freebsd-dev/sys/dev/ata/chipsets/ata-serverworks.c

368 lines
12 KiB
C
Raw Normal View History

This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
/*-
* Copyright (c) 1998 - 2008 S<EFBFBD>ren Schmidt <sos@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ata.h"
#include <sys/param.h>
#include <sys/module.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ata.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sema.h>
#include <sys/taskqueue.h>
#include <vm/uma.h>
#include <machine/stdarg.h>
#include <machine/resource.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/ata/ata-all.h>
#include <dev/ata/ata-pci.h>
#include <ata_if.h>
/* local prototypes */
static int ata_serverworks_chipinit(device_t dev);
static int ata_serverworks_ch_attach(device_t dev);
static int ata_serverworks_ch_detach(device_t dev);
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
static void ata_serverworks_tf_read(struct ata_request *request);
static void ata_serverworks_tf_write(struct ata_request *request);
static void ata_serverworks_setmode(device_t dev, int mode);
#ifdef __powerpc__
static int ata_serverworks_status(device_t dev);
#endif
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
/* misc defines */
#define SWKS_33 0
#define SWKS_66 1
#define SWKS_100 2
#define SWKS_MIO 3
/*
* ServerWorks chipset support functions
*/
static int
ata_serverworks_probe(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(dev);
static struct ata_chip_id ids[] =
{{ ATA_ROSB4, 0x00, SWKS_33, 0, ATA_UDMA2, "ROSB4" },
{ ATA_CSB5, 0x92, SWKS_100, 0, ATA_UDMA5, "CSB5" },
{ ATA_CSB5, 0x00, SWKS_66, 0, ATA_UDMA4, "CSB5" },
{ ATA_CSB6, 0x00, SWKS_100, 0, ATA_UDMA5, "CSB6" },
{ ATA_CSB6_1, 0x00, SWKS_66, 0, ATA_UDMA4, "CSB6" },
{ ATA_HT1000, 0x00, SWKS_100, 0, ATA_UDMA5, "HT1000" },
{ ATA_HT1000_S1, 0x00, SWKS_MIO, 4, ATA_SA150, "HT1000" },
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
{ ATA_HT1000_S2, 0x00, SWKS_MIO, 4, ATA_SA150, "HT1000" },
{ ATA_K2, 0x00, SWKS_MIO, 4, ATA_SA150, "K2" },
{ ATA_FRODO4, 0x00, SWKS_MIO, 4, ATA_SA150, "Frodo4" },
{ ATA_FRODO8, 0x00, SWKS_MIO, 8, ATA_SA150, "Frodo8" },
{ 0, 0, 0, 0, 0, 0}};
if (pci_get_vendor(dev) != ATA_SERVERWORKS_ID)
return ENXIO;
if (!(ctlr->chip = ata_match_chip(dev, ids)))
return ENXIO;
ata_set_desc(dev);
ctlr->chipinit = ata_serverworks_chipinit;
return (BUS_PROBE_DEFAULT);
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
}
#ifdef __powerpc__
static int
ata_serverworks_status(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
/*
* We need to do a 4-byte read on the status reg before the values
* will report correctly
*/
ATA_IDX_INL(ch,ATA_STATUS);
return ata_pci_status(dev);
}
#endif
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
static int
ata_serverworks_chipinit(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(dev);
if (ata_setup_interrupt(dev, ata_generic_intr))
return ENXIO;
if (ctlr->chip->cfg1 == SWKS_MIO) {
ctlr->r_type2 = SYS_RES_MEMORY;
ctlr->r_rid2 = PCIR_BAR(5);
if (!(ctlr->r_res2 = bus_alloc_resource_any(dev, ctlr->r_type2,
&ctlr->r_rid2, RF_ACTIVE)))
return ENXIO;
ctlr->channels = ctlr->chip->cfg2;
ctlr->ch_attach = ata_serverworks_ch_attach;
ctlr->ch_detach = ata_serverworks_ch_detach;
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
ctlr->setmode = ata_sata_setmode;
return 0;
}
else if (ctlr->chip->cfg1 == SWKS_33) {
