freebsd-dev/sys/vm/vm_fault.c

1348 lines
36 KiB
C
Raw Normal View History

/*-
1994-05-24 10:09:53 +00:00
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
* Copyright (c) 1994 John S. Dyson
* All rights reserved.
* Copyright (c) 1994 David Greenman
* All rights reserved.
*
1994-05-24 10:09:53 +00:00
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
1994-05-24 10:09:53 +00:00
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
1994-08-02 07:55:43 +00:00
* from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
1994-05-24 10:09:53 +00:00
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
*
1994-05-24 10:09:53 +00:00
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
1994-05-24 10:09:53 +00:00
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
*
1994-05-24 10:09:53 +00:00
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* Page fault handling module.
*/
2003-06-11 23:50:51 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/systm.h>
2001-05-22 00:56:25 +00:00
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/sysctl.h>
2001-05-22 00:56:25 +00:00
#include <sys/vmmeter.h>
#include <sys/vnode.h>
1994-05-24 10:09:53 +00:00
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
1994-05-24 10:09:53 +00:00
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_kern.h>
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
#include <vm/vm_pager.h>
#include <vm/vnode_pager.h>
#include <vm/vm_extern.h>
1994-05-24 10:09:53 +00:00
#include <sys/mount.h> /* XXX Temporary for VFS_LOCK_GIANT() */
#define PFBAK 4
#define PFFOR 4
#define PAGEORDER_SIZE (PFBAK+PFFOR)
static int prefault_pageorder[] = {
-1 * PAGE_SIZE, 1 * PAGE_SIZE,
-2 * PAGE_SIZE, 2 * PAGE_SIZE,
-3 * PAGE_SIZE, 3 * PAGE_SIZE,
-4 * PAGE_SIZE, 4 * PAGE_SIZE
};
2002-03-19 22:20:14 +00:00
static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
#define VM_FAULT_READ_AHEAD 8
#define VM_FAULT_READ_BEHIND 7
#define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
struct faultstate {
vm_page_t m;
vm_object_t object;
vm_pindex_t pindex;
vm_page_t first_m;
vm_object_t first_object;
vm_pindex_t first_pindex;
vm_map_t map;
vm_map_entry_t entry;
int lookup_still_valid;
struct vnode *vp;
};
static inline void
release_page(struct faultstate *fs)
{
vm_page_lock_queues();
vm_page_wakeup(fs->m);
vm_page_deactivate(fs->m);
vm_page_unlock_queues();
fs->m = NULL;
}
static inline void
unlock_map(struct faultstate *fs)
{
if (fs->lookup_still_valid) {
vm_map_lookup_done(fs->map, fs->entry);
fs->lookup_still_valid = FALSE;
}
}
static void
unlock_and_deallocate(struct faultstate *fs)
{
vm_object_pip_wakeup(fs->object);
VM_OBJECT_UNLOCK(fs->object);
if (fs->object != fs->first_object) {
VM_OBJECT_LOCK(fs->first_object);
vm_page_lock_queues();
vm_page_free(fs->first_m);
vm_page_unlock_queues();
vm_object_pip_wakeup(fs->first_object);
VM_OBJECT_UNLOCK(fs->first_object);
fs->first_m = NULL;
}
vm_object_deallocate(fs->first_object);
unlock_map(fs);
if (fs->vp != NULL) {
int vfslocked;
vfslocked = VFS_LOCK_GIANT(fs->vp->v_mount);
vput(fs->vp);
fs->vp = NULL;
VFS_UNLOCK_GIANT(vfslocked);
}
}
/*
* TRYPAGER - used by vm_fault to calculate whether the pager for the
* current object *might* contain the page.
*
* default objects are zero-fill, there is no real pager.
*/
#define TRYPAGER (fs.object->type != OBJT_DEFAULT && \
(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
1994-05-24 10:09:53 +00:00
/*
* vm_fault:
*
2000-03-26 15:20:23 +00:00
* Handle a page fault occurring at the given address,
1994-05-24 10:09:53 +00:00
* requiring the given permissions, in the map specified.
* If successful, the page is inserted into the
* associated physical map.
*
* NOTE: the given address should be truncated to the
* proper page address.
*
* KERN_SUCCESS is returned if the page fault is handled; otherwise,
* a standard error specifying why the fault is fatal is returned.
*
*
* The map in question must be referenced, and remains so.
* Caller may hold no locks.
1994-05-24 10:09:53 +00:00
*/
int
vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
int fault_flags)
1994-05-24 10:09:53 +00:00
{
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
vm_prot_t prot;
int is_first_object_locked, result;
boolean_t growstack, wired;
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
int map_generation;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
vm_object_t next_object;
vm_page_t marray[VM_FAULT_READ];
int hardfault;
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
int faultcount;
struct faultstate fs;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
hardfault = 0;
growstack = TRUE;
atomic_add_int(&cnt.v_vm_faults, 1);
1994-05-24 10:09:53 +00:00
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
RetryFault:;
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Find the backing store object and offset into it to begin the
* search.
1994-05-24 10:09:53 +00:00
*/
fs.map = map;
result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
&fs.first_object, &fs.first_pindex, &prot, &wired);
if (result != KERN_SUCCESS) {
if (result != KERN_PROTECTION_FAILURE ||
(fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
if (growstack && result == KERN_INVALID_ADDRESS &&
map != kernel_map && curproc != NULL) {
result = vm_map_growstack(curproc, vaddr);
if (result != KERN_SUCCESS)
return (KERN_FAILURE);
growstack = FALSE;
goto RetryFault;
}
return (result);
}
/*
* If we are user-wiring a r/w segment, and it is COW, then
* we need to do the COW operation. Note that we don't COW
* currently RO sections now, because it is NOT desirable
* to COW .text. We simply keep .text from ever being COW'ed
* and take the heat that one cannot debug wired .text sections.
*/
result = vm_map_lookup(&fs.map, vaddr,
VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
if (result != KERN_SUCCESS)
return (result);
/*
* If we don't COW now, on a user wire, the user will never
* be able to write to the mapping. If we don't make this
* restriction, the bookkeeping would be nearly impossible.
*
* XXX The following assignment modifies the map without
* holding a write lock on it.
*/
if ((fs.entry->protection & VM_PROT_WRITE) == 0)
fs.entry->max_protection &= ~VM_PROT_WRITE;
1994-05-24 10:09:53 +00:00
}
map_generation = fs.map->timestamp;
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
panic("vm_fault: fault on nofault entry, addr: %lx",
1998-07-11 12:07:52 +00:00
(u_long)vaddr);
}
/*
* Make a reference to this object to prevent its disposal while we
* are messing with it. Once we have the reference, the map is free
* to be diddled. Since objects reference their shadows (and copies),
* they will stay around as well.
*
* Bump the paging-in-progress count to prevent size changes (e.g.
* truncation operations) during I/O. This must be done after
* obtaining the vnode lock in order to avoid possible deadlocks.
*
* XXX vnode_pager_lock() can block without releasing the map lock.
*/
if (fs.first_object->flags & OBJ_NEEDGIANT)
mtx_lock(&Giant);
VM_OBJECT_LOCK(fs.first_object);
vm_object_reference_locked(fs.first_object);
fs.vp = vnode_pager_lock(fs.first_object);
KASSERT(fs.vp == NULL || !fs.map->system_map,
("vm_fault: vnode-backed object mapped by system map"));
KASSERT((fs.first_object->flags & OBJ_NEEDGIANT) == 0 ||
!fs.map->system_map,
("vm_fault: Object requiring giant mapped by system map"));
if (fs.first_object->flags & OBJ_NEEDGIANT)
mtx_unlock(&Giant);
vm_object_pip_add(fs.first_object, 1);
fs.lookup_still_valid = TRUE;
1994-05-24 10:09:53 +00:00
if (wired)
fault_type = prot;
fs.first_m = NULL;
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Search for the page at object/offset.
