Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2003
|
|
|
|
* Bill Paul <wpaul@windriver.com>. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by Bill Paul.
|
|
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
2004-01-07 20:31:51 +00:00
|
|
|
#include <sys/ctype.h>
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/errno.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/lock.h>
|
|
|
|
#include <sys/mutex.h>
|
|
|
|
|
|
|
|
#include <sys/callout.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
|
2004-01-07 07:29:27 +00:00
|
|
|
#include <machine/atomic.h>
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
#include <machine/clock.h>
|
|
|
|
#include <machine/bus_memio.h>
|
|
|
|
#include <machine/bus_pio.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <machine/stdarg.h>
|
|
|
|
|
|
|
|
#include <sys/bus.h>
|
|
|
|
#include <sys/rman.h>
|
|
|
|
|
|
|
|
#include <compat/ndis/pe_var.h>
|
|
|
|
#include <compat/ndis/resource_var.h>
|
|
|
|
#include <compat/ndis/ndis_var.h>
|
|
|
|
#include <compat/ndis/ntoskrnl_var.h>
|
|
|
|
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
#define __regparm __attribute__((regparm(3)))
|
|
|
|
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
#define FUNC void(*)(void)
|
|
|
|
|
2004-01-07 20:31:51 +00:00
|
|
|
__stdcall static uint8_t ntoskrnl_unicode_equal(ndis_unicode_string *,
|
|
|
|
ndis_unicode_string *, uint8_t);
|
2003-12-25 00:40:02 +00:00
|
|
|
__stdcall static void ntoskrnl_unicode_copy(ndis_unicode_string *,
|
|
|
|
ndis_unicode_string *);
|
2004-01-13 09:12:47 +00:00
|
|
|
__stdcall static ndis_status ntoskrnl_unicode_to_ansi(ndis_ansi_string *,
|
2003-12-25 00:40:02 +00:00
|
|
|
ndis_unicode_string *, uint8_t);
|
2004-01-13 09:12:47 +00:00
|
|
|
__stdcall static ndis_status ntoskrnl_ansi_to_unicode(ndis_unicode_string *,
|
|
|
|
ndis_ansi_string *, uint8_t);
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
__stdcall static void *ntoskrnl_iobuildsynchfsdreq(uint32_t, void *,
|
|
|
|
void *, uint32_t, uint32_t *, void *, void *);
|
|
|
|
__stdcall static uint32_t ntoskrnl_iofcalldriver(void *, void *);
|
|
|
|
__stdcall static uint32_t ntoskrnl_waitforobj(void *, uint32_t,
|
|
|
|
uint32_t, uint8_t, void *);
|
|
|
|
__stdcall static void ntoskrnl_initevent(void *, uint32_t, uint8_t);
|
|
|
|
__stdcall static void ntoskrnl_writereg_ushort(uint16_t *, uint16_t);
|
|
|
|
__stdcall static uint16_t ntoskrnl_readreg_ushort(uint16_t *);
|
|
|
|
__stdcall static void ntoskrnl_writereg_ulong(uint32_t *, uint32_t);
|
|
|
|
__stdcall static uint32_t ntoskrnl_readreg_ulong(uint32_t *);
|
|
|
|
__stdcall static void ntoskrnl_writereg_uchar(uint8_t *, uint8_t);
|
|
|
|
__stdcall static uint8_t ntoskrnl_readreg_uchar(uint8_t *);
|
|
|
|
__stdcall static int64_t _allmul(int64_t, int64_t);
|
|
|
|
__stdcall static int64_t _alldiv(int64_t, int64_t);
|
|
|
|
__stdcall static int64_t _allrem(int64_t, int64_t);
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
__regparm static int64_t _allshr(int64_t, uint8_t);
|
|
|
|
__regparm static int64_t _allshl(int64_t, uint8_t);
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
__stdcall static uint64_t _aullmul(uint64_t, uint64_t);
|
|
|
|
__stdcall static uint64_t _aulldiv(uint64_t, uint64_t);
|
|
|
|
__stdcall static uint64_t _aullrem(uint64_t, uint64_t);
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
__regparm static uint64_t _aullshr(uint64_t, uint8_t);
|
|
|
|
__regparm static uint64_t _aullshl(uint64_t, uint8_t);
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
__stdcall static void *ntoskrnl_allocfunc(uint32_t, size_t, uint32_t);
|
|
|
|
__stdcall static void ntoskrnl_freefunc(void *);
|
|
|
|
__stdcall static void ntoskrnl_init_lookaside(paged_lookaside_list *,
|
|
|
|
lookaside_alloc_func *, lookaside_free_func *,
|
|
|
|
uint32_t, size_t, uint32_t, uint16_t);
|
|
|
|
__stdcall static void ntoskrnl_delete_lookaside(paged_lookaside_list *);
|
|
|
|
__stdcall static void ntoskrnl_init_nplookaside(npaged_lookaside_list *,
|
|
|
|
lookaside_alloc_func *, lookaside_free_func *,
|
|
|
|
uint32_t, size_t, uint32_t, uint16_t);
|
|
|
|
__stdcall static void ntoskrnl_delete_nplookaside(npaged_lookaside_list *);
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
__stdcall static slist_entry *ntoskrnl_push_slist(/*slist_entry *,
|
|
|
|
slist_entry * */ void);
|
|
|
|
__stdcall static slist_entry *ntoskrnl_pop_slist(/*slist_entry * */ void);
|
|
|
|
__stdcall static slist_entry *ntoskrnl_push_slist_ex(/*slist_entry *,
|
|
|
|
slist_entry *,*/ kspin_lock *);
|
|
|
|
__stdcall static slist_entry *ntoskrnl_pop_slist_ex(/*slist_entry *,
|
|
|
|
kspin_lock * */void);
|
2004-01-03 02:25:21 +00:00
|
|
|
__stdcall static void ntoskrnl_lock_dpc(/*kspin_lock * */ void);
|
|
|
|
__stdcall static void ntoskrnl_unlock_dpc(/*kspin_lock * */ void);
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
__stdcall static uint32_t
|
|
|
|
ntoskrnl_interlock_inc(/*volatile uint32_t * */ void);
|
|
|
|
__stdcall static uint32_t
|
|
|
|
ntoskrnl_interlock_dec(/*volatile uint32_t * */ void);
|
2004-01-03 02:25:21 +00:00
|
|
|
__stdcall static void ntoskrnl_freemdl(ndis_buffer *);
|
|
|
|
__stdcall static void *ntoskrnl_mmaplockedpages(ndis_buffer *, uint8_t);
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
__stdcall static void ntoskrnl_init_lock(kspin_lock *);
|
2004-01-12 21:04:43 +00:00
|
|
|
__stdcall static size_t ntoskrnl_memcmp(const void *, const void *, size_t);
|
2004-01-13 09:12:47 +00:00
|
|
|
__stdcall static void ntoskrnl_init_ansi_string(ndis_ansi_string *, char *);
|
|
|
|
__stdcall static void ntoskrnl_init_unicode_string(ndis_unicode_string *,
|
|
|
|
uint16_t *);
|
|
|
|
__stdcall static void ntoskrnl_free_unicode_string(ndis_unicode_string *);
|
|
|
|
__stdcall static void ntoskrnl_free_ansi_string(ndis_ansi_string *);
|
|
|
|
__stdcall static ndis_status ntoskrnl_unicode_to_int(ndis_unicode_string *,
|
|
|
|
uint32_t, uint32_t *);
|
|
|
|
__stdcall static void dummy(void);
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
|
2004-01-12 03:49:20 +00:00
|
|
|
static struct mtx *ntoskrnl_interlock;
|
|
|
|
extern struct mtx_pool *ndis_mtxpool;
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
|
|
|
|
int
|
|
|
|
ntoskrnl_libinit()
|
|
|
|
{
|
2004-01-12 03:49:20 +00:00
|
|
|
ntoskrnl_interlock = mtx_pool_alloc(ndis_mtxpool);
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
ntoskrnl_libfini()
|
|
|
|
{
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
2004-01-07 20:31:51 +00:00
|
|
|
__stdcall static uint8_t
|
|
|
|
ntoskrnl_unicode_equal(str1, str2, caseinsensitive)
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
ndis_unicode_string *str1;
|
|
|
|
ndis_unicode_string *str2;
|
2004-01-07 20:31:51 +00:00
|
|
|
uint8_t caseinsensitive;
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
{
|
2004-01-07 20:31:51 +00:00
|
|
|
int i;
|
|
|
|
|
|
|
|
if (str1->nus_len != str2->nus_len)
|
|
|
|
return(FALSE);
|
|
|
|
|
|
|
|
for (i = 0; i < str1->nus_len; i++) {
|
|
|
|
if (caseinsensitive == TRUE) {
|
|
|
|
if (toupper((char)(str1->nus_buf[i] & 0xFF)) !=
|
|
|
|
toupper((char)(str2->nus_buf[i] & 0xFF)))
|
|
|
|
return(FALSE);
|
|
|
|
} else {
|
|
|
|
if (str1->nus_buf[i] != str2->nus_buf[i])
|
|
|
|
return(FALSE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return(TRUE);
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
}
|
|
|
|
|
2003-12-25 00:40:02 +00:00
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_unicode_copy(dest, src)
|
|
|
|
ndis_unicode_string *dest;
|
|
|
|
ndis_unicode_string *src;
|
|
|
|