device_t *children;
int nchildren, i;
/* locate the ISA part in the southbridge and enable UDMA33 */
if (!device_get_children(device_get_parent(dev), &children,&nchildren)){
for (i = 0; i < nchildren; i++) {
if (pci_get_devid(children[i]) == ATA_ROSB4_ISA) {
pci_write_config(children[i], 0x64,
(pci_read_config(children[i], 0x64, 4) &
~0x00002000) | 0x00004000, 4);
break;
}
}
free(children, M_TEMP);
}
}
else {
pci_write_config(dev, 0x5a,
(pci_read_config(dev, 0x5a, 1) & ~0x40) |
(ctlr->chip->cfg1 == SWKS_100) ? 0x03 : 0x02, 1);
}
ctlr->setmode = ata_serverworks_setmode;
return 0;
}
static int
ata_serverworks_ch_attach(device_t dev)
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
int ch_offset;
int i;
ata_pci_dmainit(dev);
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
ch_offset = ch->unit * 0x100;
for (i = ATA_DATA; i < ATA_MAX_RES; i++)
ch->r_io[i].res = ctlr->r_res2;
/* setup ATA registers */
ch->r_io[ATA_DATA].offset = ch_offset + 0x00;
ch->r_io[ATA_FEATURE].offset = ch_offset + 0x04;
ch->r_io[ATA_COUNT].offset = ch_offset + 0x08;
ch->r_io[ATA_SECTOR].offset = ch_offset + 0x0c;
ch->r_io[ATA_CYL_LSB].offset = ch_offset + 0x10;
ch->r_io[ATA_CYL_MSB].offset = ch_offset + 0x14;
ch->r_io[ATA_DRIVE].offset = ch_offset + 0x18;
ch->r_io[ATA_COMMAND].offset = ch_offset + 0x1c;
ch->r_io[ATA_CONTROL].offset = ch_offset + 0x20;
ata_default_registers(dev);
/* setup DMA registers */
ch->r_io[ATA_BMCMD_PORT].offset = ch_offset + 0x30;
ch->r_io[ATA_BMSTAT_PORT].offset = ch_offset + 0x32;
ch->r_io[ATA_BMDTP_PORT].offset = ch_offset + 0x34;
/* setup SATA registers */
ch->r_io[ATA_SSTATUS].offset = ch_offset + 0x40;
ch->r_io[ATA_SERROR].offset = ch_offset + 0x44;
ch->r_io[ATA_SCONTROL].offset = ch_offset + 0x48;
ch->flags |= ATA_NO_SLAVE;
ata_pci_hw(dev);
ch->hw.tf_read = ata_serverworks_tf_read;
ch->hw.tf_write = ata_serverworks_tf_write;
#ifdef __powerpc__
ch->hw.status = ata_serverworks_status;
#endif
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
/* chip does not reliably do 64K DMA transfers */
ch->dma.max_iosize = 64 * DEV_BSIZE;
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
return 0;
}
static int
ata_serverworks_ch_detach(device_t dev)
{
ata_pci_dmafini(dev);
return (0);
}
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
static void
ata_serverworks_tf_read(struct ata_request *request)
{
struct ata_channel *ch = device_get_softc(request->parent);
struct ata_device *atadev = device_get_softc(request->dev);
if (atadev->flags & ATA_D_48BIT_ACTIVE) {
u_int16_t temp;
request->u.ata.count = ATA_IDX_INW(ch, ATA_COUNT);
temp = ATA_IDX_INW(ch, ATA_SECTOR);
request->u.ata.lba = (u_int64_t)(temp & 0x00ff) |
((u_int64_t)(temp & 0xff00) << 24);
temp = ATA_IDX_INW(ch, ATA_CYL_LSB);
request->u.ata.lba |= ((u_int64_t)(temp & 0x00ff) << 8) |
((u_int64_t)(temp & 0xff00) << 32);
temp = ATA_IDX_INW(ch, ATA_CYL_MSB);
request->u.ata.lba |= ((u_int64_t)(temp & 0x00ff) << 16) |
((u_int64_t)(temp & 0xff00) << 40);
}
else {
request->u.ata.count = ATA_IDX_INW(ch, ATA_COUNT) & 0x00ff;
request->u.ata.lba = (ATA_IDX_INW(ch, ATA_SECTOR) & 0x00ff) |
((ATA_IDX_INW(ch, ATA_CYL_LSB) & 0x00ff) << 8) |
((ATA_IDX_INW(ch, ATA_CYL_MSB) & 0x00ff) << 16) |
((ATA_IDX_INW(ch, ATA_DRIVE) & 0xf) << 24);
}
}
static void
ata_serverworks_tf_write(struct ata_request *request)
{
struct ata_channel *ch = device_get_softc(request->parent);
