967 lines
34 KiB
C
967 lines
34 KiB
C
|
/* XXX to do:
|
||
|
|
||
|
* Decide where we need splbio ()
|
||
|
*/
|
||
|
/*-
|
||
|
* Copyright (c) 1997, 1998
|
||
|
* Nan Yang Computer Services Limited. All rights reserved.
|
||
|
*
|
||
|
* This software is distributed under the so-called ``Berkeley
|
||
|
* License'':
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. All advertising materials mentioning features or use of this software
|
||
|
* must display the following acknowledgement:
|
||
|
* This product includes software developed by Nan Yang Computer
|
||
|
* Services Limited.
|
||
|
* 4. Neither the name of the Company nor the names of its contributors
|
||
|
* may be used to endorse or promote products derived from this software
|
||
|
* without specific prior written permission.
|
||
|
*
|
||
|
* This software is provided ``as is'', and any express or implied
|
||
|
* warranties, including, but not limited to, the implied warranties of
|
||
|
* merchantability and fitness for a particular purpose are disclaimed.
|
||
|
* In no event shall the company or contributors be liable for any
|
||
|
* direct, indirect, incidental, special, exemplary, or consequential
|
||
|
* damages (including, but not limited to, procurement of substitute
|
||
|
* goods or services; loss of use, data, or profits; or business
|
||
|
* interruption) however caused and on any theory of liability, whether
|
||
|
* in contract, strict liability, or tort (including negligence or
|
||
|
* otherwise) arising in any way out of the use of this software, even if
|
||
|
* advised of the possibility of such damage.
|
||
|
*
|
||
|
* $Id: request.c,v 1.3 1998/11/02 04:09:34 grog Exp $
|
||
|
*/
|
||
|
|
||
|
#define REALLYKERNEL
|
||
|
#include "vinumhdr.h"
|
||
|
#include "request.h"
|
||
|
#include <miscfs/specfs/specdev.h>
|
||
|
#include <sys/resourcevar.h>
|
||
|
|
||
|
/* pointer to ioctl p parameter, to save passing it around */
|
||
|
extern struct proc *myproc;
|
||
|
|
||
|
enum requeststatus bre(struct request *rq,
|
||
|
int plexno,
|
||
|
daddr_t * diskstart,
|
||
|
daddr_t diskend);
|
||
|
enum requeststatus bre5(struct request *rq,
|
||
|
int plexno,
|
||
|
daddr_t * diskstart,
|
||
|
daddr_t diskend);
|
||
|
enum requeststatus build_read_request(struct request *rq, int volplexno);
|
||
|
enum requeststatus build_write_request(struct request *rq);
|
||
|
enum requeststatus build_rq_buffer(struct rqelement *rqe, struct plex *plex);
|
||
|
void freerq(struct request *rq);
|
||
|
void free_rqg(struct rqgroup *rqg);
|
||
|
int find_alternate_sd(struct request *rq);
|
||
|
int check_range_covered(struct request *);
|
||
|
void complete_rqe(struct buf *bp);
|
||
|
void complete_raid5_write(struct rqelement *);
|
||
|
int abortrequest(struct request *rq, int error);
|
||
|
void sdio(struct buf *bp);
|
||
|
void sdio_done(struct buf *bp);
|
||
|
int vinum_bounds_check(struct buf *bp, struct volume *vol);
|
||
|
caddr_t allocdatabuf(struct rqelement *rqe);
|
||
|
void freedatabuf(struct rqelement *rqe);
|
||
|
|
||
|
#ifdef DEBUG
|
||
|
struct rqinfo rqinfo[RQINFO_SIZE];
|
||
|
struct rqinfo *rqip = rqinfo;
|
||
|
|
||
|
void
|
||
|
logrq(enum rqinfo_type type, union rqinfou info, struct buf *ubp)
|
||
|
{
|
||
|
BROKEN_GDB;
|
||
|
int s = splhigh();
|
||
|
|
||
|
vinum_conf.rqipp = &rqip; /* XXX for broken gdb */
|
||
|
vinum_conf.rqinfop = rqinfo; /* XXX for broken gdb */
|
||
|
|
||
|
#if __FreeBSD__ < 3
|
||
|
rqip->timestamp = time; /* when did this happen? */
|
||
|
#else
|
||
|
microtime(&rqip->timestamp); /* when did this happen? */
|
||
|
#endif
|
||
|
rqip->type = type;
|
||
|
rqip->bp = ubp; /* user buffer */
|
||
|
switch (type) {
|
||
|
case loginfo_user_bp:
|
||
|
case loginfo_user_bpl:
|
||
|
bcopy(info.bp, &rqip->info.b, sizeof(struct buf));
|
||
|
break;
|
||
|
|
||
|
case loginfo_iodone:
|
||
|
case loginfo_rqe:
|
||
|
case loginfo_raid5_data:
|
||
|
case loginfo_raid5_parity:
|
||
|
bcopy(info.rqe, &rqip->info.rqe, sizeof(struct rqelement));
|
||
|
break;
|
||
|
|
||
|
case loginfo_unused:
|
||
|
break;
|
||
|
}
|
||
|
rqip++;
|
||
|
if (rqip >= &rqinfo[RQINFO_SIZE]) /* wrap around */
|
||
|
rqip = rqinfo;
|
||
|
splx(s);
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
void
|
||
|
vinumstrategy(struct buf *bp)
|
||
|
{
|
||
|
BROKEN_GDB;
|
||
|
int volno;
|
||
|
struct volume *vol = NULL;
|
||
|
int s;
|
||
|
struct devcode *device = (struct devcode *) &bp->b_dev; /* decode device number */
|
||
|
enum requeststatus status;
|
||
|
|
||
|
/* We may have changed the configuration in
|
||
|
* an interrupt context. Update it now. It
|
||
|
* could change again, so do it in a loop.
|
||
|
* XXX this is broken and contains a race condition.