{
|
|
|
|
|
|
|
|
if (dest->nus_maxlen >= src->nus_len)
|
|
|
|
dest->nus_len = src->nus_len;
|
|
|
|
else
|
|
|
|
dest->nus_len = dest->nus_maxlen;
|
|
|
|
memcpy(dest->nus_buf, src->nus_buf, dest->nus_len);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2004-01-13 09:12:47 +00:00
|
|
|
__stdcall static ndis_status
|
2003-12-25 00:40:02 +00:00
|
|
|
ntoskrnl_unicode_to_ansi(dest, src, allocate)
|
|
|
|
ndis_ansi_string *dest;
|
|
|
|
ndis_unicode_string *src;
|
|
|
|
uint8_t allocate;
|
|
|
|
{
|
|
|
|
char *astr = NULL;
|
|
|
|
|
2004-01-13 09:12:47 +00:00
|
|
|
if (dest == NULL || src == NULL)
|
|
|
|
return(NDIS_STATUS_FAILURE);
|
|
|
|
|
|
|
|
if (allocate == TRUE) {
|
|
|
|
if (ndis_unicode_to_ascii(src->nus_buf, src->nus_len, &astr))
|
|
|
|
return(NDIS_STATUS_FAILURE);
|
2003-12-25 00:40:02 +00:00
|
|
|
dest->nas_buf = astr;
|
|
|
|
dest->nas_len = dest->nas_maxlen = strlen(astr);
|
|
|
|
} else {
|
|
|
|
dest->nas_len = src->nus_len / 2; /* XXX */
|
|
|
|
if (dest->nas_maxlen < dest->nas_len)
|
|
|
|
dest->nas_len = dest->nas_maxlen;
|
|
|
|
ndis_unicode_to_ascii(src->nus_buf, dest->nas_len * 2,
|
|
|
|
&dest->nas_buf);
|
|
|
|
}
|
|
|
|
return (NDIS_STATUS_SUCCESS);
|
|
|
|
}
|
|
|
|
|
2004-01-13 09:12:47 +00:00
|
|
|
__stdcall static ndis_status
|
|
|
|
ntoskrnl_ansi_to_unicode(dest, src, allocate)
|
|
|
|
ndis_unicode_string *dest;
|
|
|
|
ndis_ansi_string *src;
|
|
|
|
uint8_t allocate;
|
|
|
|
{
|
|
|
|
uint16_t *ustr = NULL;
|
|
|
|
|
|
|
|
if (dest == NULL || src == NULL)
|
|
|
|
return(NDIS_STATUS_FAILURE);
|
|
|
|
|
|
|
|
if (allocate == TRUE) {
|
|
|
|
if (ndis_ascii_to_unicode(src->nas_buf, &ustr))
|
|
|
|
return(NDIS_STATUS_FAILURE);
|
|
|
|
dest->nus_buf = ustr;
|
|
|
|
dest->nus_len = dest->nus_maxlen = strlen(src->nas_buf) * 2;
|
|
|
|
} else {
|
|
|
|
dest->nus_len = src->nas_len * 2; /* XXX */
|
|
|
|
if (dest->nus_maxlen < dest->nus_len)
|
|
|
|
dest->nus_len = dest->nus_maxlen;
|
|
|
|
ndis_ascii_to_unicode(src->nas_buf, &dest->nus_buf);
|
|
|
|
}
|
|
|
|
return (NDIS_STATUS_SUCCESS);
|
|
|
|
}
|
|
|
|
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
__stdcall static void *
|
|
|
|
ntoskrnl_iobuildsynchfsdreq(func, dobj, buf, len, off, event, status)
|
|
|
|
uint32_t func;
|
|
|
|
void *dobj;
|
|
|
|
void *buf;
|
|
|
|
uint32_t len;
|
|
|
|
uint32_t *off;
|
|
|
|
void *event;
|
|
|
|
void *status;
|
|
|
|
{
|
|
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static uint32_t
|
|
|
|
ntoskrnl_iofcalldriver(dobj, irp)
|
|
|
|
void *dobj;
|
|
|
|
void *irp;
|
|
|
|
{
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static uint32_t
|
|
|
|
ntoskrnl_waitforobj(obj, reason, mode, alertable, timeout)
|
|
|
|
void *obj;
|
|
|
|
uint32_t reason;
|
|
|
|
uint32_t mode;
|
|
|
|
uint8_t alertable;
|
|
|
|
void *timeout;
|
|
|
|
{
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_initevent(event, type, state)
|
|
|
|
void *event;
|
|
|
|
uint32_t type;
|
|
|
|
uint8_t state;
|
|
|
|
{
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_writereg_ushort(reg, val)
|
|
|
|
uint16_t *reg;
|
|
|
|
uint16_t val;
|
|
|
|
{
|
2004-01-15 19:34:56 +00:00
|
|
|
bus_space_write_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static uint16_t
|
|
|
|
ntoskrnl_readreg_ushort(reg)
|
|
|
|
uint16_t *reg;
|
|
|
|
{
|
2004-01-15 19:34:56 +00:00
|
|
|
return(bus_space_read_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_writereg_ulong(reg, val)
|
|
|
|
uint32_t *reg;
|
|
|
|
uint32_t val;
|
|
|
|
{
|
2004-01-15 19:34:56 +00:00
|
|
|
bus_space_write_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static uint32_t
|
|
|
|
ntoskrnl_readreg_ulong(reg)
|
|
|
|
uint32_t *reg;
|
|
|
|
{
|
2004-01-15 19:34:56 +00:00
|
|
|
return(bus_space_read_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static uint8_t
|
|
|
|
ntoskrnl_readreg_uchar(reg)
|
|
|
|
uint8_t *reg;
|
|
|
|
{
|
2004-01-15 19:34:56 +00:00
|
|
|
return(bus_space_read_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_writereg_uchar(reg, val)
|
|
|
|
uint8_t *reg;
|
|
|
|
uint8_t val;
|
|
|
|
{
|
2004-01-15 19:34:56 +00:00
|
|
|
bus_space_write_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static int64_t
|
|
|
|
_allmul(a, b)
|
|
|
|
int64_t a;
|
|
|
|
int64_t b;
|
|
|
|
{
|
|
|
|
return (a * b);
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static int64_t
|
|
|
|
_alldiv(a, b)
|
|
|
|
int64_t a;
|
|
|
|
int64_t b;
|
|
|
|
{
|
|
|
|
return (a / b);
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static int64_t
|
|
|
|
_allrem(a, b)
|
|
|
|
int64_t a;
|
|
|
|
int64_t b;
|
|
|
|
{
|
|
|
|
return (a % b);
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static uint64_t
|
|
|
|
_aullmul(a, b)
|
|
|
|
uint64_t a;
|
|
|
|
uint64_t b;
|
|
|
|
{
|
|
|
|
return (a * b);
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static uint64_t
|
|
|
|
_aulldiv(a, b)
|
|
|
|
uint64_t a;
|
|
|
|
uint64_t b;
|
|
|
|
{
|
|
|
|
return (a / b);
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static uint64_t
|
|
|
|
_aullrem(a, b)
|
|
|
|
uint64_t a;
|
|
|
|
uint64_t b;
|
|
|
|
{
|
|
|
|
return (a % b);
|
|
|
|
}
|
|
|
|
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
__regparm static int64_t
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
_allshl(a, b)
|
|
|
|
int64_t a;
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
uint8_t b;
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
{
|
|
|
|
return (a << b);
|
|
|
|
}
|
|
|
|
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
__regparm static uint64_t
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
_aullshl(a, b)
|
|
|
|
uint64_t a;
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
uint8_t b;
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
{
|
|
|
|
return (a << b);
|
|
|
|
}
|
|
|
|
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
__regparm static int64_t
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
_allshr(a, b)
|
|
|
|
int64_t a;
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
uint8_t b;
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
{
|
|
|
|
return (a >> b);
|
|
|
|
}
|
|
|
|
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
__regparm static uint64_t
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
_aullshr(a, b)
|
|
|
|
uint64_t a;
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
uint8_t b;
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
{
|
|
|
|
return (a >> b);
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static void *
|
|
|
|
ntoskrnl_allocfunc(pooltype, size, tag)
|
|
|
|
uint32_t pooltype;
|
|
|
|
size_t size;
|
|
|
|
uint32_t tag;
|
|
|
|
{
|
|
|
|
return(malloc(size, M_DEVBUF, M_NOWAIT));
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_freefunc(buf)
|
|
|
|
void *buf;
|
|
|
|
{
|
|
|
|
free(buf, M_DEVBUF);
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_init_lookaside(lookaside, allocfunc, freefunc,
|
|
|
|
flags, size, tag, depth)
|
|
|
|
paged_lookaside_list *lookaside;
|
|
|
|
lookaside_alloc_func *allocfunc;
|
|
|
|
lookaside_free_func *freefunc;
|
|
|
|
uint32_t flags;
|
|
|
|
size_t size;
|
|
|
|
uint32_t tag;
|
|
|
|
uint16_t depth;
|
|
|
|
{
|
Implement some more NDIS and ntoskrnl API calls:
subr_ndis.c: NdisGetCurrentSystemTime() which, according to the
Microsoft documentation returns "the number of 100 nanosecond
intervals since January 1, 1601." I have no idea what's so special
about that epoch or why they chose 100 nanosecond ticks. I don't
know the proper offset to convert nanotime() from the UNIX epoch
to January 1, 1601, so for now I'm just doing the unit convertion
to 100s of nanoseconds.
subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(),
ExInterlockedPushEntrySList().
The latter two are different from InterlockedPopEntrySList()
and InterlockedPushEntrySList() in that they accept a spinlock to
hold while executing, whereas the non-Ex routines use a lock
internal to ntoskrnl. I also modified ExInitializePagedLookasideList()
and ExInitializeNPagedLookasideList() to initialize mutex locks
within the lookaside structures. It seems that in NDIS 5.0,
the lookaside allocate/free routines ExInterlockedPopEntrySList()
and ExInterlockedPushEntrySList(), which require the use of the
per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside
spinlock is deprecated. We need to support both cases.
Note that I appear to be doing something wrong with
ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList():
they don't appear to obtain proper pointers to their arguments,
so I'm probably doing something wrong in terms of their calling
convention (they're declared to be FASTCALL in Widnows, and I'm
not sure what that means for gcc). It happens that in my stub
lookaside implementation, they don't need to do any work anyway,
so for now I've hacked them to always return NULL, which avoids
corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
|
|
|
struct mtx *mtx;
|
|
|
|
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
lookaside->nll_l.gl_size = size;
|
|
|
|
lookaside->nll_l.gl_tag = tag;
|
|
|
|
if (allocfunc == NULL)
|
|
|
|
lookaside->nll_l.gl_allocfunc = ntoskrnl_allocfunc;
|
|
|
|
else
|
|
|
|
lookaside->nll_l.gl_allocfunc = allocfunc;
|
|
|
|
|
|
|
|
if (freefunc == NULL)
|
|
|
|
lookaside->nll_l.gl_freefunc = ntoskrnl_freefunc;
|
|
|
|
else
|
|
|
|
lookaside->nll_l.gl_freefunc = freefunc;
|
|
|
|
|
2004-01-12 03:49:20 +00:00
|
|
|
mtx = mtx_pool_alloc(ndis_mtxpool);
|
Implement some more NDIS and ntoskrnl API calls:
subr_ndis.c: NdisGetCurrentSystemTime() which, according to the
Microsoft documentation returns "the number of 100 nanosecond
intervals since January 1, 1601." I have no idea what's so special
about that epoch or why they chose 100 nanosecond ticks. I don't
know the proper offset to convert nanotime() from the UNIX epoch
to January 1, 1601, so for now I'm just doing the unit convertion
to 100s of nanoseconds.
subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(),
ExInterlockedPushEntrySList().
The latter two are different from InterlockedPopEntrySList()
and InterlockedPushEntrySList() in that they accept a spinlock to
hold while executing, whereas the non-Ex routines use a lock
internal to ntoskrnl. I also modified ExInitializePagedLookasideList()
and ExInitializeNPagedLookasideList() to initialize mutex locks
within the lookaside structures. It seems that in NDIS 5.0,
the lookaside allocate/free routines ExInterlockedPopEntrySList()
and ExInterlockedPushEntrySList(), which require the use of the
per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside
spinlock is deprecated. We need to support both cases.
Note that I appear to be doing something wrong with
ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList():
they don't appear to obtain proper pointers to their arguments,
so I'm probably doing something wrong in terms of their calling
convention (they're declared to be FASTCALL in Widnows, and I'm
not sure what that means for gcc). It happens that in my stub
lookaside implementation, they don't need to do any work anyway,
so for now I've hacked them to always return NULL, which avoids
corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
|
|
|
lookaside->nll_obsoletelock = (kspin_lock)mtx;
|
|
|
|
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_delete_lookaside(lookaside)
|
|
|
|
paged_lookaside_list *lookaside;
|
|
|
|
{
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_init_nplookaside(lookaside, allocfunc, freefunc,
|
|
|
|
flags, size, tag, depth)
|
|
|
|
npaged_lookaside_list *lookaside;
|
|
|
|
lookaside_alloc_func *allocfunc;
|
|
|
|
lookaside_free_func *freefunc;
|
|
|
|
uint32_t flags;
|
|
|
|
size_t size;
|
|
|
|
uint32_t tag;
|
|
|
|
uint16_t depth;
|
|
|
|
{
|
Implement some more NDIS and ntoskrnl API calls:
subr_ndis.c: NdisGetCurrentSystemTime() which, according to the
Microsoft documentation returns "the number of 100 nanosecond
intervals since January 1, 1601." I have no idea what's so special
about that epoch or why they chose 100 nanosecond ticks. I don't
know the proper offset to convert nanotime() from the UNIX epoch
to January 1, 1601, so for now I'm just doing the unit convertion
to 100s of nanoseconds.
subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(),
ExInterlockedPushEntrySList().
The latter two are different from InterlockedPopEntrySList()
and InterlockedPushEntrySList() in that they accept a spinlock to
hold while executing, whereas the non-Ex routines use a lock
internal to ntoskrnl. I also modified ExInitializePagedLookasideList()
and ExInitializeNPagedLookasideList() to initialize mutex locks
within the lookaside structures. It seems that in NDIS 5.0,
the lookaside allocate/free routines ExInterlockedPopEntrySList()
and ExInterlockedPushEntrySList(), which require the use of the
per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside
spinlock is deprecated. We need to support both cases.
Note that I appear to be doing something wrong with
ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList():
they don't appear to obtain proper pointers to their arguments,
so I'm probably doing something wrong in terms of their calling
convention (they're declared to be FASTCALL in Widnows, and I'm
not sure what that means for gcc). It happens that in my stub
lookaside implementation, they don't need to do any work anyway,
so for now I've hacked them to always return NULL, which avoids
corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
|
|
|
struct mtx *mtx;
|
|
|
|
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
lookaside->nll_l.gl_size = size;
|
|
|
|
lookaside->nll_l.gl_tag = tag;
|
|
|
|
if (allocfunc == NULL)
|
|
|
|
lookaside->nll_l.gl_allocfunc = ntoskrnl_allocfunc;
|
|
|
|
else
|
|
|
|
lookaside->nll_l.gl_allocfunc = allocfunc;
|
|
|
|
|
|
|
|
if (freefunc == NULL)
|
|
|
|
lookaside->nll_l.gl_freefunc = ntoskrnl_freefunc;
|
|
|
|
else
|
|
|
|
lookaside->nll_l.gl_freefunc = freefunc;
|
|
|
|
|
2004-01-12 03:49:20 +00:00
|
|
|
mtx = mtx_pool_alloc(ndis_mtxpool);
|
Implement some more NDIS and ntoskrnl API calls:
subr_ndis.c: NdisGetCurrentSystemTime() which, according to the
Microsoft documentation returns "the number of 100 nanosecond
intervals since January 1, 1601." I have no idea what's so special
about that epoch or why they chose 100 nanosecond ticks. I don't
know the proper offset to convert nanotime() from the UNIX epoch
to January 1, 1601, so for now I'm just doing the unit convertion
to 100s of nanoseconds.
subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(),
ExInterlockedPushEntrySList().
