random_machdep.c: New version, also includes revectored interrupts, rather

than hooking permanently.
vector.s:       : Remove the interrupt hook. This is done dynamically, now.
This commit is contained in:
Mark Murray 1995-12-27 11:22:05 +00:00
parent 6a9bf141bd
commit 0738b16169
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=13058
5 changed files with 491 additions and 433 deletions

View File

@ -1,6 +1,6 @@
/*
* from: vector.s, 386BSD 0.1 unknown origin
* $Id: vector.s,v 1.14 1995/11/04 16:00:56 markm Exp $
* $Id: vector.s,v 1.15 1995/12/23 16:53:57 davidg Exp $
*/
#include <i386/isa/icu.h>
@ -39,12 +39,6 @@
#define MAYBE_PUSHL_ES
#endif
#define ADDENTROPY(irq_num) \
/* Add this interrupt to the pool of entropy */ \
pushl $irq_num ; \
call _add_interrupt_randomness ; \
addl $4,%esp
/*
* Macros for interrupt interrupt entry, call to handler, and exit.
*
@ -184,8 +178,6 @@ Xresume/**/irq_num: ; \
movb %al,_imen + IRQ_BYTE(irq_num) ; \
outb %al,$icu+1 ; \
sti ; /* XXX _doreti repeats the cli/sti */ \
/* Add this interrupt to the pool of entropy */ \
ADDENTROPY(irq_num) ; \
MEXITCOUNT ; \
/* We could usually avoid the following jmp by inlining some of */ \
/* _doreti, but it's probably better to use less cache. */ \

View File

@ -1,6 +1,6 @@
/*
* from: vector.s, 386BSD 0.1 unknown origin
* $Id: vector.s,v 1.14 1995/11/04 16:00:56 markm Exp $
* $Id: vector.s,v 1.15 1995/12/23 16:53:57 davidg Exp $
*/
#include <i386/isa/icu.h>
@ -39,12 +39,6 @@
#define MAYBE_PUSHL_ES
#endif
#define ADDENTROPY(irq_num) \
/* Add this interrupt to the pool of entropy */ \
pushl $irq_num ; \
call _add_interrupt_randomness ; \
addl $4,%esp
/*
* Macros for interrupt interrupt entry, call to handler, and exit.
*
@ -184,8 +178,6 @@ Xresume/**/irq_num: ; \
movb %al,_imen + IRQ_BYTE(irq_num) ; \
outb %al,$icu+1 ; \
sti ; /* XXX _doreti repeats the cli/sti */ \
/* Add this interrupt to the pool of entropy */ \
ADDENTROPY(irq_num) ; \
MEXITCOUNT ; \
/* We could usually avoid the following jmp by inlining some of */ \
/* _doreti, but it's probably better to use less cache. */ \

View File

@ -1,9 +1,9 @@
/*
* random_machdep.c -- A strong random number generator
* random.c -- A strong random number generator
*
* $Id$
*
* Version 0.92, last modified 21-Sep-95
* Version 0.95, last modified 18-Oct-95
*
* Copyright Theodore Ts'o, 1994, 1995. All rights reserved.
*
@ -37,88 +37,226 @@
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#define MAX_BLKDEV 4
#include <sys/param.h>
#include <sys/cdefs.h>
#include <sys/kernel.h>
#include <sys/uio.h>
#include <sys/systm.h>
#include <i386/isa/isa.h>
#include <i386/isa/icu.h>
#include <i386/isa/timerreg.h>
#include <i386/isa/isa_device.h>
#include <machine/random.h>
#define RANDPOOL 512
/*
* The pool is stirred with a primitive polynomial of degree 128
* over GF(2), namely x^128 + x^99 + x^59 + x^31 + x^9 + x^7 + 1.
* For a pool of size 64, try x^64+x^62+x^38+x^10+x^6+x+1.