1994-05-24 10:09:53 +00:00
*/
fs.object = fs.first_object;
fs.pindex = fs.first_pindex;
1994-05-24 10:09:53 +00:00
while (TRUE) {
/*
* If the object is dead, we stop here
*/
if (fs.object->flags & OBJ_DEAD) {
unlock_and_deallocate(&fs);
return (KERN_PROTECTION_FAILURE);
}
/*
* See if page is resident
*/
fs.m = vm_page_lookup(fs.object, fs.pindex);
if (fs.m != NULL) {
int queue;
At long last, commit the zero copy sockets code. MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes. ti.4: Update the ti(4) man page to include information on the TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options, and also include information about the new character device interface and the associated ioctls. man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated links. jumbo.9: New man page describing the jumbo buffer allocator interface and operation. zero_copy.9: New man page describing the general characteristics of the zero copy send and receive code, and what an application author should do to take advantage of the zero copy functionality. NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS, TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT. conf/files: Add uipc_jumbo.c and uipc_cow.c. conf/options: Add the 5 options mentioned above. kern_subr.c: Receive side zero copy implementation. This takes "disposable" pages attached to an mbuf, gives them to a user process, and then recycles the user's page. This is only active when ZERO_COPY_SOCKETS is turned on and the kern.ipc.zero_copy.receive sysctl variable is set to 1. uipc_cow.c: Send side zero copy functions. Takes a page written by the user and maps it copy on write and assigns it kernel virtual address space. Removes copy on write mapping once the buffer has been freed by the network stack. uipc_jumbo.c: Jumbo disposable page allocator code. This allocates (optionally) disposable pages for network drivers that want to give the user the option of doing zero copy receive. uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are enabled if ZERO_COPY_SOCKETS is turned on. Add zero copy send support to sosend() -- pages get mapped into the kernel instead of getting copied if they meet size and alignment restrictions. uipc_syscalls.c:Un-staticize some of the sf* functions so that they can be used elsewhere. (uipc_cow.c) if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid calling malloc() with M_WAITOK. Return an error if the M_NOWAIT malloc fails. The ti(4) driver and the wi(4) driver, at least, call this with a mutex held. This causes witness warnings for 'ifconfig -a' with a wi(4) or ti(4) board in the system. (I've only verified for ti(4)). ip_output.c: Fragment large datagrams so that each segment contains a multiple of PAGE_SIZE amount of data plus headers. This allows the receiver to potentially do page flipping on receives. if_ti.c: Add zero copy receive support to the ti(4) driver. If TI_PRIVATE_JUMBOS is not defined, it now uses the jumbo(9) buffer allocator for jumbo receive buffers. Add a new character device interface for the ti(4) driver for the new debugging interface. This allows (a patched version of) gdb to talk to the Tigon board and debug the firmware. There are also a few additional debugging ioctls available through this interface. Add header splitting support to the ti(4) driver. Tweak some of the default interrupt coalescing parameters to more useful defaults. Add hooks for supporting transmit flow control, but leave it turned off with a comment describing why it is turned off. if_tireg.h: Change the firmware rev to 12.4.11, since we're really at 12.4.11 plus fixes from 12.4.13. Add defines needed for debugging. Remove the ti_stats structure, it is now defined in sys/tiio.h. ti_fw.h: 12.4.11 firmware. ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13, and my header splitting patches. Revision 12.4.13 doesn't handle 10/100 negotiation properly. (This firmware is the same as what was in the tree previously, with the addition of header splitting support.) sys/jumbo.h: Jumbo buffer allocator interface. sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to indicate that the payload buffer can be thrown away / flipped to a userland process. socketvar.h: Add prototype for socow_setup. tiio.h: ioctl interface to the character portion of the ti(4) driver, plus associated structure/type definitions. uio.h: Change prototype for uiomoveco() so that we'll know whether the source page is disposable. ufs_readwrite.c:Update for new prototype of uiomoveco(). vm_fault.c: In vm_fault(), check to see whether we need to do a page based copy on write fault. vm_object.c: Add a new function, vm_object_allocate_wait(). This does the same thing that vm_object allocate does, except that it gives the caller the opportunity to specify whether it should wait on the uma_zalloc() of the object structre. This allows vm objects to be allocated while holding a mutex. (Without generating WITNESS warnings.) vm_object_allocate() is implemented as a call to vm_object_allocate_wait() with the malloc flag set to M_WAITOK. vm_object.h: Add prototype for vm_object_allocate_wait(). vm_page.c: Add page-based copy on write setup, clear and fault routines. vm_page.h: Add page based COW function prototypes and variable in the vm_page structure. Many thanks to Drew Gallatin, who wrote the zero copy send and receive code, and to all the other folks who have tested and reviewed this code over the years.
2002-06-26 03:37:47 +00:00
/*
* check for page-based copy on write.
* We check fs.object == fs.first_object so
* as to ensure the legacy COW mechanism is
* used when the page in question is part of
* a shadow object. Otherwise, vm_page_cowfault()
* removes the page from the backing object,
* which is not what we want.
At long last, commit the zero copy sockets code. MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes. ti.4: Update the ti(4) man page to include information on the TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options, and also include information about the new character device interface and the associated ioctls. man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated links. jumbo.9: New man page describing the jumbo buffer allocator interface and operation. zero_copy.9: New man page describing the general characteristics of the zero copy send and receive code, and what an application author should do to take advantage of the zero copy functionality. NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS, TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT. conf/files: Add uipc_jumbo.c and uipc_cow.c. conf/options: Add the 5 options mentioned above. kern_subr.c: Receive side zero copy implementation. This takes "disposable" pages attached to an mbuf, gives them to a user process, and then recycles the user's page. This is only active when ZERO_COPY_SOCKETS is turned on and the kern.ipc.zero_copy.receive sysctl variable is set to 1. uipc_cow.c: Send side zero copy functions. Takes a page written by the user and maps it copy on write and assigns it kernel virtual address space. Removes copy on write mapping once the buffer has been freed by the network stack. uipc_jumbo.c: Jumbo disposable page allocator code. This allocates (optionally) disposable pages for network drivers that want to give the user the option of doing zero copy receive. uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are enabled if ZERO_COPY_SOCKETS is turned on. Add zero copy send support to sosend() -- pages get mapped into the kernel instead of getting copied if they meet size and alignment restrictions. uipc_syscalls.c:Un-staticize some of the sf* functions so that they can be used elsewhere. (uipc_cow.c) if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid calling malloc() with M_WAITOK. Return an error if the M_NOWAIT malloc fails. The ti(4) driver and the wi(4) driver, at least, call this with a mutex held. This causes witness warnings for 'ifconfig -a' with a wi(4) or ti(4) board in the system. (I've only verified for ti(4)). ip_output.c: Fragment large datagrams so that each segment contains a multiple of PAGE_SIZE amount of data plus headers. This allows the receiver to potentially do page flipping on receives. if_ti.c: Add zero copy receive support to the ti(4) driver. If TI_PRIVATE_JUMBOS is not defined, it now uses the jumbo(9) buffer allocator for jumbo receive buffers. Add a new character device interface for the ti(4) driver for the new debugging interface. This allows (a patched version of) gdb to talk to the Tigon board and debug the firmware. There are also a few additional debugging ioctls available through this interface. Add header splitting support to the ti(4) driver. Tweak some of the default interrupt coalescing parameters to more useful defaults. Add hooks for supporting transmit flow control, but leave it turned off with a comment describing why it is turned off. if_tireg.h: Change the firmware rev to 12.4.11, since we're really at 12.4.11 plus fixes from 12.4.13. Add defines needed for debugging. Remove the ti_stats structure, it is now defined in sys/tiio.h. ti_fw.h: 12.4.11 firmware. ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13, and my header splitting patches. Revision 12.4.13 doesn't handle 10/100 negotiation properly. (This firmware is the same as what was in the tree previously, with the addition of header splitting support.) sys/jumbo.h: Jumbo buffer allocator interface. sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to indicate that the payload buffer can be thrown away / flipped to a userland process. socketvar.h: Add prototype for socow_setup. tiio.h: ioctl interface to the character portion of the ti(4) driver, plus associated structure/type definitions. uio.h: Change prototype for uiomoveco() so that we'll know whether the source page is disposable. ufs_readwrite.c:Update for new prototype of uiomoveco(). vm_fault.c: In vm_fault(), check to see whether we need to do a page based copy on write fault. vm_object.c: Add a new function, vm_object_allocate_wait(). This does the same thing that vm_object allocate does, except that it gives the caller the opportunity to specify whether it should wait on the uma_zalloc() of the object structre. This allows vm objects to be allocated while holding a mutex. (Without generating WITNESS warnings.) vm_object_allocate() is implemented as a call to vm_object_allocate_wait() with the malloc flag set to M_WAITOK. vm_object.h: Add prototype for vm_object_allocate_wait(). vm_page.c: Add page-based copy on write setup, clear and fault routines. vm_page.h: Add page based COW function prototypes and variable in the vm_page structure. Many thanks to Drew Gallatin, who wrote the zero copy send and receive code, and to all the other folks who have tested and reviewed this code over the years.