The latter two are different from InterlockedPopEntrySList()
and InterlockedPushEntrySList() in that they accept a spinlock to
hold while executing, whereas the non-Ex routines use a lock
internal to ntoskrnl. I also modified ExInitializePagedLookasideList()
and ExInitializeNPagedLookasideList() to initialize mutex locks
within the lookaside structures. It seems that in NDIS 5.0,
the lookaside allocate/free routines ExInterlockedPopEntrySList()
and ExInterlockedPushEntrySList(), which require the use of the
per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside
spinlock is deprecated. We need to support both cases.
Note that I appear to be doing something wrong with
ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList():
they don't appear to obtain proper pointers to their arguments,
so I'm probably doing something wrong in terms of their calling
convention (they're declared to be FASTCALL in Widnows, and I'm
not sure what that means for gcc). It happens that in my stub
lookaside implementation, they don't need to do any work anyway,
so for now I've hacked them to always return NULL, which avoids
corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
|
|
|
lookaside->nll_obsoletelock = (kspin_lock)mtx;
|
|
|
|
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_delete_nplookaside(lookaside)
|
|
|
|
npaged_lookaside_list *lookaside;
|
|
|
|
{
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note: the interlocked slist push and pop routines are
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
* declared to be _fastcall in Windows. gcc 3.4 is supposed
|
|
|
|
* to have support for this calling convention, however we
|
|
|
|
* don't have that version available yet, so we kludge things
|
|
|
|
* up using some inline assembly.
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
*/
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
|
|
|
|
__stdcall static slist_entry *
|
|
|
|
ntoskrnl_push_slist(/*head, entry*/ void)
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
{
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
slist_header *head;
|
|
|
|
slist_entry *entry;
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
slist_entry *oldhead;
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
|
2003-12-31 04:12:57 +00:00
|
|
|
__asm__ __volatile__ ("" : "=c" (head), "=d" (entry));
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
|
2004-01-12 03:49:20 +00:00
|
|
|
mtx_pool_lock(ndis_mtxpool, ntoskrnl_interlock);
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
oldhead = head->slh_list.slh_next;
|
|
|
|
entry->sl_next = head->slh_list.slh_next;
|
|
|
|
head->slh_list.slh_next = entry;
|
2004-01-12 03:49:20 +00:00
|
|
|
mtx_pool_unlock(ndis_mtxpool, ntoskrnl_interlock);
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
return(oldhead);
|
|
|
|
}
|
|
|
|
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
__stdcall static slist_entry *
|
|
|
|
ntoskrnl_pop_slist(/*head*/ void)
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
{
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
slist_header *head;
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
slist_entry *first;
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
|
2003-12-31 04:12:57 +00:00
|
|
|
__asm__ __volatile__ ("" : "=c" (head));
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
|
2004-01-12 03:49:20 +00:00
|
|
|
mtx_pool_lock(ndis_mtxpool, ntoskrnl_interlock);
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
first = head->slh_list.slh_next;
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
if (first != NULL)
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
head->slh_list.slh_next = first->sl_next;
|
2004-01-12 03:49:20 +00:00
|
|
|
mtx_pool_unlock(ndis_mtxpool, ntoskrnl_interlock);
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
return(first);
|
|
|
|
}
|
|
|
|
|
Implement some more NDIS and ntoskrnl API calls:
subr_ndis.c: NdisGetCurrentSystemTime() which, according to the
Microsoft documentation returns "the number of 100 nanosecond
intervals since January 1, 1601." I have no idea what's so special
about that epoch or why they chose 100 nanosecond ticks. I don't
know the proper offset to convert nanotime() from the UNIX epoch
to January 1, 1601, so for now I'm just doing the unit convertion
to 100s of nanoseconds.
subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(),
ExInterlockedPushEntrySList().
The latter two are different from InterlockedPopEntrySList()
and InterlockedPushEntrySList() in that they accept a spinlock to
hold while executing, whereas the non-Ex routines use a lock
internal to ntoskrnl. I also modified ExInitializePagedLookasideList()
and ExInitializeNPagedLookasideList() to initialize mutex locks
within the lookaside structures. It seems that in NDIS 5.0,
the lookaside allocate/free routines ExInterlockedPopEntrySList()
and ExInterlockedPushEntrySList(), which require the use of the
per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside
spinlock is deprecated. We need to support both cases.
Note that I appear to be doing something wrong with
ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList():
they don't appear to obtain proper pointers to their arguments,
so I'm probably doing something wrong in terms of their calling
convention (they're declared to be FASTCALL in Widnows, and I'm
not sure what that means for gcc). It happens that in my stub
lookaside implementation, they don't need to do any work anyway,
so for now I've hacked them to always return NULL, which avoids
corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
|
|
|
__stdcall static slist_entry *
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
ntoskrnl_push_slist_ex(/*head, entry,*/ lock)
|
Implement some more NDIS and ntoskrnl API calls:
subr_ndis.c: NdisGetCurrentSystemTime() which, according to the
Microsoft documentation returns "the number of 100 nanosecond
intervals since January 1, 1601." I have no idea what's so special
about that epoch or why they chose 100 nanosecond ticks. I don't
know the proper offset to convert nanotime() from the UNIX epoch
to January 1, 1601, so for now I'm just doing the unit convertion
to 100s of nanoseconds.
subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(),
ExInterlockedPushEntrySList().
The latter two are different from InterlockedPopEntrySList()
and InterlockedPushEntrySList() in that they accept a spinlock to
hold while executing, whereas the non-Ex routines use a lock
internal to ntoskrnl. I also modified ExInitializePagedLookasideList()
and ExInitializeNPagedLookasideList() to initialize mutex locks
within the lookaside structures. It seems that in NDIS 5.0,
the lookaside allocate/free routines ExInterlockedPopEntrySList()
and ExInterlockedPushEntrySList(), which require the use of the
per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside
spinlock is deprecated. We need to support both cases.
Note that I appear to be doing something wrong with
ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList():
they don't appear to obtain proper pointers to their arguments,
so I'm probably doing something wrong in terms of their calling
convention (they're declared to be FASTCALL in Widnows, and I'm
not sure what that means for gcc). It happens that in my stub
lookaside implementation, they don't need to do any work anyway,
so for now I've hacked them to always return NULL, which avoids
corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
|
|
|
kspin_lock *lock;
|
|
|
|
{
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
slist_header *head;
|
|
|
|
slist_entry *entry;
|
Implement some more NDIS and ntoskrnl API calls:
subr_ndis.c: NdisGetCurrentSystemTime() which, according to the
Microsoft documentation returns "the number of 100 nanosecond
intervals since January 1, 1601." I have no idea what's so special
about that epoch or why they chose 100 nanosecond ticks. I don't
know the proper offset to convert nanotime() from the UNIX epoch
to January 1, 1601, so for now I'm just doing the unit convertion
to 100s of nanoseconds.
subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(),
ExInterlockedPushEntrySList().
The latter two are different from InterlockedPopEntrySList()
and InterlockedPushEntrySList() in that they accept a spinlock to
hold while executing, whereas the non-Ex routines use a lock
internal to ntoskrnl. I also modified ExInitializePagedLookasideList()
and ExInitializeNPagedLookasideList() to initialize mutex locks
within the lookaside structures. It seems that in NDIS 5.0,
the lookaside allocate/free routines ExInterlockedPopEntrySList()
and ExInterlockedPushEntrySList(), which require the use of the
per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside
spinlock is deprecated. We need to support both cases.
