freebsd-dev/contrib/gcc/cfg.c

995 lines
23 KiB
C
Raw Normal View History

/* Control flow graph manipulation code for GNU compiler.
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
2004-07-28 03:11:36 +00:00
1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* This file contains low level functions to manipulate the CFG and
2004-07-28 03:11:36 +00:00
analyze it. All other modules should not transform the data structure
directly and use abstraction instead. The file is supposed to be
ordered bottom-up and should not contain any code dependent on a
particular intermediate language (RTL or trees).
Available functionality:
- Initialization/deallocation
init_flow, clear_edges
- Low level basic block manipulation
alloc_block, expunge_block
- Edge manipulation
make_edge, make_single_succ_edge, cached_make_edge, remove_edge
- Low level edge redirection (without updating instruction chain)
redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
- Dumping and debugging
dump_flow_info, debug_flow_info, dump_edge_info
- Allocation of AUX fields for basic blocks
alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
2003-07-11 03:40:53 +00:00
- clear_bb_flags
2004-07-28 03:11:36 +00:00
- Consistency checking
verify_flow_info
- Dumping and debugging
print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
*/
#include "config.h"
#include "system.h"
2004-07-28 03:11:36 +00:00
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "regs.h"
#include "flags.h"
#include "output.h"
#include "function.h"
#include "except.h"
#include "toplev.h"
#include "tm_p.h"
#include "obstack.h"
2004-07-28 03:11:36 +00:00
#include "alloc-pool.h"
/* The obstack on which the flow graph components are allocated. */
struct obstack flow_obstack;
static char *flow_firstobj;
2004-07-28 03:11:36 +00:00
/* Basic block object pool. */
static alloc_pool bb_pool;
/* Edge object pool. */
static alloc_pool edge_pool;
/* Number of basic blocks in the current function. */
int n_basic_blocks;
2003-07-11 03:40:53 +00:00
/* First free basic block number. */
int last_basic_block;
/* Number of edges in the current function. */
int n_edges;
/* The basic block array. */
varray_type basic_block_info;
/* The special entry and exit blocks. */
struct basic_block_def entry_exit_blocks[2]
= {{NULL, /* head */
NULL, /* end */
NULL, /* head_tree */
NULL, /* end_tree */
NULL, /* pred */
NULL, /* succ */
NULL, /* local_set */
NULL, /* cond_local_set */
NULL, /* global_live_at_start */
NULL, /* global_live_at_end */
NULL, /* aux */
ENTRY_BLOCK, /* index */
2003-07-11 03:40:53 +00:00
NULL, /* prev_bb */
EXIT_BLOCK_PTR, /* next_bb */
0, /* loop_depth */
2003-07-11 03:40:53 +00:00
NULL, /* loop_father */
2004-07-28 03:11:36 +00:00
{ NULL, NULL }, /* dom */
0, /* count */
0, /* frequency */
2004-07-28 03:11:36 +00:00
0, /* flags */
NULL /* rbi */
},
{
NULL, /* head */
NULL, /* end */
NULL, /* head_tree */
NULL, /* end_tree */
NULL, /* pred */
NULL, /* succ */
NULL, /* local_set */
NULL, /* cond_local_set */
NULL, /* global_live_at_start */
NULL, /* global_live_at_end */
NULL, /* aux */
EXIT_BLOCK, /* index */
2003-07-11 03:40:53 +00:00
ENTRY_BLOCK_PTR, /* prev_bb */
NULL, /* next_bb */
0, /* loop_depth */
2003-07-11 03:40:53 +00:00
NULL, /* loop_father */
2004-07-28 03:11:36 +00:00
{ NULL, NULL }, /* dom */
0, /* count */
0, /* frequency */
2004-07-28 03:11:36 +00:00
0, /* flags */
NULL /* rbi */
}
};
2004-07-28 03:11:36 +00:00
void debug_flow_info (void);