2002-06-26 03:37:47 +00:00
*/
vm_page_lock_queues();
At long last, commit the zero copy sockets code. MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes. ti.4: Update the ti(4) man page to include information on the TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options, and also include information about the new character device interface and the associated ioctls. man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated links. jumbo.9: New man page describing the jumbo buffer allocator interface and operation. zero_copy.9: New man page describing the general characteristics of the zero copy send and receive code, and what an application author should do to take advantage of the zero copy functionality. NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS, TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT. conf/files: Add uipc_jumbo.c and uipc_cow.c. conf/options: Add the 5 options mentioned above. kern_subr.c: Receive side zero copy implementation. This takes "disposable" pages attached to an mbuf, gives them to a user process, and then recycles the user's page. This is only active when ZERO_COPY_SOCKETS is turned on and the kern.ipc.zero_copy.receive sysctl variable is set to 1. uipc_cow.c: Send side zero copy functions. Takes a page written by the user and maps it copy on write and assigns it kernel virtual address space. Removes copy on write mapping once the buffer has been freed by the network stack. uipc_jumbo.c: Jumbo disposable page allocator code. This allocates (optionally) disposable pages for network drivers that want to give the user the option of doing zero copy receive. uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are enabled if ZERO_COPY_SOCKETS is turned on. Add zero copy send support to sosend() -- pages get mapped into the kernel instead of getting copied if they meet size and alignment restrictions. uipc_syscalls.c:Un-staticize some of the sf* functions so that they can be used elsewhere. (uipc_cow.c) if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid calling malloc() with M_WAITOK. Return an error if the M_NOWAIT malloc fails. The ti(4) driver and the wi(4) driver, at least, call this with a mutex held. This causes witness warnings for 'ifconfig -a' with a wi(4) or ti(4) board in the system. (I've only verified for ti(4)). ip_output.c: Fragment large datagrams so that each segment contains a multiple of PAGE_SIZE amount of data plus headers. This allows the receiver to potentially do page flipping on receives. if_ti.c: Add zero copy receive support to the ti(4) driver. If TI_PRIVATE_JUMBOS is not defined, it now uses the jumbo(9) buffer allocator for jumbo receive buffers. Add a new character device interface for the ti(4) driver for the new debugging interface. This allows (a patched version of) gdb to talk to the Tigon board and debug the firmware. There are also a few additional debugging ioctls available through this interface. Add header splitting support to the ti(4) driver. Tweak some of the default interrupt coalescing parameters to more useful defaults. Add hooks for supporting transmit flow control, but leave it turned off with a comment describing why it is turned off. if_tireg.h: Change the firmware rev to 12.4.11, since we're really at 12.4.11 plus fixes from 12.4.13. Add defines needed for debugging. Remove the ti_stats structure, it is now defined in sys/tiio.h. ti_fw.h: 12.4.11 firmware. ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13, and my header splitting patches. Revision 12.4.13 doesn't handle 10/100 negotiation properly. (This firmware is the same as what was in the tree previously, with the addition of header splitting support.) sys/jumbo.h: Jumbo buffer allocator interface. sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to indicate that the payload buffer can be thrown away / flipped to a userland process. socketvar.h: Add prototype for socow_setup. tiio.h: ioctl interface to the character portion of the ti(4) driver, plus associated structure/type definitions. uio.h: Change prototype for uiomoveco() so that we'll know whether the source page is disposable. ufs_readwrite.c:Update for new prototype of uiomoveco(). vm_fault.c: In vm_fault(), check to see whether we need to do a page based copy on write fault. vm_object.c: Add a new function, vm_object_allocate_wait(). This does the same thing that vm_object allocate does, except that it gives the caller the opportunity to specify whether it should wait on the uma_zalloc() of the object structre. This allows vm objects to be allocated while holding a mutex. (Without generating WITNESS warnings.) vm_object_allocate() is implemented as a call to vm_object_allocate_wait() with the malloc flag set to M_WAITOK. vm_object.h: Add prototype for vm_object_allocate_wait(). vm_page.c: Add page-based copy on write setup, clear and fault routines. vm_page.h: Add page based COW function prototypes and variable in the vm_page structure. Many thanks to Drew Gallatin, who wrote the zero copy send and receive code, and to all the other folks who have tested and reviewed this code over the years.
2002-06-26 03:37:47 +00:00
if ((fs.m->cow) &&
(fault_type & VM_PROT_WRITE) &&
(fs.object == fs.first_object)) {
At long last, commit the zero copy sockets code. MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes. ti.4: Update the ti(4) man page to include information on the TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options, and also include information about the new character device interface and the associated ioctls. man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated links. jumbo.9: New man page describing the jumbo buffer allocator interface and operation. zero_copy.9: New man page describing the general characteristics of the zero copy send and receive code, and what an application author should do to take advantage of the zero copy functionality. NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS, TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT. conf/files: Add uipc_jumbo.c and uipc_cow.c. conf/options: Add the 5 options mentioned above. kern_subr.c: Receive side zero copy implementation. This takes "disposable" pages attached to an mbuf, gives them to a user process, and then recycles the user's page. This is only active when ZERO_COPY_SOCKETS is turned on and the kern.ipc.zero_copy.receive sysctl variable is set to 1. uipc_cow.c: Send side zero copy functions. Takes a page written by the user and maps it copy on write and assigns it kernel virtual address space. Removes copy on write mapping once the buffer has been freed by the network stack. uipc_jumbo.c: Jumbo disposable page allocator code. This allocates (optionally) disposable pages for network drivers that want to give the user the option of doing zero copy receive. uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are enabled if ZERO_COPY_SOCKETS is turned on. Add zero copy send support to sosend() -- pages get mapped into the kernel instead of getting copied if they meet size and alignment restrictions. uipc_syscalls.c:Un-staticize some of the sf* functions so that they can be used elsewhere. (uipc_cow.c) if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid calling malloc() with M_WAITOK. Return an error if the M_NOWAIT malloc fails. The ti(4) driver and the wi(4) driver, at least, call this with a mutex held. This causes witness warnings for 'ifconfig -a' with a wi(4) or ti(4) board in the system. (I've only verified for ti(4)). ip_output.c: Fragment large datagrams so that each segment contains a multiple of PAGE_SIZE amount of data plus headers. This allows the receiver to potentially do page flipping on receives. if_ti.c: Add zero copy receive support to the ti(4) driver. If TI_PRIVATE_JUMBOS is not defined, it now uses the jumbo(9) buffer allocator for jumbo receive buffers. Add a new character device interface for the ti(4) driver for the new debugging interface. This allows (a patched version of) gdb to talk to the Tigon board and debug the firmware. There are also a few additional debugging ioctls available through this interface. Add header splitting support to the ti(4) driver. Tweak some of the default interrupt coalescing parameters to more useful defaults. Add hooks for supporting transmit flow control, but leave it turned off with a comment describing why it is turned off. if_tireg.h: Change the firmware rev to 12.4.11, since we're really at 12.4.11 plus fixes from 12.4.13. Add defines needed for debugging. Remove the ti_stats structure, it is now defined in sys/tiio.h. ti_fw.h: 12.4.11 firmware. ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13, and my header splitting patches. Revision 12.4.13 doesn't handle 10/100 negotiation properly. (This firmware is the same as what was in the tree previously, with the addition of header splitting support.) sys/jumbo.h: Jumbo buffer allocator interface. sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to indicate that the payload buffer can be thrown away / flipped to a userland process. socketvar.h: Add prototype for socow_setup. tiio.h: ioctl interface to the character portion of the ti(4) driver, plus associated structure/type definitions. uio.h: Change prototype for uiomoveco() so that we'll know whether the source page is disposable. ufs_readwrite.c:Update for new prototype of uiomoveco(). vm_fault.c: In vm_fault(), check to see whether we need to do a page based copy on write fault. vm_object.c: Add a new function, vm_object_allocate_wait(). This does the same thing that vm_object allocate does, except that it gives the caller the opportunity to specify whether it should wait on the uma_zalloc() of the object structre. This allows vm objects to be allocated while holding a mutex. (Without generating WITNESS warnings.) vm_object_allocate() is implemented as a call to vm_object_allocate_wait() with the malloc flag set to M_WAITOK. vm_object.h: Add prototype for vm_object_allocate_wait(). vm_page.c: Add page-based copy on write setup, clear and fault routines. vm_page.h: Add page based COW function prototypes and variable in the vm_page structure. Many thanks to Drew Gallatin, who wrote the zero copy send and receive code, and to all the other folks who have tested and reviewed this code over the years.
2002-06-26 03:37:47 +00:00
vm_page_cowfault(fs.m);
vm_page_unlock_queues();
unlock_and_deallocate(&fs);
At long last, commit the zero copy sockets code. MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes. ti.4: Update the ti(4) man page to include information on the TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options, and also include information about the new character device interface and the associated ioctls. man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated links. jumbo.9: New man page describing the jumbo buffer allocator interface and operation. zero_copy.9: New man page describing the general characteristics of the zero copy send and receive code, and what an application author should do to take advantage of the zero copy functionality. NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS, TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT. conf/files: Add uipc_jumbo.c and uipc_cow.c. conf/options: Add the 5 options mentioned above. kern_subr.c: Receive side zero copy implementation. This takes "disposable" pages attached to an mbuf, gives them to a user process, and then recycles the user's page. This is only active when ZERO_COPY_SOCKETS is turned on and the kern.ipc.zero_copy.receive sysctl variable is set to 1. uipc_cow.c: Send side zero copy functions. Takes a page written by the user and maps it copy on write and assigns it kernel virtual address space. Removes copy on write mapping once the buffer has been freed by the network stack. uipc_jumbo.c: Jumbo disposable page allocator code. This allocates (optionally) disposable pages for network drivers that want to give the user the option of doing zero copy receive. uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are enabled if ZERO_COPY_SOCKETS is turned on. Add zero copy send support to sosend() -- pages get mapped into the kernel instead of getting copied if they meet size and alignment restrictions. uipc_syscalls.c:Un-staticize some of the sf* functions so that they can be used elsewhere. (uipc_cow.c) if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid calling malloc() with M_WAITOK. Return an error if the M_NOWAIT malloc fails. The ti(4) driver and the wi(4) driver, at least, call this with a mutex held. This causes witness warnings for 'ifconfig -a' with a wi(4) or ti(4) board in the system. (I've only verified for ti(4)). ip_output.c: Fragment large datagrams so that each segment contains a multiple of PAGE_SIZE amount of data plus headers. This allows the receiver to potentially do page flipping on receives. if_ti.c: Add zero copy receive support to the ti(4) driver. If TI_PRIVATE_JUMBOS is not defined, it now uses the jumbo(9) buffer allocator for jumbo receive buffers. Add a new character device interface for the ti(4) driver for the new debugging interface. This allows (a patched version of) gdb to talk to the Tigon board and debug the firmware. There are also a few additional debugging ioctls available through this interface. Add header splitting support to the ti(4) driver. Tweak some of the default interrupt coalescing parameters to more useful defaults. Add hooks for supporting transmit flow control, but leave it turned off with a comment describing why it is turned off. if_tireg.h: Change the firmware rev to 12.4.11, since we're really at 12.4.11 plus fixes from 12.4.13. Add defines needed for debugging. Remove the ti_stats structure, it is now defined in sys/tiio.h. ti_fw.h: 12.4.11 firmware. ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13, and my header splitting patches. Revision 12.4.13 doesn't handle 10/100 negotiation properly. (This firmware is the same as what was in the tree previously, with the addition of header splitting support.) sys/jumbo.h: Jumbo buffer allocator interface. sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to indicate that the payload buffer can be thrown away / flipped to a userland process. socketvar.h: Add prototype for socow_setup. tiio.h: ioctl interface to the character portion of the ti(4) driver, plus associated structure/type definitions. uio.h: Change prototype for uiomoveco() so that we'll know whether the source page is disposable. ufs_readwrite.c:Update for new prototype of uiomoveco(). vm_fault.c: In vm_fault(), check to see whether we need to do a page based copy on write fault. vm_object.c: Add a new function, vm_object_allocate_wait(). This does the same thing that vm_object allocate does, except that it gives the caller the opportunity to specify whether it should wait on the uma_zalloc() of the object structre. This allows vm objects to be allocated while holding a mutex. (Without generating WITNESS warnings.) vm_object_allocate() is implemented as a call to vm_object_allocate_wait() with the malloc flag set to M_WAITOK. vm_object.h: Add prototype for vm_object_allocate_wait(). vm_page.c: Add page-based copy on write setup, clear and fault routines. vm_page.h: Add page based COW function prototypes and variable in the vm_page structure. Many thanks to Drew Gallatin, who wrote the zero copy send and receive code, and to all the other folks who have tested and reviewed this code over the years.