*/
#define POOLWORDS 128 /* Power of 2 - note that this is 32-bit words */
#define POOLBITS (POOLWORDS*32)
#if POOLWORDS == 128
#define TAP1 99 /* The polynomial taps */
#define TAP2 59
#define TAP3 31
#define TAP4 9
#define TAP5 7
#elif POOLWORDS == 64
#define TAP1 62 /* The polynomial taps */
#define TAP2 38
#define TAP3 10
#define TAP4 6
#define TAP5 1
#else
#error No primitive polynomial available for chosen POOLWORDS
#endif
#define WRITEBUFFER 512 /* size in bytes */
/* There is actually only one of these, globally. */
struct random_bucket {
int add_ptr;
int entropy_count;
int length;
int bit_length;
int delay_mix:1;
u_int8_t *pool;
u_int add_ptr;
u_int entropy_count;
int input_rotate;
u_int32_t *pool;
};
/* There is one of these per entropy source */
struct timer_rand_state {
u_int32_t last_time;
int last_delta;
int nbits;
u_long last_time;
int last_delta;
int nbits;
};
static struct random_bucket random_state;
static u_int32_t rand_pool_key[16];
static u_int8_t random_pool[RANDPOOL];
static u_int32_t random_counter[16];
static u_int32_t random_pool[POOLWORDS];
static struct timer_rand_state keyboard_timer_state;
static struct timer_rand_state extract_timer_state;
static struct timer_rand_state irq_timer_state[ICU_LEN];
static struct timer_rand_state blkdev_timer_state[MAX_BLKDEV];
static struct wait_queue *random_wait;
inthand2_t *sec_intr_handler[ICU_LEN];
int sec_intr_unit[ICU_LEN];
inthand2_t add_interrupt_randomness;
u_int16_t interrupt_allowed = 0;
#ifndef MIN
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
#endif
static void
flush_random(struct random_bucket *random_state)
{
random_state->add_ptr = 0;
random_state->bit_length = random_state->length * 8;
random_state->entropy_count = 0;
random_state->delay_mix = 0;
}
void
rand_initialize(void)
{
random_state.length = RANDPOOL;
random_state.add_ptr = 0;
random_state.entropy_count = 0;
random_state.pool = random_pool;
flush_random(&random_state);
random_wait = NULL;
}
#if 0
{
int irq;
long interrupts;
/* XXX Dreadful hack - should be replaced by something more elegant */
interrupts = RANDOM_INTERRUPTS;
/*
* This function adds an int into the entropy "pool". It does not
* update the entropy estimate. The caller must do this if appropriate.
*
* The pool is stirred with a primitive polynomial of degree 128
* over GF(2), namely x^128 + x^99 + x^59 + x^31 + x^9 + x^7 + 1.
* For a pool of size 64, try x^64+x^62+x^38+x^10+x^6+x+1.
*
* We rotate the input word by a changing number of bits, to help
* assure that all bits in the entropy get toggled. Otherwise, if we
* consistently feed the entropy pool small numbers (like ticks and
* scancodes, for example), the upper bits of the entropy pool don't
* get affected. --- TYT, 10/11/95
*/
static inline void
add_entropy_word(struct random_bucket *r, const u_int32_t input)
{
u_int i;
u_int32_t w;
for (irq = 0; irq < ICU_LEN; irq++) {
interrupt_allowed[irq] = interrupts & 0x0001;
interrupts >>= 1;
printf("Randomising irq %d %s\n", irq, interrupt_allowed[irq] ?
"on" : "off");
}
w = (input << r->input_rotate) | (input >> (32 - r->input_rotate));
i = r->add_ptr = (r->add_ptr - 1) & (POOLWORDS-1);
if (i)
r->input_rotate = (r->input_rotate + 7) & 31;
else
/*
* At the beginning of the pool, add an extra 7 bits
* rotation, so that successive passes spread the
* input bits across the pool evenly.
*/
r->input_rotate = (r->input_rotate + 14) & 31;
/* XOR in the various taps */
w ^= r->pool[(i+TAP1)&(POOLWORDS-1)];
w ^= r->pool[(i+TAP2)&(POOLWORDS-1)];
w ^= r->pool[(i+TAP3)&(POOLWORDS-1)];
w ^= r->pool[(i+TAP4)&(POOLWORDS-1)];
w ^= r->pool[(i+TAP5)&(POOLWORDS-1)];
w ^= r->pool[i];
/* Rotate w left 1 bit (stolen from SHA) and store */
r->pool[i] = (w << 1) | (w >> 31);
}
/*
* This function adds entropy to the entropy "pool" by using timing
* delays. It uses the timer_rand_state structure to make an estimate
* of how any bits of entropy this call has added to the pool.
*
* The number "num" is also added to the pool - it should somehow describe
* the type of event which just happened. This is currently 0-255 for
* keyboard scan codes, and 256 upwards for interrupts.
* On the i386, this is assumed to be at most 16 bits, and the high bits
* are used for a high-resolution timer.
*
* TODO: Read the time stamp register on the Pentium.