Note that I appear to be doing something wrong with
ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList():
they don't appear to obtain proper pointers to their arguments,
so I'm probably doing something wrong in terms of their calling
convention (they're declared to be FASTCALL in Widnows, and I'm
not sure what that means for gcc). It happens that in my stub
lookaside implementation, they don't need to do any work anyway,
so for now I've hacked them to always return NULL, which avoids
corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
|
|
|
slist_entry *oldhead;
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
|
2003-12-31 04:12:57 +00:00
|
|
|
__asm__ __volatile__ ("" : "=c" (head), "=d" (entry));
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
|
2004-01-12 03:49:20 +00:00
|
|
|
mtx_pool_lock(ndis_mtxpool, (struct mtx *)*lock);
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
oldhead = head->slh_list.slh_next;
|
|
|
|
entry->sl_next = head->slh_list.slh_next;
|
|
|
|
head->slh_list.slh_next = entry;
|
2004-01-12 03:49:20 +00:00
|
|
|
mtx_pool_unlock(ndis_mtxpool, (struct mtx *)*lock);
|
Implement some more NDIS and ntoskrnl API calls:
subr_ndis.c: NdisGetCurrentSystemTime() which, according to the
Microsoft documentation returns "the number of 100 nanosecond
intervals since January 1, 1601." I have no idea what's so special
about that epoch or why they chose 100 nanosecond ticks. I don't
know the proper offset to convert nanotime() from the UNIX epoch
to January 1, 1601, so for now I'm just doing the unit convertion
to 100s of nanoseconds.
subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(),
ExInterlockedPushEntrySList().
The latter two are different from InterlockedPopEntrySList()
and InterlockedPushEntrySList() in that they accept a spinlock to
hold while executing, whereas the non-Ex routines use a lock
internal to ntoskrnl. I also modified ExInitializePagedLookasideList()
and ExInitializeNPagedLookasideList() to initialize mutex locks
within the lookaside structures. It seems that in NDIS 5.0,
the lookaside allocate/free routines ExInterlockedPopEntrySList()
and ExInterlockedPushEntrySList(), which require the use of the
per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside
spinlock is deprecated. We need to support both cases.
Note that I appear to be doing something wrong with
ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList():
they don't appear to obtain proper pointers to their arguments,
so I'm probably doing something wrong in terms of their calling
convention (they're declared to be FASTCALL in Widnows, and I'm
not sure what that means for gcc). It happens that in my stub
lookaside implementation, they don't need to do any work anyway,
so for now I've hacked them to always return NULL, which avoids
corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
|
|
|
return(oldhead);
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static slist_entry *
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
ntoskrnl_pop_slist_ex(/*head, lock*/ void)
|
Implement some more NDIS and ntoskrnl API calls:
subr_ndis.c: NdisGetCurrentSystemTime() which, according to the
Microsoft documentation returns "the number of 100 nanosecond
intervals since January 1, 1601." I have no idea what's so special
about that epoch or why they chose 100 nanosecond ticks. I don't
know the proper offset to convert nanotime() from the UNIX epoch
to January 1, 1601, so for now I'm just doing the unit convertion
to 100s of nanoseconds.
subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(),
ExInterlockedPushEntrySList().
The latter two are different from InterlockedPopEntrySList()
and InterlockedPushEntrySList() in that they accept a spinlock to
hold while executing, whereas the non-Ex routines use a lock
internal to ntoskrnl. I also modified ExInitializePagedLookasideList()
and ExInitializeNPagedLookasideList() to initialize mutex locks
within the lookaside structures. It seems that in NDIS 5.0,
the lookaside allocate/free routines ExInterlockedPopEntrySList()
and ExInterlockedPushEntrySList(), which require the use of the
per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside
spinlock is deprecated. We need to support both cases.
Note that I appear to be doing something wrong with
ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList():
they don't appear to obtain proper pointers to their arguments,
so I'm probably doing something wrong in terms of their calling
convention (they're declared to be FASTCALL in Widnows, and I'm
not sure what that means for gcc). It happens that in my stub
lookaside implementation, they don't need to do any work anyway,
so for now I've hacked them to always return NULL, which avoids
corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
|
|
|
{
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
slist_header *head;
|
|
|
|
kspin_lock *lock;
|
Implement some more NDIS and ntoskrnl API calls:
subr_ndis.c: NdisGetCurrentSystemTime() which, according to the
Microsoft documentation returns "the number of 100 nanosecond
intervals since January 1, 1601." I have no idea what's so special
about that epoch or why they chose 100 nanosecond ticks. I don't
know the proper offset to convert nanotime() from the UNIX epoch
to January 1, 1601, so for now I'm just doing the unit convertion
to 100s of nanoseconds.
subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(),
ExInterlockedPushEntrySList().
The latter two are different from InterlockedPopEntrySList()
and InterlockedPushEntrySList() in that they accept a spinlock to
hold while executing, whereas the non-Ex routines use a lock
internal to ntoskrnl. I also modified ExInitializePagedLookasideList()
and ExInitializeNPagedLookasideList() to initialize mutex locks
within the lookaside structures. It seems that in NDIS 5.0,
the lookaside allocate/free routines ExInterlockedPopEntrySList()
and ExInterlockedPushEntrySList(), which require the use of the
per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside
spinlock is deprecated. We need to support both cases.
Note that I appear to be doing something wrong with
ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList():
they don't appear to obtain proper pointers to their arguments,
so I'm probably doing something wrong in terms of their calling
convention (they're declared to be FASTCALL in Widnows, and I'm
not sure what that means for gcc). It happens that in my stub
lookaside implementation, they don't need to do any work anyway,
so for now I've hacked them to always return NULL, which avoids
corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
|
|
|
slist_entry *first;
|
|
|
|
|
2003-12-31 04:12:57 +00:00
|
|
|
__asm__ __volatile__ ("" : "=c" (head), "=d" (lock));
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
|
2004-01-12 03:49:20 +00:00
|
|
|
mtx_pool_lock(ndis_mtxpool, (struct mtx *)*lock);
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
first = head->slh_list.slh_next;
|
Implement some more NDIS and ntoskrnl API calls:
subr_ndis.c: NdisGetCurrentSystemTime() which, according to the
Microsoft documentation returns "the number of 100 nanosecond
intervals since January 1, 1601." I have no idea what's so special
about that epoch or why they chose 100 nanosecond ticks. I don't
know the proper offset to convert nanotime() from the UNIX epoch
to January 1, 1601, so for now I'm just doing the unit convertion
to 100s of nanoseconds.
subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(),
ExInterlockedPushEntrySList().
The latter two are different from InterlockedPopEntrySList()
and InterlockedPushEntrySList() in that they accept a spinlock to
hold while executing, whereas the non-Ex routines use a lock
internal to ntoskrnl. I also modified ExInitializePagedLookasideList()
and ExInitializeNPagedLookasideList() to initialize mutex locks
within the lookaside structures. It seems that in NDIS 5.0,
the lookaside allocate/free routines ExInterlockedPopEntrySList()
and ExInterlockedPushEntrySList(), which require the use of the
per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside
spinlock is deprecated. We need to support both cases.
Note that I appear to be doing something wrong with
ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList():
they don't appear to obtain proper pointers to their arguments,
so I'm probably doing something wrong in terms of their calling
convention (they're declared to be FASTCALL in Widnows, and I'm
not sure what that means for gcc). It happens that in my stub
lookaside implementation, they don't need to do any work anyway,
so for now I've hacked them to always return NULL, which avoids
corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
|
|
|
if (first != NULL)
|
subr_ndis.c:
- fix ndis_time() so that it returns a time based on the proper
epoch (wacky though it may be)
- implement NdisInitializeString() and NdisFreeString(), and add
stub for NdisMRemoveMiniport()
ntoskrnl_var.h:
- add missing member to the general_lookaside struct (gl_listentry)
subr_ntoskrnl.c:
- Fix arguments to the interlocked push/pop routines: 'head' is an
slist_header *, not an slist_entry *
- Kludge up _fastcall support for the push/pop routines. The _fastcall
convention is similar to _stdcall, except the first two available
DWORD-sized arguments are passed in %ecx and %edx, respectively.
One kludge for this __attribute__ ((regparm(3))), however this
isn't entirely right, as it assumes %eax, %ecx and %edx will be
used (regparm(2) assumes %eax and %edx). Another kludge is to
declare the two fastcall-ed args as local register variables and
explicitly assign them to %ecx and %edx, but experimentation showed
that gcc would not guard %ecx and %edx against being clobbered.
Thus, I came up with a 3rd kludge, which is to use some inline
assembly of the form:
void *arg1;
void *arg2;
__asm__("movl %%ecx, %%ecx" : "=c" (arg1));
__asm__("movl %%edx, %%edx" : "=d" (arg2));
This lets gcc know that we're going to reference %ecx and %edx and
that it should make an effort not to let it get trampled. This wastes
an instruction (movl %reg, %reg is a no-op) but insures proper
behavior. It's possible there's a better way to do this though:
this is the first time I've used inline assembler in this fashion.
