Vendor import of lld trunk r305575:

https://llvm.org/svn/llvm-project/lld/trunk@305575
This commit is contained in:
Dimitry Andric 2017-06-16 21:04:14 +00:00
parent 2079716dfb
commit 15f7a1a379
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/vendor/lld/dist/; revision=320021
svn path=/vendor/lld/lld-trunk-r305575/; revision=320022; tag=vendor/lld/lld-trunk-r305575
63 changed files with 3677 additions and 3014 deletions

View File

@ -429,7 +429,7 @@ static std::string getImplibPath() {
return Out.str();
}
std::vector<COFFShortExport> createCOFFShortExportFromConfig() {
static void createImportLibrary() {
std::vector<COFFShortExport> Exports;
for (Export &E1 : Config->Exports) {
COFFShortExport E2;
@ -443,11 +443,7 @@ std::vector<COFFShortExport> createCOFFShortExportFromConfig() {
E2.Constant = E1.Constant;
Exports.push_back(E2);
}
return Exports;
}
static void createImportLibrary() {
std::vector<COFFShortExport> Exports = createCOFFShortExportFromConfig();
std::string DLLName = sys::path::filename(Config->OutputFile);
std::string Path = getImplibPath();
writeImportLibrary(DLLName, Path, Exports, Config->Machine);
@ -707,8 +703,12 @@ void LinkerDriver::link(ArrayRef<const char *> ArgsArr) {
}
}
if (!Args.hasArgNoClaim(OPT_INPUT))
fatal("no input files");
if (!Args.hasArgNoClaim(OPT_INPUT)) {
if (Args.hasArgNoClaim(OPT_deffile))
Config->NoEntry = true;
else
fatal("no input files");
}
// Construct search path list.
SearchPaths.push_back("");
@ -990,6 +990,13 @@ void LinkerDriver::link(ArrayRef<const char *> ArgsArr) {
parseModuleDefs(Arg->getValue());
}
// Handle generation of import library from a def file.
if (!Args.hasArgNoClaim(OPT_INPUT)) {
fixupExports();
createImportLibrary();
exit(0);
}
// Handle /delayload
for (auto *Arg : Args.filtered(OPT_delayload)) {
Config->DelayLoads.insert(StringRef(Arg->getValue()).lower());

View File

@ -522,7 +522,7 @@ void fixupExports() {
for (Export &E : Config->Exports) {
SymbolBody *Sym = E.Sym;
if (!E.ForwardTo.empty()) {
if (!E.ForwardTo.empty() || !Sym) {
E.SymbolName = E.Name;
} else {
if (auto *U = dyn_cast<Undefined>(Sym))

View File

@ -22,6 +22,12 @@
#include <set>
#include <vector>
namespace llvm {
namespace pdb {
class DbiModuleDescriptorBuilder;
}
}
namespace lld {
namespace coff {
@ -122,6 +128,12 @@ class ObjectFile : public InputFile {
// COFF-specific and x86-only.
std::set<SymbolBody *> SEHandlers;
// Pointer to the PDB module descriptor builder. Various debug info records
// will reference object files by "module index", which is here. Things like
// source files and section contributions are also recorded here. Will be null
// if we are not producing a PDB.
llvm::pdb::DbiModuleDescriptorBuilder *ModuleDBI = nullptr;
private:
void initializeChunks();
void initializeSymbols();