|
||
|
* The correct way is to hand it off the the Vinum
|
||
|
* daemon, but I haven't found a name for it yet */
|
||
|
while (vinum_conf.flags & VF_DIRTYCONFIG) { /* config is dirty, save it now */
|
||
|
int driveno;
|
||
|
|
||
|
vinum_conf.flags &= ~VF_DIRTYCONFIG; /* turn it off */
|
||
|
for (driveno = 0; driveno < vinum_conf.drives_used; driveno++) {
|
||
|
if ((DRIVE[driveno].state == drive_down) /* drive down */
|
||
|
&&(DRIVE[driveno].vp != NULL)) /* but still open */
|
||
|
close_drive(&DRIVE[driveno]); /* close it now */
|
||
|
}
|
||
|
save_config();
|
||
|
}
|
||
|
|
||
|
switch (device->type) {
|
||
|
case VINUM_SD_TYPE:
|
||
|
sdio(bp);
|
||
|
return;
|
||
|
|
||
|
/* In fact, vinum doesn't handle drives: they're
|
||
|
* handled directly by the disk drivers */
|
||
|
case VINUM_DRIVE_TYPE:
|
||
|
default:
|
||
|
bp->b_error = EIO; /* I/O error */
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
biodone(bp);
|
||
|
return;
|
||
|
|
||
|
case VINUM_VOLUME_TYPE: /* volume I/O */
|
||
|
volno = VOLNO(bp->b_dev);
|
||
|
vol = &VOL[volno];
|
||
|
if (vol->state != volume_up) { /* can't access this volume */
|
||
|
bp->b_error = EIO; /* I/O error */
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
biodone(bp);
|
||
|
return;
|
||
|
}
|
||
|
if (vinum_bounds_check(bp, vol) <= 0) { /* don't like them bounds */
|
||
|
biodone(bp); /* have nothing to do with this */
|
||
|
return;
|
||
|
}
|
||
|
/* FALLTHROUGH */
|
||
|
/* Plex I/O is pretty much the same as volume I/O
|
||
|
* for a single plex. Indicate this by passing a NULL
|
||
|
* pointer (set above) for the volume */
|
||
|
case VINUM_PLEX_TYPE:
|
||
|
bp->b_resid = bp->b_bcount; /* transfer everything */
|
||
|
vinumstart(bp, 0);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Start a transfer. Return -1 on error,
|
||
|
* 0 if OK, 1 if we need to retry.
|
||
|
* Parameter reviveok is set when doing
|
||
|
* transfers for revives: it allows transfers to
|
||
|
* be started immediately when a revive is in
|
||
|
* progress. During revive, normal transfers
|
||
|
* are queued if they share address space with
|
||
|
* a currently active revive operation. */
|
||
|
int
|
||
|
vinumstart(struct buf *bp, int reviveok)
|
||
|
{
|
||
|
BROKEN_GDB;
|
||
|
int plexno;
|
||
|
int maxplex; /* maximum number of plexes to handle */
|
||
|
struct volume *vol;
|
||
|
struct rqgroup *rqg; /* current plex's requests */
|
||
|
struct rqelement *rqe; /* individual element */
|
||
|
struct request *rq; /* build up our request here */
|
||
|
int rqno; /* index in request list */
|
||
|
enum requeststatus status;
|
||
|
|
||
|
#if DEBUG
|
||
|
if (debug & DEBUG_LASTREQS)
|
||
|
logrq(loginfo_user_bp, bp, bp);
|
||
|
#endif
|
||
|
|
||
|
/* XXX In these routines, we're assuming that
|
||
|
* we will always be called with bp->b_bcount
|
||
|
* which is a multiple of the sector size. This
|
||
|
* is a reasonable assumption, since we are only
|
||
|
* called from system routines. Should we check
|
||
|
* anyway? */
|
||
|
|
||
|
if ((bp->b_bcount % DEV_BSIZE) != 0) { /* bad length */
|
||
|
bp->b_error = EINVAL; /* invalid size */
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
biodone(bp);
|
||
|
return -1;
|
||
|
}
|
||
|
rq = (struct request *) Malloc(sizeof(struct request)); /* allocate a request struct */
|
||
|
if (rq == NULL) { /* can't do it */
|
||
|
bp->b_error = ENOMEM; /* can't get memory */
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
biodone(bp);
|
||
|
return -1;
|
||
|
}
|
||
|
bzero(rq, sizeof(struct request));
|
||
|
|
||
|
/* Note the volume ID. This can be NULL, which
|
||
|
* the request building functions use as an
|
||
|
* indication for single plex I/O */
|
||
|
rq->bp = bp; /* and the user buffer struct */
|
||
|
|
||
|
if (DEVTYPE(bp->b_dev) == VINUM_VOLUME_TYPE) { /* it's a volume, */
|
||
|
rq->volplex.volno = VOLNO(bp->b_dev); /* get the volume number */
|
||
|
vol = &VOL[rq->volplex.volno]; /* and point to it */
|
||
|
vol->active++; /* one more active request */
|
||
|
maxplex = vol->plexes; /* consider all its plexes */
|
||
|
} else {
|
||
|
vol = NULL; /* no volume */
|
||
|
rq->volplex.plexno = PLEXNO(bp->b_dev); /* point to the plex */
|
||
|
rq->isplex = 1; /* note that it's a plex */
|
||
|
maxplex = 1; /* just the one plex */
|
||
|
}
|
||
|
|
||
|
if (bp->b_flags & B_READ) {
|
||
|
/* This is a read request. Decide
|
||
|
* which plex to read from.