The above fixes to ntoskrnl_var.h an subr_ntoskrnl.c make lookaside
lists work for the two drivers I have that use them, one of which
is an NDIS 5.0 miniport and another which is 5.1.
2003-12-13 07:41:12 +00:00
|
|
|
head->slh_list.slh_next = first->sl_next;
|
2004-01-12 03:49:20 +00:00
|
|
|
mtx_pool_unlock(ndis_mtxpool, (struct mtx *)*lock);
|
Implement some more NDIS and ntoskrnl API calls:
subr_ndis.c: NdisGetCurrentSystemTime() which, according to the
Microsoft documentation returns "the number of 100 nanosecond
intervals since January 1, 1601." I have no idea what's so special
about that epoch or why they chose 100 nanosecond ticks. I don't
know the proper offset to convert nanotime() from the UNIX epoch
to January 1, 1601, so for now I'm just doing the unit convertion
to 100s of nanoseconds.
subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(),
ExInterlockedPushEntrySList().
The latter two are different from InterlockedPopEntrySList()
and InterlockedPushEntrySList() in that they accept a spinlock to
hold while executing, whereas the non-Ex routines use a lock
internal to ntoskrnl. I also modified ExInitializePagedLookasideList()
and ExInitializeNPagedLookasideList() to initialize mutex locks
within the lookaside structures. It seems that in NDIS 5.0,
the lookaside allocate/free routines ExInterlockedPopEntrySList()
and ExInterlockedPushEntrySList(), which require the use of the
per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside
spinlock is deprecated. We need to support both cases.
Note that I appear to be doing something wrong with
ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList():
they don't appear to obtain proper pointers to their arguments,
so I'm probably doing something wrong in terms of their calling
convention (they're declared to be FASTCALL in Widnows, and I'm
not sure what that means for gcc). It happens that in my stub
lookaside implementation, they don't need to do any work anyway,
so for now I've hacked them to always return NULL, which avoids
corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
|
|
|
return(first);
|
|
|
|
}
|
|
|
|
|
2004-01-03 02:25:21 +00:00
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_lock_dpc(/*lock*/ void)
|
|
|
|
{
|
|
|
|
kspin_lock *lock;
|
|
|
|
|
|
|
|
__asm__ __volatile__ ("" : "=c" (lock));
|
|
|
|
|
2004-01-12 03:49:20 +00:00
|
|
|
mtx_pool_lock(ndis_mtxpool, (struct mtx *)*lock);
|
|
|
|
|
2004-01-03 02:25:21 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_unlock_dpc(/*lock*/ void)
|
|
|
|
{
|
|
|
|
kspin_lock *lock;
|
|
|
|
|
|
|
|
__asm__ __volatile__ ("" : "=c" (lock));
|
|
|
|
|
2004-01-12 03:49:20 +00:00
|
|
|
mtx_pool_unlock(ndis_mtxpool, (struct mtx *)*lock);
|
|
|
|
|
2004-01-03 02:25:21 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
__stdcall static uint32_t
|
2004-01-03 02:25:21 +00:00
|
|
|
ntoskrnl_interlock_inc(/*addend*/ void)
|
|
|
|
{
|
|
|
|
volatile uint32_t *addend;
|
|
|
|
|
|
|
|
__asm__ __volatile__ ("" : "=c" (addend));
|
|
|
|
|
2004-01-07 07:29:27 +00:00
|
|
|
atomic_add_long((volatile u_long *)addend, 1);
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
return(*addend);
|
2004-01-03 02:25:21 +00:00
|
|
|
}
|
|
|
|
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
__stdcall static uint32_t
|
2004-01-03 02:25:21 +00:00
|
|
|
ntoskrnl_interlock_dec(/*addend*/ void)
|
|
|
|
{
|
|
|
|
volatile uint32_t *addend;
|
|
|
|
|
|
|
|
__asm__ __volatile__ ("" : "=c" (addend));
|
|
|
|
|
2004-01-07 07:29:27 +00:00
|
|
|
atomic_subtract_long((volatile u_long *)addend, 1);
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
return(*addend);
|
2004-01-03 02:25:21 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_freemdl(mdl)
|
|
|
|
ndis_buffer *mdl;
|
|
|
|
{
|
|
|
|
ndis_buffer *head;
|
|
|
|
|
|
|
|
if (mdl == NULL || mdl->nb_process == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
head = mdl->nb_process;
|
|
|
|
|
|
|
|
if (head->nb_flags != 0x1)
|
|
|
|
return;
|
|
|
|
|
|
|
|
mdl->nb_next = head->nb_next;
|
|
|
|
head->nb_next = mdl;
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static void *
|
|
|
|
ntoskrnl_mmaplockedpages(buf, accessmode)
|
|
|
|
ndis_buffer *buf;
|
|
|
|
uint8_t accessmode;
|
|
|
|
{
|
|
|
|
return(MDL_VA(buf));
|
|
|
|
}
|
|
|
|
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
/*
|
|
|
|
* The KeInitializeSpinLock(), KefAcquireSpinLockAtDpcLevel()
|
|
|
|
* and KefReleaseSpinLockFromDpcLevel() appear to be analagous
|
|
|
|
* to splnet()/splx() in their use. We can't create a new mutex
|
|
|
|
* lock here because there is no complimentary KeFreeSpinLock()
|
2004-01-13 09:12:47 +00:00
|
|
|
* function. Instead, we grab a mutex from the mutex pool.
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
*/
|
2004-01-03 02:25:21 +00:00
|
|
|
__stdcall static void
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
ntoskrnl_init_lock(lock)
|
2004-01-03 02:25:21 +00:00
|
|
|
kspin_lock *lock;
|
|
|
|
{
|
2004-01-12 03:49:20 +00:00
|
|
|
*lock = (kspin_lock)mtx_pool_alloc(ndis_mtxpool);
|
2004-01-03 02:25:21 +00:00
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2004-01-04 07:47:33 +00:00
|
|
|
__stdcall static size_t
|
|
|
|
ntoskrnl_memcmp(s1, s2, len)
|
|
|
|
const void *s1;
|
|
|
|
const void *s2;
|
|
|
|
size_t len;
|
|
|
|
{
|
|
|
|
size_t i, total = 0;
|
|
|
|
uint8_t *m1, *m2;
|
|
|
|
|
|
|
|
m1 = __DECONST(char *, s1);
|
|
|
|
m2 = __DECONST(char *, s2);
|
|
|
|
|
|
|
|
for (i = 0; i < len; i++) {
|
|
|
|
if (m1[i] == m2[i])
|
|
|
|
total++;
|
|
|
|
}
|
|
|
|
return(total);
|
|
|
|
}
|
|
|
|
|
2004-01-13 09:12:47 +00:00
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_init_ansi_string(dst, src)
|
|
|
|
ndis_ansi_string *dst;
|
|
|
|
char *src;
|
|
|
|
{
|
|
|
|
ndis_ansi_string *a;
|
|
|
|
|
|
|
|
a = dst;
|
|
|
|
if (a == NULL)
|
|
|
|
return;
|
|
|
|
if (src == NULL) {
|
|
|
|
a->nas_len = a->nas_maxlen = 0;
|
|
|
|
a->nas_buf = NULL;
|
|
|
|
} else {
|
|
|
|
a->nas_buf = src;
|
|
|
|
a->nas_len = a->nas_maxlen = strlen(src);
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_init_unicode_string(dst, src)
|
|
|
|
ndis_unicode_string *dst;
|
|
|
|
uint16_t *src;
|
|
|
|
{
|
|
|
|
ndis_unicode_string *u;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
u = dst;
|
|
|
|
if (u == NULL)
|
|
|
|
return;
|
|
|
|
if (src == NULL) {
|
|
|
|
u->nus_len = u->nus_maxlen = 0;
|
|
|
|
u->nus_buf = NULL;
|
|
|
|
} else {
|
|
|
|
i = 0;
|
|
|
|
while(src[i] != 0)
|
|
|
|
i++;
|
|
|
|
u->nus_buf = src;
|
|
|
|
u->nus_len = u->nus_maxlen = i * 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall ndis_status
|
|
|
|
ntoskrnl_unicode_to_int(ustr, base, val)
|
|
|
|
ndis_unicode_string *ustr;
|
|
|
|
uint32_t base;
|
|
|
|
uint32_t *val;
|
|
|
|
{
|
|
|
|
uint16_t *uchr;
|
|
|
|
int len, neg = 0;
|
|
|
|
char abuf[64];
|
|
|
|