static void free_edge (edge);
/* Called once at initialization time. */
void
2004-07-28 03:11:36 +00:00
init_flow (void)
{
static int initialized;
n_edges = 0;
if (!initialized)
{
gcc_obstack_init (&flow_obstack);
2004-07-28 03:11:36 +00:00
flow_firstobj = obstack_alloc (&flow_obstack, 0);
initialized = 1;
}
else
{
2004-07-28 03:11:36 +00:00
free_alloc_pool (bb_pool);
free_alloc_pool (edge_pool);
obstack_free (&flow_obstack, flow_firstobj);
2004-07-28 03:11:36 +00:00
flow_firstobj = obstack_alloc (&flow_obstack, 0);
}
2004-07-28 03:11:36 +00:00
bb_pool = create_alloc_pool ("Basic block pool",
sizeof (struct basic_block_def), 100);
edge_pool = create_alloc_pool ("Edge pool",
sizeof (struct edge_def), 100);
}
/* Helper function for remove_edge and clear_edges. Frees edge structure
without actually unlinking it from the pred/succ lists. */
static void
2004-07-28 03:11:36 +00:00
free_edge (edge e)
{
n_edges--;
2004-07-28 03:11:36 +00:00
pool_free (edge_pool, e);
}
/* Free the memory associated with the edge structures. */
void
2004-07-28 03:11:36 +00:00
clear_edges (void)
{
2003-07-11 03:40:53 +00:00
basic_block bb;
edge e;
2003-07-11 03:40:53 +00:00
FOR_EACH_BB (bb)
{
edge e = bb->succ;
while (e)
{
edge next = e->succ_next;
free_edge (e);
e = next;
}
bb->succ = NULL;
bb->pred = NULL;
}
e = ENTRY_BLOCK_PTR->succ;
while (e)
{
edge next = e->succ_next;
free_edge (e);
e = next;
}
EXIT_BLOCK_PTR->pred = NULL;
ENTRY_BLOCK_PTR->succ = NULL;
if (n_edges)
abort ();
}
/* Allocate memory for basic_block. */
basic_block
2004-07-28 03:11:36 +00:00
alloc_block (void)
{
basic_block bb;
2004-07-28 03:11:36 +00:00
bb = pool_alloc (bb_pool);
memset (bb, 0, sizeof (*bb));
return bb;
}
2003-07-11 03:40:53 +00:00
/* Link block B to chain after AFTER. */
void
2004-07-28 03:11:36 +00:00
link_block (basic_block b, basic_block after)
2003-07-11 03:40:53 +00:00
{
b->next_bb = after->next_bb;
b->prev_bb = after;
after->next_bb = b;
b->next_bb->prev_bb = b;
}
/* Unlink block B from chain. */
void
2004-07-28 03:11:36 +00:00
unlink_block (basic_block b)
2003-07-11 03:40:53 +00:00
{
b->next_bb->prev_bb = b->prev_bb;
b->prev_bb->next_bb = b->next_bb;
}
/* Sequentially order blocks and compact the arrays. */
void
2004-07-28 03:11:36 +00:00
compact_blocks (void)
2003-07-11 03:40:53 +00:00
{
int i;
basic_block bb;
2004-07-28 03:11:36 +00:00
2003-07-11 03:40:53 +00:00
i = 0;
FOR_EACH_BB (bb)
{
BASIC_BLOCK (i) = bb;
bb->index = i;
i++;
}
if (i != n_basic_blocks)
abort ();
last_basic_block = n_basic_blocks;
}
/* Remove block B from the basic block array. */
void
2004-07-28 03:11:36 +00:00
expunge_block (basic_block b)
{
2003-07-11 03:40:53 +00:00
unlink_block (b);
BASIC_BLOCK (b->index) = NULL;
n_basic_blocks--;
2004-07-28 03:11:36 +00:00
pool_free (bb_pool, b);
}
2003-07-11 03:40:53 +00:00
/* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
created edge. Use this only if you are sure that this edge can't
possibly already exist. */
2003-07-11 03:40:53 +00:00
edge
2004-07-28 03:11:36 +00:00
unchecked_make_edge (basic_block src, basic_block dst, int flags)
{
2003-07-11 03:40:53 +00:00
edge e;
2004-07-28 03:11:36 +00:00
e = pool_alloc (edge_pool);
memset (e, 0, sizeof (*e));
2003-07-11 03:40:53 +00:00
n_edges++;
2003-07-11 03:40:53 +00:00
e->succ_next = src->succ;
e->pred_next = dst->pred;
e->src = src;
e->dest = dst;
e->flags = flags;
2003-07-11 03:40:53 +00:00
src->succ = e;
dst->pred = e;
return e;
}
2004-07-28 03:11:36 +00:00
