freebsd-dev/sys/netpfil/ipfw/test/main.c

637 lines
15 KiB
C
Raw Normal View History

Bring in the most recent version of ipfw and dummynet, developed and tested over the past two months in the ipfw3-head branch. This also happens to be the same code available in the Linux and Windows ports of ipfw and dummynet. The major enhancement is a completely restructured version of dummynet, with support for different packet scheduling algorithms (loadable at runtime), faster queue/pipe lookup, and a much cleaner internal architecture and kernel/userland ABI which simplifies future extensions. In addition to the existing schedulers (FIFO and WF2Q+), we include a Deficit Round Robin (DRR or RR for brevity) scheduler, and a new, very fast version of WF2Q+ called QFQ. Some test code is also present (in sys/netinet/ipfw/test) that lets you build and test schedulers in userland. Also, we have added a compatibility layer that understands requests from the RELENG_7 and RELENG_8 versions of the /sbin/ipfw binaries, and replies correctly (at least, it does its best; sometimes you just cannot tell who sent the request and how to answer). The compatibility layer should make it possible to MFC this code in a relatively short time. Some minor glitches (e.g. handling of ipfw set enable/disable, and a workaround for a bug in RELENG_7's /sbin/ipfw) will be fixed with separate commits. CREDITS: This work has been partly supported by the ONELAB2 project, and mostly developed by Riccardo Panicucci and myself. The code for the qfq scheduler is mostly from Fabio Checconi, and Marta Carbone and Francesco Magno have helped with testing, debugging and some bug fixes.
2010-03-02 17:40:48 +00:00
/*
* $FreeBSD$
*
* Testing program for schedulers
*
* The framework include a simple controller which, at each
* iteration, decides whether we can enqueue and/or dequeue.
* Then the mainloop runs the required number of tests,
* keeping track of statistics.
*/
#include "dn_test.h"
struct q_list {
struct list_head h;
};
struct cfg_s {
int ac;
char * const *av;
const char *name;
int loops;
struct timeval time;
/* running counters */
uint32_t _enqueue;
uint32_t drop;
uint32_t pending;
uint32_t dequeue;
/* generator parameters */
int th_min, th_max;
int maxburst;
int lmin, lmax; /* packet len */
int flows; /* number of flows */
int flowsets; /* number of flowsets */
int wsum; /* sum of weights of all flows */
int max_y; /* max random number in the generation */
int cur_y, cur_fs; /* used in generation, between 0 and max_y - 1 */
const char *fs_config; /* flowset config */
int can_dequeue;
int burst; /* count of packets sent in a burst */
struct mbuf *tosend; /* packet to send -- also flag to enqueue */
struct mbuf *freelist;
struct mbuf *head, *tail; /* a simple tailq */
/* scheduler hooks */
int (*enq)(struct dn_sch_inst *, struct dn_queue *,
struct mbuf *);
struct mbuf * (*deq)(struct dn_sch_inst *);
/* size of the three fields including sched-specific areas */
int schk_len;
int q_len; /* size of a queue including sched-fields */
int si_len; /* size of a sch_inst including sched-fields */
char *q; /* array of flow queues */
/* use a char* because size is variable */
struct dn_fsk *fs; /* array of flowsets */
struct dn_sch_inst *si;
struct dn_schk *sched;
/* generator state */
int state; /* 0 = going up, 1: going down */
/*
* We keep lists for each backlog level, and always serve
* the one with shortest backlog. llmask contains a bitmap
* of lists, and ll are the heads of the lists. The last
* entry (BACKLOG) contains all entries considered 'full'
* XXX to optimize things, entry i could contain queues with
* 2^{i-1}+1 .. 2^i entries.
*/
#define BACKLOG 30
uint32_t llmask;
struct list_head ll[BACKLOG + 10];
};
/* FI2Q and Q2FI converts from flow_id to dn_queue and back.
* We cannot easily use pointer arithmetic because it is variable size.
*/
#define FI2Q(c, i) ((struct dn_queue *)((c)->q + (c)->q_len * (i)))
#define Q2FI(c, q) (((char *)(q) - (c)->q)/(c)->q_len)
int debug = 0;
struct dn_parms dn_cfg;
static void controller(struct cfg_s *c);
/* release a packet: put the mbuf in the freelist, and the queue in
* the bucket.