|
||
|
*
|
||
|
* There's a potential race condition here,
|
||
|
* since we're not locked, and we could end
|
||
|
* up multiply incrementing the round-robin
|
||
|
* counter. This doesn't have any serious
|
||
|
* effects, however. */
|
||
|
if (vol != NULL) {
|
||
|
vol->reads++;
|
||
|
vol->bytes_read += bp->b_bcount;
|
||
|
plexno = vol->preferred_plex; /* get the plex to use */
|
||
|
if (plexno < 0) { /* round robin */
|
||
|
plexno = vol->last_plex_read;
|
||
|
vol->last_plex_read++;
|
||
|
if (vol->last_plex_read == vol->plexes) /* got the the end? */
|
||
|
vol->last_plex_read = 0; /* wrap around */
|
||
|
}
|
||
|
status = build_read_request(rq, plexno); /* build a request */
|
||
|
} else {
|
||
|
daddr_t diskaddr = bp->b_blkno; /* start offset of transfer */
|
||
|
status = bre(rq, /* build a request list */
|
||
|
rq->volplex.plexno,
|
||
|
&diskaddr,
|
||
|
diskaddr + (bp->b_bcount / DEV_BSIZE));
|
||
|
}
|
||
|
|
||
|
if ((status > REQUEST_RECOVERED) /* can't satisfy it */
|
||
|
||(bp->b_flags & B_DONE)) { /* XXX shouldn't get this without bad status */
|
||
|
if (status == REQUEST_DOWN) { /* not enough subdisks */
|
||
|
bp->b_error = EIO; /* I/O error */
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
}
|
||
|
biodone(bp);
|
||
|
freerq(rq);
|
||
|
return -1;
|
||
|
} { /* XXX */
|
||
|
int result;
|
||
|
int s = splhigh();
|
||
|
result = launch_requests(rq, reviveok); /* now start the requests if we can */
|
||
|
splx(s);
|
||
|
return result;
|
||
|
}
|
||
|
} else
|
||
|
/* This is a write operation. We write to all
|
||
|
* plexes. If this is a RAID 5 plex, we must also
|
||
|
* update the parity stripe. */
|
||
|
{
|
||
|
if (vol != NULL) {
|
||
|
vol->writes++;
|
||
|
vol->bytes_written += bp->b_bcount;
|
||
|
status = build_write_request(rq); /* Not all the subdisks are up */
|
||
|
} else { /* plex I/O */
|
||
|
daddr_t diskstart;
|
||
|
|
||
|
diskstart = bp->b_blkno; /* start offset of transfer */
|
||
|
status = bre(rq,
|
||
|
PLEXNO(bp->b_dev),
|
||
|
&diskstart,
|
||
|
bp->b_blkno + (bp->b_bcount / DEV_BSIZE)); /* build requests for the plex */
|
||
|
}
|
||
|
if ((status > REQUEST_RECOVERED) /* can't satisfy it */
|
||
|
||(bp->b_flags & B_DONE)) { /* XXX shouldn't get this without bad status */
|
||
|
if (status == REQUEST_DOWN) { /* not enough subdisks */
|
||
|
bp->b_error = EIO; /* I/O error */
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
}
|
||
|
if ((bp->b_flags & B_DONE) == 0)
|
||
|
biodone(bp);
|
||
|
freerq(rq);
|
||
|
return -1;
|
||
|
} { /* XXX */
|
||
|
int result;
|
||
|
int s = splhigh();
|
||
|
result = launch_requests(rq, reviveok); /* now start the requests if we can */
|
||
|
splx(s);
|
||
|
return result;
|
||
|
}
|
||
|
/* return launch_requests (rq, reviveok); *//* start the requests */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Call the low-level strategy routines to
|
||
|
* perform the requests in a struct request */
|
||
|
int
|
||
|
launch_requests(struct request *rq, int reviveok)
|
||
|
{
|
||
|
struct rqgroup *rqg;
|
||
|
int rqno; /* loop index */
|
||
|
struct rqelement *rqe; /* current element */
|
||
|
int s;
|
||
|
|
||
|
/* First find out whether we're reviving, and the
|
||
|
* request contains a conflict. If so, we hang
|
||
|
* the request off plex->waitlist of the first
|
||
|
* plex we find which is reviving */
|
||
|
if ((rq->flags & XFR_REVIVECONFLICT) /* possible revive conflict */
|
||
|
&&(!reviveok)) { /* and we don't want to do it now, */
|
||
|
struct volume *vol = &VOL[VOLNO(rq->bp->b_dev)];
|
||
|
struct plex *plex;
|
||
|
int plexno;
|
||
|
|
||
|
for (plexno = 0; plexno < vol->plexes; plexno++) { /* find the reviving plex */
|
||
|
plex = &PLEX[vol->plex[plexno]];
|
||
|
if (plex->state == plex_reviving) /* found it */
|
||
|
break;
|
||
|
}
|
||
|
if (plexno < vol->plexes) { /* found it? */
|
||
|
struct request *waitlist = plex->waitlist; /* point to the waiting list */
|
||
|
|
||
|
while (waitlist->next != NULL) /* find the end */
|
||
|
waitlist = waitlist->next;
|
||
|
waitlist->next = rq; /* hook our request there */
|
||
|
return 0; /* and get out of here */
|
||
|
} else /* bad vinum, bad */
|
||
|
printf("vinum: can't find reviving plex for volume %s\n", vol->name);
|
||
|
}
|
||
|
rq->active = 0; /* nothing yet */
|
||
|
/* XXX This is probably due to a bug */
|
||
|
if (rq->rqg == NULL) { /* no request */
|
||
|
abortrequest(rq, EINVAL);
|
||
|
return -1;
|
||
|
}
|
||
|
#if DEBUG
|
||
|