char *astr;
|
|
|
|
|
|
|
|
uchr = ustr->nus_buf;
|
|
|
|
len = ustr->nus_len;
|
|
|
|
bzero(abuf, sizeof(abuf));
|
|
|
|
|
|
|
|
if ((char)((*uchr) & 0xFF) == '-') {
|
|
|
|
neg = 1;
|
|
|
|
uchr++;
|
|
|
|
len -= 2;
|
|
|
|
} else if ((char)((*uchr) & 0xFF) == '+') {
|
|
|
|
neg = 0;
|
|
|
|
uchr++;
|
|
|
|
len -= 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (base == 0) {
|
|
|
|
if ((char)((*uchr) & 0xFF) == 'b') {
|
|
|
|
base = 2;
|
|
|
|
uchr++;
|
|
|
|
len -= 2;
|
|
|
|
} else if ((char)((*uchr) & 0xFF) == 'o') {
|
|
|
|
base = 8;
|
|
|
|
uchr++;
|
|
|
|
len -= 2;
|
|
|
|
} else if ((char)((*uchr) & 0xFF) == 'x') {
|
|
|
|
base = 16;
|
|
|
|
uchr++;
|
|
|
|
len -= 2;
|
|
|
|
} else
|
|
|
|
base = 10;
|
|
|
|
}
|
|
|
|
|
|
|
|
astr = abuf;
|
|
|
|
if (neg) {
|
|
|
|
strcpy(astr, "-");
|
|
|
|
astr++;
|
|
|
|
}
|
|
|
|
|
|
|
|
ndis_unicode_to_ascii(uchr, len, &astr);
|
|
|
|
*val = strtoul(abuf, NULL, base);
|
|
|
|
|
|
|
|
return(NDIS_STATUS_SUCCESS);
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_free_unicode_string(ustr)
|
|
|
|
ndis_unicode_string *ustr;
|
|
|
|
{
|
|
|
|
if (ustr->nus_buf == NULL)
|
|
|
|
return;
|
|
|
|
free(ustr->nus_buf, M_DEVBUF);
|
|
|
|
ustr->nus_buf = NULL;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__stdcall static void
|
|
|
|
ntoskrnl_free_ansi_string(astr)
|
|
|
|
ndis_ansi_string *astr;
|
|
|
|
{
|
|
|
|
if (astr->nas_buf == NULL)
|
|
|
|
return;
|
|
|
|
free(astr->nas_buf, M_DEVBUF);
|
|
|
|
astr->nas_buf = NULL;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
__stdcall static void
|
|
|
|
dummy()
|
|
|
|
{
|
|
|
|
printf ("ntoskrnl dummy called...\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
image_patch_table ntoskrnl_functbl[] = {
|
2004-01-04 07:47:33 +00:00
|
|
|
{ "RtlCompareMemory", (FUNC)ntoskrnl_memcmp },
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
{ "RtlEqualUnicodeString", (FUNC)ntoskrnl_unicode_equal },
|
2003-12-25 00:40:02 +00:00
|
|
|
{ "RtlCopyUnicodeString", (FUNC)ntoskrnl_unicode_copy },
|
|
|
|
{ "RtlUnicodeStringToAnsiString", (FUNC)ntoskrnl_unicode_to_ansi },
|
2004-01-13 09:12:47 +00:00
|
|
|
{ "RtlAnsiStringToUnicodeString", (FUNC)ntoskrnl_ansi_to_unicode },
|
|
|
|
{ "RtlInitAnsiString", (FUNC)ntoskrnl_init_ansi_string },
|
|
|
|
{ "RtlInitUnicodeString", (FUNC)ntoskrnl_init_unicode_string },
|
|
|
|
{ "RtlFreeAnsiString", (FUNC)ntoskrnl_free_ansi_string },
|
|
|
|
{ "RtlFreeUnicodeString", (FUNC)ntoskrnl_free_unicode_string },
|
|
|
|
{ "RtlUnicodeStringToInteger", (FUNC)ntoskrnl_unicode_to_int },
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
{ "sprintf", (FUNC)sprintf },
|
|
|
|
{ "DbgPrint", (FUNC)printf },
|
|
|
|
{ "strncmp", (FUNC)strncmp },
|
|
|
|
{ "strcmp", (FUNC)strcmp },
|
|
|
|
{ "strncpy", (FUNC)strncpy },
|
|
|
|
{ "strcpy", (FUNC)strcpy },
|
Implement some more NDIS and ntoskrnl API calls:
subr_ndis.c: NdisGetCurrentSystemTime() which, according to the
Microsoft documentation returns "the number of 100 nanosecond
intervals since January 1, 1601." I have no idea what's so special
about that epoch or why they chose 100 nanosecond ticks. I don't
know the proper offset to convert nanotime() from the UNIX epoch
to January 1, 1601, so for now I'm just doing the unit convertion
to 100s of nanoseconds.
subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(),
ExInterlockedPushEntrySList().
The latter two are different from InterlockedPopEntrySList()
and InterlockedPushEntrySList() in that they accept a spinlock to
hold while executing, whereas the non-Ex routines use a lock
internal to ntoskrnl. I also modified ExInitializePagedLookasideList()
and ExInitializeNPagedLookasideList() to initialize mutex locks
within the lookaside structures. It seems that in NDIS 5.0,
the lookaside allocate/free routines ExInterlockedPopEntrySList()
and ExInterlockedPushEntrySList(), which require the use of the
per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside
spinlock is deprecated. We need to support both cases.
Note that I appear to be doing something wrong with
ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList():
they don't appear to obtain proper pointers to their arguments,
so I'm probably doing something wrong in terms of their calling
convention (they're declared to be FASTCALL in Widnows, and I'm
not sure what that means for gcc). It happens that in my stub
lookaside implementation, they don't need to do any work anyway,
so for now I've hacked them to always return NULL, which avoids
corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
|
|
|
{ "strlen", (FUNC)strlen },
|
|
|
|
{ "memcpy", (FUNC)memcpy },
|
|
|
|
{ "memset", (FUNC)memset },
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
{ "IofCallDriver", (FUNC)ntoskrnl_iofcalldriver },
|
|
|
|
{ "IoBuildSynchronousFsdRequest", (FUNC)ntoskrnl_iobuildsynchfsdreq },
|
|
|
|
{ "KeWaitForSingleObject", (FUNC)ntoskrnl_waitforobj },
|
|
|
|
{ "KeInitializeEvent", (FUNC)ntoskrnl_initevent },
|
|
|
|
{ "_allmul", (FUNC)_allmul },
|
|
|
|
{ "_alldiv", (FUNC)_alldiv },
|
|
|
|
{ "_allrem", (FUNC)_allrem },
|
|
|
|
{ "_allshr", (FUNC)_allshr },
|
|
|
|
{ "_allshl", (FUNC)_allshl },
|
|
|
|
{ "_aullmul", (FUNC)_aullmul },
|
|
|
|
{ "_aulldiv", (FUNC)_aulldiv },
|
|
|
|
{ "_aullrem", (FUNC)_aullrem },
|
2004-01-03 02:25:21 +00:00
|
|
|
{ "_aullshr", (FUNC)_aullshr },
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
{ "_aullshl", (FUNC)_aullshl },
|
|
|
|
{ "WRITE_REGISTER_USHORT", (FUNC)ntoskrnl_writereg_ushort },
|
|
|
|
{ "READ_REGISTER_USHORT", (FUNC)ntoskrnl_readreg_ushort },
|
|
|
|
{ "WRITE_REGISTER_ULONG", (FUNC)ntoskrnl_writereg_ulong },
|
|
|
|
{ "READ_REGISTER_ULONG", (FUNC)ntoskrnl_readreg_ulong },
|
|
|
|
{ "READ_REGISTER_UCHAR", (FUNC)ntoskrnl_readreg_uchar },
|
|
|
|
{ "WRITE_REGISTER_UCHAR", (FUNC)ntoskrnl_writereg_uchar },
|
|
|
|
{ "ExInitializePagedLookasideList", (FUNC)ntoskrnl_init_lookaside },
|
|
|
|
{ "ExDeletePagedLookasideList", (FUNC)ntoskrnl_delete_lookaside },
|
|
|
|
{ "ExInitializeNPagedLookasideList", (FUNC)ntoskrnl_init_nplookaside },
|
|
|
|
{ "ExDeleteNPagedLookasideList", (FUNC)ntoskrnl_delete_nplookaside },
|
|
|
|
{ "InterlockedPopEntrySList", (FUNC)ntoskrnl_pop_slist },
|
|
|
|
{ "InterlockedPushEntrySList", (FUNC)ntoskrnl_push_slist },
|
Implement some more NDIS and ntoskrnl API calls:
subr_ndis.c: NdisGetCurrentSystemTime() which, according to the
Microsoft documentation returns "the number of 100 nanosecond
intervals since January 1, 1601." I have no idea what's so special
about that epoch or why they chose 100 nanosecond ticks. I don't
know the proper offset to convert nanotime() from the UNIX epoch
to January 1, 1601, so for now I'm just doing the unit convertion
to 100s of nanoseconds.
subr_ntoskrnl.c: memcpy(), memset(), ExInterlockedPopEntrySList(),
ExInterlockedPushEntrySList().