/* Create an edge connecting SRC and DST with FLAGS optionally using
edge cache CACHE. Return the new edge, NULL if already exist. */
edge
2004-07-28 03:11:36 +00:00
cached_make_edge (sbitmap *edge_cache, basic_block src, basic_block dst, int flags)
{
int use_edge_cache;
edge e;
/* Don't bother with edge cache for ENTRY or EXIT, if there aren't that
many edges to them, or we didn't allocate memory for it. */
use_edge_cache = (edge_cache
&& src != ENTRY_BLOCK_PTR && dst != EXIT_BLOCK_PTR);
/* Make sure we don't add duplicate edges. */
switch (use_edge_cache)
{
default:
/* Quick test for non-existence of the edge. */
if (! TEST_BIT (edge_cache[src->index], dst->index))
break;
/* The edge exists; early exit if no work to do. */
if (flags == 0)
return NULL;
2004-07-28 03:11:36 +00:00
/* Fall through. */
case 0:
for (e = src->succ; e; e = e->succ_next)
if (e->dest == dst)
{
e->flags |= flags;
return NULL;
}
break;
}
2003-07-11 03:40:53 +00:00
e = unchecked_make_edge (src, dst, flags);
if (use_edge_cache)
SET_BIT (edge_cache[src->index], dst->index);
return e;
}
/* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
created edge or NULL if already exist. */
edge
2004-07-28 03:11:36 +00:00
make_edge (basic_block src, basic_block dest, int flags)
{
return cached_make_edge (NULL, src, dest, flags);
}
/* Create an edge connecting SRC to DEST and set probability by knowing
that it is the single edge leaving SRC. */
edge
2004-07-28 03:11:36 +00:00
make_single_succ_edge (basic_block src, basic_block dest, int flags)
{
edge e = make_edge (src, dest, flags);
e->probability = REG_BR_PROB_BASE;
e->count = src->count;
return e;
}
/* This function will remove an edge from the flow graph. */
void
2004-07-28 03:11:36 +00:00
remove_edge (edge e)
{
edge last_pred = NULL;
edge last_succ = NULL;
edge tmp;
basic_block src, dest;
src = e->src;
dest = e->dest;
for (tmp = src->succ; tmp && tmp != e; tmp = tmp->succ_next)
last_succ = tmp;
if (!tmp)
abort ();
if (last_succ)
last_succ->succ_next = e->succ_next;
else
src->succ = e->succ_next;
for (tmp = dest->pred; tmp && tmp != e; tmp = tmp->pred_next)
last_pred = tmp;
if (!tmp)
abort ();
if (last_pred)
last_pred->pred_next = e->pred_next;
else
dest->pred = e->pred_next;
free_edge (e);
}
/* Redirect an edge's successor from one block to another. */
void
2004-07-28 03:11:36 +00:00
redirect_edge_succ (edge e, basic_block new_succ)
{
edge *pe;
/* Disconnect the edge from the old successor block. */
for (pe = &e->dest->pred; *pe != e; pe = &(*pe)->pred_next)
continue;
*pe = (*pe)->pred_next;
/* Reconnect the edge to the new successor block. */
e->pred_next = new_succ->pred;
new_succ->pred = e;
e->dest = new_succ;
}
/* Like previous but avoid possible duplicate edge. */
edge
2004-07-28 03:11:36 +00:00
redirect_edge_succ_nodup (edge e, basic_block new_succ)
{
edge s;
/* Check whether the edge is already present. */
for (s = e->src->succ; s; s = s->succ_next)
if (s->dest == new_succ && s != e)
break;
if (s)
{
s->flags |= e->flags;
s->probability += e->probability;
2003-07-11 03:40:53 +00:00
if (s->probability > REG_BR_PROB_BASE)
s->probability = REG_BR_PROB_BASE;
s->count += e->count;
remove_edge (e);
e = s;
}
else
redirect_edge_succ (e, new_succ);
return e;
}
/* Redirect an edge's predecessor from one block to another. */
void
2004-07-28 03:11:36 +00:00
redirect_edge_pred (edge e, basic_block new_pred)
{
edge *pe;
/* Disconnect the edge from the old predecessor block. */
for (pe = &e->src->succ; *pe != e; pe = &(*pe)->succ_next)
