Implement support for buffers larger than PAGE_SIZE in MemGuard. Adds

a little bit of complexity but performance requirements lacking (this is
a debugging allocator after all), it's really not too bad (still
only 317 lines).

Also add an additional check to help catch really weird 3-threads-involved
races: make memguard_free() write to the first page handed back, always,
before it does anything else.

Note that there is still a problem in VM+PMAP (specifically with
vm_map_protect) w.r.t. MemGuard uses it, but this will be fixed shortly
and this change stands on its own.
This commit is contained in:
Bosko Milekic 2005-02-10 22:36:05 +00:00
parent ade68ea226
commit 0341256576
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=141670

View File

@ -46,11 +46,19 @@ __FBSDID("$FreeBSD$");
#include <sys/malloc.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <vm/memguard.h>
/*
* The maximum number of pages allowed per allocation. If you're using
* MemGuard to override very large items (> MAX_PAGES_PER_ITEM in size),
* you need to increase MAX_PAGES_PER_ITEM.
*/
#define MAX_PAGES_PER_ITEM 64
/*
* Global MemGuard data.
*/
@ -61,13 +69,20 @@ struct memguard_entry {
STAILQ_ENTRY(memguard_entry) entries;
void *ptr;
};
static STAILQ_HEAD(memguard_fifo, memguard_entry) memguard_fifo_pool;
static struct memguard_fifo {
struct memguard_entry *stqh_first;
struct memguard_entry **stqh_last;
int index;
} memguard_fifo_pool[MAX_PAGES_PER_ITEM];
/*
* Local prototypes.
*/
static void memguard_guard(void *addr);
static void memguard_unguard(void *addr);
static void memguard_guard(void *addr, int numpgs);
static void memguard_unguard(void *addr, int numpgs);
static struct memguard_fifo *vtomgfifo(vm_offset_t va);
static void vsetmgfifo(vm_offset_t va, struct memguard_fifo *mgfifo);
static void vclrmgfifo(vm_offset_t va);
/*
* Local macros. MemGuard data is global, so replace these with whatever
@ -89,6 +104,7 @@ void
memguard_init(vm_map_t parent_map, unsigned long size)
{
char *base, *limit;
int i;
/* size must be multiple of PAGE_SIZE */
size /= PAGE_SIZE;
@ -103,7 +119,10 @@ memguard_init(vm_map_t parent_map, unsigned long size)
MEMGUARD_CRIT_SECTION_INIT;
MEMGUARD_CRIT_SECTION_ENTER;
STAILQ_INIT(&memguard_fifo_pool);
for (i = 0; i < MAX_PAGES_PER_ITEM; i++) {
STAILQ_INIT(&memguard_fifo_pool[i]);
memguard_fifo_pool[i].index = i;
}
MEMGUARD_CRIT_SECTION_EXIT;
printf("MEMGUARD DEBUGGING ALLOCATOR INITIALIZED:\n");
@ -119,12 +138,18 @@ memguard_init(vm_map_t parent_map, unsigned long size)
void *
memguard_alloc(unsigned long size, int flags)
{
void *obj = NULL;
void *obj;
struct memguard_entry *e = NULL;
int numpgs;
/* XXX: MemGuard does not handle > PAGE_SIZE objects. */
if (size > PAGE_SIZE)
panic("MEMGUARD: Cannot handle objects > PAGE_SIZE");
numpgs = size / PAGE_SIZE;
if ((size % PAGE_SIZE) != 0)
numpgs++;
if (numpgs > MAX_PAGES_PER_ITEM)
panic("MEMGUARD: You must increase MAX_PAGES_PER_ITEM " \
"in memguard.c (requested: %d pages)", numpgs);
if (numpgs == 0)
return NULL;
/*
* If we haven't exhausted the memguard_map yet, allocate from
@ -137,16 +162,16 @@ memguard_alloc(unsigned long size, int flags)
*/
MEMGUARD_CRIT_SECTION_ENTER;
if (memguard_mapused >= memguard_mapsize) {
e = STAILQ_FIRST(&memguard_fifo_pool);
e = STAILQ_FIRST(&memguard_fifo_pool[numpgs - 1]);
if (e != NULL) {
STAILQ_REMOVE(&memguard_fifo_pool, e,
STAILQ_REMOVE(&memguard_fifo_pool[numpgs - 1], e,
memguard_entry, entries);
MEMGUARD_CRIT_SECTION_EXIT;
obj = e->ptr;
free(e, M_TEMP);
memguard_unguard(obj);
memguard_unguard(obj, numpgs);
if (flags & M_ZERO)
bzero(obj, PAGE_SIZE);
bzero(obj, PAGE_SIZE * numpgs);
return obj;
}
MEMGUARD_CRIT_SECTION_EXIT;
@ -154,19 +179,18 @@ memguard_alloc(unsigned long size, int flags)
panic("MEMGUARD: Failed with M_WAITOK: " \
"memguard_map too small");
return NULL;
} else
memguard_mapused += PAGE_SIZE;
}
memguard_mapused += (PAGE_SIZE * numpgs);
MEMGUARD_CRIT_SECTION_EXIT;
if (obj == NULL)
obj = (void *)kmem_malloc(memguard_map, PAGE_SIZE, flags);