2002-06-26 03:37:47 +00:00
goto RetryFault;
}
1994-05-24 10:09:53 +00:00
/*
* Wait/Retry if the page is busy. We have to do this
* if the page is busy via either PG_BUSY or
* vm_page_t->busy because the vm_pager may be using
* vm_page_t->busy for pageouts ( and even pageins if
* it is the vnode pager ), and we could end up trying
2000-03-26 15:20:23 +00:00
* to pagein and pageout the same page simultaneously.
*
* We can theoretically allow the busy case on a read
* fault if the page is marked valid, but since such
* pages are typically already pmap'd, putting that
* special case in might be more effort then it is
* worth. We cannot under any circumstances mess
* around with a vm_page_t->busy page except, perhaps,
* to pmap it.
1994-05-24 10:09:53 +00:00
*/
if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
vm_page_unlock_queues();
VM_OBJECT_UNLOCK(fs.object);
if (fs.object != fs.first_object) {
VM_OBJECT_LOCK(fs.first_object);
vm_page_lock_queues();
vm_page_free(fs.first_m);
vm_page_unlock_queues();
vm_object_pip_wakeup(fs.first_object);
VM_OBJECT_UNLOCK(fs.first_object);
fs.first_m = NULL;
}
unlock_map(&fs);
if (fs.vp != NULL) {
int vfslck;
vfslck = VFS_LOCK_GIANT(fs.vp->v_mount);
vput(fs.vp);
fs.vp = NULL;
VFS_UNLOCK_GIANT(vfslck);
}
VM_OBJECT_LOCK(fs.object);
if (fs.m == vm_page_lookup(fs.object,
fs.pindex)) {
vm_page_sleep_if_busy(fs.m, TRUE,
"vmpfw");
}
vm_object_pip_wakeup(fs.object);
VM_OBJECT_UNLOCK(fs.object);
atomic_add_int(&cnt.v_intrans, 1);
vm_object_deallocate(fs.first_object);
1994-05-24 10:09:53 +00:00
goto RetryFault;
}
queue = fs.m->queue;
vm_pageq_remove_nowakeup(fs.m);
if (VM_PAGE_RESOLVEQUEUE(fs.m, queue) == PQ_CACHE &&
vm_page_count_severe()) {
vm_page_activate(fs.m);
vm_page_unlock_queues();
unlock_and_deallocate(&fs);
VM_WAITPFAULT;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
goto RetryFault;
}
/*
* Mark page busy for other processes, and the
* pagedaemon. If it still isn't completely valid
* (readable), jump to readrest, else break-out ( we
* found the page ).
*/
vm_page_busy(fs.m);
vm_page_unlock_queues();
if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
fs.m->object != kernel_object && fs.m->object != kmem_object) {
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
goto readrest;
}
1994-05-24 10:09:53 +00:00
break;
}
/*
* Page is not resident, If this is the search termination
* or the pager might contain the page, allocate a new page.
*/
if (TRYPAGER || fs.object == fs.first_object) {
if (fs.pindex >= fs.object->size) {
unlock_and_deallocate(&fs);
return (KERN_PROTECTION_FAILURE);
}
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Allocate a new page for this object/offset pair.
1994-05-24 10:09:53 +00:00
*/
fs.m = NULL;
if (!vm_page_count_severe()) {
fs.m = vm_page_alloc(fs.object, fs.pindex,
(fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
}
if (fs.m == NULL) {
unlock_and_deallocate(&fs);
VM_WAITPFAULT;
1994-05-24 10:09:53 +00:00
goto RetryFault;
}
}
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
readrest:
/*
* We have found a valid page or we have allocated a new page.
* The page thus may not be valid or may not be entirely
* valid.
*
* Attempt to fault-in the page if there is a chance that the
* pager has it, and potentially fault in additional pages
* at the same time.
*/
if (TRYPAGER) {
1994-05-24 10:09:53 +00:00
int rv;
int reqpage;
int ahead, behind;
u_char behavior = vm_map_entry_behavior(fs.entry);
if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
ahead = 0;
behind = 0;
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
} else {
behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
if (behind > VM_FAULT_READ_BEHIND)
behind = VM_FAULT_READ_BEHIND;
ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
if (ahead > VM_FAULT_READ_AHEAD)
ahead = VM_FAULT_READ_AHEAD;
}
is_first_object_locked = FALSE;
if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
(behavior != MAP_ENTRY_BEHAV_RANDOM &&
fs.pindex >= fs.entry->lastr &&
fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
(fs.first_object == fs.object ||
(is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
fs.first_object->type != OBJT_DEVICE) {
vm_pindex_t firstpindex, tmppindex;
if (fs.first_pindex < 2 * VM_FAULT_READ)
firstpindex = 0;
else
firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
vm_page_lock_queues();
The VFS/BIO subsystem contained a number of hacks in order to optimize piecemeal, middle-of-file writes for NFS. These hacks have caused no end of trouble, especially when combined with mmap(). I've removed them. Instead, NFS will issue a read-before-write to fully instantiate the struct buf containing the write. NFS does, however, optimize piecemeal appends to files. For most common file operations, you will not notice the difference. The sole remaining fragment in the VFS/BIO system is b_dirtyoff/end, which NFS uses to avoid cache coherency issues with read-merge-write style operations. NFS also optimizes the write-covers-entire-buffer case by avoiding the read-before-write. There is quite a bit of room for further optimization in these areas. The VM system marks pages fully-valid (AKA vm_page_t->valid = VM_PAGE_BITS_ALL) in several places, most noteably in vm_fault. This is not correct operation. The vm_pager_get_pages() code is now responsible for marking VM pages all-valid. A number of VM helper routines have been added to aid in zeroing-out the invalid portions of a VM page prior to the page being marked all-valid. This operation is necessary to properly support mmap(). The zeroing occurs most often when dealing with file-EOF situations. Several bugs have been fixed in the NFS subsystem, including bits handling file and directory EOF situations and buf->b_flags consistancy issues relating to clearing B_ERROR & B_INVAL, and handling B_DONE. getblk() and allocbuf() have been rewritten. B_CACHE operation is now formally defined in comments and more straightforward in implementation. B_CACHE for VMIO buffers is based on the validity of the backing store. B_CACHE for non-VMIO buffers is based simply on whether the buffer is B_INVAL or not (B_CACHE set if B_INVAL clear, and vise-versa). biodone() is now responsible for setting B_CACHE when a successful read completes. B_CACHE is also set when a bdwrite() is initiated and when a bwrite() is initiated. VFS VOP_BWRITE routines (there are only two - nfs_bwrite() and bwrite()) are now expected to set B_CACHE. This means that bowrite() and bawrite() also set B_CACHE indirectly. There are a number of places in the code which were previously using buf->b_bufsize (which is DEV_BSIZE aligned) when they should have been using buf->b_bcount. These have been fixed. getblk() now clears B_DONE on return because the rest of the system is so bad about dealing with B_DONE. Major fixes to NFS/TCP have been made. A server-side bug could cause requests to be lost by the server due to nfs_realign() overwriting other rpc's in the same TCP mbuf chain. The server's kernel must be recompiled to get the benefit of the fixes. Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
1999-05-02 23:57:16 +00:00
/*
* note: partially valid pages cannot be
* included in the lookahead - NFS piecemeal
* writes will barf on it badly.
