|
sflag = p->p_sflag;
|
2006-02-10 14:59:16 +00:00
|
|
|
if (p->p_sflag & (PS_ALRMPEND | PS_PROFPEND | PS_XCPU))
|
|
|
|
p->p_sflag &= ~(PS_ALRMPEND | PS_PROFPEND | PS_XCPU);
|
2002-11-08 19:00:17 +00:00
|
|
|
#ifdef MAC
|
2006-02-10 14:59:16 +00:00
|
|
|
if (p->p_sflag & PS_MACPEND)
|
|
|
|
p->p_sflag &= ~PS_MACPEND;
|
2002-11-08 19:00:17 +00:00
|
|
|
#endif
|
2003-03-31 22:49:17 +00:00
|
|
|
td->td_flags &= ~(TDF_ASTPENDING | TDF_NEEDSIGCHK |
|
2004-07-16 21:04:55 +00:00
|
|
|
TDF_NEEDRESCHED | TDF_INTERRUPT);
|
2002-03-29 16:45:03 +00:00
|
|
|
cnt.v_soft++;
|
|
|
|
mtx_unlock_spin(&sched_lock);
|
2004-09-22 15:24:33 +00:00
|
|
|
|
Part 1 of KSE-III
The ability to schedule multiple threads per process
(one one cpu) by making ALL system calls optionally asynchronous.
to come: ia64 and power-pc patches, patches for gdb, test program (in tools)
Reviewed by: Almost everyone who counts
(at various times, peter, jhb, matt, alfred, mini, bernd,
and a cast of thousands)
NOTE: this is still Beta code, and contains lots of debugging stuff.
expect slight instability in signals..
2002-06-29 17:26:22 +00:00
|
|
|
/*
|
|
|
|
* XXXKSE While the fact that we owe a user profiling
|
|
|
|
* tick is stored per KSE in this code, the statistics
|
|
|
|
* themselves are still stored per process.
|
|
|
|
* This should probably change, by which I mean that
|
|
|
|
* possibly the location of both might change.
|
|
|
|
*/
|
2002-03-29 16:45:03 +00:00
|
|
|
if (td->td_ucred != p->p_ucred)
|
|
|
|
cred_update_thread(td);
|
2004-07-16 21:04:55 +00:00
|
|
|
if (td->td_pflags & TDP_OWEUPC && p->p_flag & P_PROFIL) {
|
|
|
|
addupc_task(td, td->td_profil_addr, td->td_profil_ticks);
|
|
|
|
td->td_profil_ticks = 0;
|
|
|
|
td->td_pflags &= ~TDP_OWEUPC;
|
2004-07-02 03:50:48 +00:00
|
|
|
}
|
2002-03-29 16:45:03 +00:00
|
|
|
if (sflag & PS_ALRMPEND) {
|
|
|
|
PROC_LOCK(p);
|
|
|
|
psignal(p, SIGVTALRM);
|
|
|
|
PROC_UNLOCK(p);
|
|
|
|
}
|
2001-05-22 21:20:49 +00:00
|
|
|
#if defined(DEV_NPX) && !defined(SMP)
|
2002-03-29 16:45:03 +00:00
|
|
|
if (PCPU_GET(curpcb)->pcb_flags & PCB_NPXTRAP) {
|
|
|
|
atomic_clear_int(&PCPU_GET(curpcb)->pcb_flags,
|
|
|
|
PCB_NPXTRAP);
|
|
|
|
ucode = npxtrap();
|
|
|
|
if (ucode != -1) {
|
1. Change prototype of trapsignal and sendsig to use ksiginfo_t *, most
changes in MD code are trivial, before this change, trapsignal and
sendsig use discrete parameters, now they uses member fields of
ksiginfo_t structure. For sendsig, this change allows us to pass
POSIX realtime signal value to user code.
2. Remove cpu_thread_siginfo, it is no longer needed because we now always
generate ksiginfo_t data and feed it to libpthread.
3. Add p_sigqueue to proc structure to hold shared signals which were
blocked by all threads in the proc.
4. Add td_sigqueue to thread structure to hold all signals delivered to
thread.
