freebsd-dev/lib/Analysis/IVUsers.cpp

374 lines
14 KiB
C++
Raw Normal View History

2009-06-02 17:52:33 +00:00
//===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements bookkeeping for "interesting" users of expressions
// computed from induction variables.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/IVUsers.h"
2009-06-02 17:52:33 +00:00
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
2009-06-02 17:52:33 +00:00
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "iv-users"
2009-06-02 17:52:33 +00:00
char IVUsers::ID = 0;
INITIALIZE_PASS_BEGIN(IVUsers, "iv-users",
"Induction Variable Users", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_END(IVUsers, "iv-users",
"Induction Variable Users", false, true)
2009-06-02 17:52:33 +00:00
Pass *llvm::createIVUsersPass() {
return new IVUsers();
}
2010-05-04 16:11:02 +00:00
/// isInteresting - Test whether the given expression is "interesting" when
/// used by the given expression, within the context of analyzing the
/// given loop.
static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
ScalarEvolution *SE, LoopInfo *LI) {
2010-05-04 16:11:02 +00:00
// An addrec is interesting if it's affine or if it has an interesting start.
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
// Keep things simple. Don't touch loop-variant strides unless they're
// only used outside the loop and we can simplify them.
2010-05-04 16:11:02 +00:00
if (AR->getLoop() == L)
return AR->isAffine() ||
(!L->contains(I) &&
SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
// Otherwise recurse to see if the start value is interesting, and that
// the step value is not interesting, since we don't yet know how to
// do effective SCEV expansions for addrecs with interesting steps.
return isInteresting(AR->getStart(), I, L, SE, LI) &&
!isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
2009-06-02 17:52:33 +00:00
}
// An add is interesting if exactly one of its operands is interesting.
2010-05-04 16:11:02 +00:00
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
bool AnyInterestingYet = false;
2010-05-04 16:11:02 +00:00
for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end();
OI != OE; ++OI)
if (isInteresting(*OI, I, L, SE, LI)) {
if (AnyInterestingYet)
return false;
AnyInterestingYet = true;
}
return AnyInterestingYet;
2009-06-02 17:52:33 +00:00
}
2010-05-04 16:11:02 +00:00
// Nothing else is interesting here.
return false;
2009-06-02 17:52:33 +00:00
}
/// Return true if all loop headers that dominate this block are in simplified
/// form.
static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
const LoopInfo *LI,
SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
Loop *NearestLoop = nullptr;
for (DomTreeNode *Rung = DT->getNode(BB);
Rung; Rung = Rung->getIDom()) {
BasicBlock *DomBB = Rung->getBlock();
Loop *DomLoop = LI->getLoopFor(DomBB);
if (DomLoop && DomLoop->getHeader() == DomBB) {
// If the domtree walk reaches a loop with no preheader, return false.
if (!DomLoop->isLoopSimplifyForm())
return false;
// If we have already checked this loop nest, stop checking.
if (SimpleLoopNests.count(DomLoop))
break;
// If we have not already checked this loop nest, remember the loop
// header nearest to BB. The nearest loop may not contain BB.
if (!NearestLoop)
NearestLoop = DomLoop;
}
}
if (NearestLoop)
SimpleLoopNests.insert(NearestLoop);
return true;
}
/// AddUsersImpl - Inspect the specified instruction. If it is a
2009-06-02 17:52:33 +00:00
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
/// return true. Otherwise, return false.
bool IVUsers::AddUsersImpl(Instruction *I,
SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
const DataLayout &DL = I->getModule()->getDataLayout();
// Add this IV user to the Processed set before returning false to ensure that
// all IV users are members of the set. See IVUsers::isIVUserOrOperand.
if (!Processed.insert(I).second)
return true; // Instruction already handled.
2009-06-02 17:52:33 +00:00
if (!SE->isSCEVable(I->getType()))
return false; // Void and FP expressions cannot be reduced.
// IVUsers is used by LSR which assumes that all SCEV expressions are safe to
// pass to SCEVExpander. Expressions are not safe to expand if they represent
// operations that are not safe to speculate, namely integer division.
if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I))
return false;
2009-06-02 17:52:33 +00:00
// LSR is not APInt clean, do not touch integers bigger than 64-bits.