*/
for (tmppindex = fs.first_pindex - 1;
tmppindex >= firstpindex;
--tmppindex) {
vm_page_t mt;
mt = vm_page_lookup(fs.first_object, tmppindex);
if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
break;
if (mt->busy ||
(mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
mt->hold_count ||
mt->wire_count)
continue;
pmap_remove_all(mt);
if (mt->dirty) {
vm_page_deactivate(mt);
} else {
vm_page_cache(mt);
}
}
vm_page_unlock_queues();
ahead += behind;
behind = 0;
}
if (is_first_object_locked)
VM_OBJECT_UNLOCK(fs.first_object);
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* now we find out if any other pages should be paged
* in at this time this routine checks to see if the
* pages surrounding this fault reside in the same
* object as the page for this fault. If they do,
* then they are faulted in also into the object. The
* array "marray" returned contains an array of
* vm_page_t structs where one of them is the
* vm_page_t passed to the routine. The reqpage
* return value is the index into the marray for the
* vm_page_t passed to the routine.
*
* fs.m plus the additional pages are PG_BUSY'd.
*
* XXX vm_fault_additional_pages() can block
* without releasing the map lock.
1994-05-24 10:09:53 +00:00
*/
faultcount = vm_fault_additional_pages(
fs.m, behind, ahead, marray, &reqpage);
1994-05-24 10:09:53 +00:00
/*
* update lastr imperfectly (we do not know how much
* getpages will actually read), but good enough.
*
* XXX The following assignment modifies the map
* without holding a write lock on it.
*/
fs.entry->lastr = fs.pindex + faultcount - behind;
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Call the pager to retrieve the data, if any, after
* releasing the lock on the map. We hold a ref on
* fs.object and the pages are PG_BUSY'd.
1994-05-24 10:09:53 +00:00
*/
unlock_map(&fs);
1994-05-24 10:09:53 +00:00
rv = faultcount ?
vm_pager_get_pages(fs.object, marray, faultcount,
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
reqpage) : VM_PAGER_FAIL;
1994-05-24 10:09:53 +00:00
if (rv == VM_PAGER_OK) {
/*
* Found the page. Leave it busy while we play
* with it.
*/
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Relookup in case pager changed page. Pager
* is responsible for disposition of old page
* if moved.
1994-05-24 10:09:53 +00:00
*/
fs.m = vm_page_lookup(fs.object, fs.pindex);
if (!fs.m) {
unlock_and_deallocate(&fs);
goto RetryFault;
}
1995-05-30 08:16:23 +00:00
hardfault++;
break; /* break to PAGE HAS BEEN FOUND */
1994-05-24 10:09:53 +00:00
}
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Remove the bogus page (which does not exist at this
* object/offset); before doing so, we must get back
* our object lock to preserve our invariant.
1995-05-30 08:16:23 +00:00
*
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
* Also wake up any other process that may want to bring
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* in this page.
1995-05-30 08:16:23 +00:00
*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* If this is the top-level object, we must leave the
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
* busy page to prevent another process from rushing
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* past us, and inserting the page in that object at
* the same time that we are.
1994-05-24 10:09:53 +00:00
*/
if (rv == VM_PAGER_ERROR)
1998-07-22 09:38:04 +00:00
printf("vm_fault: pager read error, pid %d (%s)\n",
curproc->p_pid, curproc->p_comm);
/*
* Data outside the range of the pager or an I/O error
*/
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* XXX - the check for kernel_map is a kludge to work
* around having the machine panic on a kernel space
* fault w/ I/O error.
*/
if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
(rv == VM_PAGER_BAD)) {
vm_page_lock_queues();
vm_page_free(fs.m);
vm_page_unlock_queues();
fs.m = NULL;
unlock_and_deallocate(&fs);
return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
1994-05-24 10:09:53 +00:00
}
if (fs.object != fs.first_object) {
vm_page_lock_queues();
vm_page_free(fs.m);
vm_page_unlock_queues();
fs.m = NULL;
/*
* XXX - we cannot just fall out at this
* point, m has been freed and is invalid!
*/
1994-05-24 10:09:53 +00:00
}
}
1994-05-24 10:09:53 +00:00
/*
* We get here if the object has default pager (or unwiring)
* or the pager doesn't have the page.
1994-05-24 10:09:53 +00:00
*/
if (fs.object == fs.first_object)
fs.first_m = fs.m;
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Move on to the next object. Lock the next object before
* unlocking the current one.
1994-05-24 10:09:53 +00:00
*/
fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
next_object = fs.object->backing_object;
1994-05-24 10:09:53 +00:00
if (next_object == NULL) {
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* If there's no object left, fill the page in the top
* object with zeros.
1994-05-24 10:09:53 +00:00
*/
if (fs.object != fs.first_object) {
vm_object_pip_wakeup(fs.object);
VM_OBJECT_UNLOCK(fs.object);
1994-05-24 10:09:53 +00:00
fs.object = fs.first_object;
fs.pindex = fs.first_pindex;
fs.m = fs.first_m;
VM_OBJECT_LOCK(fs.object);
1994-05-24 10:09:53 +00:00
}
fs.first_m = NULL;
1994-05-24 10:09:53 +00:00
The VFS/BIO subsystem contained a number of hacks in order to optimize piecemeal, middle-of-file writes for NFS. These hacks have caused no end of trouble, especially when combined with mmap(). I've removed them. Instead, NFS will issue a read-before-write to fully instantiate the struct buf containing the write. NFS does, however, optimize piecemeal appends to files. For most common file operations, you will not notice the difference. The sole remaining fragment in the VFS/BIO system is b_dirtyoff/end, which NFS uses to avoid cache coherency issues with read-merge-write style operations. NFS also optimizes the write-covers-entire-buffer case by avoiding the read-before-write. There is quite a bit of room for further optimization in these areas. The VM system marks pages fully-valid (AKA vm_page_t->valid = VM_PAGE_BITS_ALL) in several places, most noteably in vm_fault. This is not correct operation. The vm_pager_get_pages() code is now responsible for marking VM pages all-valid. A number of VM helper routines have been added to aid in zeroing-out the invalid portions of a VM page prior to the page being marked all-valid. This operation is necessary to properly support mmap(). The zeroing occurs most often when dealing with file-EOF situations. Several bugs have been fixed in the NFS subsystem, including bits handling file and directory EOF situations and buf->b_flags consistancy issues relating to clearing B_ERROR & B_INVAL, and handling B_DONE. getblk() and allocbuf() have been rewritten. B_CACHE operation is now formally defined in comments and more straightforward in implementation. B_CACHE for VMIO buffers is based on the validity of the backing store. B_CACHE for non-VMIO buffers is based simply on whether the buffer is B_INVAL or not (B_CACHE set if B_INVAL clear, and vise-versa). biodone() is now responsible for setting B_CACHE when a successful read completes. B_CACHE is also set when a bdwrite() is initiated and when a bwrite() is initiated. VFS VOP_BWRITE routines (there are only two - nfs_bwrite() and bwrite()) are now expected to set B_CACHE. This means that bowrite() and bawrite() also set B_CACHE indirectly. There are a number of places in the code which were previously using buf->b_bufsize (which is DEV_BSIZE aligned) when they should have been using buf->b_bcount. These have been fixed. getblk() now clears B_DONE on return because the rest of the system is so bad about dealing with B_DONE. Major fixes to NFS/TCP have been made. A server-side bug could cause requests to be lost by the server due to nfs_realign() overwriting other rpc's in the same TCP mbuf chain. The server's kernel must be recompiled to get the benefit of the fixes. Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
1999-05-02 23:57:16 +00:00
/*
* Zero the page if necessary and mark it valid.
