freebsd-dev/sys/kern/kern_timeout.c

475 lines
13 KiB
C
Raw Normal View History

1994-05-24 10:09:53 +00:00
/*-
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* From: @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
1994-05-24 10:09:53 +00:00
*/
2003-06-11 00:56:59 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/systm.h>
1998-02-15 14:15:21 +00:00
#include <sys/callout.h>
1994-05-24 10:09:53 +00:00
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
1994-05-24 10:09:53 +00:00
static int avg_depth;
SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
"Average number of items examined per softclock call. Units = 1/1000");
static int avg_gcalls;
SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
"Average number of Giant callouts made per softclock call. Units = 1/1000");
static int avg_mpcalls;
SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
"Average number of MP callouts made per softclock call. Units = 1/1000");
1998-02-15 14:15:21 +00:00
/*
* TODO:
* allocate more timeout table slots when table overflows.
*/
/* Exported to machdep.c and/or kern_clock.c. */
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
struct callout *callout;
struct callout_list callfree;
int callwheelsize, callwheelbits, callwheelmask;
struct callout_tailq *callwheel;
1998-02-15 14:15:21 +00:00
int softticks; /* Like ticks, but for softclock(). */
struct mtx callout_lock;
#ifdef DIAGNOSTIC
struct mtx dont_sleep_in_callout;
#endif
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
static struct callout *nextsoftcheck; /* Next callout to be checked. */
1994-05-24 10:09:53 +00:00
/*
* kern_timeout_callwheel_alloc() - kernel low level callwheel initialization
*
* This code is called very early in the kernel initialization sequence,
* and may be called more then once.
*/
caddr_t
kern_timeout_callwheel_alloc(caddr_t v)
{
/*
* Calculate callout wheel size
*/
for (callwheelsize = 1, callwheelbits = 0;
callwheelsize < ncallout;
callwheelsize <<= 1, ++callwheelbits)
;
callwheelmask = callwheelsize - 1;
callout = (struct callout *)v;
v = (caddr_t)(callout + ncallout);
callwheel = (struct callout_tailq *)v;
v = (caddr_t)(callwheel + callwheelsize);
return(v);
}
/*
* kern_timeout_callwheel_init() - initialize previously reserved callwheel
* space.
*
* This code is called just once, after the space reserved for the
* callout wheel has been finalized.
*/
void
kern_timeout_callwheel_init(void)
{
int i;
SLIST_INIT(&callfree);
for (i = 0; i < ncallout; i++) {
callout_init(&callout[i], 0);
callout[i].c_flags = CALLOUT_LOCAL_ALLOC;
SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle);
}
for (i = 0; i < callwheelsize; i++) {
TAILQ_INIT(&callwheel[i]);
}
mtx_init(&callout_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
#ifdef DIAGNOSTIC
mtx_init(&dont_sleep_in_callout, "dont_sleep_in_callout", NULL, MTX_DEF);
#endif
}
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
/*
* The callout mechanism is based on the work of Adam M. Costello and
* George Varghese, published in a technical report entitled "Redesigning
* the BSD Callout and Timer Facilities" and modified slightly for inclusion
* in FreeBSD by Justin T. Gibbs. The original work on the data structures
* used in this implementation was published by G.Varghese and A. Lauck in
* the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
* the Efficient Implementation of a Timer Facility" in the Proceedings of
* the 11th ACM Annual Symposium on Operating Systems Principles,
* Austin, Texas Nov 1987.
*/
1994-05-24 10:09:53 +00:00
/*
* Software (low priority) clock interrupt.
* Run periodic events from timeout queue.
*/
void
softclock(void *dummy)
1994-05-24 10:09:53 +00:00
{
struct callout *c;
struct callout_tailq *bucket;
int curticks;
int steps; /* #steps since we last allowed interrupts */
int depth;
int mpcalls;
int gcalls;
#ifdef DIAGNOSTIC
struct bintime bt1, bt2;
struct timespec ts2;
static uint64_t maxdt = 36893488147419102LL; /* 2 msec */
static timeout_t *lastfunc;
#endif
1998-02-15 14:15:21 +00:00
#ifndef MAX_SOFTCLOCK_STEPS
#define MAX_SOFTCLOCK_STEPS 100 /* Maximum allowed value of steps. */
#endif /* MAX_SOFTCLOCK_STEPS */
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
mpcalls = 0;
gcalls = 0;
depth = 0;
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
steps = 0;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&callout_lock);
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
while (softticks != ticks) {
softticks++;
/*
* softticks may be modified by hard clock, so cache
* it while we work on a given bucket.
