freebsd-dev/sys/ofed/drivers/net/mlx4/en_tx.c

1113 lines
31 KiB
C
Raw Normal View History

/*
* Copyright (c) 2007, 2014 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <asm/page.h>
#include <linux/mlx4/cq.h>
#include <linux/slab.h>
#include <linux/mlx4/qp.h>
#include <linux/if_vlan.h>
#include <linux/vmalloc.h>
#include <linux/moduleparam.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/tcp_lro.h>
#include <netinet/udp.h>
#include "mlx4_en.h"
#include "utils.h"
enum {
MAX_INLINE = 104, /* 128 - 16 - 4 - 4 */
MAX_BF = 256,
MIN_PKT_LEN = 17,
};
static int inline_thold __read_mostly = MAX_INLINE;
module_param_named(inline_thold, inline_thold, uint, 0444);
MODULE_PARM_DESC(inline_thold, "threshold for using inline data");
int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring **pring, u32 size,
u16 stride, int node, int queue_idx)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_tx_ring *ring;
int tmp;
int err;
ring = kzalloc_node(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL, node);
if (!ring) {
ring = kzalloc(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL);
if (!ring) {
en_err(priv, "Failed allocating TX ring\n");
return -ENOMEM;
}
}
ring->size = size;
ring->size_mask = size - 1;
ring->stride = stride;
ring->full_size = ring->size - HEADROOM - MAX_DESC_TXBBS;
ring->inline_thold = min(inline_thold, MAX_INLINE);
mtx_init(&ring->tx_lock.m, "mlx4 tx", NULL, MTX_DEF);
mtx_init(&ring->comp_lock.m, "mlx4 comp", NULL, MTX_DEF);
/* Allocate the buf ring */
ring->br = buf_ring_alloc(MLX4_EN_DEF_TX_QUEUE_SIZE, M_DEVBUF,
M_WAITOK, &ring->tx_lock.m);
if (ring->br == NULL) {
en_err(priv, "Failed allocating tx_info ring\n");
return -ENOMEM;
}
tmp = size * sizeof(struct mlx4_en_tx_info);
ring->tx_info = vmalloc_node(tmp, node);
if (!ring->tx_info) {
ring->tx_info = vmalloc(tmp);
if (!ring->tx_info) {
err = -ENOMEM;
goto err_ring;
}
}
en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n",
ring->tx_info, tmp);
ring->bounce_buf = kmalloc_node(MAX_DESC_SIZE, GFP_KERNEL, node);
if (!ring->bounce_buf) {
ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL);
if (!ring->bounce_buf) {
err = -ENOMEM;
goto err_info;
}
}
ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE);
/* Allocate HW buffers on provided NUMA node */
err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size,
2 * PAGE_SIZE);
if (err) {
en_err(priv, "Failed allocating hwq resources\n");
goto err_bounce;
}
err = mlx4_en_map_buffer(&ring->wqres.buf);
if (err) {
en_err(priv, "Failed to map TX buffer\n");
goto err_hwq_res;
}
ring->buf = ring->wqres.buf.direct.buf;
en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d "
"buf_size:%d dma:%llx\n", ring, ring->buf, ring->size,
ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map);
err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn,
MLX4_RESERVE_BF_QP);
if (err) {
en_err(priv, "failed reserving qp for TX ring\n");
goto err_map;
}
err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp);
if (err) {
en_err(priv, "Failed allocating qp %d\n", ring->qpn);
goto err_reserve;
}
ring->qp.event = mlx4_en_sqp_event;
err = mlx4_bf_alloc(mdev->dev, &ring->bf, node);
if (err) {
en_dbg(DRV, priv, "working without blueflame (%d)", err);
ring->bf.uar = &mdev->priv_uar;
ring->bf.uar->map = mdev->uar_map;
ring->bf_enabled = false;
} else
ring->bf_enabled = true;
ring->queue_index = queue_idx;