obj = (void *)kmem_malloc(memguard_map, PAGE_SIZE * numpgs, flags);
if (obj != NULL) {
memguard_unguard(obj);
vsetmgfifo((vm_offset_t)obj, &memguard_fifo_pool[numpgs - 1]);
if (flags & M_ZERO)
bzero(obj, PAGE_SIZE);
bzero(obj, PAGE_SIZE * numpgs);
} else {
MEMGUARD_CRIT_SECTION_ENTER;
memguard_mapused -= PAGE_SIZE;
memguard_mapused -= (PAGE_SIZE * numpgs);
MEMGUARD_CRIT_SECTION_EXIT;
}
return obj;
@ -179,20 +203,39 @@ void
memguard_free(void *addr)
{
struct memguard_entry *e;
struct memguard_fifo *mgfifo;
int idx;
int *temp;
memguard_guard(addr);
addr = (void *)trunc_page((unsigned long)addr);
/*
* Page should not be guarded by now, so force a write.
* The purpose of this is to increase the likelihood of catching a
* double-free, but not necessarily a tamper-after-free (the second
* thread freeing might not write before freeing, so this forces it
* to and, subsequently, trigger a fault).
*/
temp = (int *)((unsigned long)addr + (PAGE_SIZE/2)); /* in page */
*temp = 0xd34dc0d3;
mgfifo = vtomgfifo((vm_offset_t)addr);
idx = mgfifo->index;
memguard_guard(addr, idx + 1);
e = malloc(sizeof(struct memguard_entry), M_TEMP, M_NOWAIT);
if (e == NULL) {
MEMGUARD_CRIT_SECTION_ENTER;
memguard_mapused -= PAGE_SIZE;
memguard_mapused -= (PAGE_SIZE * (idx + 1));
MEMGUARD_CRIT_SECTION_EXIT;
kmem_free(memguard_map, (vm_offset_t)trunc_page(
(unsigned long)addr), PAGE_SIZE);
memguard_unguard(addr, idx + 1); /* just in case */
vclrmgfifo((vm_offset_t)addr);
kmem_free(memguard_map, (vm_offset_t)addr,
PAGE_SIZE * (idx + 1));
return;
}
e->ptr = (void *)trunc_page((unsigned long)addr);
e->ptr = addr;
MEMGUARD_CRIT_SECTION_ENTER;
STAILQ_INSERT_TAIL(&memguard_fifo_pool, e, entries);
STAILQ_INSERT_TAIL(mgfifo, e, entries);
MEMGUARD_CRIT_SECTION_EXIT;
}
@ -201,11 +244,13 @@ memguard_free(void *addr)
* future writes to it fail).
*/
static void
memguard_guard(void *addr)
memguard_guard(void *addr, int numpgs)
{
void *a = (void *)trunc_page((unsigned long)addr);
(void)vm_map_protect(memguard_map, (vm_offset_t)a,
(vm_offset_t)((unsigned long)a + PAGE_SIZE), VM_PROT_READ, 0);
if (vm_map_protect(memguard_map, (vm_offset_t)a,
(vm_offset_t)((unsigned long)a + (PAGE_SIZE * numpgs)),
VM_PROT_READ, FALSE) != KERN_SUCCESS)
panic("MEMGUARD: Unable to guard page!");
}
/*
@ -213,10 +258,62 @@ memguard_guard(void *addr)
* allow full data access).
*/
static void
memguard_unguard(void *addr)
memguard_unguard(void *addr, int numpgs)
{
void *a = (void *)trunc_page((unsigned long)addr);
(void)vm_map_protect(memguard_map, (vm_offset_t)a,
(vm_offset_t)((unsigned long)a + PAGE_SIZE),
VM_PROT_READ | VM_PROT_WRITE, 0);
if (vm_map_protect(memguard_map, (vm_offset_t)a,
(vm_offset_t)((unsigned long)a + (PAGE_SIZE * numpgs)),
VM_PROT_DEFAULT, FALSE) != KERN_SUCCESS)
panic("MEMGUARD: Unable to unguard page!");
}
/*
* vtomgfifo() converts a virtual address of the first page allocated for
* an item to a memguard_fifo_pool reference for the corresponding item's
* size.
*
* vsetmgfifo() sets a reference in an underlying page for the specified
* virtual address to an appropriate memguard_fifo_pool.
*
* These routines are very similar to those defined by UMA in uma_int.h
*/
static struct memguard_fifo *
vtomgfifo(vm_offset_t va)
{
vm_page_t p;
struct memguard_fifo *mgfifo;
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
mgfifo = (struct memguard_fifo *)p->object;
/*
* We use PG_SLAB, just like UMA does, even though we stash a
* reference to a memguard_fifo, and not a slab.
*/
if ((p->flags & PG_SLAB) == 0)
panic("MEMGUARD: Expected memguard_fifo reference to be set!");
return mgfifo;
}
static void
vsetmgfifo(vm_offset_t va, struct memguard_fifo *mgfifo)
{
vm_page_t p;
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
p->object = (vm_object_t)mgfifo;
/*
* We use PG_SLAB, just like UMA does, even though we stash a reference
* to a memguard_fifo, and not a slab.
*/
p->flags |= PG_SLAB;
}
static void vclrmgfifo(vm_offset_t va)
{
vm_page_t p;
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
p->object = NULL;
p->flags &= ~PG_SLAB;
}