*/
static void
add_timer_randomness(struct random_bucket *r, struct timer_rand_state *state,
u_int num)
{
int delta, delta2;
u_int nbits;
u_int32_t time;
#if defined(I586_CPU)
if (cpu_class == CPUCLASS_586) {
u_long low, high;
__asm__(".byte 0x0f,0x31" :"=a" (low), "=d" (high)); /* RDTSC */
time = (u_int32_t) low;
num ^= (u_int32_t) high;
r->entropy_count += 2;
}
else {
#endif
outb(TIMER_LATCH|TIMER_SEL0, TIMER_MODE); /* latch ASAP */
num ^= inb(TIMER_CNTR0) << 16;
num ^= inb(TIMER_CNTR0) << 24;
r->entropy_count += 2;
#if defined(I586_CPU)
} /* cpu_class == CPUCLASS_586 */
#endif
time = ticks;
add_entropy_word(r, (u_int32_t) num);
add_entropy_word(r, time);
/*
* Calculate number of bits of randomness we probably
* added. We take into account the first and second order
* deltas in order to make our estimate.
*/
delta = time - state->last_time;
state->last_time = time;
delta2 = delta - state->last_delta;
state->last_delta = delta;
if (delta < 0) delta = -delta;
if (delta2 < 0) delta2 = -delta2;
delta = MIN(delta, delta2) >> 1;
for (nbits = 0; delta; nbits++)
delta >>= 1;
r->entropy_count += nbits;
/* Prevent overflow */
if (r->entropy_count > POOLBITS)
r->entropy_count = POOLBITS;
}
void
add_keyboard_randomness(u_char scancode)
{
add_timer_randomness(&random_state, &keyboard_timer_state, scancode);
}
void
add_interrupt_randomness(int irq)
{
(sec_intr_handler[irq])(sec_intr_unit[irq]);
add_timer_randomness(&random_state, &irq_timer_state[irq], irq);
}
void
add_blkdev_randomness(int major)
{
if (major >= MAX_BLKDEV)
return;
add_timer_randomness(&random_state, &blkdev_timer_state[major],
0x200+major);
}
/*
* MD5 transform algorithm, taken from code written by Colin Plumb,
* and put into the public domain
*
* QUESTION: Replace this with SHA, which as generally received better
* reviews from the cryptographic community?
*/
/* The four core functions - F1 is optimized somewhat */
@ -139,7 +277,8 @@ rand_initialize(void)
* the data and converts bytes into longwords for this routine.
*/
static void
MD5Transform(u_int32_t buf[4], u_int32_t const in[16])
MD5Transform(u_int32_t buf[4],
u_int32_t const in[16])
{
u_int32_t a, b, c, d;
@ -228,183 +367,67 @@ MD5Transform(u_int32_t buf[4], u_int32_t const in[16])
#undef F4
#undef MD5STEP
static void
mix_bucket(struct random_bucket *v)
{
struct random_bucket *r = v;
int i, num_passes;
u_int32_t *p;
u_int32_t iv[4];
r->delay_mix = 0;
/* Start IV from last block of the random pool */
memcpy(iv, r->pool + r->length - sizeof(iv), sizeof(iv));
num_passes = r->length / 16;
for (i = 0, p = (u_int32_t *) r->pool; i < num_passes; i++) {
MD5Transform(iv, rand_pool_key);
iv[0] = (*p++ ^= iv[0]);
iv[1] = (*p++ ^= iv[1]);
iv[2] = (*p++ ^= iv[2]);
iv[3] = (*p++ ^= iv[3]);
}
memcpy(rand_pool_key, r->pool, sizeof(rand_pool_key));
/* Wipe iv from memory */
bzero(iv, sizeof(iv));
r->add_ptr = 0;
}
/*
* This function adds a byte into the entropy "pool". It does not
* update the entropy estimate. The caller must do this if appropriate.
*/
static inline void
add_entropy_byte(struct random_bucket *r, const u_int8_t ch, int delay)
{
if (!delay && r->delay_mix)
mix_bucket(r);
r->pool[r->add_ptr++] ^= ch;
if (r->add_ptr >= r->length) {
if (delay) {
r->delay_mix = 1;
r->add_ptr = 0;
} else
mix_bucket(r);
}
}
/*
* This function adds some number of bytes into the entropy pool and
* updates the entropy count as appropriate.
*/
static void
add_entropy(struct random_bucket *r, const u_int8_t *ptr, int length,
int entropy_level, int delay)
{
while (length-- > 0)
add_entropy_byte(r, *ptr++, delay);
r->entropy_count += entropy_level;
if (r->entropy_count > r->length*8)
r->entropy_count = r->length * 8;
}
/*
* This function adds entropy to the entropy "pool" by using timing
* delays. It uses the timer_rand_state structure to make an estimate
* of how many bits of entropy this call has added to the pool.
*/
static void
add_timer_randomness(struct random_bucket *r, struct timer_rand_state *state,
int delay)
{
int delta, delta2;
int nbits;
u_int8_t timer_high, timer_low;
/*
* Calculate number of bits of randomness we probably
* added. We take into account the first and second order
* delta's in order to make our estimate.