if (queue_idx < priv->num_tx_rings_p_up )
CPU_SET(queue_idx, &ring->affinity_mask);
*pring = ring;
return 0;
err_reserve:
mlx4_qp_release_range(mdev->dev, ring->qpn, 1);
err_map:
mlx4_en_unmap_buffer(&ring->wqres.buf);
err_hwq_res:
mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
err_bounce:
kfree(ring->bounce_buf);
err_info:
vfree(ring->tx_info);
err_ring:
buf_ring_free(ring->br, M_DEVBUF);
kfree(ring);
return err;
}
void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring **pring)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_tx_ring *ring = *pring;
en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn);
buf_ring_free(ring->br, M_DEVBUF);
if (ring->bf_enabled)
mlx4_bf_free(mdev->dev, &ring->bf);
mlx4_qp_remove(mdev->dev, &ring->qp);
mlx4_qp_free(mdev->dev, &ring->qp);
mlx4_qp_release_range(priv->mdev->dev, ring->qpn, 1);
mlx4_en_unmap_buffer(&ring->wqres.buf);
mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
kfree(ring->bounce_buf);
vfree(ring->tx_info);
mtx_destroy(&ring->tx_lock.m);
mtx_destroy(&ring->comp_lock.m);
kfree(ring);
*pring = NULL;
}
int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring,
int cq, int user_prio)
{
struct mlx4_en_dev *mdev = priv->mdev;
int err;
ring->cqn = cq;
ring->prod = 0;
ring->cons = 0xffffffff;
ring->last_nr_txbb = 1;
ring->poll_cnt = 0;
ring->blocked = 0;
memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info));
memset(ring->buf, 0, ring->buf_size);
ring->qp_state = MLX4_QP_STATE_RST;
ring->doorbell_qpn = ring->qp.qpn << 8;
mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn,
ring->cqn, user_prio, &ring->context);
if (ring->bf_enabled)
ring->context.usr_page = cpu_to_be32(ring->bf.uar->index);
err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context,
&ring->qp, &ring->qp_state);
return err;
}
void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring)
{
struct mlx4_en_dev *mdev = priv->mdev;
mlx4_qp_modify(mdev->dev, NULL, ring->qp_state,
MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp);
}
static void mlx4_en_stamp_wqe(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring,
int index, u8 owner)
{
struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE;
void *end = ring->buf + ring->buf_size;
__be32 *ptr = (__be32 *)tx_desc;
__be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT));
int i;
/* Optimize the common case when there are no wraparounds */
if (likely((void *)tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end))
/* Stamp the freed descriptor */
for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) {
*ptr = stamp;
ptr += STAMP_DWORDS;
}
else
/* Stamp the freed descriptor */
for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) {
*ptr = stamp;
ptr += STAMP_DWORDS;
if ((void *)ptr >= end) {
ptr = ring->buf;
stamp ^= cpu_to_be32(0x80000000);
}
}
}
static u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring,
int index, u8 owner, u64 timestamp)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE;
struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset;
struct mbuf *mb = tx_info->mb;
void *end = ring->buf + ring->buf_size;
int frags = tx_info->nr_segs;;
int i;
/* Optimize the common case when there are no wraparounds */
if (likely((void *) tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) {
if (!tx_info->inl) {
if (tx_info->linear) {
dma_unmap_single(priv->ddev,
(dma_addr_t) be64_to_cpu(data->addr),