View File

@ -29,6 +29,7 @@
#include "llvm/DebugInfo/PDB/Native/InfoStreamBuilder.h"
#include "llvm/DebugInfo/PDB/Native/PDBFile.h"
#include "llvm/DebugInfo/PDB/Native/PDBFileBuilder.h"
#include "llvm/DebugInfo/PDB/Native/DbiModuleDescriptorBuilder.h"
#include "llvm/DebugInfo/PDB/Native/PDBStringTableBuilder.h"
#include "llvm/DebugInfo/PDB/Native/PDBTypeServerHandler.h"
#include "llvm/DebugInfo/PDB/Native/TpiStream.h"
@ -53,12 +54,10 @@ using llvm::object::coff_section;
static ExitOnError ExitOnErr;
// Returns a list of all SectionChunks.
static std::vector<coff_section> getInputSections(SymbolTable *Symtab) {
std::vector<coff_section> V;
static void addSectionContribs(SymbolTable *Symtab, pdb::DbiStreamBuilder &DbiBuilder) {
for (Chunk *C : Symtab->getChunks())
if (auto *SC = dyn_cast<SectionChunk>(C))
V.push_back(*SC->Header);
return V;
DbiBuilder.addSectionContrib(SC->File->ModuleDBI, SC->Header);
}
static SectionChunk *findByName(std::vector<SectionChunk *> &Sections,
@ -95,10 +94,11 @@ static void addTypeInfo(pdb::TpiStreamBuilder &TpiBuilder,
});
}
// Merge .debug$T sections into IpiData and TpiData.
static void mergeDebugT(SymbolTable *Symtab, pdb::PDBFileBuilder &Builder,
codeview::TypeTableBuilder &TypeTable,
codeview::TypeTableBuilder &IDTable) {
// Add all object files to the PDB. Merge .debug$T sections into IpiData and
// TpiData.
static void addObjectsToPDB(SymbolTable *Symtab, pdb::PDBFileBuilder &Builder,
codeview::TypeTableBuilder &TypeTable,
codeview::TypeTableBuilder &IDTable) {
// Follow type servers. If the same type server is encountered more than
// once for this instance of `PDBTypeServerHandler` (for example if many
// object files reference the same TypeServer), the types from the
@ -107,6 +107,20 @@ static void mergeDebugT(SymbolTable *Symtab, pdb::PDBFileBuilder &Builder,
// Visit all .debug$T sections to add them to Builder.
for (ObjectFile *File : Symtab->ObjectFiles) {
// Add a module descriptor for every object file. We need to put an absolute
// path to the object into the PDB. If this is a plain object, we make its
// path absolute. If it's an object in an archive, we make the archive path
// absolute.
bool InArchive = !File->ParentName.empty();
SmallString<128> Path = InArchive ? File->ParentName : File->getName();
sys::fs::make_absolute(Path);
StringRef Name = InArchive ? File->getName() : StringRef(Path);
File->ModuleDBI = &ExitOnErr(Builder.getDbiBuilder().addModuleInfo(Name));
File->ModuleDBI->setObjFileName(Path);
// FIXME: Walk the .debug$S sections and add them. Do things like recording
// source files.
ArrayRef<uint8_t> Data = getDebugSection(File, ".debug$T");
if (Data.empty())
continue;
@ -202,17 +216,15 @@ void coff::createPDB(StringRef Path, SymbolTable *Symtab,
InfoBuilder.setVersion(pdb::PdbRaw_ImplVer::PdbImplVC70);
// Add an empty DPI stream.
auto &DbiBuilder = Builder.getDbiBuilder();
pdb::DbiStreamBuilder &DbiBuilder = Builder.getDbiBuilder();
DbiBuilder.setVersionHeader(pdb::PdbDbiV110);
codeview::TypeTableBuilder TypeTable(BAlloc);
codeview::TypeTableBuilder IDTable(BAlloc);
mergeDebugT(Symtab, Builder, TypeTable, IDTable);
addObjectsToPDB(Symtab, Builder, TypeTable, IDTable);
// Add Section Contributions.
std::vector<pdb::SectionContrib> Contribs =
pdb::DbiStreamBuilder::createSectionContribs(getInputSections(Symtab));
DbiBuilder.setSectionContribs(Contribs);
addSectionContribs(Symtab, DbiBuilder);
// Add Section Map stream.
ArrayRef<object::coff_section> Sections = {