The latter two are different from InterlockedPopEntrySList()
and InterlockedPushEntrySList() in that they accept a spinlock to
hold while executing, whereas the non-Ex routines use a lock
internal to ntoskrnl. I also modified ExInitializePagedLookasideList()
and ExInitializeNPagedLookasideList() to initialize mutex locks
within the lookaside structures. It seems that in NDIS 5.0,
the lookaside allocate/free routines ExInterlockedPopEntrySList()
and ExInterlockedPushEntrySList(), which require the use of the
per-lookaside spinlock, whereas in NDIS 5.1, the per-lookaside
spinlock is deprecated. We need to support both cases.
Note that I appear to be doing something wrong with
ExInterlockedPopEntrySList() and ExInterlockedPushEntrySList():
they don't appear to obtain proper pointers to their arguments,
so I'm probably doing something wrong in terms of their calling
convention (they're declared to be FASTCALL in Widnows, and I'm
not sure what that means for gcc). It happens that in my stub
lookaside implementation, they don't need to do any work anyway,
so for now I've hacked them to always return NULL, which avoids
corrupting the stack. I need to do this right though.
2003-12-12 22:35:13 +00:00
|
|
|
{ "ExInterlockedPopEntrySList", (FUNC)ntoskrnl_pop_slist_ex },
|
|
|
|
{ "ExInterlockedPushEntrySList",(FUNC)ntoskrnl_push_slist_ex },
|
2004-01-03 02:25:21 +00:00
|
|
|
{ "KefAcquireSpinLockAtDpcLevel", (FUNC)ntoskrnl_lock_dpc },
|
|
|
|
{ "KefReleaseSpinLockFromDpcLevel", (FUNC)ntoskrnl_unlock_dpc },
|
|
|
|
{ "InterlockedIncrement", (FUNC)ntoskrnl_interlock_inc },
|
|
|
|
{ "InterlockedDecrement", (FUNC)ntoskrnl_interlock_dec },
|
|
|
|
{ "IoFreeMdl", (FUNC)ntoskrnl_freemdl },
|
|
|
|
{ "MmMapLockedPages", (FUNC)ntoskrnl_mmaplockedpages },
|
- Add pe_get_message() and pe_get_messagetable() for processing
the RT_MESSAGETABLE resources that some driver binaries have.
This allows us to print error messages in ndis_syslog().
- Correct the implementation of InterlockedIncrement() and
InterlockedDecrement() -- they return uint32_t, not void.
- Correct the declarations of the 64-bit arithmetic shift
routines in subr_ntoskrnl.c (_allshr, allshl, etc...). These
do not follow the _stdcall convention: instead, they appear
to be __attribute__((regparm(3)).
- Change the implementation of KeInitializeSpinLock(). There is
no complementary KeFreeSpinLock() function, so creating a new
mutex on each call to KeInitializeSpinLock() leaks resources
when a driver is unloaded. For now, KeInitializeSpinLock()
returns a handle to the ntoskrnl interlock mutex.
- Use a driver's MiniportDisableInterrupt() and MiniportEnableInterrupt()
routines if they exist. I'm not sure if I'm doing this right
yet, but at the very least this shouldn't break any currently
working drivers, and it makes the Intel PRO/1000 driver work.
- In ndis_register_intr(), save some state that might be needed
later, and save a pointer to the driver's interrupt structure
in the ndis_miniport_block.
- Save a pointer to the driver image for use by ndis_syslog()
when it calls pe_get_message().
2004-01-06 07:09:26 +00:00
|
|
|
{ "KeInitializeSpinLock", (FUNC)ntoskrnl_init_lock },
|
Commit the first cut of Project Evil, also known as the NDISulator.
Yes, it's what you think it is. Yes, you should run away now.
This is a special compatibility module for allowing Windows NDIS
miniport network drivers to be used with FreeBSD/x86. This provides
_binary_ NDIS compatibility (not source): you can run NDIS driver
code, but you can't build it. There are three main parts:
sys/compat/ndis: the NDIS compat API, which provides binary
compatibility functions for many routines in NDIS.SYS, HAL.dll
and ntoskrnl.exe in Windows (these are the three modules that
most NDIS miniport drivers use). The compat module also contains
a small PE relocator/dynalinker which relocates the Windows .SYS
image and then patches in our native routines.
sys/dev/if_ndis: the if_ndis driver wrapper. This module makes
use of the ndis compat API and can be compiled with a specially
prepared binary image file (ndis_driver_data.h) containing the
Windows .SYS image and registry key information parsed out of the
accompanying .INF file. Once if_ndis.ko is built, it can be loaded
and unloaded just like a native FreeBSD kenrel module.
usr.sbin/ndiscvt: a special utility that converts foo.sys and foo.inf
into an ndis_driver_data.h file that can be compiled into if_ndis.o.
Contains an .inf file parser graciously provided by Matt Dodd (and
mercilessly hacked upon by me) that strips out device ID info and
registry key info from a .INF file and packages it up with a binary
image array. The ndiscvt(8) utility also does some manipulation of
the segments within the .sys file to make life easier for the kernel
loader. (Doing the manipulation here saves the kernel code from having
to move things around later, which would waste memory.)
ndiscvt is only built for the i386 arch. Only files.i386 has been
updated, and none of this is turned on in GENERIC. It should probably
work on pc98. I have no idea about amd64 or ia64 at this point.
This is still a work in progress. I estimate it's about %85 done, but
I want it under CVS control so I can track subsequent changes. It has
been tested with exactly three drivers: the LinkSys LNE100TX v4 driver
(Lne100v4.sys), the sample Intel 82559 driver from the Windows DDK
(e100bex.sys) and the Broadcom BCM43xx wireless driver (bcmwl5.sys). It
still needs to have a net80211 stuff added to it. To use it, you would
do something like this:
# cd /sys/modules/ndis
# make; make load
# cd /sys/modules/if_ndis
# ndiscvt -i /path/to/foo.inf -s /path/to/foo.sys -o ndis_driver_data.h
# make; make load
# sysctl -a | grep ndis
All registry keys are mapped to sysctl nodes. Sometimes drivers refer
to registry keys that aren't mentioned in foo.inf. If this happens,
the NDIS API module creates sysctl nodes for these keys on the fly so
you can tweak them.
An example usage of the Broadcom wireless driver would be:
# sysctl hw.ndis0.EnableAutoConnect=1
# sysctl hw.ndis0.SSID="MY_SSID"
# sysctl hw.ndis0.NetworkType=0 (0 for bss, 1 for adhoc)
# ifconfig ndis0 <my ipaddr> netmask 0xffffff00 up
Things to be done:
- get rid of debug messages
- add in ndis80211 support
- defer transmissions until after a status update with
NDIS_STATUS_CONNECTED occurs
- Create smarter lookaside list support
- Split off if_ndis_pci.c and if_ndis_pccard.c attachments
- Make sure PCMCIA support works
- Fix ndiscvt to properly parse PCMCIA device IDs from INF files
- write ndisapi.9 man page
2003-12-11 22:34:37 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* This last entry is a catch-all for any function we haven't
|
|
|
|
* implemented yet. The PE import list patching routine will
|
|
|
|
* use it for any function that doesn't have an explicit match
|
|
|
|
* in this table.
|
|
|
|
*/
|
|
|
|
|
|
|
|
{ NULL, (FUNC)dummy },
|
|
|
|
|
|
|
|
/* End of list. */
|
|
|
|
|
|
|
|
{ NULL, NULL },
|
|
|
|
};
|