be32_to_cpu(data->byte_count),
PCI_DMA_TODEVICE);
++data;
}
for (i = 0; i < frags; i++) {
pci_unmap_single(mdev->pdev,
(dma_addr_t) be64_to_cpu(data[i].addr),
data[i].byte_count, PCI_DMA_TODEVICE);
}
}
} else {
if (!tx_info->inl) {
if ((void *) data >= end) {
data = ring->buf + ((void *)data - end);
}
if (tx_info->linear) {
dma_unmap_single(priv->ddev,
(dma_addr_t) be64_to_cpu(data->addr),
be32_to_cpu(data->byte_count),
PCI_DMA_TODEVICE);
++data;
}
for (i = 0; i < frags; i++) {
/* Check for wraparound before unmapping */
if ((void *) data >= end)
data = ring->buf;
pci_unmap_single(mdev->pdev,
(dma_addr_t) be64_to_cpu(data->addr),
data->byte_count, PCI_DMA_TODEVICE);
++data;
}
}
}
/* Send a copy of the frame to the BPF listener */
if (priv->dev && priv->dev->if_bpf)
ETHER_BPF_MTAP(priv->dev, mb);
m_freem(mb);
return tx_info->nr_txbb;
}
int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
int cnt = 0;
/* Skip last polled descriptor */
ring->cons += ring->last_nr_txbb;
en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n",
ring->cons, ring->prod);
if ((u32) (ring->prod - ring->cons) > ring->size) {
en_warn(priv, "Tx consumer passed producer!\n");
return 0;
}
while (ring->cons != ring->prod) {
ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring,
ring->cons & ring->size_mask,
!!(ring->cons & ring->size), 0);
ring->cons += ring->last_nr_txbb;
cnt++;
}
if (cnt)
en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt);
return cnt;
}
static int mlx4_en_process_tx_cq(struct net_device *dev,
struct mlx4_en_cq *cq)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_cq *mcq = &cq->mcq;
struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
struct mlx4_cqe *cqe;
u16 index;
u16 new_index, ring_index, stamp_index;
u32 txbbs_skipped = 0;
u32 txbbs_stamp = 0;
u32 cons_index = mcq->cons_index;
int size = cq->size;
u32 size_mask = ring->size_mask;
struct mlx4_cqe *buf = cq->buf;
u32 packets = 0;
u32 bytes = 0;
int factor = priv->cqe_factor;
u64 timestamp = 0;
int done = 0;
if (!priv->port_up)
return 0;
index = cons_index & size_mask;
cqe = &buf[(index << factor) + factor];
ring_index = ring->cons & size_mask;
stamp_index = ring_index;
/* Process all completed CQEs */
while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
cons_index & size)) {
/*
* make sure we read the CQE after we read the
* ownership bit
*/
rmb();
if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
MLX4_CQE_OPCODE_ERROR)) {
en_err(priv, "CQE completed in error - vendor syndrom: 0x%x syndrom: 0x%x\n",
((struct mlx4_err_cqe *)cqe)->
vendor_err_syndrome,
((struct mlx4_err_cqe *)cqe)->syndrome);
}
/* Skip over last polled CQE */
new_index = be16_to_cpu(cqe->wqe_index) & size_mask;
do {
txbbs_skipped += ring->last_nr_txbb;
ring_index = (ring_index + ring->last_nr_txbb) & size_mask;
/* free next descriptor */
ring->last_nr_txbb = mlx4_en_free_tx_desc(
priv, ring, ring_index,
!!((ring->cons + txbbs_skipped) &
ring->size), timestamp);
mlx4_en_stamp_wqe(priv, ring, stamp_index,
!!((ring->cons + txbbs_stamp) &
ring->size));
stamp_index = ring_index;
txbbs_stamp = txbbs_skipped;
packets++;
bytes += ring->tx_info[ring_index].nr_bytes;
} while (ring_index != new_index);
++cons_index;
index = cons_index & size_mask;
cqe = &buf[(index << factor) + factor];
}
/*
* To prevent CQ overflow we first update CQ consumer and only then
* the ring consumer.
