2002-10-23 23:36:27 +00:00
|
|
|
/*-
|
2004-02-22 00:33:12 +00:00
|
|
|
* Copyright (c) 1999-2002 Robert N. M. Watson
|
|
|
|
* Copyright (c) 2001-2002 Networks Associates Technology, Inc.
|
2002-10-23 23:36:27 +00:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This software was developed by Robert Watson for the TrustedBSD Project.
|
|
|
|
*
|
2002-11-04 01:53:12 +00:00
|
|
|
* This software was developed for the FreeBSD Project in part by Network
|
|
|
|
* Associates Laboratories, the Security Research Division of Network
|
|
|
|
* Associates, Inc. under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"),
|
|
|
|
* as part of the DARPA CHATS research program.
|
2002-10-23 23:36:27 +00:00
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* $FreeBSD$
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Developed by the TrustedBSD Project.
|
|
|
|
* Experiment with a partition-like model.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/conf.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/mac.h>
|
|
|
|
#include <sys/mount.h>
|
|
|
|
#include <sys/proc.h>
|
2003-06-23 01:26:34 +00:00
|
|
|
#include <sys/sbuf.h>
|
2002-10-23 23:36:27 +00:00
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/sysproto.h>
|
|
|
|
#include <sys/sysent.h>
|
|
|
|
#include <sys/vnode.h>
|
|
|
|
#include <sys/file.h>
|
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <sys/socketvar.h>
|
|
|
|
#include <sys/sysctl.h>
|
|
|
|
|
|
|
|
#include <fs/devfs/devfs.h>
|
|
|
|
|
|
|
|
#include <net/bpfdesc.h>
|
|
|
|
#include <net/if.h>
|
|
|
|
#include <net/if_types.h>
|
|
|
|
#include <net/if_var.h>
|
|
|
|
|
|
|
|
#include <vm/vm.h>
|
|
|
|
|
|
|
|
#include <sys/mac_policy.h>
|
|
|
|
|
|
|
|
#include <security/mac_partition/mac_partition.h>
|
|
|
|
|
|
|
|
SYSCTL_DECL(_security_mac);
|
|
|
|
|
|
|
|
SYSCTL_NODE(_security_mac, OID_AUTO, partition, CTLFLAG_RW, 0,
|
|
|
|
"TrustedBSD mac_partition policy controls");
|
|
|
|
|
|
|
|
static int mac_partition_enabled = 1;
|
|
|
|
SYSCTL_INT(_security_mac_partition, OID_AUTO, enabled, CTLFLAG_RW,
|
|
|
|
&mac_partition_enabled, 0, "Enforce partition policy");
|
|
|
|
|
|
|
|
static int partition_slot;
|
|
|
|
#define SLOT(l) (LABEL_TO_SLOT((l), partition_slot).l_long)
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_partition_init(struct mac_policy_conf *conf)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_partition_init_label(struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
SLOT(label) = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_partition_destroy_label(struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
SLOT(label) = 0;
|
|
|
|
}
|
|
|
|
|
2003-12-06 21:48:03 +00:00
|
|
|
static void
|
|
|
|
mac_partition_copy_label(struct label *src, struct label *dest)
|
|
|
|
{
|
|
|
|
|
|
|
|
SLOT(dest) = SLOT(src);
|
|
|
|
}
|
|
|
|
|
2002-10-23 23:36:27 +00:00
|
|
|
static int
|
|
|
|
mac_partition_externalize_label(struct label *label, char *element_name,
|
2003-06-23 01:26:34 +00:00
|
|
|
struct sbuf *sb, int *claimed)
|
2002-10-23 23:36:27 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
if (strcmp(MAC_PARTITION_LABEL_NAME, element_name) != 0)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
(*claimed)++;
|
2003-06-23 01:26:34 +00:00
|
|
|
|
|
|
|
if (sbuf_printf(sb, "%ld", SLOT(label)) == -1)
|
|
|
|
return (EINVAL);
|
|
|
|
else
|
|
|
|
return (0);
|
2002-10-23 23:36:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_partition_internalize_label(struct label *label, char *element_name,
|
|
|
|
char *element_data, int *claimed)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (strcmp(MAC_PARTITION_LABEL_NAME, element_name) != 0)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
(*claimed)++;
|
|
|
|
SLOT(label) = strtol(element_data, NULL, 10);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_partition_create_proc0(struct ucred *cred)
|
|
|
|
{
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
SLOT(cred->cr_label) = 0;
|
2002-10-23 23:36:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_partition_create_proc1(struct ucred *cred)
|
|
|
|
{
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
SLOT(cred->cr_label) = 0;