if (debug & DEBUG_ADDRESSES)
|
||
|
printf("Request: %x\n%s dev 0x%x, offset 0x%x, length %ld\n",
|
||
|
(u_int) rq,
|
||
|
rq->bp->b_flags & B_READ ? "Read" : "Write",
|
||
|
rq->bp->b_dev,
|
||
|
rq->bp->b_blkno,
|
||
|
rq->bp->b_bcount); /* XXX */
|
||
|
vinum_conf.lastrq = (int) rq;
|
||
|
vinum_conf.lastbuf = rq->bp;
|
||
|
if (debug & DEBUG_LASTREQS)
|
||
|
logrq(loginfo_user_bpl, rq->bp, rq->bp);
|
||
|
#endif
|
||
|
for (rqg = rq->rqg; rqg != NULL; rqg = rqg->next) { /* through the whole request chain */
|
||
|
rqg->active = rqg->count; /* they're all active */
|
||
|
rq->active++; /* one more active request group */
|
||
|
for (rqno = 0; rqno < rqg->count; rqno++) {
|
||
|
rqe = &rqg->rqe[rqno];
|
||
|
if (rqe->flags & XFR_BAD_SUBDISK) /* this subdisk is bad, */
|
||
|
rqg->active--; /* one less active request */
|
||
|
else {
|
||
|
struct drive *drive = &DRIVE[rqe->driveno]; /* drive to access */
|
||
|
if ((rqe->b.b_flags & B_READ) == 0)
|
||
|
rqe->b.b_vp->v_numoutput++; /* one more output going */
|
||
|
rqe->b.b_flags |= B_ORDERED; /* XXX chase SCSI driver */
|
||
|
#if DEBUG
|
||
|
if (debug & DEBUG_ADDRESSES)
|
||
|
printf(" %s dev 0x%x, sd %d, offset 0x%x, devoffset 0x%x, length %ld\n",
|
||
|
rqe->b.b_flags & B_READ ? "Read" : "Write",
|
||
|
rqe->b.b_dev,
|
||
|
rqe->sdno,
|
||
|
(u_int) (rqe->b.b_blkno - SD[rqe->sdno].driveoffset),
|
||
|
rqe->b.b_blkno,
|
||
|
rqe->b.b_bcount); /* XXX */
|
||
|
if (debug & DEBUG_NUMOUTPUT)
|
||
|
printf(" vinumstart sd %d numoutput %ld\n",
|
||
|
rqe->sdno,
|
||
|
rqe->b.b_vp->v_numoutput);
|
||
|
if (debug & DEBUG_LASTREQS)
|
||
|
logrq(loginfo_rqe, rqe, rq->bp);
|
||
|
#endif
|
||
|
/* fire off the request */
|
||
|
s = splbio();
|
||
|
(*bdevsw[major(rqe->b.b_dev)]->d_strategy) (&rqe->b);
|
||
|
splx(s);
|
||
|
}
|
||
|
/* XXX Do we need caching? Think about this more */
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* define the low-level requests needed to perform a
|
||
|
* high-level I/O operation for a specific plex 'plexno'.
|
||
|
*
|
||
|
* Return 0 if all subdisks involved in the request are up, 1 if some
|
||
|
* subdisks are not up, and -1 if the request is at least partially
|
||
|
* outside the bounds of the subdisks.
|
||
|
*
|
||
|
* Modify the pointer *diskstart to point to the end address. On
|
||
|
* read, return on the first bad subdisk, so that the caller
|
||
|
* (build_read_request) can try alternatives.
|
||
|
*
|
||
|
* On entry to this routine, the rqg structures are not assigned. The
|
||
|
* assignment is performed by expandrq(). Strictly speaking, the
|
||
|
* elements rqe->sdno of all entries should be set to -1, since 0
|
||
|
* (from bzero) is a valid subdisk number. We avoid this problem by
|
||
|
* initializing the ones we use, and not looking at the others (index
|
||
|
* >= rqg->requests).
|
||
|
*/
|
||
|
enum requeststatus
|
||
|
bre(struct request *rq,
|
||
|
int plexno,
|
||
|
daddr_t * diskaddr,
|
||
|
daddr_t diskend)
|
||
|
{
|
||
|
BROKEN_GDB;
|
||
|
int sdno;
|
||
|
struct sd *sd;
|
||
|
struct rqgroup *rqg;
|
||
|
struct buf *bp; /* user's bp */
|
||
|
struct plex *plex;
|
||
|
enum requeststatus status; /* return value */
|
||
|
daddr_t plexoffset; /* offset of transfer in plex */
|
||
|
daddr_t stripebase; /* base address of stripe (1st subdisk) */
|
||
|
daddr_t stripeoffset; /* offset in stripe */
|
||
|
daddr_t blockoffset; /* offset in stripe on subdisk */
|
||
|
struct rqelement *rqe; /* point to this request information */
|
||
|
daddr_t diskstart = *diskaddr; /* remember where this transfer starts */
|
||
|
|
||
|
bp = rq->bp; /* buffer pointer */
|
||
|
status = REQUEST_OK; /* return value: OK until proven otherwise */
|
||
|
plex = &PLEX[plexno]; /* point to the plex */
|
||
|
|
||
|
switch (plex->organization) {
|
||
|
case plex_concat:
|
||
|
for (sdno = 0; sdno < plex->subdisks; sdno++) {
|
||
|
sd = &SD[plex->sdnos[sdno]];
|
||
|
if ((*diskaddr < (sd->plexoffset + sd->sectors)) /* The request starts before the end of this */
|
||
|
&&(diskend > sd->plexoffset)) { /* subdisk and ends after the start of this sd */
|
||
|
if ((sd->state != sd_up) || (plex->state != plex_up)) {
|
||
|
enum requeststatus s;
|
||
|
|
||
|
s = checksdstate(sd, rq, *diskaddr, diskend); /* do we need to change state? */
|
||
|
if (s) /* give up? */
|
||
|
return s; /* yup */
|
||
|
}
|
||
|
rqg = allocrqg(rq, 1); /* space for the request */
|
||
|
if (rqg == NULL) { /* malloc failed */
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