374
ELF/Arch/AArch64.cpp Normal file
View File

@ -0,0 +1,374 @@
//===- AArch64.cpp --------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Error.h"
#include "Memory.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
// Page(Expr) is the page address of the expression Expr, defined
// as (Expr & ~0xFFF). (This applies even if the machine page size
// supported by the platform has a different value.)
uint64_t elf::getAArch64Page(uint64_t Expr) {
return Expr & ~static_cast<uint64_t>(0xFFF);
}
namespace {
class AArch64 final : public TargetInfo {
public:
AArch64();
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const override;
bool isPicRel(uint32_t Type) const override;
void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
void writePltHeader(uint8_t *Buf) const override;
void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
int32_t Index, unsigned RelOff) const override;
bool usesOnlyLowPageBits(uint32_t Type) const override;
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
RelExpr Expr) const override;
void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
};
} // namespace
AArch64::AArch64() {
CopyRel = R_AARCH64_COPY;
RelativeRel = R_AARCH64_RELATIVE;
IRelativeRel = R_AARCH64_IRELATIVE;
GotRel = R_AARCH64_GLOB_DAT;
PltRel = R_AARCH64_JUMP_SLOT;
TlsDescRel = R_AARCH64_TLSDESC;
TlsGotRel = R_AARCH64_TLS_TPREL64;
GotEntrySize = 8;
GotPltEntrySize = 8;
PltEntrySize = 16;
PltHeaderSize = 32;
DefaultMaxPageSize = 65536;
// It doesn't seem to be documented anywhere, but tls on aarch64 uses variant
// 1 of the tls structures and the tcb size is 16.
TcbSize = 16;
}
RelExpr AArch64::getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const {
switch (Type) {
default:
return R_ABS;
case R_AARCH64_TLSDESC_ADR_PAGE21:
return R_TLSDESC_PAGE;
case R_AARCH64_TLSDESC_LD64_LO12:
case R_AARCH64_TLSDESC_ADD_LO12:
return R_TLSDESC;
case R_AARCH64_TLSDESC_CALL:
return R_TLSDESC_CALL;
case R_AARCH64_TLSLE_ADD_TPREL_HI12:
case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
return R_TLS;
case R_AARCH64_CALL26:
case R_AARCH64_CONDBR19:
case R_AARCH64_JUMP26:
case R_AARCH64_TSTBR14:
return R_PLT_PC;
case R_AARCH64_PREL16:
case R_AARCH64_PREL32:
case R_AARCH64_PREL64:
case R_AARCH64_ADR_PREL_LO21:
return R_PC;
case R_AARCH64_ADR_PREL_PG_HI21:
return R_PAGE_PC;
case R_AARCH64_LD64_GOT_LO12_NC:
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
return R_GOT;
case R_AARCH64_ADR_GOT_PAGE:
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
return R_GOT_PAGE_PC;
case R_AARCH64_NONE:
return R_NONE;
}
}
RelExpr AArch64::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
RelExpr Expr) const {
if (Expr == R_RELAX_TLS_GD_TO_IE) {
if (Type == R_AARCH64_TLSDESC_ADR_PAGE21)
return R_RELAX_TLS_GD_TO_IE_PAGE_PC;
return R_RELAX_TLS_GD_TO_IE_ABS;
}
return Expr;
}
bool AArch64::usesOnlyLowPageBits(uint32_t Type) const {
switch (Type) {
default:
return false;
case R_AARCH64_ADD_ABS_LO12_NC:
case R_AARCH64_LD64_GOT_LO12_NC:
case R_AARCH64_LDST128_ABS_LO12_NC:
case R_AARCH64_LDST16_ABS_LO12_NC:
case R_AARCH64_LDST32_ABS_LO12_NC:
case R_AARCH64_LDST64_ABS_LO12_NC:
case R_AARCH64_LDST8_ABS_LO12_NC:
case R_AARCH64_TLSDESC_ADD_LO12:
case R_AARCH64_TLSDESC_LD64_LO12:
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
return true;
}
}
bool AArch64::isPicRel(uint32_t Type) const {
return Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64;
}