*/
int
drop(struct cfg_s *c, struct mbuf *m)
{
struct dn_queue *q;
int i;
c->drop++;
q = FI2Q(c, m->flow_id);
i = q->ni.length; // XXX or ffs...
ND("q %p id %d current length %d", q, m->flow_id, i);
if (i < BACKLOG) {
struct list_head *h = &q->ni.h;
c->llmask &= ~(1<<(i+1));
c->llmask |= (1<<(i));
list_del(h);
list_add_tail(h, &c->ll[i]);
}
m->m_nextpkt = c->freelist;
c->freelist = m;
return 0;
}
/* dequeue returns NON-NULL when a packet is dropped */
static int
enqueue(struct cfg_s *c, void *_m)
{
struct mbuf *m = _m;
if (c->enq)
return c->enq(c->si, FI2Q(c, m->flow_id), m);
if (c->head == NULL)
c->head = m;
else
c->tail->m_nextpkt = m;
c->tail = m;
return 0; /* default - success */
}
/* dequeue returns NON-NULL when a packet is available */
static void *
dequeue(struct cfg_s *c)
{
struct mbuf *m;
if (c->deq)
return c->deq(c->si);
if ((m = c->head)) {
m = c->head;
c->head = m->m_nextpkt;
m->m_nextpkt = NULL;
}
return m;
}
static int
mainloop(struct cfg_s *c)
{
int i;
struct mbuf *m;
for (i=0; i < c->loops; i++) {
/* implement histeresis */
controller(c);
DX(3, "loop %d enq %d send %p rx %d",
i, c->_enqueue, c->tosend, c->can_dequeue);
if ( (m = c->tosend) ) {
c->_enqueue++;
if (enqueue(c, m)) {
drop(c, m);
ND("loop %d enqueue fail", i );
} else {
ND("enqueue ok");
c->pending++;
}
}
if (c->can_dequeue) {
c->dequeue++;
if ((m = dequeue(c))) {
c->pending--;
drop(c, m);
c->drop--; /* compensate */
}
}
}
DX(1, "mainloop ends %d", i);
return 0;
}
int
dump(struct cfg_s *c)
{
int i;
struct dn_queue *q;
for (i=0; i < c->flows; i++) {
q = FI2Q(c, i);
DX(1, "queue %4d tot %10lld", i, q->ni.tot_bytes);
}
DX(1, "done %d loops\n", c->loops);
return 0;
}
/* interpret a number in human form */
static long
getnum(const char *s, char **next, const char *key)
{
char *end = NULL;
long l;
if (next) /* default */
*next = NULL;
if (s && *s) {
DX(3, "token is <%s> %s", s, key ? key : "-");
l = strtol(s, &end, 0);
} else {
DX(3, "empty string");
l = -1;
}
if (l < 0) {
DX(2, "invalid %s for %s", s ? s : "NULL", (key ? key : "") );
return 0; // invalid
}
if (!end || !*end)
return l;
if (*end == 'n')
l = -l; /* multiply by n */
else if (*end == 'K')
l = l*1000;
else if (*end == 'M')
l = l*1000000;
else if (*end == 'k')
l = l*1024;
else if (*end == 'm')
l = l*1024*1024;
else if (*end == 'w')
;
else {/* not recognized */
D("suffix %s for %s, next %p", end, key, next);
end--;
}
end++;
DX(3, "suffix now %s for %s, next %p", end, key, next);
if (next && *end) {
DX(3, "setting next to %s for %s", end, key);
*next = end;
}
return l;
}
/*
* flowsets are a comma-separated list of
* weight:maxlen:flows
* indicating how many flows are hooked to that fs.
* Both weight and range can be min-max-steps.
* In a first pass we just count the number of flowsets and flows,
* in a second pass we complete the setup.