bp->b_error = ENOMEM;
|
||
|
biodone(bp);
|
||
|
return REQUEST_ENOMEM;
|
||
|
}
|
||
|
rqg->plexno = plexno;
|
||
|
|
||
|
rqe = &rqg->rqe[0]; /* point to the element */
|
||
|
rqe->rqg = rqg; /* group */
|
||
|
rqe->sdno = sd->sdno; /* put in the subdisk number */
|
||
|
plexoffset = max(sd->plexoffset, *diskaddr); /* start offset in plex */
|
||
|
rqe->sdoffset = plexoffset - sd->plexoffset; /* start offset in subdisk */
|
||
|
rqe->useroffset = plexoffset - diskstart; /* start offset in user buffer */
|
||
|
rqe->dataoffset = 0;
|
||
|
rqe->datalen = min(diskend - *diskaddr, /* number of sectors to transfer in this sd */
|
||
|
sd->sectors - rqe->sdoffset);
|
||
|
rqe->groupoffset = 0; /* no groups for concatenated plexes */
|
||
|
rqe->grouplen = 0;
|
||
|
rqe->buflen = rqe->datalen; /* buffer length is data buffer length */
|
||
|
rqe->flags = 0;
|
||
|
rqe->driveno = sd->driveno;
|
||
|
*diskaddr += rqe->datalen; /* bump the address */
|
||
|
if (build_rq_buffer(rqe, plex)) { /* build the buffer */
|
||
|
deallocrqg(rqg);
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
bp->b_error = ENOMEM;
|
||
|
biodone(bp);
|
||
|
return REQUEST_ENOMEM; /* can't do it */
|
||
|
}
|
||
|
}
|
||
|
if (*diskaddr > diskend) /* we're finished, */
|
||
|
break; /* get out of here */
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case plex_striped:
|
||
|
{
|
||
|
while (*diskaddr < diskend) { /* until we get it all sorted out */
|
||
|
/* The offset of the start address from
|
||
|
* the start of the stripe */
|
||
|
stripeoffset = *diskaddr % (plex->stripesize * plex->subdisks);
|
||
|
|
||
|
/* The plex-relative address of the
|
||
|
* start of the stripe */
|
||
|
stripebase = *diskaddr - stripeoffset;
|
||
|
|
||
|
/* The number of the subdisk in which
|
||
|
* the start is located */
|
||
|
sdno = stripeoffset / plex->stripesize;
|
||
|
|
||
|
/* The offset from the beginning of the stripe
|
||
|
* on this subdisk */
|
||
|
blockoffset = stripeoffset % plex->stripesize;
|
||
|
|
||
|
sd = &SD[plex->sdnos[sdno]]; /* the subdisk in question */
|
||
|
if ((sd->state != sd_up) || (plex->state != plex_up)) {
|
||
|
enum requeststatus s;
|
||
|
|
||
|
s = checksdstate(sd, rq, *diskaddr, diskend); /* do we need to change state? */
|
||
|
if (s) /* give up? */
|
||
|
return s; /* yup */
|
||
|
}
|
||
|
rqg = allocrqg(rq, 1); /* space for the request */
|
||
|
if (rqg == NULL) { /* malloc failed */
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
bp->b_error = ENOMEM;
|
||
|
biodone(bp);
|
||
|
return REQUEST_ENOMEM;
|
||
|
}
|
||
|
rqg->plexno = plexno;
|
||
|
|
||
|
rqe = &rqg->rqe[0]; /* point to the element */
|
||
|
rqe->rqg = rqg;
|
||
|
rqe->sdoffset = stripebase / plex->subdisks + blockoffset; /* start offset in this subdisk */
|
||
|
rqe->useroffset = *diskaddr - diskstart; /* The offset of the start in the user buffer */
|
||
|
rqe->dataoffset = 0;
|
||
|
rqe->datalen = min(diskend - *diskaddr, /* the amount remaining to transfer */
|
||
|
plex->stripesize - blockoffset); /* and the amount left in this stripe */
|
||
|
rqe->groupoffset = 0; /* no groups for striped plexes */
|
||
|
rqe->grouplen = 0;
|
||
|
rqe->buflen = rqe->datalen; /* buffer length is data buffer length */
|
||
|
rqe->flags = 0;
|
||
|
rqe->sdno = sd->sdno; /* put in the subdisk number */
|
||
|
rqe->driveno = sd->driveno;
|
||
|
|
||
|
if (rqe->sdoffset >= sd->sectors) { /* starts beyond the end of the subdisk? */
|
||
|
deallocrqg(rqg);
|
||
|
return REQUEST_EOF;
|
||
|
} else if (rqe->sdoffset + rqe->datalen > sd->sectors) /* ends beyond the end of the subdisk? */
|
||
|
rqe->datalen = sd->sectors - rqe->sdoffset; /* yes, truncate */
|
||
|
|
||
|
if (build_rq_buffer(rqe, plex)) { /* build the buffer */
|
||
|
deallocrqg(rqg);
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
bp->b_error = ENOMEM;
|
||
|
biodone(bp);
|
||
|
return REQUEST_ENOMEM; /* can't do it */
|
||
|
}
|
||
|
*diskaddr += rqe->datalen; /* look at the remainder */
|
||
|
if (*diskaddr < diskend) { /* didn't finish the request on this stripe */
|
||
|
plex->multiblock++; /* count another one */
|
||
|
if (sdno == plex->subdisks - 1) /* last subdisk, */
|
||
|
plex->multistripe++; /* another stripe as well */
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
|
||
|
default:
|
||
|
printf("vinum: invalid plex type in bre");
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* Build up a request structure for reading volumes.