void AArch64::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
write64le(Buf, InX::Plt->getVA());
}
void AArch64::writePltHeader(uint8_t *Buf) const {
const uint8_t PltData[] = {
0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[2]))
0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[2]))]
0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[2]))
0x20, 0x02, 0x1f, 0xd6, // br x17
0x1f, 0x20, 0x03, 0xd5, // nop
0x1f, 0x20, 0x03, 0xd5, // nop
0x1f, 0x20, 0x03, 0xd5 // nop
};
memcpy(Buf, PltData, sizeof(PltData));
uint64_t Got = InX::GotPlt->getVA();
uint64_t Plt = InX::Plt->getVA();
relocateOne(Buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
getAArch64Page(Got + 16) - getAArch64Page(Plt + 4));
relocateOne(Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, Got + 16);
relocateOne(Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, Got + 16);
}
void AArch64::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
const uint8_t Inst[] = {
0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[n]))]
0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[n]))
0x20, 0x02, 0x1f, 0xd6 // br x17
};
memcpy(Buf, Inst, sizeof(Inst));
relocateOne(Buf, R_AARCH64_ADR_PREL_PG_HI21,
getAArch64Page(GotPltEntryAddr) - getAArch64Page(PltEntryAddr));
relocateOne(Buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, GotPltEntryAddr);
relocateOne(Buf + 8, R_AARCH64_ADD_ABS_LO12_NC, GotPltEntryAddr);
}
static void write32AArch64Addr(uint8_t *L, uint64_t Imm) {
uint32_t ImmLo = (Imm & 0x3) << 29;
uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
}
// Return the bits [Start, End] from Val shifted Start bits.
// For instance, getBits(0xF0, 4, 8) returns 0xF.
static uint64_t getBits(uint64_t Val, int Start, int End) {
uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
return (Val >> Start) & Mask;
}
static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); }
// Update the immediate field in a AARCH64 ldr, str, and add instruction.
static void or32AArch64Imm(uint8_t *L, uint64_t Imm) {
or32le(L, (Imm & 0xFFF) << 10);
}
void AArch64::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
switch (Type) {
case R_AARCH64_ABS16:
case R_AARCH64_PREL16:
checkIntUInt<16>(Loc, Val, Type);
write16le(Loc, Val);
break;
case R_AARCH64_ABS32:
case R_AARCH64_PREL32:
checkIntUInt<32>(Loc, Val, Type);
write32le(Loc, Val);
break;
case R_AARCH64_ABS64:
case R_AARCH64_GLOB_DAT:
case R_AARCH64_PREL64:
write64le(Loc, Val);
break;
case R_AARCH64_ADD_ABS_LO12_NC:
or32AArch64Imm(Loc, Val);
break;
case R_AARCH64_ADR_GOT_PAGE:
case R_AARCH64_ADR_PREL_PG_HI21:
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
case R_AARCH64_TLSDESC_ADR_PAGE21:
checkInt<33>(Loc, Val, Type);
write32AArch64Addr(Loc, Val >> 12);
break;
case R_AARCH64_ADR_PREL_LO21:
checkInt<21>(Loc, Val, Type);
write32AArch64Addr(Loc, Val);
break;
case R_AARCH64_CALL26:
case R_AARCH64_JUMP26:
checkInt<28>(Loc, Val, Type);
or32le(Loc, (Val & 0x0FFFFFFC) >> 2);
break;
case R_AARCH64_CONDBR19:
checkInt<21>(Loc, Val, Type);
or32le(Loc, (Val & 0x1FFFFC) << 3);
break;
case R_AARCH64_LD64_GOT_LO12_NC:
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
case R_AARCH64_TLSDESC_LD64_LO12:
checkAlignment<8>(Loc, Val, Type);
or32le(Loc, (Val & 0xFF8) << 7);
break;
case R_AARCH64_LDST8_ABS_LO12_NC:
or32AArch64Imm(Loc, getBits(Val, 0, 11));
break;
case R_AARCH64_LDST16_ABS_LO12_NC:
or32AArch64Imm(Loc, getBits(Val, 1, 11));