*/
mcq->cons_index = cons_index;
mlx4_cq_set_ci(mcq);
wmb();
ring->cons += txbbs_skipped;
/* Wakeup Tx queue if it was stopped and ring is not full */
if (unlikely(ring->blocked) &&
(ring->prod - ring->cons) <= ring->full_size) {
ring->blocked = 0;
if (atomic_fetchadd_int(&priv->blocked, -1) == 1)
atomic_clear_int(&dev->if_drv_flags ,IFF_DRV_OACTIVE);
ring->wake_queue++;
priv->port_stats.wake_queue++;
}
return done;
}
void mlx4_en_tx_irq(struct mlx4_cq *mcq)
{
struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
struct mlx4_en_priv *priv = netdev_priv(cq->dev);
struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
if (!spin_trylock(&ring->comp_lock))
return;
mlx4_en_process_tx_cq(cq->dev, cq);
mod_timer(&cq->timer, jiffies + 1);
spin_unlock(&ring->comp_lock);
}
void mlx4_en_poll_tx_cq(unsigned long data)
{
struct mlx4_en_cq *cq = (struct mlx4_en_cq *) data;
struct mlx4_en_priv *priv = netdev_priv(cq->dev);
struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
u32 inflight;
INC_PERF_COUNTER(priv->pstats.tx_poll);
if (!spin_trylock(&ring->comp_lock)) {
mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
return;
}
mlx4_en_process_tx_cq(cq->dev, cq);
inflight = (u32) (ring->prod - ring->cons - ring->last_nr_txbb);
/* If there are still packets in flight and the timer has not already
* been scheduled by the Tx routine then schedule it here to guarantee
* completion processing of these packets */
if (inflight && priv->port_up)
mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
spin_unlock(&ring->comp_lock);
}
static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring,
u32 index,
unsigned int desc_size)
{
u32 copy = (ring->size - index) * TXBB_SIZE;
int i;
for (i = desc_size - copy - 4; i >= 0; i -= 4) {
if ((i & (TXBB_SIZE - 1)) == 0)
wmb();
*((u32 *) (ring->buf + i)) =
*((u32 *) (ring->bounce_buf + copy + i));
}
for (i = copy - 4; i >= 4 ; i -= 4) {
if ((i & (TXBB_SIZE - 1)) == 0)
wmb();
*((u32 *) (ring->buf + index * TXBB_SIZE + i)) =
*((u32 *) (ring->bounce_buf + i));
}
/* Return real descriptor location */
return ring->buf + index * TXBB_SIZE;
}
static inline void mlx4_en_xmit_poll(struct mlx4_en_priv *priv, int tx_ind)
{
struct mlx4_en_cq *cq = priv->tx_cq[tx_ind];
struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind];
/* If we don't have a pending timer, set one up to catch our recent
post in case the interface becomes idle */
if (!timer_pending(&cq->timer))
mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
/* Poll the CQ every mlx4_en_TX_MODER_POLL packets */
if ((++ring->poll_cnt & (MLX4_EN_TX_POLL_MODER - 1)) == 0)
if (spin_trylock(&ring->comp_lock)) {
mlx4_en_process_tx_cq(priv->dev, cq);
spin_unlock(&ring->comp_lock);
}
}
static int is_inline(struct mbuf *mb, int thold)
{
if (thold && mb->m_pkthdr.len <= thold &&
(mb->m_pkthdr.csum_flags & CSUM_TSO) == 0)
return 1;
return 0;
}
static int inline_size(struct mbuf *mb)
{
int len;
len = mb->m_pkthdr.len;
if (len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg)
<= MLX4_INLINE_ALIGN)
return ALIGN(len + CTRL_SIZE +
sizeof(struct mlx4_wqe_inline_seg), 16);
else
return ALIGN(len + CTRL_SIZE + 2 *
sizeof(struct mlx4_wqe_inline_seg), 16);
}
static int get_head_size(struct mbuf *mb)
{
struct ether_vlan_header *eh;
struct tcphdr *th;
struct ip *ip;
int ip_hlen, tcp_hlen;
struct ip6_hdr *ip6;