*/
curticks = softticks;
bucket = &callwheel[curticks & callwheelmask];
c = TAILQ_FIRST(bucket);
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
while (c) {
depth++;
if (c->c_time != curticks) {
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
c = TAILQ_NEXT(c, c_links.tqe);
++steps;
if (steps >= MAX_SOFTCLOCK_STEPS) {
nextsoftcheck = c;
/* Give interrupts a chance. */
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&callout_lock);
; /* nothing */
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&callout_lock);
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
c = nextsoftcheck;
steps = 0;
}
} else {
void (*c_func)(void *);
void *c_arg;
int c_flags;
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
nextsoftcheck = TAILQ_NEXT(c, c_links.tqe);
TAILQ_REMOVE(bucket, c, c_links.tqe);
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
c_func = c->c_func;
c_arg = c->c_arg;
c_flags = c->c_flags;
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
c->c_func = NULL;
if (c->c_flags & CALLOUT_LOCAL_ALLOC) {
c->c_flags = CALLOUT_LOCAL_ALLOC;
SLIST_INSERT_HEAD(&callfree, c,
c_links.sle);
} else {
c->c_flags =
(c->c_flags & ~CALLOUT_PENDING);
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&callout_lock);
if (!(c_flags & CALLOUT_MPSAFE)) {
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(&Giant);
gcalls++;
} else {
mpcalls++;
}
#ifdef DIAGNOSTIC
binuptime(&bt1);
mtx_lock(&dont_sleep_in_callout);
#endif
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
c_func(c_arg);
#ifdef DIAGNOSTIC
mtx_unlock(&dont_sleep_in_callout);
binuptime(&bt2);
bintime_sub(&bt2, &bt1);
if (bt2.frac > maxdt) {
if (lastfunc != c_func ||
bt2.frac > maxdt * 2) {
bintime2timespec(&bt2, &ts2);
printf(
"Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
c_func, c_arg,
(intmax_t)ts2.tv_sec,
ts2.tv_nsec);
}
maxdt = bt2.frac;
lastfunc = c_func;
}
#endif
if (!(c_flags & CALLOUT_MPSAFE))
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock(&Giant);
mtx_lock_spin(&callout_lock);
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
steps = 0;
c = nextsoftcheck;
}
}
1994-05-24 10:09:53 +00:00
}
avg_depth += (depth * 1000 - avg_depth) >> 8;
avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
nextsoftcheck = NULL;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&callout_lock);
1994-05-24 10:09:53 +00:00
}
/*
* timeout --
* Execute a function after a specified length of time.
*
* untimeout --
* Cancel previous timeout function call.
*
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
* callout_handle_init --
* Initialize a handle so that using it with untimeout is benign.
*
1994-05-24 10:09:53 +00:00
* See AT&T BCI Driver Reference Manual for specification. This
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
* implementation differs from that one in that although an
* identification value is returned from timeout, the original
* arguments to timeout as well as the identifier are used to
* identify entries for untimeout.
1994-05-24 10:09:53 +00:00
*/
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
struct callout_handle
timeout(ftn, arg, to_ticks)
timeout_t *ftn;
1994-05-24 10:09:53 +00:00
void *arg;
int to_ticks;
1994-05-24 10:09:53 +00:00
{
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
struct callout *new;
struct callout_handle handle;
1994-05-24 10:09:53 +00:00
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&callout_lock);
1994-05-24 10:09:53 +00:00
/* Fill in the next free callout structure. */
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
new = SLIST_FIRST(&callfree);
if (new == NULL)
/* XXX Attempt to malloc first */
1994-05-24 10:09:53 +00:00
panic("timeout table full");
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
SLIST_REMOVE_HEAD(&callfree, c_links.sle);
callout_reset(new, to_ticks, ftn, arg);
1994-05-24 10:09:53 +00:00
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
handle.callout = new;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&callout_lock);
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
return (handle);
1994-05-24 10:09:53 +00:00
}
void
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
untimeout(ftn, arg, handle)
timeout_t *ftn;
1994-05-24 10:09:53 +00:00
void *arg;
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
struct callout_handle handle;
1994-05-24 10:09:53 +00:00
{
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
/*
* Check for a handle that was initialized
* by callout_handle_init, but never used
* for a real timeout.
*/
if (handle.callout == NULL)
return;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&callout_lock);
if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
callout_stop(handle.callout);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&callout_lock);
1994-05-24 10:09:53 +00:00
}
init_main.c subr_autoconf.c: Add support for "interrupt driven configuration hooks". A component of the kernel can register a hook, most likely during auto-configuration, and receive a callback once interrupt services are available. This callback will occur before the root and dump devices are configured, so the configuration task can affect the selection of those two devices or complete any tasks that need to be performed prior to launching init. System boot is posponed so long as a hook is registered. The hook owner is responsible for removing the hook once their task is complete or the system boot can continue. kern_acct.c kern_clock.c kern_exit.c kern_synch.c kern_time.c: Change the interface and implementation for the kernel callout service. The new implemntaion is based on the work of Adam M. Costello and George Varghese, published in a technical report entitled "Redesigning the BSD Callout and Timer Facilities". The interface used in FreeBSD is a little different than the one outlined in the paper. The new function prototypes are: struct callout_handle timeout(void (*func)(void *), void *arg, int ticks); void untimeout(void (*func)(void *), void *arg, struct callout_handle handle); If a client wishes to remove a timeout, it must store the callout_handle returned by timeout and pass it to untimeout. The new implementation gives 0(1) insert and removal of callouts making this interface scale well even for applications that keep 100s of callouts outstanding. See the updated timeout.9 man page for more details.