break;
case R_AARCH64_LDST32_ABS_LO12_NC:
or32AArch64Imm(Loc, getBits(Val, 2, 11));
break;
case R_AARCH64_LDST64_ABS_LO12_NC:
or32AArch64Imm(Loc, getBits(Val, 3, 11));
break;
case R_AARCH64_LDST128_ABS_LO12_NC:
or32AArch64Imm(Loc, getBits(Val, 4, 11));
break;
case R_AARCH64_MOVW_UABS_G0_NC:
or32le(Loc, (Val & 0xFFFF) << 5);
break;
case R_AARCH64_MOVW_UABS_G1_NC:
or32le(Loc, (Val & 0xFFFF0000) >> 11);
break;
case R_AARCH64_MOVW_UABS_G2_NC:
or32le(Loc, (Val & 0xFFFF00000000) >> 27);
break;
case R_AARCH64_MOVW_UABS_G3:
or32le(Loc, (Val & 0xFFFF000000000000) >> 43);
break;
case R_AARCH64_TSTBR14:
checkInt<16>(Loc, Val, Type);
or32le(Loc, (Val & 0xFFFC) << 3);
break;
case R_AARCH64_TLSLE_ADD_TPREL_HI12:
checkInt<24>(Loc, Val, Type);
or32AArch64Imm(Loc, Val >> 12);
break;
case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
case R_AARCH64_TLSDESC_ADD_LO12:
or32AArch64Imm(Loc, Val);
break;
default:
error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
}
}
void AArch64::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
// TLSDESC Global-Dynamic relocation are in the form:
// adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
// ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12]
// add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12]
// .tlsdesccall [R_AARCH64_TLSDESC_CALL]
// blr x1
// And it can optimized to:
// movz x0, #0x0, lsl #16
// movk x0, #0x10
// nop
// nop
checkUInt<32>(Loc, Val, Type);
switch (Type) {
case R_AARCH64_TLSDESC_ADD_LO12:
case R_AARCH64_TLSDESC_CALL:
write32le(Loc, 0xd503201f); // nop
return;
case R_AARCH64_TLSDESC_ADR_PAGE21:
write32le(Loc, 0xd2a00000 | (((Val >> 16) & 0xffff) << 5)); // movz
return;
case R_AARCH64_TLSDESC_LD64_LO12:
write32le(Loc, 0xf2800000 | ((Val & 0xffff) << 5)); // movk
return;
default:
llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
}
}
void AArch64::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
// TLSDESC Global-Dynamic relocation are in the form:
// adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
// ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12]
// add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12]
// .tlsdesccall [R_AARCH64_TLSDESC_CALL]
// blr x1
// And it can optimized to:
// adrp x0, :gottprel:v
// ldr x0, [x0, :gottprel_lo12:v]
// nop
// nop
switch (Type) {
case R_AARCH64_TLSDESC_ADD_LO12:
case R_AARCH64_TLSDESC_CALL:
write32le(Loc, 0xd503201f); // nop
break;
case R_AARCH64_TLSDESC_ADR_PAGE21:
write32le(Loc, 0x90000000); // adrp
relocateOne(Loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, Val);
break;
case R_AARCH64_TLSDESC_LD64_LO12:
write32le(Loc, 0xf9400000); // ldr
relocateOne(Loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, Val);
break;
default:
llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
}
}
void AArch64::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
checkUInt<32>(Loc, Val, Type);
if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
// Generate MOVZ.
uint32_t RegNo = read32le(Loc) & 0x1f;
write32le(Loc, (0xd2a00000 | RegNo) | (((Val >> 16) & 0xffff) << 5));
return;
}
if (Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
// Generate MOVK.
uint32_t RegNo = read32le(Loc) & 0x1f;
write32le(Loc, (0xf2800000 | RegNo) | ((Val & 0xffff) << 5));
return;
}
llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
}
TargetInfo *elf::createAArch64TargetInfo() { return make<AArch64>(); }