struct ata_device *atadev = device_get_softc(request->dev);
if (atadev->flags & ATA_D_48BIT_ACTIVE) {
ATA_IDX_OUTW(ch, ATA_FEATURE, request->u.ata.feature);
ATA_IDX_OUTW(ch, ATA_COUNT, request->u.ata.count);
ATA_IDX_OUTW(ch, ATA_SECTOR, ((request->u.ata.lba >> 16) & 0xff00) |
(request->u.ata.lba & 0x00ff));
ATA_IDX_OUTW(ch, ATA_CYL_LSB, ((request->u.ata.lba >> 24) & 0xff00) |
((request->u.ata.lba >> 8) & 0x00ff));
ATA_IDX_OUTW(ch, ATA_CYL_MSB, ((request->u.ata.lba >> 32) & 0xff00) |
((request->u.ata.lba >> 16) & 0x00ff));
ATA_IDX_OUTW(ch, ATA_DRIVE, ATA_D_LBA | ATA_DEV(atadev->unit));
}
else {
ATA_IDX_OUTW(ch, ATA_FEATURE, request->u.ata.feature);
ATA_IDX_OUTW(ch, ATA_COUNT, request->u.ata.count);
if (atadev->flags & ATA_D_USE_CHS) {
int heads, sectors;
if (atadev->param.atavalid & ATA_FLAG_54_58) {
heads = atadev->param.current_heads;
sectors = atadev->param.current_sectors;
}
else {
heads = atadev->param.heads;
sectors = atadev->param.sectors;
}
ATA_IDX_OUTW(ch, ATA_SECTOR, (request->u.ata.lba % sectors)+1);
ATA_IDX_OUTW(ch, ATA_CYL_LSB,
(request->u.ata.lba / (sectors * heads)));
ATA_IDX_OUTW(ch, ATA_CYL_MSB,
(request->u.ata.lba / (sectors * heads)) >> 8);
ATA_IDX_OUTW(ch, ATA_DRIVE, ATA_D_IBM | ATA_DEV(atadev->unit) |
(((request->u.ata.lba% (sectors * heads)) /
sectors) & 0xf));
}
else {
ATA_IDX_OUTW(ch, ATA_SECTOR, request->u.ata.lba);
ATA_IDX_OUTW(ch, ATA_CYL_LSB, request->u.ata.lba >> 8);
ATA_IDX_OUTW(ch, ATA_CYL_MSB, request->u.ata.lba >> 16);
ATA_IDX_OUTW(ch, ATA_DRIVE,
ATA_D_IBM | ATA_D_LBA | ATA_DEV(atadev->unit) |
((request->u.ata.lba >> 24) & 0x0f));
}
}
}
static void
ata_serverworks_setmode(device_t dev, int mode)
{
device_t gparent = GRANDPARENT(dev);
struct ata_pci_controller *ctlr = device_get_softc(gparent);
struct ata_channel *ch = device_get_softc(device_get_parent(dev));
struct ata_device *atadev = device_get_softc(dev);
int devno = (ch->unit << 1) + atadev->unit;
int offset = (devno ^ 0x01) << 3;
int error;
u_int8_t piotimings[] = { 0x5d, 0x47, 0x34, 0x22, 0x20, 0x34, 0x22, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20 };
u_int8_t dmatimings[] = { 0x77, 0x21, 0x20 };
mode = ata_limit_mode(dev, mode, ctlr->chip->max_dma);
mode = ata_check_80pin(dev, mode);
error = ata_controlcmd(dev, ATA_SETFEATURES, ATA_SF_SETXFER, 0, mode);
if (bootverbose)
device_printf(dev, "%ssetting %s on %s chip\n",
(error) ? "FAILURE " : "",
ata_mode2str(mode), ctlr->chip->text);
if (!error) {
if (mode >= ATA_UDMA0) {
pci_write_config(gparent, 0x56,
(pci_read_config(gparent, 0x56, 2) &
~(0xf << (devno << 2))) |
((mode & ATA_MODE_MASK) << (devno << 2)), 2);
pci_write_config(gparent, 0x54,
pci_read_config(gparent, 0x54, 1) |
(0x01 << devno), 1);
pci_write_config(gparent, 0x44,
(pci_read_config(gparent, 0x44, 4) &
~(0xff << offset)) |
(dmatimings[2] << offset), 4);
}
else if (mode >= ATA_WDMA0) {
pci_write_config(gparent, 0x54,
pci_read_config(gparent, 0x54, 1) &
~(0x01 << devno), 1);
pci_write_config(gparent, 0x44,
(pci_read_config(gparent, 0x44, 4) &
~(0xff << offset)) |
(dmatimings[mode & ATA_MODE_MASK] << offset), 4);
}
else
pci_write_config(gparent, 0x54,
pci_read_config(gparent, 0x54, 1) &
~(0x01 << devno), 1);
pci_write_config(gparent, 0x40,
(pci_read_config(gparent, 0x40, 4) &
~(0xff << offset)) |
(piotimings[ata_mode2idx(mode)] << offset), 4);
atadev->mode = mode;
}
}
ATA_DECLARE_DRIVER(ata_serverworks);