uint16_t eth_type;
int eth_hdr_len;
eh = mtod(mb, struct ether_vlan_header *);
if (mb->m_len < ETHER_HDR_LEN)
return (0);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
eth_type = ntohs(eh->evl_proto);
eth_hdr_len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
} else {
eth_type = ntohs(eh->evl_encap_proto);
eth_hdr_len = ETHER_HDR_LEN;
}
if (mb->m_len < eth_hdr_len)
return (0);
switch (eth_type) {
case ETHERTYPE_IP:
ip = (struct ip *)(mb->m_data + eth_hdr_len);
if (mb->m_len < eth_hdr_len + sizeof(*ip))
return (0);
if (ip->ip_p != IPPROTO_TCP)
return (0);
ip_hlen = ip->ip_hl << 2;
eth_hdr_len += ip_hlen;
break;
case ETHERTYPE_IPV6:
ip6 = (struct ip6_hdr *)(mb->m_data + eth_hdr_len);
if (mb->m_len < eth_hdr_len + sizeof(*ip6))
return (0);
if (ip6->ip6_nxt != IPPROTO_TCP)
return (0);
eth_hdr_len += sizeof(*ip6);
break;
default:
return (0);
}
if (mb->m_len < eth_hdr_len + sizeof(*th))
return (0);
th = (struct tcphdr *)(mb->m_data + eth_hdr_len);
tcp_hlen = th->th_off << 2;
eth_hdr_len += tcp_hlen;
if (mb->m_len < eth_hdr_len)
return (0);
return (eth_hdr_len);
}
static int get_real_size(struct mbuf *mb, struct net_device *dev, int *p_n_segs,
int *lso_header_size, int inl)
{
struct mbuf *m;
int nr_segs = 0;
for (m = mb; m != NULL; m = m->m_next)
if (m->m_len)
nr_segs++;
if (mb->m_pkthdr.csum_flags & CSUM_TSO) {
*lso_header_size = get_head_size(mb);
if (*lso_header_size) {
if (mb->m_len == *lso_header_size)
nr_segs--;
*p_n_segs = nr_segs;
return CTRL_SIZE + nr_segs * DS_SIZE +
ALIGN(*lso_header_size + 4, DS_SIZE);
}
} else
*lso_header_size = 0;
*p_n_segs = nr_segs;
if (inl)
return inline_size(mb);
return (CTRL_SIZE + nr_segs * DS_SIZE);
}
static struct mbuf *mb_copy(struct mbuf *mb, int *offp, char *data, int len)
{
int bytes;
int off;
off = *offp;
while (len) {
bytes = min(mb->m_len - off, len);
if (bytes)
memcpy(data, mb->m_data + off, bytes);
len -= bytes;
data += bytes;
off += bytes;
if (off == mb->m_len) {
off = 0;
mb = mb->m_next;
}
}
*offp = off;
return (mb);
}
static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc, struct mbuf *mb,
int real_size, u16 *vlan_tag, int tx_ind)
{
struct mlx4_wqe_inline_seg *inl = &tx_desc->inl;
int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof *inl;
int len;
int off;
off = 0;
len = mb->m_pkthdr.len;
if (len <= spc) {
inl->byte_count = cpu_to_be32(1 << 31 |
(max_t(typeof(len), len, MIN_PKT_LEN)));
mb_copy(mb, &off, (void *)(inl + 1), len);
if (len < MIN_PKT_LEN)
memset(((void *)(inl + 1)) + len, 0,
MIN_PKT_LEN - len);
} else {
inl->byte_count = cpu_to_be32(1 << 31 | spc);
mb = mb_copy(mb, &off, (void *)(inl + 1), spc);
inl = (void *) (inl + 1) + spc;
mb_copy(mb, &off, (void *)(inl + 1), len - spc);
wmb();
inl->byte_count = cpu_to_be32(1 << 31 | (len - spc));
}
tx_desc->ctrl.vlan_tag = cpu_to_be16(*vlan_tag);
tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN * !!(*vlan_tag);
tx_desc->ctrl.fence_size = (real_size / 16) & 0x3f;
}
static unsigned long hashrandom;
static void hashrandom_init(void *arg)
{
hashrandom = random();
}
SYSINIT(hashrandom_init, SI_SUB_KLD, SI_ORDER_SECOND, &hashrandom_init, NULL);
u16 mlx4_en_select_queue(struct net_device *dev, struct mbuf *mb)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
u32 rings_p_up = priv->num_tx_rings_p_up;
u32 vlan_tag = 0;
u32 up = 0;
u32 queue_index;