|
||
|
* This function is not needed for plex reads, since there's
|
||
|
* no recovery if a plex read can't be satisified. */
|
||
|
enum requeststatus
|
||
|
build_read_request(struct request *rq, /* request */
|
||
|
int plexindex)
|
||
|
{ /* index in the volume's plex table */
|
||
|
BROKEN_GDB;
|
||
|
struct buf *bp;
|
||
|
daddr_t startaddr; /* offset of previous part of transfer */
|
||
|
daddr_t diskaddr; /* offset of current part of transfer */
|
||
|
daddr_t diskend; /* and end offset of transfer */
|
||
|
int plexno; /* plex index in vinum_conf */
|
||
|
struct rqgroup *rqg; /* point to the request we're working on */
|
||
|
struct volume *vol; /* volume in question */
|
||
|
off_t oldstart; /* note where we started */
|
||
|
int recovered = 0; /* set if we recover a read */
|
||
|
enum requeststatus status = REQUEST_OK;
|
||
|
|
||
|
bp = rq->bp; /* buffer pointer */
|
||
|
diskaddr = bp->b_blkno; /* start offset of transfer */
|
||
|
diskend = diskaddr + (bp->b_bcount / DEV_BSIZE); /* and end offset of transfer */
|
||
|
rqg = &rq->rqg[plexindex]; /* plex request */
|
||
|
vol = &VOL[rq->volplex.volno]; /* point to volume */
|
||
|
|
||
|
while (diskaddr < diskend) { /* build up request components */
|
||
|
startaddr = diskaddr;
|
||
|
status = bre(rq, vol->plex[plexindex], &diskaddr, diskend); /* build up a request */
|
||
|
switch (status) {
|
||
|
case REQUEST_OK:
|
||
|
continue;
|
||
|
|
||
|
case REQUEST_RECOVERED:
|
||
|
recovered = 1;
|
||
|
break;
|
||
|
|
||
|
case REQUEST_EOF:
|
||
|
case REQUEST_ENOMEM:
|
||
|
return status;
|
||
|
|
||
|
/* if we get here, we have either had a failure or
|
||
|
* a RAID 5 recovery. We don't want to use the
|
||
|
* recovery, because it's expensive, so first we
|
||
|
* check if we have alternatives */
|
||
|
case REQUEST_DOWN: /* can't access the plex */
|
||
|
if (vol != NULL) { /* and this is volume I/O */
|
||
|
/* Try to satisfy the request
|
||
|
* from another plex */
|
||
|
for (plexno = 0; plexno < vol->plexes; plexno++) {
|
||
|
diskaddr = startaddr; /* start at the beginning again */
|
||
|
oldstart = startaddr; /* and note where that was */
|
||
|
if (plexno != plexindex) { /* don't try this plex again */
|
||
|
bre(rq, vol->plex[plexno], &diskaddr, diskend); /* try a request */
|
||
|
if (diskaddr > oldstart) { /* we satisfied another part */
|
||
|
recovered = 1; /* we recovered from the problem */
|
||
|
status = REQUEST_OK; /* don't complain about it */
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (plexno == (vol->plexes - 1)) /* couldn't satisfy the request */
|
||
|
return REQUEST_DOWN; /* failed */
|
||
|
}
|
||
|
} else
|
||
|
return REQUEST_DOWN; /* bad luck */
|
||
|
}
|
||
|
if (recovered)
|
||
|
vol->recovered_reads += recovered; /* adjust our recovery count */
|
||
|
}
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* Build up a request structure for writes.
|
||
|
* Return 0 if all subdisks involved in the request are up, 1 if some
|
||
|
* subdisks are not up, and -1 if the request is at least partially
|
||
|
* outside the bounds of the subdisks. */
|
||
|
enum requeststatus
|
||
|
build_write_request(struct request *rq)
|
||
|
{ /* request */
|
||
|
BROKEN_GDB;
|
||
|
struct buf *bp;
|
||
|
daddr_t diskstart; /* offset of current part of transfer */
|
||
|
daddr_t diskend; /* and end offset of transfer */
|
||
|
int plexno; /* plex index in vinum_conf */
|
||
|
struct volume *vol; /* volume in question */
|
||
|
enum requeststatus status;
|
||
|
|
||
|
bp = rq->bp; /* buffer pointer */
|
||
|
vol = &VOL[rq->volplex.volno]; /* point to volume */
|
||
|
diskend = bp->b_blkno + (bp->b_bcount / DEV_BSIZE); /* end offset of transfer */
|
||
|
status = REQUEST_OK;
|
||
|
for (plexno = 0; plexno < vol->plexes; plexno++) {
|
||
|
diskstart = bp->b_blkno; /* start offset of transfer */
|
||
|
status = min(status, bre(rq, /* build requests for the plex */
|
||
|
vol->plex[plexno],
|
||
|
&diskstart,
|
||
|
diskend));
|
||
|
}
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* Fill in the struct buf part of a request element. */
|
||
|
enum requeststatus
|
||
|
build_rq_buffer(struct rqelement *rqe, struct plex *plex)
|
||
|
{
|
||
|
BROKEN_GDB;
|
||
|
struct sd *sd; /* point to subdisk */
|
||
|
struct volume *vol;
|
||
|
struct buf *bp;
|
||
|
struct buf *ubp; /* user (high level) buffer header */
|
||
|
|
||
|
vol = &VOL[rqe->rqg->rq->volplex.volno];
|
||
|
sd = &SD[rqe->sdno]; /* point to subdisk */
|
||
|
bp = &rqe->b;
|
||
|
ubp = rqe->rqg->rq->bp; /* pointer to user buffer header */
|
||
|
|
||
|
/* Initialize the buf struct */
|
||
|
bzero(&rqe->b, sizeof(struct buf));
|
||
|
bp->b_proc = ubp->b_proc; /* process pointer */
|
||
|
bp->b_flags = ubp->b_flags & (B_NOCACHE | B_READ | B_ASYNC); /* copy these flags from user bp */
|
||
|
bp->b_flags |= B_CALL | B_BUSY; /* inform us when it's done */
|
||
|
if (plex->state == plex_reviving)
|
||
|
bp->b_flags |= B_ORDERED; /* keep request order if we're reviving */
|
||
|
bp->b_iodone = complete_rqe; /* by calling us here */
|
||
|
bp->b_dev = DRIVE[rqe->driveno].dev; /* drive device */
|
||
|