82
ELF/Arch/AMDGPU.cpp Normal file
View File

@ -0,0 +1,82 @@
//===- AMDGPU.cpp ---------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Error.h"
#include "InputFiles.h"
#include "Memory.h"
#include "Symbols.h"
#include "Target.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
class AMDGPU final : public TargetInfo {
public:
AMDGPU();
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const override;
};
} // namespace
AMDGPU::AMDGPU() {
RelativeRel = R_AMDGPU_REL64;
GotRel = R_AMDGPU_ABS64;
GotEntrySize = 8;
}
void AMDGPU::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
switch (Type) {
case R_AMDGPU_ABS32:
case R_AMDGPU_GOTPCREL:
case R_AMDGPU_GOTPCREL32_LO:
case R_AMDGPU_REL32:
case R_AMDGPU_REL32_LO:
write32le(Loc, Val);
break;
case R_AMDGPU_ABS64:
write64le(Loc, Val);
break;
case R_AMDGPU_GOTPCREL32_HI:
case R_AMDGPU_REL32_HI:
write32le(Loc, Val >> 32);
break;
default:
error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
}
}
RelExpr AMDGPU::getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const {
switch (Type) {
case R_AMDGPU_ABS32:
case R_AMDGPU_ABS64:
return R_ABS;
case R_AMDGPU_REL32:
case R_AMDGPU_REL32_LO:
case R_AMDGPU_REL32_HI:
return R_PC;
case R_AMDGPU_GOTPCREL:
case R_AMDGPU_GOTPCREL32_LO:
case R_AMDGPU_GOTPCREL32_HI:
return R_GOT_PC;
default:
error(toString(S.File) + ": unknown relocation type: " + toString(Type));
return R_HINT;
}
}
TargetInfo *elf::createAMDGPUTargetInfo() { return make<AMDGPU>(); }