*/
delta = ticks - state->last_time;
delta2 = delta - state->last_delta;
state->last_time = ticks;
state->last_delta = delta;
if (delta < 0) delta = -delta;
if (delta2 < 0) delta2 = -delta2;
delta = MIN(delta, delta2) >> 1;
for (nbits = 0; delta; nbits++)
delta >>= 1;
add_entropy(r, (u_int8_t *) &ticks, sizeof(ticks), nbits, delay);
/*
* On a 386, read the high resolution timer. We assume that
* this gives us 2 bits of randomness. XXX This needs
* investigation.
*/
disable_intr();
outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
timer_low = inb(TIMER_CNTR0);
timer_high = inb(TIMER_CNTR0);
enable_intr();
add_entropy_byte(r, timer_low, 1);
add_entropy_byte(r, timer_high, 1);
r->entropy_count += 2;
if (r->entropy_count > r->bit_length)
r->entropy_count = r->bit_length;
}
void
add_keyboard_randomness(u_char scancode)
{
struct random_bucket *r = &random_state;
add_timer_randomness(r, &keyboard_timer_state, 0);
add_entropy_byte(r, scancode, 0);
r->entropy_count += 6;
if (r->entropy_count > r->bit_length)
r->entropy_count = r->bit_length;
}
void
add_interrupt_randomness(int irq)
{
static struct random_bucket *r = &random_state;
u_int16_t intbit = 1 << irq;
/* printf("Trapping interrupt %d\n", irq); */
if (interrupt_allowed & intbit)
add_timer_randomness(r, &irq_timer_state[irq], 1);
}
#if POOLWORDS % 16
#error extract_entropy() assumes that POOLWORDS is a multiple of 16 words.
#endif
/*
* This function extracts randomness from the "entropy pool", and
* returns it in a buffer. This function computes how many remaining
* bits of entropy are left in the pool, but it does not restrict the
* number of bytes that are actually obtained.
*/
static inline u_int
extract_entropy(struct random_bucket *r, char *buf, u_int nbytes)
static inline int
extract_entropy(struct random_bucket *r, char *buf, int nbytes)
{
int passes, i;
u_int length, ret;
int ret, i;
u_int32_t tmp[4];
u_int8_t *cp;
add_entropy(r, (u_int8_t *) &ticks, sizeof(ticks), 0, 0);
add_timer_randomness(r, &extract_timer_state, nbytes);
if (r->entropy_count > r->bit_length)
r->entropy_count = r->bit_length;
/* Redundant, but just in case... */
if (r->entropy_count > POOLBITS)
r->entropy_count = POOLBITS;
/* Why is this here? Left in from Ted Ts'o. Perhaps to limit time. */
if (nbytes > 32768)
nbytes = 32768;
ret = nbytes;
r->entropy_count -= ret * 8;
if (r->entropy_count < 0)
if (r->entropy_count / 8 >= nbytes)
r->entropy_count -= nbytes*8;
else
r->entropy_count = 0;
passes = r->length / 64;
while (nbytes) {
length = MIN(nbytes, 16);
for (i=0; i < 16; i++) {
if (++random_counter[i] != 0)
break;
}
/* Hash the pool to get the output */
tmp[0] = 0x67452301;
tmp[1] = 0xefcdab89;
tmp[2] = 0x98badcfe;
tmp[3] = 0x10325476;
MD5Transform(tmp, random_counter);
for (i = 0, cp = r->pool; i < passes; i++, cp+=64)
MD5Transform(tmp, (u_int32_t *) cp);
memcpy(buf, tmp, length);
nbytes -= length;
buf += length;
for (i = 0; i < POOLWORDS; i += 16)
MD5Transform(tmp, r->pool+i);
/* Modify pool so next hash will produce different results */
add_entropy_word(r, tmp[0]);
add_entropy_word(r, tmp[1]);
add_entropy_word(r, tmp[2]);
add_entropy_word(r, tmp[3]);
/*
* Run the MD5 Transform one more time, since we want
* to add at least minimal obscuring of the inputs to
* add_entropy_word(). --- TYT
*/
MD5Transform(tmp, r->pool);
/* Copy data to destination buffer */
i = MIN(nbytes, 16);
memcpy(buf, (u_int8_t const *)tmp, i);
nbytes -= i;
buf += i;
}
/* Wipe data from memory */
bzero(tmp, sizeof(tmp));
return ret;
}
@ -420,7 +443,7 @@ get_random_bytes(void *buf, u_int nbytes)
}
u_int
read_random(char * buf, u_int nbytes)
read_random(char *buf, u_int nbytes)
{
if ((nbytes * 8) > random_state.entropy_count)
nbytes = random_state.entropy_count / 8;
@ -429,7 +452,25 @@ read_random(char * buf, u_int nbytes)
}
u_int
read_random_unlimited(char * buf, u_int nbytes)
read_random_unlimited(char *buf, u_int nbytes)
{
return extract_entropy(&random_state, buf, nbytes);
}
u_int
write_random(const char *buf, u_int nbytes)
{
u_int i;
u_int32_t word, *p;
for (i = nbytes, p = (u_int32_t *)buf;
i >= sizeof(u_int32_t);