*/
static void
parse_flowsets(struct cfg_s *c, const char *fs, int pass)
{
char *s, *cur, *next;
int n_flows = 0, n_fs = 0, wsum = 0;
int i, j;
struct dn_fs *prev = NULL;
DX(3, "--- pass %d flows %d flowsets %d", pass, c->flows, c->flowsets);
if (pass == 0)
c->fs_config = fs;
s = c->fs_config ? strdup(c->fs_config) : NULL;
if (s == NULL) {
if (pass == 0)
D("no fsconfig");
return;
}
for (next = s; (cur = strsep(&next, ","));) {
char *p = NULL;
int w, w_h, w_steps, wi;
int len, len_h, l_steps, li;
int flows;
w = getnum(strsep(&cur, ":"), &p, "weight");
if (w <= 0)
w = 1;
w_h = p ? getnum(p+1, &p, "weight_max") : w;
w_steps = p ? getnum(p+1, &p, "w_steps") : (w_h == w ?1:2);
len = getnum(strsep(&cur, ":"), &p, "len");
if (len <= 0)
len = 1000;
len_h = p ? getnum(p+1, &p, "len_max") : len;
l_steps = p ? getnum(p+1, &p, "l_steps") : (len_h == len ? 1 : 2);
flows = getnum(strsep(&cur, ":"), NULL, "flows");
if (flows == 0)
flows = 1;
DX(4, "weight %d..%d (%d) len %d..%d (%d) flows %d",
w, w_h, w_steps, len, len_h, l_steps, flows);
if (w == 0 || w_h < w || len == 0 || len_h < len ||
flows == 0) {
DX(4,"wrong parameters %s", fs);
return;
}
n_flows += flows * w_steps * l_steps;
for (i = 0; i < w_steps; i++) {
wi = w + ((w_h - w)* i)/(w_steps == 1 ? 1 : (w_steps-1));
for (j = 0; j < l_steps; j++, n_fs++) {
struct dn_fs *fs = &c->fs[n_fs].fs; // tentative
int x;
li = len + ((len_h - len)* j)/(l_steps == 1 ? 1 : (l_steps-1));
x = (wi*2048)/li;
DX(3, "----- fs %4d weight %4d lmax %4d X %4d flows %d",
n_fs, wi, li, x, flows);
if (pass == 0)
continue;
if (c->fs == NULL || c->flowsets <= n_fs) {
D("error in number of flowsets");
return;
}
wsum += wi * flows;
fs->par[0] = wi;
fs->par[1] = li;
fs->index = n_fs;
fs->n_flows = flows;
fs->cur = fs->first_flow = prev==NULL ? 0 : prev->next_flow;
fs->next_flow = fs->first_flow + fs->n_flows;
fs->y = x * flows;
fs->base_y = (prev == NULL) ? 0 : prev->next_y;
fs->next_y = fs->base_y + fs->y;
prev = fs;
}
}
}
c->max_y = prev ? prev->base_y + prev->y : 0;
c->flows = n_flows;
c->flowsets = n_fs;
c->wsum = wsum;
if (pass == 0)
return;
/* now link all flows to their parent flowsets */
DX(1,"%d flows on %d flowsets max_y %d", c->flows, c->flowsets, c->max_y);
for (i=0; i < c->flowsets; i++) {
struct dn_fs *fs = &c->fs[i].fs;
DX(1, "fs %3d w %5d l %4d flow %5d .. %5d y %6d .. %6d",
i, fs->par[0], fs->par[1],
fs->first_flow, fs->next_flow,
fs->base_y, fs->next_y);
for (j = fs->first_flow; j < fs->next_flow; j++) {
struct dn_queue *q = FI2Q(c, j);
q->fs = &c->fs[i];
}
}
}
static int
init(struct cfg_s *c)
{
int i;
int ac = c->ac;
char * const *av = c->av;
c->si_len = sizeof(struct dn_sch_inst);
c->q_len = sizeof(struct dn_queue);
moduledata_t *mod = NULL;
struct dn_alg *p = NULL;
c->th_min = 0;
c->th_max = -20;/* 20 packets per flow */
c->lmin = c->lmax = 1280; /* packet len */
c->flows = 1;
c->flowsets = 1;
c->name = "null";
ac--; av++;
while (ac > 1) {
if (!strcmp(*av, "-n")) {
c->loops = getnum(av[1], NULL, av[0]);
} else if (!strcmp(*av, "-d")) {
debug = atoi(av[1]);
} else if (!strcmp(*av, "-alg")) {
extern moduledata_t *_g_dn_fifo;
extern moduledata_t *_g_dn_wf2qp;
extern moduledata_t *_g_dn_rr;