continue;
*pe = (*pe)->succ_next;
/* Reconnect the edge to the new predecessor block. */
e->succ_next = new_pred->succ;
new_pred->succ = e;
e->src = new_pred;
}
2003-07-11 03:40:53 +00:00
void
2004-07-28 03:11:36 +00:00
clear_bb_flags (void)
2003-07-11 03:40:53 +00:00
{
basic_block bb;
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
bb->flags = 0;
}
void
2004-07-28 03:11:36 +00:00
dump_flow_info (FILE *file)
{
int i;
2003-07-11 03:40:53 +00:00
int max_regno = max_reg_num ();
basic_block bb;
static const char * const reg_class_names[] = REG_CLASS_NAMES;
fprintf (file, "%d registers.\n", max_regno);
2004-07-28 03:11:36 +00:00
if (reg_n_info)
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
if (REG_N_REFS (i))
{
enum reg_class class, altclass;
fprintf (file, "\nRegister %d used %d times across %d insns",
i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
if (REG_BASIC_BLOCK (i) >= 0)
fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
if (REG_N_SETS (i))
fprintf (file, "; set %d time%s", REG_N_SETS (i),
(REG_N_SETS (i) == 1) ? "" : "s");
if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
fprintf (file, "; user var");
if (REG_N_DEATHS (i) != 1)
fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
if (REG_N_CALLS_CROSSED (i) == 1)
fprintf (file, "; crosses 1 call");
else if (REG_N_CALLS_CROSSED (i))
fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
if (regno_reg_rtx[i] != NULL
&& PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
class = reg_preferred_class (i);
altclass = reg_alternate_class (i);
if (class != GENERAL_REGS || altclass != ALL_REGS)
{
if (altclass == ALL_REGS || class == ALL_REGS)
fprintf (file, "; pref %s", reg_class_names[(int) class]);
else if (altclass == NO_REGS)
fprintf (file, "; %s or none", reg_class_names[(int) class]);
else
fprintf (file, "; pref %s, else %s",
reg_class_names[(int) class],
reg_class_names[(int) altclass]);
}
if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
fprintf (file, "; pointer");
fprintf (file, ".\n");
}
fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
2003-07-11 03:40:53 +00:00
FOR_EACH_BB (bb)
{
edge e;
2003-07-11 03:40:53 +00:00
int sum;
gcov_type lsum;
fprintf (file, "\nBasic block %d: first insn %d, last %d, ",
2004-07-28 03:11:36 +00:00
bb->index, INSN_UID (BB_HEAD (bb)), INSN_UID (BB_END (bb)));
2003-07-11 03:40:53 +00:00
fprintf (file, "prev %d, next %d, ",
bb->prev_bb->index, bb->next_bb->index);
fprintf (file, "loop_depth %d, count ", bb->loop_depth);
fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
2003-07-11 03:40:53 +00:00
fprintf (file, ", freq %i", bb->frequency);
if (maybe_hot_bb_p (bb))
fprintf (file, ", maybe hot");
if (probably_never_executed_bb_p (bb))
fprintf (file, ", probably never executed");
fprintf (file, ".\n");
fprintf (file, "Predecessors: ");
for (e = bb->pred; e; e = e->pred_next)
dump_edge_info (file, e, 0);
fprintf (file, "\nSuccessors: ");
for (e = bb->succ; e; e = e->succ_next)
dump_edge_info (file, e, 1);
fprintf (file, "\nRegisters live at start:");
dump_regset (bb->global_live_at_start, file);
fprintf (file, "\nRegisters live at end:");
dump_regset (bb->global_live_at_end, file);
putc ('\n', file);
2003-07-11 03:40:53 +00:00
/* Check the consistency of profile information. We can't do that
in verify_flow_info, as the counts may get invalid for incompletely
2004-07-28 03:11:36 +00:00
solved graphs, later eliminating of conditionals or roundoff errors.