i-= sizeof(u_int32_t), p++)
add_entropy_word(&random_state, *p);
if (i) {
word = 0;
memcpy(&word, p, i);
add_entropy_word(&random_state, word);
}
return nbytes;
}

View File

@ -1,6 +1,6 @@
/*
* from: vector.s, 386BSD 0.1 unknown origin
* $Id: vector.s,v 1.14 1995/11/04 16:00:56 markm Exp $
* $Id: vector.s,v 1.15 1995/12/23 16:53:57 davidg Exp $
*/
#include <i386/isa/icu.h>
@ -39,12 +39,6 @@
#define MAYBE_PUSHL_ES
#endif
#define ADDENTROPY(irq_num) \
/* Add this interrupt to the pool of entropy */ \
pushl $irq_num ; \
call _add_interrupt_randomness ; \
addl $4,%esp
/*
* Macros for interrupt interrupt entry, call to handler, and exit.
*
@ -184,8 +178,6 @@ Xresume/**/irq_num: ; \
movb %al,_imen + IRQ_BYTE(irq_num) ; \
outb %al,$icu+1 ; \
sti ; /* XXX _doreti repeats the cli/sti */ \
/* Add this interrupt to the pool of entropy */ \
ADDENTROPY(irq_num) ; \
MEXITCOUNT ; \
/* We could usually avoid the following jmp by inlining some of */ \
/* _doreti, but it's probably better to use less cache. */ \

View File

@ -1,9 +1,9 @@
/*
* random_machdep.c -- A strong random number generator
* random.c -- A strong random number generator
*
* $Id$
*
* Version 0.92, last modified 21-Sep-95
* Version 0.95, last modified 18-Oct-95
*
* Copyright Theodore Ts'o, 1994, 1995. All rights reserved.
*
@ -37,88 +37,226 @@
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#define MAX_BLKDEV 4
#include <sys/param.h>
#include <sys/cdefs.h>
#include <sys/kernel.h>
#include <sys/uio.h>
#include <sys/systm.h>
#include <i386/isa/isa.h>
#include <i386/isa/icu.h>
#include <i386/isa/timerreg.h>
#include <i386/isa/isa_device.h>
#include <machine/random.h>
#define RANDPOOL 512
/*
* The pool is stirred with a primitive polynomial of degree 128
* over GF(2), namely x^128 + x^99 + x^59 + x^31 + x^9 + x^7 + 1.
* For a pool of size 64, try x^64+x^62+x^38+x^10+x^6+x+1.
*/
#define POOLWORDS 128 /* Power of 2 - note that this is 32-bit words */
#define POOLBITS (POOLWORDS*32)
#if POOLWORDS == 128
#define TAP1 99 /* The polynomial taps */
#define TAP2 59
#define TAP3 31
#define TAP4 9
#define TAP5 7
#elif POOLWORDS == 64
#define TAP1 62 /* The polynomial taps */
#define TAP2 38
#define TAP3 10
#define TAP4 6
#define TAP5 1
#else
#error No primitive polynomial available for chosen POOLWORDS
#endif
#define WRITEBUFFER 512 /* size in bytes */
/* There is actually only one of these, globally. */
struct random_bucket {
int add_ptr;
int entropy_count;
int length;
int bit_length;
int delay_mix:1;
u_int8_t *pool;
u_int add_ptr;
u_int entropy_count;
int input_rotate;
u_int32_t *pool;
};
/* There is one of these per entropy source */
struct timer_rand_state {
u_int32_t last_time;
int last_delta;
int nbits;
u_long last_time;
int last_delta;
int nbits;
};
static struct random_bucket random_state;
static u_int32_t rand_pool_key[16];
static u_int8_t random_pool[RANDPOOL];
static u_int32_t random_counter[16];
static u_int32_t random_pool[POOLWORDS];
static struct timer_rand_state keyboard_timer_state;
static struct timer_rand_state extract_timer_state;
static struct timer_rand_state irq_timer_state[ICU_LEN];
static struct timer_rand_state blkdev_timer_state[MAX_BLKDEV];
static struct wait_queue *random_wait;
inthand2_t *sec_intr_handler[ICU_LEN];
int sec_intr_unit[ICU_LEN];
inthand2_t add_interrupt_randomness;
u_int16_t interrupt_allowed = 0;
#ifndef MIN
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
#endif
static void
flush_random(struct random_bucket *random_state)
{
random_state->add_ptr = 0;
random_state->bit_length = random_state->length * 8;
random_state->entropy_count = 0;
random_state->delay_mix = 0;
}
void
rand_initialize(void)
{
random_state.length = RANDPOOL;
random_state.add_ptr = 0;
random_state.entropy_count = 0;
random_state.pool = random_pool;
flush_random(&random_state);
random_wait = NULL;
}
#if 0
{
int irq;
long interrupts;
/* XXX Dreadful hack - should be replaced by something more elegant */
interrupts = RANDOM_INTERRUPTS;
/*
* This function adds an int into the entropy "pool". It does not
* update the entropy estimate. The caller must do this if appropriate.