*/
if ((fs.m->flags & PG_ZERO) == 0) {
pmap_zero_page(fs.m);
The VFS/BIO subsystem contained a number of hacks in order to optimize piecemeal, middle-of-file writes for NFS. These hacks have caused no end of trouble, especially when combined with mmap(). I've removed them. Instead, NFS will issue a read-before-write to fully instantiate the struct buf containing the write. NFS does, however, optimize piecemeal appends to files. For most common file operations, you will not notice the difference. The sole remaining fragment in the VFS/BIO system is b_dirtyoff/end, which NFS uses to avoid cache coherency issues with read-merge-write style operations. NFS also optimizes the write-covers-entire-buffer case by avoiding the read-before-write. There is quite a bit of room for further optimization in these areas. The VM system marks pages fully-valid (AKA vm_page_t->valid = VM_PAGE_BITS_ALL) in several places, most noteably in vm_fault. This is not correct operation. The vm_pager_get_pages() code is now responsible for marking VM pages all-valid. A number of VM helper routines have been added to aid in zeroing-out the invalid portions of a VM page prior to the page being marked all-valid. This operation is necessary to properly support mmap(). The zeroing occurs most often when dealing with file-EOF situations. Several bugs have been fixed in the NFS subsystem, including bits handling file and directory EOF situations and buf->b_flags consistancy issues relating to clearing B_ERROR & B_INVAL, and handling B_DONE. getblk() and allocbuf() have been rewritten. B_CACHE operation is now formally defined in comments and more straightforward in implementation. B_CACHE for VMIO buffers is based on the validity of the backing store. B_CACHE for non-VMIO buffers is based simply on whether the buffer is B_INVAL or not (B_CACHE set if B_INVAL clear, and vise-versa). biodone() is now responsible for setting B_CACHE when a successful read completes. B_CACHE is also set when a bdwrite() is initiated and when a bwrite() is initiated. VFS VOP_BWRITE routines (there are only two - nfs_bwrite() and bwrite()) are now expected to set B_CACHE. This means that bowrite() and bawrite() also set B_CACHE indirectly. There are a number of places in the code which were previously using buf->b_bufsize (which is DEV_BSIZE aligned) when they should have been using buf->b_bcount. These have been fixed. getblk() now clears B_DONE on return because the rest of the system is so bad about dealing with B_DONE. Major fixes to NFS/TCP have been made. A server-side bug could cause requests to be lost by the server due to nfs_realign() overwriting other rpc's in the same TCP mbuf chain. The server's kernel must be recompiled to get the benefit of the fixes. Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
1999-05-02 23:57:16 +00:00
} else {
atomic_add_int(&cnt.v_ozfod, 1);
The VFS/BIO subsystem contained a number of hacks in order to optimize piecemeal, middle-of-file writes for NFS. These hacks have caused no end of trouble, especially when combined with mmap(). I've removed them. Instead, NFS will issue a read-before-write to fully instantiate the struct buf containing the write. NFS does, however, optimize piecemeal appends to files. For most common file operations, you will not notice the difference. The sole remaining fragment in the VFS/BIO system is b_dirtyoff/end, which NFS uses to avoid cache coherency issues with read-merge-write style operations. NFS also optimizes the write-covers-entire-buffer case by avoiding the read-before-write. There is quite a bit of room for further optimization in these areas. The VM system marks pages fully-valid (AKA vm_page_t->valid = VM_PAGE_BITS_ALL) in several places, most noteably in vm_fault. This is not correct operation. The vm_pager_get_pages() code is now responsible for marking VM pages all-valid. A number of VM helper routines have been added to aid in zeroing-out the invalid portions of a VM page prior to the page being marked all-valid. This operation is necessary to properly support mmap(). The zeroing occurs most often when dealing with file-EOF situations. Several bugs have been fixed in the NFS subsystem, including bits handling file and directory EOF situations and buf->b_flags consistancy issues relating to clearing B_ERROR & B_INVAL, and handling B_DONE. getblk() and allocbuf() have been rewritten. B_CACHE operation is now formally defined in comments and more straightforward in implementation. B_CACHE for VMIO buffers is based on the validity of the backing store. B_CACHE for non-VMIO buffers is based simply on whether the buffer is B_INVAL or not (B_CACHE set if B_INVAL clear, and vise-versa). biodone() is now responsible for setting B_CACHE when a successful read completes. B_CACHE is also set when a bdwrite() is initiated and when a bwrite() is initiated. VFS VOP_BWRITE routines (there are only two - nfs_bwrite() and bwrite()) are now expected to set B_CACHE. This means that bowrite() and bawrite() also set B_CACHE indirectly. There are a number of places in the code which were previously using buf->b_bufsize (which is DEV_BSIZE aligned) when they should have been using buf->b_bcount. These have been fixed. getblk() now clears B_DONE on return because the rest of the system is so bad about dealing with B_DONE. Major fixes to NFS/TCP have been made. A server-side bug could cause requests to be lost by the server due to nfs_realign() overwriting other rpc's in the same TCP mbuf chain. The server's kernel must be recompiled to get the benefit of the fixes. Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
1999-05-02 23:57:16 +00:00
}
atomic_add_int(&cnt.v_zfod, 1);
The VFS/BIO subsystem contained a number of hacks in order to optimize piecemeal, middle-of-file writes for NFS. These hacks have caused no end of trouble, especially when combined with mmap(). I've removed them. Instead, NFS will issue a read-before-write to fully instantiate the struct buf containing the write. NFS does, however, optimize piecemeal appends to files. For most common file operations, you will not notice the difference. The sole remaining fragment in the VFS/BIO system is b_dirtyoff/end, which NFS uses to avoid cache coherency issues with read-merge-write style operations. NFS also optimizes the write-covers-entire-buffer case by avoiding the read-before-write. There is quite a bit of room for further optimization in these areas. The VM system marks pages fully-valid (AKA vm_page_t->valid = VM_PAGE_BITS_ALL) in several places, most noteably in vm_fault. This is not correct operation. The vm_pager_get_pages() code is now responsible for marking VM pages all-valid. A number of VM helper routines have been added to aid in zeroing-out the invalid portions of a VM page prior to the page being marked all-valid. This operation is necessary to properly support mmap(). The zeroing occurs most often when dealing with file-EOF situations. Several bugs have been fixed in the NFS subsystem, including bits handling file and directory EOF situations and buf->b_flags consistancy issues relating to clearing B_ERROR & B_INVAL, and handling B_DONE. getblk() and allocbuf() have been rewritten. B_CACHE operation is now formally defined in comments and more straightforward in implementation. B_CACHE for VMIO buffers is based on the validity of the backing store. B_CACHE for non-VMIO buffers is based simply on whether the buffer is B_INVAL or not (B_CACHE set if B_INVAL clear, and vise-versa). biodone() is now responsible for setting B_CACHE when a successful read completes. B_CACHE is also set when a bdwrite() is initiated and when a bwrite() is initiated. VFS VOP_BWRITE routines (there are only two - nfs_bwrite() and bwrite()) are now expected to set B_CACHE. This means that bowrite() and bawrite() also set B_CACHE indirectly. There are a number of places in the code which were previously using buf->b_bufsize (which is DEV_BSIZE aligned) when they should have been using buf->b_bcount. These have been fixed. getblk() now clears B_DONE on return because the rest of the system is so bad about dealing with B_DONE. Major fixes to NFS/TCP have been made. A server-side bug could cause requests to be lost by the server due to nfs_realign() overwriting other rpc's in the same TCP mbuf chain. The server's kernel must be recompiled to get the benefit of the fixes. Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
1999-05-02 23:57:16 +00:00
fs.m->valid = VM_PAGE_BITS_ALL;
break; /* break to PAGE HAS BEEN FOUND */
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
} else {
KASSERT(fs.object != next_object,
("object loop %p", next_object));
VM_OBJECT_LOCK(next_object);
vm_object_pip_add(next_object, 1);
if (fs.object != fs.first_object)
vm_object_pip_wakeup(fs.object);
VM_OBJECT_UNLOCK(fs.object);
fs.object = next_object;
1994-05-24 10:09:53 +00:00
}
}
KASSERT((fs.m->flags & PG_BUSY) != 0,
("vm_fault: not busy after main loop"));
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
* is held.]
1994-05-24 10:09:53 +00:00
*/
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* If the page is being written, but isn't already owned by the
* top-level object, we have to copy it into a new page owned by the
* top-level object.
1994-05-24 10:09:53 +00:00
*/
if (fs.object != fs.first_object) {
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
/*
* We only really need to copy if we want to write it.
1994-05-24 10:09:53 +00:00
*/
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
if (fault_type & VM_PROT_WRITE) {
/*
* This allows pages to be virtually copied from a
* backing_object into the first_object, where the
* backing object has no other refs to it, and cannot
* gain any more refs. Instead of a bcopy, we just
* move the page from the backing object to the
* first object. Note that we must mark the page
* dirty in the first object so that it will go out
* to swap when needed.
1994-05-24 10:09:53 +00:00
*/
is_first_object_locked = FALSE;
if (
/*
* Only one shadow object
*/
(fs.object->shadow_count == 1) &&
/*
* No COW refs, except us
*/
(fs.object->ref_count == 1) &&
/*
* No one else can look this object up
*/
(fs.object->handle == NULL) &&
/*
* No other ways to look the object up
*/
((fs.object->type == OBJT_DEFAULT) ||
(fs.object->type == OBJT_SWAP)) &&
(is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
/*
* We don't chase down the shadow chain
*/
fs.object == fs.first_object->backing_object) {
vm_page_lock_queues();
/*
* get rid of the unnecessary page
*/
vm_page_free(fs.first_m);
/*
* grab the page and put it into the
* process'es object. The page is
* automatically made dirty.
*/
vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
vm_page_busy(fs.m);
vm_page_unlock_queues();
fs.first_m = fs.m;
fs.m = NULL;
atomic_add_int(&cnt.v_cow_optim, 1);
} else {
/*
* Oh, well, lets copy it.
*/
pmap_copy_page(fs.m, fs.first_m);
fs.first_m->valid = VM_PAGE_BITS_ALL;
}
if (fs.m) {
/*
* We no longer need the old page or object.
*/
release_page(&fs);
}
/*
* fs.object != fs.first_object due to above
* conditional
*/
vm_object_pip_wakeup(fs.object);
VM_OBJECT_UNLOCK(fs.object);
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Only use the new page below...
1994-05-24 10:09:53 +00:00
*/
fs.object = fs.first_object;
fs.pindex = fs.first_pindex;
fs.m = fs.first_m;
if (!is_first_object_locked)
VM_OBJECT_LOCK(fs.object);
atomic_add_int(&cnt.v_cow_faults, 1);
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
} else {
prot &= ~VM_PROT_WRITE;
1994-05-24 10:09:53 +00:00
}
}
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* We must verify that the maps have not changed since our last
* lookup.
1994-05-24 10:09:53 +00:00
*/
if (!fs.lookup_still_valid) {
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
vm_object_t retry_object;
vm_pindex_t retry_pindex;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
vm_prot_t retry_prot;
1994-05-24 10:09:53 +00:00
if (!vm_map_trylock_read(fs.map)) {
release_page(&fs);
unlock_and_deallocate(&fs);
goto RetryFault;
}
fs.lookup_still_valid = TRUE;
if (fs.map->timestamp != map_generation) {
result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
&fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
/*
* If we don't need the page any longer, put it on the inactive
* list (the easiest thing to do here). If no one needs it,
* pageout will grab it eventually.