/* Obtain VLAN information if present */
if (mb->m_flags & M_VLANTAG) {
vlan_tag = mb->m_pkthdr.ether_vtag;
up = (vlan_tag >> 13);
}
/* hash mbuf */
queue_index = mlx4_en_hashmbuf(MLX4_F_HASHL3 | MLX4_F_HASHL4, mb, hashrandom);
return ((queue_index % rings_p_up) + (up * rings_p_up));
}
static void mlx4_bf_copy(void __iomem *dst, unsigned long *src, unsigned bytecnt)
{
__iowrite64_copy(dst, src, bytecnt / 8);
}
static u64 mlx4_en_mac_to_u64(u8 *addr)
{
u64 mac = 0;
int i;
for (i = 0; i < ETHER_ADDR_LEN; i++) {
mac <<= 8;
mac |= addr[i];
}
return mac;
}
static int mlx4_en_xmit(struct net_device *dev, int tx_ind, struct mbuf **mbp)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_tx_ring *ring;
struct mlx4_en_cq *cq;
struct mlx4_en_tx_desc *tx_desc;
struct mlx4_wqe_data_seg *data;
struct mlx4_en_tx_info *tx_info;
struct mbuf *m;
int nr_txbb;
int nr_segs;
int desc_size;
int real_size;
dma_addr_t dma;
u32 index, bf_index, ring_size;
__be32 op_own;
u16 vlan_tag = 0;
int i;
int lso_header_size;
bool bounce = false;
bool inl = false;
struct mbuf *mb;
mb = *mbp;
int defrag = 1;
if (!priv->port_up)
goto tx_drop;
ring = priv->tx_ring[tx_ind];
ring_size = ring->size;
inl = is_inline(mb, ring->inline_thold);
retry:
real_size = get_real_size(mb, dev, &nr_segs, &lso_header_size, inl);
if (unlikely(!real_size))
goto tx_drop;
/* Align descriptor to TXBB size */
desc_size = ALIGN(real_size, TXBB_SIZE);
nr_txbb = desc_size / TXBB_SIZE;
if (unlikely(nr_txbb > MAX_DESC_TXBBS)) {
if (defrag) {
mb = m_defrag(*mbp, M_NOWAIT);
if (mb == NULL) {
mb = *mbp;
goto tx_drop;
}
*mbp = mb;
defrag = 0;
goto retry;
}
en_warn(priv, "Oversized header or SG list\n");
goto tx_drop;
}
/* Obtain VLAN information if present */
if (mb->m_flags & M_VLANTAG) {
vlan_tag = mb->m_pkthdr.ether_vtag;
}
/* Check available TXBBs and 2K spare for prefetch
* Even if netif_tx_stop_queue() will be called
* driver will send current packet to ensure
* that at least one completion will be issued after
* stopping the queue
*/
if (unlikely((int)(ring->prod - ring->cons) > ring->full_size)) {
/* every full Tx ring stops queue */
if (ring->blocked == 0)
atomic_add_int(&priv->blocked, 1);
/* Set HW-queue-is-full flag */
atomic_set_int(&dev->if_drv_flags, IFF_DRV_OACTIVE);
ring->blocked = 1;
priv->port_stats.queue_stopped++;
ring->queue_stopped++;
/* Use interrupts to find out when queue opened */
cq = priv->tx_cq[tx_ind];
mlx4_en_arm_cq(priv, cq);
return EBUSY;
}
/* Track current inflight packets for performance analysis */
AVG_PERF_COUNTER(priv->pstats.inflight_avg,
(u32) (ring->prod - ring->cons - 1));
/* Packet is good - grab an index and transmit it */
index = ring->prod & ring->size_mask;
bf_index = ring->prod;
/* See if we have enough space for whole descriptor TXBB for setting
* SW ownership on next descriptor; if not, use a bounce buffer. */
if (likely(index + nr_txbb <= ring_size))
tx_desc = ring->buf + index * TXBB_SIZE;
else {
tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf;
bounce = true;
}
/* Save mb in tx_info ring */
tx_info = &ring->tx_info[index];
tx_info->mb = mb;
tx_info->nr_txbb = nr_txbb;
tx_info->nr_segs = nr_segs;
if (lso_header_size) {
memcpy(tx_desc->lso.header, mb->m_data, lso_header_size);
data = ((void *)&tx_desc->lso + ALIGN(lso_header_size + 4,
DS_SIZE));
/* lso header is part of m_data.