*
* The pool is stirred with a primitive polynomial of degree 128
* over GF(2), namely x^128 + x^99 + x^59 + x^31 + x^9 + x^7 + 1.
* For a pool of size 64, try x^64+x^62+x^38+x^10+x^6+x+1.
*
* We rotate the input word by a changing number of bits, to help
* assure that all bits in the entropy get toggled. Otherwise, if we
* consistently feed the entropy pool small numbers (like ticks and
* scancodes, for example), the upper bits of the entropy pool don't
* get affected. --- TYT, 10/11/95
*/
static inline void
add_entropy_word(struct random_bucket *r, const u_int32_t input)
{
u_int i;
u_int32_t w;
for (irq = 0; irq < ICU_LEN; irq++) {
interrupt_allowed[irq] = interrupts & 0x0001;
interrupts >>= 1;
printf("Randomising irq %d %s\n", irq, interrupt_allowed[irq] ?
"on" : "off");
}
w = (input << r->input_rotate) | (input >> (32 - r->input_rotate));
i = r->add_ptr = (r->add_ptr - 1) & (POOLWORDS-1);
if (i)
r->input_rotate = (r->input_rotate + 7) & 31;
else
/*
* At the beginning of the pool, add an extra 7 bits
* rotation, so that successive passes spread the
* input bits across the pool evenly.
*/
r->input_rotate = (r->input_rotate + 14) & 31;
/* XOR in the various taps */
w ^= r->pool[(i+TAP1)&(POOLWORDS-1)];
w ^= r->pool[(i+TAP2)&(POOLWORDS-1)];
w ^= r->pool[(i+TAP3)&(POOLWORDS-1)];
w ^= r->pool[(i+TAP4)&(POOLWORDS-1)];
w ^= r->pool[(i+TAP5)&(POOLWORDS-1)];
w ^= r->pool[i];
/* Rotate w left 1 bit (stolen from SHA) and store */
r->pool[i] = (w << 1) | (w >> 31);
}
/*
* This function adds entropy to the entropy "pool" by using timing
* delays. It uses the timer_rand_state structure to make an estimate
* of how any bits of entropy this call has added to the pool.
*
* The number "num" is also added to the pool - it should somehow describe
* the type of event which just happened. This is currently 0-255 for
* keyboard scan codes, and 256 upwards for interrupts.
* On the i386, this is assumed to be at most 16 bits, and the high bits
* are used for a high-resolution timer.
*
* TODO: Read the time stamp register on the Pentium.
*/
static void
add_timer_randomness(struct random_bucket *r, struct timer_rand_state *state,
u_int num)
{
int delta, delta2;
u_int nbits;
u_int32_t time;
#if defined(I586_CPU)
if (cpu_class == CPUCLASS_586) {
u_long low, high;
__asm__(".byte 0x0f,0x31" :"=a" (low), "=d" (high)); /* RDTSC */
time = (u_int32_t) low;
num ^= (u_int32_t) high;
r->entropy_count += 2;
}
else {
#endif
outb(TIMER_LATCH|TIMER_SEL0, TIMER_MODE); /* latch ASAP */
num ^= inb(TIMER_CNTR0) << 16;
num ^= inb(TIMER_CNTR0) << 24;
r->entropy_count += 2;
#if defined(I586_CPU)
} /* cpu_class == CPUCLASS_586 */
#endif
time = ticks;
add_entropy_word(r, (u_int32_t) num);
add_entropy_word(r, time);
/*
* Calculate number of bits of randomness we probably
* added. We take into account the first and second order
* deltas in order to make our estimate.