*/
if (result != KERN_SUCCESS) {
release_page(&fs);
unlock_and_deallocate(&fs);
1994-05-24 10:09:53 +00:00
/*
* If retry of map lookup would have blocked then
* retry fault from start.
*/
if (result == KERN_FAILURE)
goto RetryFault;
return (result);
}
if ((retry_object != fs.first_object) ||
(retry_pindex != fs.first_pindex)) {
release_page(&fs);
unlock_and_deallocate(&fs);
goto RetryFault;
}
1994-05-24 10:09:53 +00:00
/*
* Check whether the protection has changed or the object has
* been copied while we left the map unlocked. Changing from
* read to write permission is OK - we leave the page
* write-protected, and catch the write fault. Changing from
* write to read permission means that we can't mark the page
* write-enabled after all.
*/
prot &= retry_prot;
1994-05-24 10:09:53 +00:00
}
}
if (prot & VM_PROT_WRITE) {
vm_page_lock_queues();
vm_page_flag_set(fs.m, PG_WRITEABLE);
vm_object_set_writeable_dirty(fs.m->object);
/*
* If the fault is a write, we know that this page is being
* written NOW so dirty it explicitly to save on
* pmap_is_modified() calls later.
*
* If this is a NOSYNC mmap we do not want to set PG_NOSYNC
* if the page is already dirty to prevent data written with
* the expectation of being synced from not being synced.
* Likewise if this entry does not request NOSYNC then make
* sure the page isn't marked NOSYNC. Applications sharing
* data should use the same flags to avoid ping ponging.
*
* Also tell the backing pager, if any, that it should remove
* any swap backing since the page is now dirty.
*/
if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
if (fs.m->dirty == 0)
vm_page_flag_set(fs.m, PG_NOSYNC);
} else {
vm_page_flag_clear(fs.m, PG_NOSYNC);
}
vm_page_unlock_queues();
if (fault_flags & VM_FAULT_DIRTY) {
vm_page_dirty(fs.m);
vm_pager_page_unswapped(fs.m);
}
}
/*
* Page had better still be busy
*/
KASSERT(fs.m->flags & PG_BUSY,
("vm_fault: page %p not busy!", fs.m));
The VFS/BIO subsystem contained a number of hacks in order to optimize piecemeal, middle-of-file writes for NFS. These hacks have caused no end of trouble, especially when combined with mmap(). I've removed them. Instead, NFS will issue a read-before-write to fully instantiate the struct buf containing the write. NFS does, however, optimize piecemeal appends to files. For most common file operations, you will not notice the difference. The sole remaining fragment in the VFS/BIO system is b_dirtyoff/end, which NFS uses to avoid cache coherency issues with read-merge-write style operations. NFS also optimizes the write-covers-entire-buffer case by avoiding the read-before-write. There is quite a bit of room for further optimization in these areas. The VM system marks pages fully-valid (AKA vm_page_t->valid = VM_PAGE_BITS_ALL) in several places, most noteably in vm_fault. This is not correct operation. The vm_pager_get_pages() code is now responsible for marking VM pages all-valid. A number of VM helper routines have been added to aid in zeroing-out the invalid portions of a VM page prior to the page being marked all-valid. This operation is necessary to properly support mmap(). The zeroing occurs most often when dealing with file-EOF situations. Several bugs have been fixed in the NFS subsystem, including bits handling file and directory EOF situations and buf->b_flags consistancy issues relating to clearing B_ERROR & B_INVAL, and handling B_DONE. getblk() and allocbuf() have been rewritten. B_CACHE operation is now formally defined in comments and more straightforward in implementation. B_CACHE for VMIO buffers is based on the validity of the backing store. B_CACHE for non-VMIO buffers is based simply on whether the buffer is B_INVAL or not (B_CACHE set if B_INVAL clear, and vise-versa). biodone() is now responsible for setting B_CACHE when a successful read completes. B_CACHE is also set when a bdwrite() is initiated and when a bwrite() is initiated. VFS VOP_BWRITE routines (there are only two - nfs_bwrite() and bwrite()) are now expected to set B_CACHE. This means that bowrite() and bawrite() also set B_CACHE indirectly. There are a number of places in the code which were previously using buf->b_bufsize (which is DEV_BSIZE aligned) when they should have been using buf->b_bcount. These have been fixed. getblk() now clears B_DONE on return because the rest of the system is so bad about dealing with B_DONE. Major fixes to NFS/TCP have been made. A server-side bug could cause requests to be lost by the server due to nfs_realign() overwriting other rpc's in the same TCP mbuf chain. The server's kernel must be recompiled to get the benefit of the fixes. Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
1999-05-02 23:57:16 +00:00
/*
* Sanity check: page must be completely valid or it is not fit to
* map into user space. vm_pager_get_pages() ensures this.
*/
if (fs.m->valid != VM_PAGE_BITS_ALL) {
vm_page_zero_invalid(fs.m, TRUE);
printf("Warning: page %p partially invalid on fault\n", fs.m);
}
VM_OBJECT_UNLOCK(fs.object);
/*
* Put this page into the physical map. We had to do the unlock above
* because pmap_enter() may sleep. We don't put the page
* back on the active queue until later so that the pageout daemon
* won't find it (yet).
*/
pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
}
VM_OBJECT_LOCK(fs.object);
vm_page_lock_queues();
vm_page_flag_set(fs.m, PG_REFERENCED);
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* If the page is not wired down, then put it where the pageout daemon
* can find it.
1994-05-24 10:09:53 +00:00
*/
if (fault_flags & VM_FAULT_WIRE_MASK) {
1994-05-24 10:09:53 +00:00
if (wired)
vm_page_wire(fs.m);
1994-05-24 10:09:53 +00:00
else
vm_page_unwire(fs.m, 1);
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
} else {
vm_page_activate(fs.m);
}
vm_page_wakeup(fs.m);
vm_page_unlock_queues();
/*
* Unlock everything, and return
*/
unlock_and_deallocate(&fs);
PROC_LOCK(curproc);
if ((curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
if (hardfault) {
curproc->p_stats->p_ru.ru_majflt++;
} else {
curproc->p_stats->p_ru.ru_minflt++;
}
}
PROC_UNLOCK(curproc);
1994-05-24 10:09:53 +00:00
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
return (KERN_SUCCESS);
1994-05-24 10:09:53 +00:00
}
/*
* vm_fault_prefault provides a quick way of clustering
* pagefaults into a processes address space. It is a "cousin"
* of vm_map_pmap_enter, except it runs at page fault time instead
* of mmap time.
*/
static void
vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
{
int i;
vm_offset_t addr, starta;
vm_pindex_t pindex;
vm_page_t m;
vm_object_t object;
if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
return;
object = entry->object.vm_object;
starta = addra - PFBAK * PAGE_SIZE;
if (starta < entry->start) {
starta = entry->start;
} else if (starta > addra) {
starta = 0;
}
for (i = 0; i < PAGEORDER_SIZE; i++) {
vm_object_t backing_object, lobject;
addr = addra + prefault_pageorder[i];
if (addr > addra + (PFFOR * PAGE_SIZE))
addr = 0;
if (addr < starta || addr >= entry->end)
continue;
if (!pmap_is_prefaultable(pmap, addr))
continue;
pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
lobject = object;
VM_OBJECT_LOCK(lobject);
while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
lobject->type == OBJT_DEFAULT &&
(backing_object = lobject->backing_object) != NULL) {
if (lobject->backing_object_offset & PAGE_MASK)
break;
pindex += lobject->backing_object_offset >> PAGE_SHIFT;
VM_OBJECT_LOCK(backing_object);
VM_OBJECT_UNLOCK(lobject);
lobject = backing_object;
}
/*
* give-up when a page is not in memory
*/
if (m == NULL) {
VM_OBJECT_UNLOCK(lobject);
break;
}
if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
(m->busy == 0) &&
(m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
vm_page_lock_queues();
if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
vm_page_deactivate(m);
pmap_enter_quick(pmap, addr, m, entry->protection);
vm_page_unlock_queues();
}
VM_OBJECT_UNLOCK(lobject);
}
}
/*
* vm_fault_quick:
*
* Ensure that the requested virtual address, which may be in userland,
* is valid. Fault-in the page if necessary. Return -1 on failure.
*/
int
vm_fault_quick(caddr_t v, int prot)
{
int r;
if (prot & VM_PROT_WRITE)
r = subyte(v, fubyte(v));
else
r = fubyte(v);
return(r);
}
1994-05-24 10:09:53 +00:00
/*
* vm_fault_wire:
*
* Wire down a range of virtual addresses in a map.
*/
int
vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
boolean_t user_wire, boolean_t fictitious)
{
2001-07-04 19:00:13 +00:00
vm_offset_t va;
int rv;
/*
* We simulate a fault to get the page and enter it in the physical
* map. For user wiring, we only ask for read access on currently
* read-only sections.
*/
for (va = start; va < end; va += PAGE_SIZE) {
rv = vm_fault(map, va,
user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1994-05-24 10:09:53 +00:00
if (rv) {
if (va != start)
vm_fault_unwire(map, start, va, fictitious);
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
return (rv);
1994-05-24 10:09:53 +00:00
}
}
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
return (KERN_SUCCESS);
1994-05-24 10:09:53 +00:00
}
/*
* vm_fault_unwire:
*
* Unwire a range of virtual addresses in a map.