// Also avoid creating IVs of non-native types. For example, we don't want a
// 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
uint64_t Width = SE->getTypeSizeInBits(I->getType());
if (Width > 64 || !DL.isLegalInteger(Width))
2009-06-02 17:52:33 +00:00
return false;
// Don't attempt to promote ephemeral values to indvars. They will be removed
// later anyway.
if (EphValues.count(I))
return false;
2009-06-02 17:52:33 +00:00
// Get the symbolic expression for this instruction.
2009-10-14 17:57:32 +00:00
const SCEV *ISE = SE->getSCEV(I);
2009-06-02 17:52:33 +00:00
2010-05-04 16:11:02 +00:00
// If we've come to an uninteresting expression, stop the traversal and
// call this a user.
if (!isInteresting(ISE, I, L, SE, LI))
2009-11-19 08:59:28 +00:00
return false;
2009-06-02 17:52:33 +00:00
SmallPtrSet<Instruction *, 4> UniqueUsers;
for (Use &U : I->uses()) {
Instruction *User = cast<Instruction>(U.getUser());
if (!UniqueUsers.insert(User).second)
2009-06-02 17:52:33 +00:00
continue;
// Do not infinitely recurse on PHI nodes.
if (isa<PHINode>(User) && Processed.count(User))
continue;
// Only consider IVUsers that are dominated by simplified loop
// headers. Otherwise, SCEVExpander will crash.
BasicBlock *UseBB = User->getParent();
// A phi's use is live out of its predecessor block.
if (PHINode *PHI = dyn_cast<PHINode>(User)) {
unsigned OperandNo = U.getOperandNo();
unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
UseBB = PHI->getIncomingBlock(ValNo);
}
if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests))
return false;
2009-06-02 17:52:33 +00:00
// Descend recursively, but not into PHI nodes outside the current loop.
// It's important to see the entire expression outside the loop to get
// choices that depend on addressing mode use right, although we won't
2010-03-03 17:27:15 +00:00
// consider references outside the loop in all cases.
2009-06-02 17:52:33 +00:00
// If User is already in Processed, we don't want to recurse into it again,
// but do want to record a second reference in the same instruction.
bool AddUserToIVUsers = false;
if (LI->getLoopFor(User->getParent()) != L) {
if (isa<PHINode>(User) || Processed.count(User) ||
!AddUsersImpl(User, SimpleLoopNests)) {
2010-01-01 10:31:22 +00:00
DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
2009-10-14 17:57:32 +00:00
<< " OF SCEV: " << *ISE << '\n');
2009-06-02 17:52:33 +00:00
AddUserToIVUsers = true;
}
} else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) {
2010-01-01 10:31:22 +00:00
DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
2009-10-14 17:57:32 +00:00
<< " OF SCEV: " << *ISE << '\n');
2009-06-02 17:52:33 +00:00
AddUserToIVUsers = true;
}
if (AddUserToIVUsers) {
2010-05-04 16:11:02 +00:00
// Okay, we found a user that we cannot reduce.
IVStrideUse &NewUse = AddUser(User, I);
// Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
// The regular return value here is discarded; instead of recording
// it, we just recompute it when we need it.
const SCEV *OriginalISE = ISE;
2010-05-04 16:11:02 +00:00
ISE = TransformForPostIncUse(NormalizeAutodetect,
ISE, User, I,
NewUse.PostIncLoops,
*SE, *DT);
// PostIncNormalization effectively simplifies the expression under
// pre-increment assumptions. Those assumptions (no wrapping) might not
// hold for the post-inc value. Catch such cases by making sure the
// transformation is invertible.
if (OriginalISE != ISE) {
const SCEV *DenormalizedISE =
TransformForPostIncUse(Denormalize, ISE, User, I,
NewUse.PostIncLoops, *SE, *DT);
// If we normalized the expression, but denormalization doesn't give the
// original one, discard this user.
if (OriginalISE != DenormalizedISE) {
DEBUG(dbgs() << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
<< *ISE << '\n');
IVUses.pop_back();
return false;
}
}
DEBUG(if (SE->getSCEV(I) != ISE)
dbgs() << " NORMALIZED TO: " << *ISE << '\n');
2009-06-02 17:52:33 +00:00
}
}
return true;
}
bool IVUsers::AddUsersIfInteresting(Instruction *I) {
// SCEVExpander can only handle users that are dominated by simplified loop
// entries. Keep track of all loops that are only dominated by other simple
// loops so we don't traverse the domtree for each user.