|
2002-10-23 23:36:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_partition_relabel_cred(struct ucred *cred, struct label *newlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (SLOT(newlabel) != 0)
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
SLOT(cred->cr_label) = SLOT(newlabel);
|
2002-10-23 23:36:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
label_on_label(struct label *subject, struct label *object)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (mac_partition_enabled == 0)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
if (SLOT(subject) == 0)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
if (SLOT(subject) == SLOT(object))
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
return (EPERM);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_partition_check_cred_relabel(struct ucred *cred, struct label *newlabel)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
|
|
|
|
error = 0;
|
|
|
|
|
|
|
|
/* Treat "0" as a no-op request. */
|
|
|
|
if (SLOT(newlabel) != 0) {
|
|
|
|
/*
|
2002-11-03 00:53:03 +00:00
|
|
|
* Require BSD privilege in order to change the partition.
|
|
|
|
* Originally we also required that the process not be
|
|
|
|
* in a partition in the first place, but this didn't
|
|
|
|
* interact well with sendmail.
|
2002-10-23 23:36:27 +00:00
|
|
|
*/
|
|
|
|
error = suser_cred(cred, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_partition_check_cred_visible(struct ucred *u1, struct ucred *u2)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
error = label_on_label(u1->cr_label, u2->cr_label);
|
2002-10-23 23:36:27 +00:00
|
|
|
|
|
|
|
return (error == 0 ? 0 : ESRCH);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_partition_check_proc_debug(struct ucred *cred, struct proc *proc)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
error = label_on_label(cred->cr_label, proc->p_ucred->cr_label);
|
2002-10-23 23:36:27 +00:00
|
|
|
|
|
|
|
return (error ? ESRCH : 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_partition_check_proc_sched(struct ucred *cred, struct proc *proc)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
error = label_on_label(cred->cr_label, proc->p_ucred->cr_label);
|
2002-10-23 23:36:27 +00:00
|
|
|
|
|
|
|
return (error ? ESRCH : 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_partition_check_proc_signal(struct ucred *cred, struct proc *proc,
|
|
|
|
int signum)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
error = label_on_label(cred->cr_label, proc->p_ucred->cr_label);
|
2002-10-23 23:36:27 +00:00
|
|
|
|
|
|
|
return (error ? ESRCH : 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_partition_check_socket_visible(struct ucred *cred, struct socket *socket,
|
|
|
|
struct label *socketlabel)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
|
Modify the MAC Framework so that instead of embedding a (struct label)
in various kernel objects to represent security data, we embed a
(struct label *) pointer, which now references labels allocated using
a UMA zone (mac_label.c). This allows the size and shape of struct
label to be varied without changing the size and shape of these kernel
objects, which become part of the frozen ABI with 5-STABLE. This opens
the door for boot-time selection of the number of label slots, and hence
changes to the bound on the number of simultaneous labeled policies
at boot-time instead of compile-time. This also makes it easier to
embed label references in new objects as required for locking/caching
with fine-grained network stack locking, such as inpcb structures.
This change also moves us further in the direction of hiding the
structure of kernel objects from MAC policy modules, not to mention
dramatically reducing the number of '&' symbols appearing in both the
MAC Framework and MAC policy modules, and improving readability.
While this results in minimal performance change with MAC enabled, it
will observably shrink the size of a number of critical kernel data
structures for the !MAC case, and should have a small (but measurable)
performance benefit (i.e., struct vnode, struct socket) do to memory
conservation and reduced cost of zeroing memory.