5. i386 and amd64 now return POSIX standard si_code, other arches will
be fixed.
6. In this sigqueue implementation, pending signal set is kept as before,
an extra siginfo list holds additional siginfo_t data for signals.
kernel code uses psignal() still behavior as before, it won't be failed
even under memory pressure, only exception is when deleting a signal,
we should call sigqueue_delete to remove signal from sigqueue but
not SIGDELSET. Current there is no kernel code will deliver a signal
with additional data, so kernel should be as stable as before,
a ksiginfo can carry more information, for example, allow signal to
be delivered but throw away siginfo data if memory is not enough.
SIGKILL and SIGSTOP have fast path in sigqueue_add, because they can
not be caught or masked.
The sigqueue() syscall allows user code to queue a signal to target
process, if resource is unavailable, EAGAIN will be returned as
specification said.
Just before thread exits, signal queue memory will be freed by
sigqueue_flush.
Current, all signals are allowed to be queued, not only realtime signals.
Earlier patch reviewed by: jhb, deischen
Tested on: i386, amd64
2005-10-14 12:43:47 +00:00
|
|
|
ksiginfo_init_trap(&ksi);
|
|
|
|
ksi.ksi_signo = SIGFPE;
|
|
|
|
ksi.ksi_code = ucode;
|
|
|
|
trapsignal(td, &ksi);
|
2001-05-22 21:20:49 +00:00
|
|
|
}
|
2002-03-29 16:45:03 +00:00
|
|
|
}
|
2001-05-22 21:20:49 +00:00
|
|
|
#endif
|
2002-03-29 16:45:03 +00:00
|
|
|
if (sflag & PS_PROFPEND) {
|
|
|
|
PROC_LOCK(p);
|
|
|
|
psignal(p, SIGPROF);
|
|
|
|
PROC_UNLOCK(p);
|
|
|
|
}
|
2002-09-30 21:13:54 +00:00
|
|
|
if (sflag & PS_XCPU) {
|
|
|
|
PROC_LOCK(p);
|
2004-02-04 21:52:57 +00:00
|
|
|
lim_rlimit(p, RLIMIT_CPU, &rlim);
|
2003-04-17 22:33:04 +00:00
|
|
|
mtx_lock_spin(&sched_lock);
|
2006-02-07 21:22:02 +00:00
|
|
|
if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
|
2003-04-17 22:33:04 +00:00
|
|
|
mtx_unlock_spin(&sched_lock);
|
2002-09-30 21:13:54 +00:00
|
|
|
killproc(p, "exceeded maximum CPU limit");
|
2003-04-17 22:33:04 +00:00
|
|
|
} else {
|
2004-02-04 21:52:57 +00:00
|
|
|
if (p->p_cpulimit < rlim.rlim_max)
|
2002-10-09 17:17:24 +00:00
|
|
|
p->p_cpulimit += 5;
|
|
|
|
mtx_unlock_spin(&sched_lock);
|
2003-04-17 22:33:04 +00:00
|
|
|
psignal(p, SIGXCPU);
|
2002-09-30 21:13:54 +00:00
|
|
|
}
|
|
|
|
PROC_UNLOCK(p);
|
|
|
|
}
|
2002-11-08 19:00:17 +00:00
|
|
|
#ifdef MAC
|
|
|
|
if (sflag & PS_MACPEND)
|
|
|
|
mac_thread_userret(td);
|
|
|
|
#endif
|
2003-02-17 09:55:10 +00:00
|
|
|
if (flags & TDF_NEEDRESCHED) {
|
2003-07-31 01:36:24 +00:00
|
|
|
#ifdef KTRACE
|
|
|
|
if (KTRPOINT(td, KTR_CSW))
|
2003-09-05 22:15:26 +00:00
|
|
|
ktrcsw(1, 1);
|
2003-07-31 01:36:24 +00:00
|
|
|
#endif
|
2002-04-04 17:49:48 +00:00
|
|
|
mtx_lock_spin(&sched_lock);
|
2002-10-12 05:32:24 +00:00
|
|
|
sched_prio(td, kg->kg_user_pri);
|
2004-07-02 19:09:50 +00:00
|
|
|
mi_switch(SW_INVOL, NULL);
|
2002-04-04 17:49:48 +00:00
|
|
|
mtx_unlock_spin(&sched_lock);
|
2003-07-31 01:36:24 +00:00
|
|
|
#ifdef KTRACE
|
|
|
|
if (KTRPOINT(td, KTR_CSW))
|
2003-09-05 22:15:26 +00:00
|
|
|
ktrcsw(0, 1);
|
2003-07-31 01:36:24 +00:00
|
|
|
#endif
|
2002-04-04 17:49:48 +00:00
|
|
|
}
|
2003-03-31 22:49:17 +00:00
|
|
|
if (flags & TDF_NEEDSIGCHK) {
|
2002-04-04 17:49:48 +00:00
|
|
|
PROC_LOCK(p);
|
- Merge struct procsig with struct sigacts.