* need to omit when mapping DMA */
mb->m_data += lso_header_size;
mb->m_len -= lso_header_size;
}
else
data = &tx_desc->data;
/* valid only for none inline segments */
tx_info->data_offset = (void *)data - (void *)tx_desc;
if (inl) {
tx_info->inl = 1;
} else {
for (i = 0, m = mb; i < nr_segs; i++, m = m->m_next) {
if (m->m_len == 0) {
i--;
continue;
}
dma = pci_map_single(mdev->dev->pdev, m->m_data,
m->m_len, PCI_DMA_TODEVICE);
data->addr = cpu_to_be64(dma);
data->lkey = cpu_to_be32(mdev->mr.key);
wmb();
data->byte_count = cpu_to_be32(m->m_len);
data++;
}
if (lso_header_size) {
mb->m_data -= lso_header_size;
mb->m_len += lso_header_size;
}
tx_info->inl = 0;
}
/* Prepare ctrl segement apart opcode+ownership, which depends on
* whether LSO is used */
tx_desc->ctrl.vlan_tag = cpu_to_be16(vlan_tag);
tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN *
!!vlan_tag;
tx_desc->ctrl.fence_size = (real_size / 16) & 0x3f;
tx_desc->ctrl.srcrb_flags = priv->ctrl_flags;
if (mb->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO |
CSUM_TCP | CSUM_UDP | CSUM_TCP_IPV6 | CSUM_UDP_IPV6)) {
if (mb->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM);
if (mb->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP |
CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_TCP_UDP_CSUM);
priv->port_stats.tx_chksum_offload++;
ring->tx_csum++;
}
if (unlikely(priv->validate_loopback)) {
/* Copy dst mac address to wqe */
struct ether_header *ethh;
u64 mac;
u32 mac_l, mac_h;
ethh = mtod(mb, struct ether_header *);
mac = mlx4_en_mac_to_u64(ethh->ether_dhost);
if (mac) {
mac_h = (u32) ((mac & 0xffff00000000ULL) >> 16);
mac_l = (u32) (mac & 0xffffffff);
tx_desc->ctrl.srcrb_flags |= cpu_to_be32(mac_h);
tx_desc->ctrl.imm = cpu_to_be32(mac_l);
}
}
/* Handle LSO (TSO) packets */
if (lso_header_size) {
int segsz;
/* Mark opcode as LSO */
op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) |
((ring->prod & ring_size) ?
cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
/* Fill in the LSO prefix */
tx_desc->lso.mss_hdr_size = cpu_to_be32(
mb->m_pkthdr.tso_segsz << 16 | lso_header_size);
priv->port_stats.tso_packets++;
segsz = mb->m_pkthdr.tso_segsz;
i = ((mb->m_pkthdr.len - lso_header_size + segsz - 1) / segsz);
tx_info->nr_bytes= mb->m_pkthdr.len + (i - 1) * lso_header_size;
ring->packets += i;
} else {
/* Normal (Non LSO) packet */
op_own = cpu_to_be32(MLX4_OPCODE_SEND) |
((ring->prod & ring_size) ?
cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
tx_info->nr_bytes = max(mb->m_pkthdr.len,
(unsigned int)ETHER_MIN_LEN - ETHER_CRC_LEN);
ring->packets++;
}
ring->bytes += tx_info->nr_bytes;
AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, mb->m_pkthdr.len);
if (tx_info->inl) {
build_inline_wqe(tx_desc, mb, real_size, &vlan_tag, tx_ind);
tx_info->inl = 1;
}
ring->prod += nr_txbb;
/* If we used a bounce buffer then copy descriptor back into place */
if (unlikely(bounce))
tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size);
if (ring->bf_enabled && desc_size <= MAX_BF && !bounce && !vlan_tag) {
*(__be32 *) (&tx_desc->ctrl.vlan_tag) |= cpu_to_be32(ring->doorbell_qpn);
op_own |= htonl((bf_index & 0xffff) << 8);
/* Ensure new descirptor hits memory
* before setting ownership of this descriptor to HW */
wmb();
tx_desc->ctrl.owner_opcode = op_own;
wmb();
mlx4_bf_copy(ring->bf.reg + ring->bf.offset, (unsigned long *) &tx_desc->ctrl,
desc_size);
wmb();
ring->bf.offset ^= ring->bf.buf_size;
} else {
/* Ensure new descirptor hits memory
* before setting ownership of this descriptor to HW */
wmb();
tx_desc->ctrl.owner_opcode = op_own;
wmb();
writel(cpu_to_be32(ring->doorbell_qpn), ring->bf.uar->map + MLX4_SEND_DOORBELL);
}
return 0;
tx_drop:
*mbp = NULL;
m_freem(mb);
return EINVAL;
}
static int
mlx4_en_transmit_locked(struct ifnet *dev, int tx_ind, struct mbuf *m)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_tx_ring *ring;
struct mbuf *next;
int enqueued, err = 0;
ring = priv->tx_ring[tx_ind];
if ((dev->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || priv->port_up == 0) {
if (m != NULL)
err = drbr_enqueue(dev, ring->br, m);
return (err);
}
enqueued = 0;
if (m != NULL) {
if ((err = drbr_enqueue(dev, ring->br, m)) != 0)
return (err);
}
/* Process the queue */
2013-02-09 04:13:45 +00:00
while ((next = drbr_peek(dev, ring->br)) != NULL) {
if ((err = mlx4_en_xmit(dev, tx_ind, &next)) != 0) {
if (next == NULL) {
2013-02-09 04:13:45 +00:00
drbr_advance(dev, ring->br);
} else {
2013-02-09 04:13:45 +00:00
drbr_putback(dev, ring->br, next);
}
break;
}
2013-02-09 04:13:45 +00:00
drbr_advance(dev, ring->br);
enqueued++;
if ((dev->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
}
if (enqueued > 0)
ring->watchdog_time = ticks;
return (err);
}
void
mlx4_en_tx_que(void *context, int pending)
{
struct mlx4_en_tx_ring *ring;
struct mlx4_en_priv *priv;
struct net_device *dev;
struct mlx4_en_cq *cq;
int tx_ind;
cq = context;
dev = cq->dev;
priv = dev->if_softc;
tx_ind = cq->ring;
ring = priv->tx_ring[tx_ind];
if (dev->if_drv_flags & IFF_DRV_RUNNING) {
mlx4_en_xmit_poll(priv, tx_ind);
spin_lock(&ring->tx_lock);
if (!drbr_empty(dev, ring->br))
mlx4_en_transmit_locked(dev, tx_ind, NULL);
spin_unlock(&ring->tx_lock);
}
}
int
mlx4_en_transmit(struct ifnet *dev, struct mbuf *m)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_tx_ring *ring;
struct mlx4_en_cq *cq;
int i = 0, err = 0;
/* Which queue to use */
if ((m->m_flags & (M_FLOWID | M_VLANTAG)) == M_FLOWID) {
i = m->m_pkthdr.flowid % (priv->tx_ring_num - 1);
}
else {
i = mlx4_en_select_queue(dev, m);
}
ring = priv->tx_ring[i];
if (spin_trylock(&ring->tx_lock)) {
err = mlx4_en_transmit_locked(dev, i, m);
spin_unlock(&ring->tx_lock);
/* Poll CQ here */
mlx4_en_xmit_poll(priv, i);
} else {
err = drbr_enqueue(dev, ring->br, m);
cq = priv->tx_cq[i];
taskqueue_enqueue(cq->tq, &cq->cq_task);
}
return (err);
}
/*
* Flush ring buffers.
*/
void
mlx4_en_qflush(struct ifnet *dev)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_tx_ring *ring;
struct mbuf *m;
for (int i = 0; i < priv->tx_ring_num; i++) {
ring = priv->tx_ring[i];
spin_lock(&ring->tx_lock);
while ((m = buf_ring_dequeue_sc(ring->br)) != NULL)
m_freem(m);
spin_unlock(&ring->tx_lock);
}
if_qflush(dev);
}