NOTE: Users of MAC must recompile their kernel and all MAC modules as a
result of this change. Because this is an API change, third party
MAC modules will also need to be updated to make less use of the '&'
symbol.
Suggestions from: bmilekic
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2003-11-12 03:14:31 +00:00
|
|
|
error = label_on_label(cred->cr_label, socketlabel);
|
2002-10-23 23:36:27 +00:00
|
|
|
|
|
|
|
return (error ? ENOENT : 0);
|
|
|
|
}
|
|
|
|
|
2002-11-08 18:04:36 +00:00
|
|
|
static int
|
|
|
|
mac_partition_check_vnode_exec(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label, struct image_params *imgp, struct label *execlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (execlabel != NULL) {
|
|
|
|
/*
|
|
|
|
* We currently don't permit labels to be changed at
|
|
|
|
* exec-time as part of the partition model, so disallow
|
|
|
|
* non-NULL partition label changes in execlabel.
|
|
|
|
*/
|
|
|
|
if (SLOT(execlabel) != 0)
|
|
|
|
return (EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
static struct mac_policy_ops mac_partition_ops =
|
2002-10-23 23:36:27 +00:00
|
|
|
{
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_init = mac_partition_init,
|
|
|
|
.mpo_init_cred_label = mac_partition_init_label,
|
|
|
|
.mpo_destroy_cred_label = mac_partition_destroy_label,
|
2003-12-06 21:48:03 +00:00
|
|
|
.mpo_copy_cred_label = mac_partition_copy_label,
|
Move to C99 sparse structure initialization for the mac_policy_ops
structure definition, rather than using an operation vector
we translate into the structure. Originally, we used a vector
for two reasons:
(1) We wanted to define the structure sparsely, which wasn't
supported by the C compiler for structures. For a policy
with five entry points, you don't want to have to stick in
a few hundred NULL function pointers.
(2) We thought it would improve ABI compatibility allowing modules
to work with kernels that had a superset of the entry points
defined in the module, even if the kernel had changed its
entry point set.
Both of these no longer apply:
(1) C99 gives us a way to sparsely define a static structure.
(2) The ABI problems existed anyway, due to enumeration numbers,
argument changes, and semantic mismatches. Since the going
rule for FreeBSD is that you really need your modules to
pretty closely match your kernel, it's not worth the
complexity.
This submit eliminates the operation vector, dynamic allocation
of the operation structure, copying of the vector to the
structure, and redoes the vectors in each policy to direct
structure definitions. One enourmous benefit of this change
is that we now get decent type checking on policy entry point
implementation arguments.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
2002-10-30 18:48:51 +00:00
|
|
|
.mpo_externalize_cred_label = mac_partition_externalize_label,
|
|
|
|
.mpo_internalize_cred_label = mac_partition_internalize_label,
|
|
|
|
.mpo_create_proc0 = mac_partition_create_proc0,
|
|
|
|
.mpo_create_proc1 = mac_partition_create_proc1,
|
|
|
|
.mpo_relabel_cred = mac_partition_relabel_cred,
|
|
|
|
.mpo_check_cred_relabel = mac_partition_check_cred_relabel,
|
|
|
|
.mpo_check_cred_visible = mac_partition_check_cred_visible,
|
|
|
|
.mpo_check_proc_debug = mac_partition_check_proc_debug,
|
|
|
|
.mpo_check_proc_sched = mac_partition_check_proc_sched,
|
|
|
|
.mpo_check_proc_signal = mac_partition_check_proc_signal,
|
|
|
|
.mpo_check_socket_visible = mac_partition_check_socket_visible,
|
2002-11-08 18:04:36 +00:00
|
|
|
.mpo_check_vnode_exec = mac_partition_check_vnode_exec,
|
2002-10-23 23:36:27 +00:00
|
|
|
};
|
|
|
|
|
2003-03-27 19:26:39 +00:00
|
|
|
MAC_POLICY_SET(&mac_partition_ops, mac_partition, "TrustedBSD MAC/Partition",
|
|
|
|
MPC_LOADTIME_FLAG_UNLOADOK, &partition_slot);
|