2003-07-11 03:40:53 +00:00
It is still practical to have them reported for debugging of simple
testcases. */
sum = 0;
for (e = bb->succ; e; e = e->succ_next)
sum += e->probability;
if (bb->succ && abs (sum - REG_BR_PROB_BASE) > 100)
fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
sum * 100.0 / REG_BR_PROB_BASE);
sum = 0;
for (e = bb->pred; e; e = e->pred_next)
sum += EDGE_FREQUENCY (e);
if (abs (sum - bb->frequency) > 100)
fprintf (file,
"Invalid sum of incomming frequencies %i, should be %i\n",
sum, bb->frequency);
lsum = 0;
for (e = bb->pred; e; e = e->pred_next)
lsum += e->count;
if (lsum - bb->count > 100 || lsum - bb->count < -100)
fprintf (file, "Invalid sum of incomming counts %i, should be %i\n",
(int)lsum, (int)bb->count);
lsum = 0;
for (e = bb->succ; e; e = e->succ_next)
lsum += e->count;
if (bb->succ && (lsum - bb->count > 100 || lsum - bb->count < -100))
fprintf (file, "Invalid sum of incomming counts %i, should be %i\n",
(int)lsum, (int)bb->count);
}
putc ('\n', file);
}
void
2004-07-28 03:11:36 +00:00
debug_flow_info (void)
{
dump_flow_info (stderr);
}
void
2004-07-28 03:11:36 +00:00
dump_edge_info (FILE *file, edge e, int do_succ)
{
basic_block side = (do_succ ? e->dest : e->src);
if (side == ENTRY_BLOCK_PTR)
fputs (" ENTRY", file);
else if (side == EXIT_BLOCK_PTR)
fputs (" EXIT", file);
else
fprintf (file, " %d", side->index);
if (e->probability)
fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
if (e->count)
{
fprintf (file, " count:");
fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
}
if (e->flags)
{
2004-07-28 03:11:36 +00:00
static const char * const bitnames[] = {
"fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
"can_fallthru", "irreducible", "sibcall", "loop_exit"
};
int comma = 0;
int i, flags = e->flags;
fputs (" (", file);
for (i = 0; flags; i++)
if (flags & (1 << i))
{
flags &= ~(1 << i);
if (comma)
fputc (',', file);
if (i < (int) ARRAY_SIZE (bitnames))
fputs (bitnames[i], file);
else
fprintf (file, "%d", i);
comma = 1;
}
fputc (')', file);
}
}
/* Simple routines to easily allocate AUX fields of basic blocks. */
static struct obstack block_aux_obstack;
static void *first_block_aux_obj = 0;
static struct obstack edge_aux_obstack;
static void *first_edge_aux_obj = 0;
2003-07-11 03:40:53 +00:00
/* Allocate a memory block of SIZE as BB->aux. The obstack must
be first initialized by alloc_aux_for_blocks. */
inline void
2004-07-28 03:11:36 +00:00
alloc_aux_for_block (basic_block bb, int size)
{
/* Verify that aux field is clear. */
if (bb->aux || !first_block_aux_obj)
abort ();
bb->aux = obstack_alloc (&block_aux_obstack, size);
memset (bb->aux, 0, size);
}
/* Initialize the block_aux_obstack and if SIZE is nonzero, call