*/
void
vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
boolean_t fictitious)
1994-05-24 10:09:53 +00:00
{
vm_paddr_t pa;
vm_offset_t va;
2001-07-04 19:00:13 +00:00
pmap_t pmap;
1994-05-24 10:09:53 +00:00
pmap = vm_map_pmap(map);
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Since the pages are wired down, we must be able to get their
* mappings from the physical map system.
1994-05-24 10:09:53 +00:00
*/
for (va = start; va < end; va += PAGE_SIZE) {
pa = pmap_extract(pmap, va);
if (pa != 0) {
This set of commits to the VM system does the following, and contain contributions or ideas from Stephen McKay <syssgm@devetir.qld.gov.au>, Alan Cox <alc@cs.rice.edu>, David Greenman <davidg@freebsd.org> and me: More usage of the TAILQ macros. Additional minor fix to queue.h. Performance enhancements to the pageout daemon. Addition of a wait in the case that the pageout daemon has to run immediately. Slightly modify the pageout algorithm. Significant revamp of the pmap/fork code: 1) PTE's and UPAGES's are NO LONGER in the process's map. 2) PTE's and UPAGES's reside in their own objects. 3) TOTAL elimination of recursive page table pagefaults. 4) The page directory now resides in the PTE object. 5) Implemented pmap_copy, thereby speeding up fork time. 6) Changed the pv entries so that the head is a pointer and not an entire entry. 7) Significant cleanup of pmap_protect, and pmap_remove. 8) Removed significant amounts of machine dependent fork code from vm_glue. Pushed much of that code into the machine dependent pmap module. 9) Support more completely the reuse of already zeroed pages (Page table pages and page directories) as being already zeroed. Performance and code cleanups in vm_map: 1) Improved and simplified allocation of map entries. 2) Improved vm_map_copy code. 3) Corrected some minor problems in the simplify code. Implemented splvm (combo of splbio and splimp.) The VM code now seldom uses splhigh. Improved the speed of and simplified kmem_malloc. Minor mod to vm_fault to avoid using pre-zeroed pages in the case of objects with backing objects along with the already existant condition of having a vnode. (If there is a backing object, there will likely be a COW... With a COW, it isn't necessary to start with a pre-zeroed page.) Minor reorg of source to perhaps improve locality of ref.
1996-05-18 03:38:05 +00:00
pmap_change_wiring(pmap, va, FALSE);
if (!fictitious) {
vm_page_lock_queues();
vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
vm_page_unlock_queues();
}
1994-05-24 10:09:53 +00:00
}
}
}
/*
* Routine:
* vm_fault_copy_entry
* Function:
* Copy all of the pages from a wired-down map entry to another.
*
* In/out conditions:
* The source and destination maps must be locked for write.
* The source map entry must be wired down (or be a sharing map
* entry corresponding to a main map entry that is wired down).
*/
void
vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
vm_map_t dst_map;
vm_map_t src_map;
vm_map_entry_t dst_entry;
vm_map_entry_t src_entry;
1994-05-24 10:09:53 +00:00
{
vm_object_t backing_object, dst_object, object;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
vm_object_t src_object;
vm_ooffset_t dst_offset;
vm_ooffset_t src_offset;
vm_pindex_t pindex;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
vm_prot_t prot;
vm_offset_t vaddr;
vm_page_t dst_m;
vm_page_t src_m;
1994-05-24 10:09:53 +00:00
#ifdef lint
src_map++;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
#endif /* lint */
1994-05-24 10:09:53 +00:00
src_object = src_entry->object.vm_object;
src_offset = src_entry->offset;
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Create the top-level object for the destination entry. (Doesn't
* actually shadow anything - we copy the pages directly.)
1994-05-24 10:09:53 +00:00
*/
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
dst_object = vm_object_allocate(OBJT_DEFAULT,
2005-09-07 01:42:30 +00:00
OFF_TO_IDX(dst_entry->end - dst_entry->start));
1994-05-24 10:09:53 +00:00
VM_OBJECT_LOCK(dst_object);
1994-05-24 10:09:53 +00:00
dst_entry->object.vm_object = dst_object;
dst_entry->offset = 0;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
prot = dst_entry->max_protection;
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Loop through all of the pages in the entry's range, copying each
* one from the source object (it should be there) to the destination
* object.
1994-05-24 10:09:53 +00:00
*/
for (vaddr = dst_entry->start, dst_offset = 0;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
vaddr < dst_entry->end;
vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Allocate a page in the destination object
1994-05-24 10:09:53 +00:00
*/
do {
dst_m = vm_page_alloc(dst_object,
OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1994-05-24 10:09:53 +00:00
if (dst_m == NULL) {
VM_OBJECT_UNLOCK(dst_object);
1994-05-24 10:09:53 +00:00
VM_WAIT;
VM_OBJECT_LOCK(dst_object);
1994-05-24 10:09:53 +00:00
}
} while (dst_m == NULL);
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Find the page in the source object, and copy it in.
* (Because the source is wired down, the page will be in
* memory.)
1994-05-24 10:09:53 +00:00
*/
VM_OBJECT_LOCK(src_object);
object = src_object;
pindex = 0;
while ((src_m = vm_page_lookup(object, pindex +
OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
(src_entry->protection & VM_PROT_WRITE) == 0 &&
(backing_object = object->backing_object) != NULL) {
/*
* Allow fallback to backing objects if we are reading.
*/
VM_OBJECT_LOCK(backing_object);
pindex += OFF_TO_IDX(object->backing_object_offset);
VM_OBJECT_UNLOCK(object);
object = backing_object;
}
1994-05-24 10:09:53 +00:00
if (src_m == NULL)
panic("vm_fault_copy_wired: page missing");
pmap_copy_page(src_m, dst_m);
VM_OBJECT_UNLOCK(object);
dst_m->valid = VM_PAGE_BITS_ALL;
VM_OBJECT_UNLOCK(dst_object);
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Enter it in the pmap...
1994-05-24 10:09:53 +00:00
*/
pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
VM_OBJECT_LOCK(dst_object);
vm_page_lock_queues();
if ((prot & VM_PROT_WRITE) != 0)
vm_page_flag_set(dst_m, PG_WRITEABLE);
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Mark it no longer busy, and put it on the active list.
1994-05-24 10:09:53 +00:00
*/
vm_page_activate(dst_m);
vm_page_wakeup(dst_m);
vm_page_unlock_queues();
1994-05-24 10:09:53 +00:00
}
VM_OBJECT_UNLOCK(dst_object);
}
/*
* This routine checks around the requested page for other pages that
* might be able to be faulted in. This routine brackets the viable
* pages for the pages to be paged in.
*
* Inputs:
* m, rbehind, rahead
*
* Outputs:
* marray (array of vm_page_t), reqpage (index of requested page)
*
* Return value:
* number of pages in marray
*
* This routine can't block.
*/
1998-02-09 06:11:36 +00:00
static int
vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
vm_page_t m;
int rbehind;
int rahead;
vm_page_t *marray;
int *reqpage;
{
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
int i,j;
vm_object_t object;
vm_pindex_t pindex, startpindex, endpindex, tpindex;
vm_page_t rtm;
int cbehind, cahead;
VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
object = m->object;
pindex = m->pindex;
/*
* we don't fault-ahead for device pager
*/
if (object->type == OBJT_DEVICE) {
*reqpage = 0;
marray[0] = m;
return 1;
}
/*
* if the requested page is not available, then give up now
*/
if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
return 0;
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
}
if ((cbehind == 0) && (cahead == 0)) {
*reqpage = 0;
marray[0] = m;
return 1;
}
if (rahead > cahead) {
rahead = cahead;
}
if (rbehind > cbehind) {
rbehind = cbehind;
}
/*
* try to do any readahead that we might have free pages for.
*/
if ((rahead + rbehind) >
((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
pagedaemon_wakeup();
marray[0] = m;
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
*reqpage = 0;
return 1;
}
/*
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
* scan backward for the read behind pages -- in memory
*/
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
if (pindex > 0) {
if (rbehind > pindex) {
rbehind = pindex;
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
startpindex = 0;
} else {
startpindex = pindex - rbehind;
}
if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
rtm->pindex >= startpindex)
startpindex = rtm->pindex + 1;
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
if (rtm == NULL) {
vm_page_lock_queues();
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
for (j = 0; j < i; j++) {
vm_page_free(marray[j]);
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
}
vm_page_unlock_queues();
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
marray[0] = m;
*reqpage = 0;
return 1;
}
marray[i] = rtm;
}
} else {
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
startpindex = 0;
i = 0;
}
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
marray[i] = m;
/* page offset of the required page */
*reqpage = i;
tpindex = pindex + 1;
i++;
/*
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
* scan forward for the read ahead pages
*/
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
endpindex = tpindex + rahead;
if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
endpindex = rtm->pindex;
if (endpindex > object->size)
endpindex = object->size;
1994-05-24 10:09:53 +00:00
for (; tpindex < endpindex; i++, tpindex++) {
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
if (rtm == NULL) {
break;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
}
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
marray[i] = rtm;
}
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
/* return number of bytes of pages */
return i;
1994-05-24 10:09:53 +00:00
}