bp->b_blkno = rqe->sdoffset + sd->driveoffset; /* start address */
|
||
|
bp->b_bcount = rqe->buflen << DEV_BSHIFT; /* number of bytes to transfer */
|
||
|
bp->b_resid = bp->b_bcount; /* and it's still all waiting */
|
||
|
bp->b_bufsize = bp->b_bcount; /* and buffer size */
|
||
|
bp->b_vp = DRIVE[rqe->driveno].vp; /* drive vnode */
|
||
|
bp->b_rcred = FSCRED; /* we have the file system credentials */
|
||
|
bp->b_wcred = FSCRED; /* we have the file system credentials */
|
||
|
|
||
|
if (rqe->flags & XFR_MALLOCED) { /* this operation requires a malloced buffer */
|
||
|
bp->b_data = Malloc(bp->b_bcount); /* get a buffer to put it in */
|
||
|
if (bp->b_data == NULL) { /* failed */
|
||
|
Debugger("XXX");
|
||
|
abortrequest(rqe->rqg->rq, ENOMEM);
|
||
|
return REQUEST_ENOMEM; /* no memory */
|
||
|
}
|
||
|
} else
|
||
|
/* Point directly to user buffer data. This means
|
||
|
* that we don't need to do anything when we have
|
||
|
* finished the transfer */
|
||
|
bp->b_data = ubp->b_data + rqe->useroffset * DEV_BSIZE;
|
||
|
return 0;
|
||
|
}
|
||
|
/* Abort a request: free resources and complete the
|
||
|
* user request with the specified error */
|
||
|
int
|
||
|
abortrequest(struct request *rq, int error)
|
||
|
{
|
||
|
struct buf *bp = rq->bp; /* user buffer */
|
||
|
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
bp->b_error = error;
|
||
|
freerq(rq); /* free everything we're doing */
|
||
|
biodone(bp);
|
||
|
return error; /* and give up */
|
||
|
}
|
||
|
|
||
|
/* Check that our transfer will cover the
|
||
|
* complete address space of the user request.
|
||
|
*
|
||
|
* Return 1 if it can, otherwise 0 */
|
||
|
int
|
||
|
check_range_covered(struct request *rq)
|
||
|
{
|
||
|
/* XXX */
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* Perform I/O on a subdisk */
|
||
|
void
|
||
|
sdio(struct buf *bp)
|
||
|
{
|
||
|
int s; /* spl */
|
||
|
struct sd *sd;
|
||
|
struct sdbuf *sbp;
|
||
|
daddr_t endoffset;
|
||
|
struct drive *drive;
|
||
|
|
||
|
sd = &SD[SDNO(bp->b_dev)]; /* point to the subdisk */
|
||
|
drive = &DRIVE[sd->driveno];
|
||
|
|
||
|
if (drive->state != drive_up) { /* XXX until we get the states fixed */
|
||
|
set_sd_state(SDNO(bp->b_dev), sd_obsolete, setstate_force);
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
bp->b_error = EIO;
|
||
|
biodone(bp);
|
||
|
return;
|
||
|
}
|
||
|
/* XXX decide which states we will really accept here. up
|
||
|
* implies it could be involved with a plex, in which
|
||
|
* case we don't want to dick with it */
|
||
|
if ((sd->state != sd_up)
|
||
|
&& (sd->state != sd_initializing)
|
||
|
&& (sd->state != sd_reborn)) { /* we can't access it */
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
bp->b_flags = EIO;
|
||
|
if (bp->b_flags & B_BUSY) /* XXX why isn't this always the case? */
|
||
|
biodone(bp);
|
||
|
return;
|
||
|
}
|
||
|
/* Get a buffer */
|
||
|
sbp = (struct sdbuf *) Malloc(sizeof(struct sdbuf));
|
||
|
if (sbp == NULL) {
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
bp->b_error = ENOMEM;
|
||
|
biodone(bp);
|
||
|
return;
|
||
|
}
|
||
|
bcopy(bp, &sbp->b, sizeof(struct buf)); /* start with the user's buffer */
|
||
|
sbp->b.b_flags |= B_CALL; /* tell us when it's done */
|
||
|
sbp->b.b_iodone = sdio_done; /* here */
|
||
|
sbp->b.b_dev = DRIVE[sd->driveno].dev; /* device */
|
||
|
sbp->b.b_vp = DRIVE[sd->driveno].vp; /* vnode */
|
||
|
sbp->b.b_blkno += sd->driveoffset;
|
||
|
sbp->bp = bp; /* note the address of the original header */
|
||
|
sbp->sdno = sd->sdno; /* note for statistics */
|
||
|
sbp->driveno = sd->driveno;
|
||
|
endoffset = bp->b_blkno + sbp->b.b_bcount / DEV_BSIZE; /* final sector offset */
|
||
|
if (endoffset > sd->sectors) { /* beyond the end */
|
||
|
sbp->b.b_bcount -= (endoffset - sd->sectors) * DEV_BSIZE; /* trim */
|
||
|
if (sbp->b.b_bcount <= 0) { /* nothing to transfer */
|
||
|
bp->b_resid = bp->b_bcount; /* nothing transferred */
|
||
|
/* XXX Grrr. This doesn't seem to work. Return
|
||
|
* an error after all */
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
bp->b_error = ENOSPC;
|
||
|
biodone(bp);
|
||
|
Free(sbp);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
if ((sbp->b.b_flags & B_READ) == 0) /* write */
|
||
|
sbp->b.b_vp->v_numoutput++; /* one more output going */
|
||
|
#if DEBUG
|
||
|
if (debug & DEBUG_ADDRESSES)
|
||
|
printf(" %s dev 0x%x, sd %d, offset 0x%x, devoffset 0x%x, length %ld\n",
|
||
|
sbp->b.b_flags & B_READ ? "Read" : "Write",
|
||
|
sbp->b.b_dev,
|
||
|
sbp->sdno,
|
||
|
(u_int) (sbp->b.b_blkno - SD[sbp->sdno].driveoffset),
|
||
|
(int) sbp->b.b_blkno,
|
||
|
sbp->b.b_bcount); /* XXX */
|
||
|
if (debug & DEBUG_NUMOUTPUT)
|
||
|
printf(" vinumstart sd %d numoutput %ld\n",
|
||
|
sbp->sdno,
|
||
|
sbp->b.b_vp->v_numoutput);
|
||
|
#endif
|
||
|
s = splbio();
|
||
|
(*bdevsw[major(sbp->b.b_dev)]->d_strategy) (&sbp->b);
|
||
|
splx(s);
|
||
|
}
|
||
|
|
||
|
/* Simplified version of bounds_check_with_label
|
||
|
* Determine the size of the transfer, and make sure it is
|
||
|
* within the boundaries of the partition. Adjust transfer
|
||
|
* if needed, and signal errors or early completion.