alloc_aux_for_block for each basic block. */
void
2004-07-28 03:11:36 +00:00
alloc_aux_for_blocks (int size)
{
static int initialized;
if (!initialized)
{
gcc_obstack_init (&block_aux_obstack);
initialized = 1;
}
/* Check whether AUX data are still allocated. */
else if (first_block_aux_obj)
abort ();
2004-07-28 03:11:36 +00:00
first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
if (size)
{
2003-07-11 03:40:53 +00:00
basic_block bb;
2003-07-11 03:40:53 +00:00
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
alloc_aux_for_block (bb, size);
}
}
/* Clear AUX pointers of all blocks. */
void
2004-07-28 03:11:36 +00:00
clear_aux_for_blocks (void)
{
2003-07-11 03:40:53 +00:00
basic_block bb;
2003-07-11 03:40:53 +00:00
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
bb->aux = NULL;
}
/* Free data allocated in block_aux_obstack and clear AUX pointers
of all blocks. */
void
2004-07-28 03:11:36 +00:00
free_aux_for_blocks (void)
{
if (!first_block_aux_obj)
abort ();
obstack_free (&block_aux_obstack, first_block_aux_obj);
first_block_aux_obj = NULL;
clear_aux_for_blocks ();
}
2003-07-11 03:40:53 +00:00
/* Allocate a memory edge of SIZE as BB->aux. The obstack must
be first initialized by alloc_aux_for_edges. */
inline void
2004-07-28 03:11:36 +00:00
alloc_aux_for_edge (edge e, int size)
{
/* Verify that aux field is clear. */
if (e->aux || !first_edge_aux_obj)
abort ();
e->aux = obstack_alloc (&edge_aux_obstack, size);
memset (e->aux, 0, size);
}
/* Initialize the edge_aux_obstack and if SIZE is nonzero, call
alloc_aux_for_edge for each basic edge. */
void
2004-07-28 03:11:36 +00:00
alloc_aux_for_edges (int size)
{
static int initialized;
if (!initialized)
{
gcc_obstack_init (&edge_aux_obstack);
initialized = 1;
}
/* Check whether AUX data are still allocated. */
else if (first_edge_aux_obj)
abort ();
2004-07-28 03:11:36 +00:00
first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
if (size)
{
2003-07-11 03:40:53 +00:00
basic_block bb;
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
{
edge e;
for (e = bb->succ; e; e = e->succ_next)
alloc_aux_for_edge (e, size);
}
}
}
/* Clear AUX pointers of all edges. */
void
2004-07-28 03:11:36 +00:00
clear_aux_for_edges (void)
{
2003-07-11 03:40:53 +00:00
basic_block bb;
edge e;
2003-07-11 03:40:53 +00:00
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
{
for (e = bb->succ; e; e = e->succ_next)
e->aux = NULL;
}
}
/* Free data allocated in edge_aux_obstack and clear AUX pointers
of all edges. */
void
2004-07-28 03:11:36 +00:00
free_aux_for_edges (void)
{
if (!first_edge_aux_obj)
abort ();
obstack_free (&edge_aux_obstack, first_edge_aux_obj);
first_edge_aux_obj = NULL;
clear_aux_for_edges ();
}
2004-07-28 03:11:36 +00:00
/* Verify the CFG consistency.