extern moduledata_t *_g_dn_qfq;
#ifdef WITH_KPS
extern moduledata_t *_g_dn_kps;
#endif
if (!strcmp(av[1], "rr"))
mod = _g_dn_rr;
else if (!strcmp(av[1], "wf2qp"))
mod = _g_dn_wf2qp;
else if (!strcmp(av[1], "fifo"))
mod = _g_dn_fifo;
else if (!strcmp(av[1], "qfq"))
mod = _g_dn_qfq;
#ifdef WITH_KPS
else if (!strcmp(av[1], "kps"))
mod = _g_dn_kps;
#endif
else
mod = NULL;
c->name = mod ? mod->name : "NULL";
DX(3, "using scheduler %s", c->name);
} else if (!strcmp(*av, "-len")) {
c->lmin = getnum(av[1], NULL, av[0]);
c->lmax = c->lmin;
DX(3, "setting max to %d", c->th_max);
} else if (!strcmp(*av, "-burst")) {
c->maxburst = getnum(av[1], NULL, av[0]);
DX(3, "setting max to %d", c->th_max);
} else if (!strcmp(*av, "-qmax")) {
c->th_max = getnum(av[1], NULL, av[0]);
DX(3, "setting max to %d", c->th_max);
} else if (!strcmp(*av, "-qmin")) {
c->th_min = getnum(av[1], NULL, av[0]);
DX(3, "setting min to %d", c->th_min);
} else if (!strcmp(*av, "-flows")) {
c->flows = getnum(av[1], NULL, av[0]);
DX(3, "setting flows to %d", c->flows);
} else if (!strcmp(*av, "-flowsets")) {
parse_flowsets(c, av[1], 0);
DX(3, "setting flowsets to %d", c->flowsets);
} else {
D("option %s not recognised, ignore", *av);
}
ac -= 2; av += 2;
}
if (c->maxburst <= 0)
c->maxburst = 1;
if (c->loops <= 0)
c->loops = 1;
if (c->flows <= 0)
c->flows = 1;
if (c->flowsets <= 0)
c->flowsets = 1;
if (c->lmin <= 0)
c->lmin = 1;
if (c->lmax <= 0)
c->lmax = 1;
/* multiply by N */
if (c->th_min < 0)
c->th_min = c->flows * -c->th_min;
if (c->th_max < 0)
c->th_max = c->flows * -c->th_max;
if (c->th_max <= c->th_min)
c->th_max = c->th_min + 1;
if (mod) {
p = mod->p;
DX(3, "using module %s f %p p %p", mod->name, mod->f, mod->p);
DX(3, "modname %s ty %d", p->name, p->type);
c->enq = p->enqueue;
c->deq = p->dequeue;
c->si_len += p->si_datalen;
c->q_len += p->q_datalen;
c->schk_len += p->schk_datalen;
}
/* allocate queues, flowsets and one scheduler */
c->q = calloc(c->flows, c->q_len);
c->fs = calloc(c->flowsets, sizeof(struct dn_fsk));
c->si = calloc(1, c->si_len);
c->sched = calloc(c->flows, c->schk_len);
if (c->q == NULL || c->fs == NULL) {
D("error allocating memory for flows");
exit(1);
}
c->si->sched = c->sched;
if (p) {
if (p->config)
p->config(c->sched);
if (p->new_sched)
p->new_sched(c->si);
}
/* parse_flowsets links queues to their flowsets */
parse_flowsets(c, av[1], 1);
/* complete the work calling new_fsk */
for (i = 0; i < c->flowsets; i++) {
if (c->fs[i].fs.par[1] == 0)
c->fs[i].fs.par[1] = 1000; /* default pkt len */
c->fs[i].sched = c->sched;
if (p && p->new_fsk)
p->new_fsk(&c->fs[i]);
}
/* initialize the lists for the generator, and put
* all flows in the list for backlog = 0
*/
for (i=0; i <= BACKLOG+5; i++)
INIT_LIST_HEAD(&c->ll[i]);
for (i = 0; i < c->flows; i++) {
struct dn_queue *q = FI2Q(c, i);
if (q->fs == NULL)
q->fs = &c->fs[0]; /* XXX */
q->_si = c->si;
if (p && p->new_queue)
p->new_queue(q);
INIT_LIST_HEAD(&q->ni.h);
list_add_tail(&q->ni.h, &c->ll[0]);
}
c->llmask = 1;
return 0;
}
int
main(int ac, char *av[])
{
struct cfg_s c;
struct timeval end;
double ll;
int i;
char msg[40];
bzero(&c, sizeof(c));
c.ac = ac;
c.av = av;