*/
delta = time - state->last_time;
state->last_time = time;
delta2 = delta - state->last_delta;
state->last_delta = delta;
if (delta < 0) delta = -delta;
if (delta2 < 0) delta2 = -delta2;
delta = MIN(delta, delta2) >> 1;
for (nbits = 0; delta; nbits++)
delta >>= 1;
r->entropy_count += nbits;
/* Prevent overflow */
if (r->entropy_count > POOLBITS)
r->entropy_count = POOLBITS;
}
void
add_keyboard_randomness(u_char scancode)
{
add_timer_randomness(&random_state, &keyboard_timer_state, scancode);
}
void
add_interrupt_randomness(int irq)
{
(sec_intr_handler[irq])(sec_intr_unit[irq]);
add_timer_randomness(&random_state, &irq_timer_state[irq], irq);
}
void
add_blkdev_randomness(int major)
{
if (major >= MAX_BLKDEV)
return;
add_timer_randomness(&random_state, &blkdev_timer_state[major],
0x200+major);
}
/*
* MD5 transform algorithm, taken from code written by Colin Plumb,
* and put into the public domain
*
* QUESTION: Replace this with SHA, which as generally received better
* reviews from the cryptographic community?
*/
/* The four core functions - F1 is optimized somewhat */
@ -139,7 +277,8 @@ rand_initialize(void)
* the data and converts bytes into longwords for this routine.
*/
static void
MD5Transform(u_int32_t buf[4], u_int32_t const in[16])
MD5Transform(u_int32_t buf[4],
u_int32_t const in[16])
{
u_int32_t a, b, c, d;
@ -228,183 +367,67 @@ MD5Transform(u_int32_t buf[4], u_int32_t const in[16])
#undef F4
#undef MD5STEP
static void
mix_bucket(struct random_bucket *v)
{
struct random_bucket *r = v;
int i, num_passes;
u_int32_t *p;
u_int32_t iv[4];
r->delay_mix = 0;
/* Start IV from last block of the random pool */
memcpy(iv, r->pool + r->length - sizeof(iv), sizeof(iv));
num_passes = r->length / 16;
for (i = 0, p = (u_int32_t *) r->pool; i < num_passes; i++) {
MD5Transform(iv, rand_pool_key);
iv[0] = (*p++ ^= iv[0]);
iv[1] = (*p++ ^= iv[1]);
iv[2] = (*p++ ^= iv[2]);
iv[3] = (*p++ ^= iv[3]);
}
memcpy(rand_pool_key, r->pool, sizeof(rand_pool_key));
/* Wipe iv from memory */
bzero(iv, sizeof(iv));
r->add_ptr = 0;
}
/*
* This function adds a byte into the entropy "pool". It does not
* update the entropy estimate. The caller must do this if appropriate.
*/
static inline void
add_entropy_byte(struct random_bucket *r, const u_int8_t ch, int delay)
{
if (!delay && r->delay_mix)
mix_bucket(r);
r->pool[r->add_ptr++] ^= ch;
if (r->add_ptr >= r->length) {
if (delay) {
r->delay_mix = 1;
r->add_ptr = 0;
} else
mix_bucket(r);
}
}
/*
* This function adds some number of bytes into the entropy pool and
* updates the entropy count as appropriate.
*/
static void
add_entropy(struct random_bucket *r, const u_int8_t *ptr, int length,
int entropy_level, int delay)
{
while (length-- > 0)
add_entropy_byte(r, *ptr++, delay);
r->entropy_count += entropy_level;
if (r->entropy_count > r->length*8)
r->entropy_count = r->length * 8;
}
/*
* This function adds entropy to the entropy "pool" by using timing
* delays. It uses the timer_rand_state structure to make an estimate
* of how many bits of entropy this call has added to the pool.
*/
static void
add_timer_randomness(struct random_bucket *r, struct timer_rand_state *state,
int delay)
{
int delta, delta2;
int nbits;
u_int8_t timer_high, timer_low;
/*
* Calculate number of bits of randomness we probably
* added. We take into account the first and second order
* delta's in order to make our estimate.
*/
delta = ticks - state->last_time;
delta2 = delta - state->last_delta;
state->last_time = ticks;
state->last_delta = delta;
if (delta < 0) delta = -delta;
if (delta2 < 0) delta2 = -delta2;
delta = MIN(delta, delta2) >> 1;
for (nbits = 0; delta; nbits++)
delta >>= 1;
add_entropy(r, (u_int8_t *) &ticks, sizeof(ticks), nbits, delay);
/*
* On a 386, read the high resolution timer. We assume that
* this gives us 2 bits of randomness. XXX This needs
* investigation.