SmallPtrSet<Loop*,16> SimpleLoopNests;
return AddUsersImpl(I, SimpleLoopNests);
}
IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
IVUses.push_back(new IVStrideUse(this, User, Operand));
2010-02-16 09:30:23 +00:00
return IVUses.back();
2009-11-18 14:58:34 +00:00
}
2009-06-02 17:52:33 +00:00
IVUsers::IVUsers()
: LoopPass(ID) {
initializeIVUsersPass(*PassRegistry::getPassRegistry());
2009-06-02 17:52:33 +00:00
}
void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
2009-06-02 17:52:33 +00:00
AU.setPreservesAll();
}
bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) {
L = l;
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
*L->getHeader()->getParent());
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2009-06-02 17:52:33 +00:00
// Collect ephemeral values so that AddUsersIfInteresting skips them.
EphValues.clear();
CodeMetrics::collectEphemeralValues(L, AC, EphValues);
2009-06-02 17:52:33 +00:00
// Find all uses of induction variables in this loop, and categorize
// them by stride. Start by finding all of the PHI nodes in the header for
// this loop. If they are induction variables, inspect their uses.
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
(void)AddUsersIfInteresting(&*I);
2009-06-02 17:52:33 +00:00
return false;
}
void IVUsers::print(raw_ostream &OS, const Module *M) const {
OS << "IV Users for loop ";
L->getHeader()->printAsOperand(OS, false);
2009-06-02 17:52:33 +00:00
if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
OS << " with backedge-taken count "
<< *SE->getBackedgeTakenCount(L);
}
OS << ":\n";
2010-02-16 09:30:23 +00:00
for (ilist<IVStrideUse>::const_iterator UI = IVUses.begin(),
E = IVUses.end(); UI != E; ++UI) {
OS << " ";
UI->getOperandValToReplace()->printAsOperand(OS, false);
2010-05-04 16:11:02 +00:00
OS << " = " << *getReplacementExpr(*UI);
for (PostIncLoopSet::const_iterator
I = UI->PostIncLoops.begin(),
E = UI->PostIncLoops.end(); I != E; ++I) {
OS << " (post-inc with loop ";
(*I)->getHeader()->printAsOperand(OS, false);
2010-05-04 16:11:02 +00:00
OS << ")";
}
2010-02-16 09:30:23 +00:00
OS << " in ";
if (UI->getUser())
UI->getUser()->print(OS);
else
OS << "Printing <null> User";
2010-02-16 09:30:23 +00:00
OS << '\n';
2009-06-02 17:52:33 +00:00
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2009-06-02 17:52:33 +00:00
void IVUsers::dump() const {
2010-01-01 10:31:22 +00:00
print(dbgs());
2009-06-02 17:52:33 +00:00
}
#endif
2009-06-02 17:52:33 +00:00
void IVUsers::releaseMemory() {
2010-01-01 10:31:22 +00:00
Processed.clear();
2009-12-15 18:09:07 +00:00
IVUses.clear();
2009-06-02 17:52:33 +00:00
}
2010-05-04 16:11:02 +00:00
/// getReplacementExpr - Return a SCEV expression which computes the
/// value of the OperandValToReplace.
const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
return SE->getSCEV(IU.getOperandValToReplace());
}
/// getExpr - Return the expression for the use.
const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
return
TransformForPostIncUse(Normalize, getReplacementExpr(IU),
IU.getUser(), IU.getOperandValToReplace(),
const_cast<PostIncLoopSet &>(IU.getPostIncLoops()),
*SE, *DT);
}
static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
if (AR->getLoop() == L)
return AR;
return findAddRecForLoop(AR->getStart(), L);
}
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
I != E; ++I)
if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L))
return AR;
return nullptr;
2010-05-04 16:11:02 +00:00
}
return nullptr;
2010-05-04 16:11:02 +00:00
}
const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
return AR->getStepRecurrence(*SE);
return nullptr;
2010-05-04 16:11:02 +00:00
}
void IVStrideUse::transformToPostInc(const Loop *L) {
PostIncLoops.insert(L);
}
2009-06-02 17:52:33 +00:00
void IVStrideUse::deleted() {
// Remove this user from the list.
Parent->Processed.erase(this->getUser());
2010-02-16 09:30:23 +00:00
Parent->IVUses.erase(this);
2009-06-02 17:52:33 +00:00
// this now dangles!
}