init(&c);
gettimeofday(&c.time, NULL);
mainloop(&c);
gettimeofday(&end, NULL);
end.tv_sec -= c.time.tv_sec;
end.tv_usec -= c.time.tv_usec;
if (end.tv_usec < 0) {
end.tv_usec += 1000000;
end.tv_sec--;
}
c.time = end;
ll = end.tv_sec*1000000 + end.tv_usec;
ll *= 1000; /* convert to nanoseconds */
ll /= c._enqueue;
sprintf(msg, "1::%d", c.flows);
D("%-8s n %d %d time %d.%06d %8.3f qlen %d %d flows %s drops %d",
c.name, c._enqueue, c.loops,
(int)c.time.tv_sec, (int)c.time.tv_usec, ll,
c.th_min, c.th_max,
c.fs_config ? c.fs_config : msg, c.drop);
dump(&c);
DX(1, "done ac %d av %p", ac, av);
for (i=0; i < ac; i++)
DX(1, "arg %d %s", i, av[i]);
return 0;
}
/*
* The controller decides whether in this iteration we should send
* (the packet is in c->tosend) and/or receive (flag c->can_dequeue)
*/
static void
controller(struct cfg_s *c)
{
struct mbuf *m;
struct dn_fs *fs;
int flow_id;
/* histeresis between max and min */
if (c->state == 0 && c->pending >= c->th_max)
c->state = 1;
else if (c->state == 1 && c->pending <= c->th_min)
c->state = 0;
ND(1, "state %d pending %2d", c->state, c->pending);
c->can_dequeue = c->state;
c->tosend = NULL;
if (c->state)
return;
if (1) {
int i;
struct dn_queue *q;
struct list_head *h;
i = ffs(c->llmask) - 1;
if (i < 0) {
DX(2, "no candidate");
c->can_dequeue = 1;
return;
}
h = &c->ll[i];
ND(1, "backlog %d p %p prev %p next %p", i, h, h->prev, h->next);
q = list_first_entry(h, struct dn_queue, ni.h);
list_del(&q->ni.h);
flow_id = Q2FI(c, q);
DX(2, "extracted flow %p %d backlog %d", q, flow_id, i);
if (list_empty(h)) {
ND(2, "backlog %d empty", i);
c->llmask &= ~(1<<i);
}
ND(1, "before %d p %p prev %p next %p", i+1, h+1, h[1].prev, h[1].next);
list_add_tail(&q->ni.h, h+1);
ND(1, " after %d p %p prev %p next %p", i+1, h+1, h[1].prev, h[1].next);
if (i < BACKLOG) {
ND(2, "backlog %d full", i+1);
c->llmask |= 1<<(1+i);
}
fs = &q->fs->fs;
c->cur_fs = q->fs - c->fs;
fs->cur = flow_id;
} else {
/* XXX this does not work ? */
/* now decide whom to send the packet, and the length */
/* lookup in the flow table */
if (c->cur_y >= c->max_y) { /* handle wraparound */
c->cur_y = 0;
c->cur_fs = 0;
}
fs = &c->fs[c->cur_fs].fs;
flow_id = fs->cur++;
if (fs->cur >= fs->next_flow)
fs->cur = fs->first_flow;
c->cur_y++;
if (c->cur_y >= fs->next_y)
c->cur_fs++;
}
/* construct a packet */
if (c->freelist) {
m = c->tosend = c->freelist;
c->freelist = c->freelist->m_nextpkt;
} else {
m = c->tosend = calloc(1, sizeof(struct mbuf));
}
if (m == NULL)
return;
m->cfg = c;
m->m_nextpkt = NULL;
m->m_pkthdr.len = fs->par[1]; // XXX maxlen
m->flow_id = flow_id;
ND(2,"y %6d flow %5d fs %3d weight %4d len %4d",
c->cur_y, m->flow_id, c->cur_fs,
fs->par[0], m->m_pkthdr.len);
}
/*
Packet allocation:
to achieve a distribution that matches weights, for each X=w/lmax class
we should generate a number of packets proportional to Y = X times the number
of flows in the class.
So we construct an array with the cumulative distribution of Y's,
and use it to identify the flow via inverse mapping (if the Y's are
not too many we can use an array for the lookup). In practice,
each flow will have X entries [virtually] pointing to it.
*/