|
||
|
*
|
||
|
* Volumes are simpler than disk slices: they only contain
|
||
|
* one component (though we call them a, b and c to make
|
||
|
* system utilities happy), and they always take up the
|
||
|
* complete space of the "partition".
|
||
|
*
|
||
|
* I'm still not happy with this: why should the label be
|
||
|
* protected? If it weren't so damned difficult to write
|
||
|
* one in the first pleace (because it's protected), it wouldn't
|
||
|
* be a problem.
|
||
|
*/
|
||
|
int
|
||
|
vinum_bounds_check(struct buf *bp, struct volume *vol)
|
||
|
{
|
||
|
int maxsize = vol->size; /* size of the partition (sectors) */
|
||
|
int size = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT; /* size of this request (sectors) */
|
||
|
|
||
|
/* Would this transfer overwrite the disk label? */
|
||
|
if (bp->b_blkno <= LABELSECTOR /* starts before or at the label */
|
||
|
#if LABELSECTOR != 0
|
||
|
&& bp->b_blkno + size > LABELSECTOR /* and finishes after */
|
||
|
#endif
|
||
|
&& (!(vol->flags & VF_RAW)) /* and it's not raw */
|
||
|
&&major(bp->b_dev) == BDEV_MAJOR /* and it's the block device */
|
||
|
&& (bp->b_flags & B_READ) == 0 /* and it's a write */
|
||
|
&& (!vol->flags & (VF_WLABEL | VF_LABELLING))) { /* and we're not allowed to write the label */
|
||
|
bp->b_error = EROFS; /* read-only */
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
return -1;
|
||
|
}
|
||
|
if (size == 0) /* no transfer specified, */
|
||
|
return 0; /* treat as EOF */
|
||
|
/* beyond partition? */
|
||
|
if (bp->b_blkno < 0 /* negative start */
|
||
|
|| bp->b_blkno + size > maxsize) { /* or goes beyond the end of the partition */
|
||
|
/* if exactly at end of disk, return an EOF */
|
||
|
if (bp->b_blkno == maxsize) {
|
||
|
bp->b_resid = bp->b_bcount;
|
||
|
return 0;
|
||
|
}
|
||
|
/* or truncate if part of it fits */
|
||
|
size = maxsize - bp->b_blkno;
|
||
|
if (size <= 0) { /* nothing to transfer */
|
||
|
bp->b_error = EINVAL;
|
||
|
bp->b_flags |= B_ERROR;
|
||
|
return -1;
|
||
|
}
|
||
|
bp->b_bcount = size << DEV_BSHIFT;
|
||
|
}
|
||
|
bp->b_pblkno = bp->b_blkno;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* Allocate a request group and hook
|
||
|
* it in in the list for rq */
|
||
|
struct rqgroup *
|
||
|
allocrqg(struct request *rq, int elements)
|
||
|
{
|
||
|
struct rqgroup *rqg; /* the one we're going to allocate */
|
||
|
int size = sizeof(struct rqgroup) + elements * sizeof(struct rqelement);
|
||
|
|
||
|
rqg = (struct rqgroup *) Malloc(size);
|
||
|
if (rqg != NULL) { /* malloc OK, */
|
||
|
if (rq->rqg) /* we already have requests */
|
||
|
rq->lrqg->next = rqg; /* hang it off the end */
|
||
|
else /* first request */
|
||
|
rq->rqg = rqg; /* at the start */
|
||
|
rq->lrqg = rqg; /* this one is the last in the list */
|
||
|
|
||
|
bzero(rqg, size); /* no old junk */
|
||
|
rqg->rq = rq; /* point back to the parent request */
|
||
|
rqg->count = elements; /* number of requests in the group */
|
||
|
} else
|
||
|
Debugger("XXX");
|
||
|
return rqg;
|
||
|
}
|
||
|
|
||
|
/* Deallocate a request group out of a chain. We do
|
||
|
* this by linear search: the chain is short, this
|
||
|
* almost never happens, and currently it can only
|
||
|
* happen to the first member of the chain. */
|
||
|
void
|
||
|
deallocrqg(struct rqgroup *rqg)
|
||
|
{
|
||
|
struct rqgroup *rqgc = rqg->rq->rqg; /* point to the request chain */
|
||
|
|
||
|
if (rqg->rq->rqg == rqg) /* we're first in line */
|
||
|
rqg->rq->rqg = rqg->next; /* unhook ourselves */
|
||
|
else {
|
||
|
while (rqgc->next != rqg) /* find the group */
|
||
|
rqgc = rqgc->next;
|
||
|
rqgc->next = rqg->next;
|
||
|
}
|
||
|
Free(rqgc);
|
||
|
}
|
||
|
|
||
|
/* Character device interface */
|
||
|
int
|
||
|
vinumread(dev_t dev, struct uio *uio, int ioflag)
|
||
|
{
|
||
|
return (physio(vinumstrategy, NULL, dev, 1, minphys, uio));
|
||
|
}
|
||
|
|
||
|
int
|
||
|
vinumwrite(dev_t dev, struct uio *uio, int ioflag)
|
||
|
{
|
||
|
return (physio(vinumstrategy, NULL, dev, 0, minphys, uio));
|
||
|
}
|