*/
disable_intr();
outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
timer_low = inb(TIMER_CNTR0);
timer_high = inb(TIMER_CNTR0);
enable_intr();
add_entropy_byte(r, timer_low, 1);
add_entropy_byte(r, timer_high, 1);
r->entropy_count += 2;
if (r->entropy_count > r->bit_length)
r->entropy_count = r->bit_length;
}
void
add_keyboard_randomness(u_char scancode)
{
struct random_bucket *r = &random_state;
add_timer_randomness(r, &keyboard_timer_state, 0);
add_entropy_byte(r, scancode, 0);
r->entropy_count += 6;
if (r->entropy_count > r->bit_length)
r->entropy_count = r->bit_length;
}
void
add_interrupt_randomness(int irq)
{
static struct random_bucket *r = &random_state;
u_int16_t intbit = 1 << irq;
/* printf("Trapping interrupt %d\n", irq); */
if (interrupt_allowed & intbit)
add_timer_randomness(r, &irq_timer_state[irq], 1);
}
#if POOLWORDS % 16
#error extract_entropy() assumes that POOLWORDS is a multiple of 16 words.
#endif
/*
* This function extracts randomness from the "entropy pool", and
* returns it in a buffer. This function computes how many remaining
* bits of entropy are left in the pool, but it does not restrict the
* number of bytes that are actually obtained.
*/
static inline u_int
extract_entropy(struct random_bucket *r, char *buf, u_int nbytes)
static inline int
extract_entropy(struct random_bucket *r, char *buf, int nbytes)
{
int passes, i;
u_int length, ret;
int ret, i;
u_int32_t tmp[4];
u_int8_t *cp;
add_entropy(r, (u_int8_t *) &ticks, sizeof(ticks), 0, 0);
add_timer_randomness(r, &extract_timer_state, nbytes);
if (r->entropy_count > r->bit_length)
r->entropy_count = r->bit_length;
/* Redundant, but just in case... */
if (r->entropy_count > POOLBITS)
r->entropy_count = POOLBITS;
/* Why is this here? Left in from Ted Ts'o. Perhaps to limit time. */
if (nbytes > 32768)
nbytes = 32768;
ret = nbytes;
r->entropy_count -= ret * 8;
if (r->entropy_count < 0)
if (r->entropy_count / 8 >= nbytes)
r->entropy_count -= nbytes*8;
else
r->entropy_count = 0;
passes = r->length / 64;
while (nbytes) {
length = MIN(nbytes, 16);
for (i=0; i < 16; i++) {
if (++random_counter[i] != 0)
break;
}
/* Hash the pool to get the output */
tmp[0] = 0x67452301;
tmp[1] = 0xefcdab89;
tmp[2] = 0x98badcfe;
tmp[3] = 0x10325476;
MD5Transform(tmp, random_counter);
for (i = 0, cp = r->pool; i < passes; i++, cp+=64)
MD5Transform(tmp, (u_int32_t *) cp);
memcpy(buf, tmp, length);
nbytes -= length;
buf += length;
for (i = 0; i < POOLWORDS; i += 16)
MD5Transform(tmp, r->pool+i);
/* Modify pool so next hash will produce different results */
add_entropy_word(r, tmp[0]);
add_entropy_word(r, tmp[1]);
add_entropy_word(r, tmp[2]);
add_entropy_word(r, tmp[3]);
/*
* Run the MD5 Transform one more time, since we want
* to add at least minimal obscuring of the inputs to
* add_entropy_word(). --- TYT
*/
MD5Transform(tmp, r->pool);
/* Copy data to destination buffer */
i = MIN(nbytes, 16);
memcpy(buf, (u_int8_t const *)tmp, i);
nbytes -= i;
buf += i;
}
/* Wipe data from memory */
bzero(tmp, sizeof(tmp));
return ret;
}
@ -420,7 +443,7 @@ get_random_bytes(void *buf, u_int nbytes)
}
u_int
read_random(char * buf, u_int nbytes)
read_random(char *buf, u_int nbytes)
{
if ((nbytes * 8) > random_state.entropy_count)
nbytes = random_state.entropy_count / 8;
@ -429,7 +452,25 @@ read_random(char * buf, u_int nbytes)
}
u_int
read_random_unlimited(char * buf, u_int nbytes)
read_random_unlimited(char *buf, u_int nbytes)
{
return extract_entropy(&random_state, buf, nbytes);
}
u_int
write_random(const char *buf, u_int nbytes)
{
u_int i;
u_int32_t word, *p;
for (i = nbytes, p = (u_int32_t *)buf;
i >= sizeof(u_int32_t);
i-= sizeof(u_int32_t), p++)
add_entropy_word(&random_state, *p);
if (i) {
word = 0;
memcpy(&word, p, i);
add_entropy_word(&random_state, word);
}
return nbytes;
}