1997-09-21 22:00:25 +00:00
void
callout_handle_init(struct callout_handle *handle)
{
handle->callout = NULL;
}
/*
* New interface; clients allocate their own callout structures.
*
* callout_reset() - establish or change a timeout
* callout_stop() - disestablish a timeout
* callout_init() - initialize a callout structure so that it can
* safely be passed to callout_reset() and callout_stop()
*
* <sys/callout.h> defines three convenience macros:
*
* callout_active() - returns truth if callout has not been serviced
* callout_pending() - returns truth if callout is still waiting for timeout
* callout_deactivate() - marks the callout as having been serviced
*/
void
callout_reset(c, to_ticks, ftn, arg)
struct callout *c;
int to_ticks;
2002-03-19 21:25:46 +00:00
void (*ftn)(void *);
void *arg;
{
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&callout_lock);
if (c->c_flags & CALLOUT_PENDING)
callout_stop(c);
/*
* We could unlock callout_lock here and lock it again before the
* TAILQ_INSERT_TAIL, but there's no point since doing this setup
* doesn't take much time.
*/
if (to_ticks <= 0)
to_ticks = 1;
c->c_arg = arg;
c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING);
c->c_func = ftn;
c->c_time = ticks + to_ticks;
TAILQ_INSERT_TAIL(&callwheel[c->c_time & callwheelmask],
c, c_links.tqe);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&callout_lock);
}
int
callout_stop(c)
struct callout *c;
{
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&callout_lock);
/*
* Don't attempt to delete a callout that's not on the queue.
*/
if (!(c->c_flags & CALLOUT_PENDING)) {
c->c_flags &= ~CALLOUT_ACTIVE;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&callout_lock);
return (0);
}
c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
if (nextsoftcheck == c) {
nextsoftcheck = TAILQ_NEXT(c, c_links.tqe);
}
TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_links.tqe);
c->c_func = NULL;
if (c->c_flags & CALLOUT_LOCAL_ALLOC) {
SLIST_INSERT_HEAD(&callfree, c, c_links.sle);
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&callout_lock);
return (1);
}
void
callout_init(c, mpsafe)
struct callout *c;
int mpsafe;
{
bzero(c, sizeof *c);
if (mpsafe)
c->c_flags |= CALLOUT_MPSAFE;
}
#ifdef APM_FIXUP_CALLTODO
/*
* Adjust the kernel calltodo timeout list. This routine is used after
* an APM resume to recalculate the calltodo timer list values with the
* number of hz's we have been sleeping. The next hardclock() will detect
* that there are fired timers and run softclock() to execute them.
*
* Please note, I have not done an exhaustive analysis of what code this
* might break. I am motivated to have my select()'s and alarm()'s that
* have expired during suspend firing upon resume so that the applications
* which set the timer can do the maintanence the timer was for as close
* as possible to the originally intended time. Testing this code for a
* week showed that resuming from a suspend resulted in 22 to 25 timers
* firing, which seemed independant on whether the suspend was 2 hours or
* 2 days. Your milage may vary. - Ken Key <key@cs.utk.edu>
*/
void
adjust_timeout_calltodo(time_change)
struct timeval *time_change;
{
register struct callout *p;
unsigned long delta_ticks;
/*
* How many ticks were we asleep?
* (stolen from tvtohz()).
*/
/* Don't do anything */
if (time_change->tv_sec < 0)
return;
else if (time_change->tv_sec <= LONG_MAX / 1000000)
delta_ticks = (time_change->tv_sec * 1000000 +
time_change->tv_usec + (tick - 1)) / tick + 1;
else if (time_change->tv_sec <= LONG_MAX / hz)
delta_ticks = time_change->tv_sec * hz +
(time_change->tv_usec + (tick - 1)) / tick + 1;
else
delta_ticks = LONG_MAX;
if (delta_ticks > INT_MAX)
delta_ticks = INT_MAX;
/*
* Now rip through the timer calltodo list looking for timers
* to expire.
*/
/* don't collide with softclock() */
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&callout_lock);
for (p = calltodo.c_next; p != NULL; p = p->c_next) {
p->c_time -= delta_ticks;
/* Break if the timer had more time on it than delta_ticks */
if (p->c_time > 0)
break;
/* take back the ticks the timer didn't use (p->c_time <= 0) */
delta_ticks = -p->c_time;
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&callout_lock);
return;
}
#endif /* APM_FIXUP_CALLTODO */