Currently it does following checks edge and basic block list correctness
and calls into IL dependent checking then. */
void
verify_flow_info (void)
{
size_t *edge_checksum;
int num_bb_notes, err = 0;
basic_block bb, last_bb_seen;
basic_block *last_visited;
last_visited = xcalloc (last_basic_block + 2, sizeof (basic_block));
edge_checksum = xcalloc (last_basic_block + 2, sizeof (size_t));
/* Check bb chain & numbers. */
last_bb_seen = ENTRY_BLOCK_PTR;
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
{
if (bb != EXIT_BLOCK_PTR
&& bb != BASIC_BLOCK (bb->index))
{
error ("bb %d on wrong place", bb->index);
err = 1;
}
if (bb->prev_bb != last_bb_seen)
{
error ("prev_bb of %d should be %d, not %d",
bb->index, last_bb_seen->index, bb->prev_bb->index);
err = 1;
}
last_bb_seen = bb;
}
/* Now check the basic blocks (boundaries etc.) */
FOR_EACH_BB_REVERSE (bb)
{
int n_fallthru = 0;
edge e;
if (bb->count < 0)
{
error ("verify_flow_info: Wrong count of block %i %i",
bb->index, (int)bb->count);
err = 1;
}
if (bb->frequency < 0)
{
error ("verify_flow_info: Wrong frequency of block %i %i",
bb->index, bb->frequency);
err = 1;
}
for (e = bb->succ; e; e = e->succ_next)
{
if (last_visited [e->dest->index + 2] == bb)
{
error ("verify_flow_info: Duplicate edge %i->%i",
e->src->index, e->dest->index);
err = 1;
}
if (e->probability < 0 || e->probability > REG_BR_PROB_BASE)
{
error ("verify_flow_info: Wrong probability of edge %i->%i %i",
e->src->index, e->dest->index, e->probability);
err = 1;
}
if (e->count < 0)
{
error ("verify_flow_info: Wrong count of edge %i->%i %i",
e->src->index, e->dest->index, (int)e->count);
err = 1;
}
last_visited [e->dest->index + 2] = bb;
if (e->flags & EDGE_FALLTHRU)
n_fallthru++;
if (e->src != bb)
{
error ("verify_flow_info: Basic block %d succ edge is corrupted",
bb->index);
fprintf (stderr, "Predecessor: ");
dump_edge_info (stderr, e, 0);
fprintf (stderr, "\nSuccessor: ");
dump_edge_info (stderr, e, 1);
fprintf (stderr, "\n");
err = 1;
}
edge_checksum[e->dest->index + 2] += (size_t) e;
}
if (n_fallthru > 1)
{
error ("Wrong amount of branch edges after unconditional jump %i", bb->index);
err = 1;
}
for (e = bb->pred; e; e = e->pred_next)
{
if (e->dest != bb)
{
error ("basic block %d pred edge is corrupted", bb->index);
fputs ("Predecessor: ", stderr);
dump_edge_info (stderr, e, 0);
fputs ("\nSuccessor: ", stderr);
dump_edge_info (stderr, e, 1);
fputc ('\n', stderr);
err = 1;
}
edge_checksum[e->dest->index + 2] -= (size_t) e;
}
}
/* Complete edge checksumming for ENTRY and EXIT. */
{
edge e;
for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
edge_checksum[e->dest->index + 2] += (size_t) e;
for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
edge_checksum[e->dest->index + 2] -= (size_t) e;
}
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
if (edge_checksum[bb->index + 2])
{
error ("basic block %i edge lists are corrupted", bb->index);
err = 1;
}
num_bb_notes = 0;
last_bb_seen = ENTRY_BLOCK_PTR;
/* Clean up. */
free (last_visited);
free (edge_checksum);
err |= cfg_hooks->cfgh_verify_flow_info ();
if (err)
internal_error ("verify_flow_info failed");
}
/* Print out one basic block with live information at start and end. */
void
dump_bb (basic_block bb, FILE *outf)
{
edge e;
fprintf (outf, ";; Basic block %d, loop depth %d, count ",
bb->index, bb->loop_depth);
fprintf (outf, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT) bb->count);
putc ('\n', outf);
fputs (";; Predecessors: ", outf);
for (e = bb->pred; e; e = e->pred_next)
dump_edge_info (outf, e, 0);
putc ('\n', outf);
cfg_hooks->dump_bb (bb, outf);
fputs (";; Successors: ", outf);
for (e = bb->succ; e; e = e->succ_next)
dump_edge_info (outf, e, 1);
putc ('\n', outf);
}
void
debug_bb (basic_block bb)
{
dump_bb (bb, stderr);
}
basic_block
debug_bb_n (int n)
{
basic_block bb = BASIC_BLOCK (n);
dump_bb (bb, stderr);
return bb;
}