- Move struct sigacts out of the u-area and malloc() it using the
M_SUBPROC malloc bucket.
- Add a small sigacts_*() API for managing sigacts structures: sigacts_alloc(),
sigacts_free(), sigacts_copy(), sigacts_share(), and sigacts_shared().
- Remove the p_sigignore, p_sigacts, and p_sigcatch macros.
- Add a mutex to struct sigacts that protects all the members of the struct.
- Add sigacts locking.
- Remove Giant from nosys(), kill(), killpg(), and kern_sigaction() now
that sigacts is locked.
- Several in-kernel functions such as psignal(), tdsignal(), trapsignal(),
and thread_stopped() are now MP safe.
Reviewed by: arch@
Approved by: re (rwatson)
2003-05-13 20:36:02 +00:00
|
|
|
mtx_lock(&p->p_sigacts->ps_mtx);
|
o Change kse_thr_interrupt to allow send a signal to a specified thread,
or unblock a thread in kernel, and allow UTS to specify whether syscall
should be restarted.
o Add ability for UTS to monitor signal comes in and removed from process,
the flag PS_SIGEVENT is used to indicate the events.
o Add a KMF_WAITSIGEVENT for KSE mailbox flag, UTS call kse_release with
this flag set to wait for above signal event.
o For SA based thread, kernel masks all signal in its signal mask, let
UTS to use kse_thr_interrupt interrupt a thread, and install a signal
frame in userland for the thread.
o Add a tm_syncsig in thread mailbox, when a hardware trap occurs,
it is used to deliver synchronous signal to userland, and upcall
is schedule, so UTS can process the synchronous signal for the thread.
Reviewed by: julian (mentor)
2003-06-28 08:29:05 +00:00
|
|
|
while ((sig = cursig(td)) != 0)
|
2002-04-04 17:49:48 +00:00
|
|
|
postsig(sig);
|
- Merge struct procsig with struct sigacts.
- Move struct sigacts out of the u-area and malloc() it using the
M_SUBPROC malloc bucket.
- Add a small sigacts_*() API for managing sigacts structures: sigacts_alloc(),
sigacts_free(), sigacts_copy(), sigacts_share(), and sigacts_shared().
- Remove the p_sigignore, p_sigacts, and p_sigcatch macros.
- Add a mutex to struct sigacts that protects all the members of the struct.
- Add sigacts locking.
- Remove Giant from nosys(), kill(), killpg(), and kern_sigaction() now
that sigacts is locked.
- Several in-kernel functions such as psignal(), tdsignal(), trapsignal(),
and thread_stopped() are now MP safe.
Reviewed by: arch@
Approved by: re (rwatson)
2003-05-13 20:36:02 +00:00
|
|
|
mtx_unlock(&p->p_sigacts->ps_mtx);
|
2002-04-04 17:49:48 +00:00
|
|
|
PROC_UNLOCK(p);
|
|
|
|
}
|
1997-04-07 07:16:06 +00:00
|
|
|
|
2006-02-08 08:09:17 +00:00
|
|
|
userret(td, framep);
|
2001-08-10 22:53:32 +00:00
|
|
|
mtx_assert(&Giant, MA_NOTOWNED);
|
1997-04-07 07:16:06 +00:00
|
|
|
}
|