432
ELF/Arch/ARM.cpp Normal file
View File

@ -0,0 +1,432 @@
//===- ARM.cpp ------------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Error.h"
#include "InputFiles.h"
#include "Memory.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
class ARM final : public TargetInfo {
public:
ARM();
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const override;
bool isPicRel(uint32_t Type) const override;
uint32_t getDynRel(uint32_t Type) const override;
int64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
void writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const override;
void writePltHeader(uint8_t *Buf) const override;
void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
int32_t Index, unsigned RelOff) const override;
void addPltSymbols(InputSectionBase *IS, uint64_t Off) const override;
void addPltHeaderSymbols(InputSectionBase *ISD) const override;
bool needsThunk(RelExpr Expr, uint32_t RelocType, const InputFile *File,
const SymbolBody &S) const override;
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
};
} // namespace
ARM::ARM() {
CopyRel = R_ARM_COPY;
RelativeRel = R_ARM_RELATIVE;
IRelativeRel = R_ARM_IRELATIVE;
GotRel = R_ARM_GLOB_DAT;
PltRel = R_ARM_JUMP_SLOT;
TlsGotRel = R_ARM_TLS_TPOFF32;
TlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
TlsOffsetRel = R_ARM_TLS_DTPOFF32;
GotEntrySize = 4;
GotPltEntrySize = 4;
PltEntrySize = 16;
PltHeaderSize = 20;
// ARM uses Variant 1 TLS
TcbSize = 8;
NeedsThunks = true;
}
RelExpr ARM::getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const {
switch (Type) {
default:
return R_ABS;
case R_ARM_THM_JUMP11:
return R_PC;
case R_ARM_CALL:
case R_ARM_JUMP24:
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_PREL31:
case R_ARM_THM_JUMP19:
case R_ARM_THM_JUMP24:
case R_ARM_THM_CALL:
return R_PLT_PC;
case R_ARM_GOTOFF32:
// (S + A) - GOT_ORG
return R_GOTREL;
case R_ARM_GOT_BREL:
// GOT(S) + A - GOT_ORG
return R_GOT_OFF;
case R_ARM_GOT_PREL:
case R_ARM_TLS_IE32:
// GOT(S) + A - P
return R_GOT_PC;
case R_ARM_SBREL32:
return R_ARM_SBREL;
case R_ARM_TARGET1:
return Config->Target1Rel ? R_PC : R_ABS;
case R_ARM_TARGET2:
if (Config->Target2 == Target2Policy::Rel)
return R_PC;
if (Config->Target2 == Target2Policy::Abs)
return R_ABS;
return R_GOT_PC;
case R_ARM_TLS_GD32:
return R_TLSGD_PC;
case R_ARM_TLS_LDM32:
return R_TLSLD_PC;
case R_ARM_BASE_PREL:
// B(S) + A - P
// FIXME: currently B(S) assumed to be .got, this may not hold for all
// platforms.
return R_GOTONLY_PC;
case R_ARM_MOVW_PREL_NC:
case R_ARM_MOVT_PREL:
case R_ARM_REL32:
case R_ARM_THM_MOVW_PREL_NC:
case R_ARM_THM_MOVT_PREL:
return R_PC;
case R_ARM_NONE:
return R_NONE;
case R_ARM_TLS_LE32:
return R_TLS;
}
}
bool ARM::isPicRel(uint32_t Type) const {
return (Type == R_ARM_TARGET1 && !Config->Target1Rel) ||
(Type == R_ARM_ABS32);
}
uint32_t ARM::getDynRel(uint32_t Type) const {
if (Type == R_ARM_TARGET1 && !Config->Target1Rel)
return R_ARM_ABS32;
if (Type == R_ARM_ABS32)
return Type;
// Keep it going with a dummy value so that we can find more reloc errors.
return R_ARM_ABS32;
}
void ARM::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
write32le(Buf, InX::Plt->getVA());
}
void ARM::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const {
// An ARM entry is the address of the ifunc resolver function.
write32le(Buf, S.getVA());
}
void ARM::writePltHeader(uint8_t *Buf) const {
const uint8_t PltData[] = {
0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]!
0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2
0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8]
0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8
};
memcpy(Buf, PltData, sizeof(PltData));
uint64_t GotPlt = InX::GotPlt->getVA();
uint64_t L1 = InX::Plt->getVA() + 8;
write32le(Buf + 16, GotPlt - L1 - 8);
}
void ARM::addPltHeaderSymbols(InputSectionBase *ISD) const {
auto *IS = cast<InputSection>(ISD);
addSyntheticLocal("$a", STT_NOTYPE, 0, 0, IS);
addSyntheticLocal("$d", STT_NOTYPE, 16, 0, IS);
}
void ARM::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
// FIXME: Using simple code sequence with simple relocations.
// There is a more optimal sequence but it requires support for the group
// relocations. See ELF for the ARM Architecture Appendix A.3
const uint8_t PltData[] = {
0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2
0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip]
0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8
};
memcpy(Buf, PltData, sizeof(PltData));
uint64_t L1 = PltEntryAddr + 4;
write32le(Buf + 12, GotPltEntryAddr - L1 - 8);
}
void ARM::addPltSymbols(InputSectionBase *ISD, uint64_t Off) const {
auto *IS = cast<InputSection>(ISD);
addSyntheticLocal("$a", STT_NOTYPE, Off, 0, IS);
addSyntheticLocal("$d", STT_NOTYPE, Off + 12, 0, IS);
}
bool ARM::needsThunk(RelExpr Expr, uint32_t RelocType, const InputFile *File,
const SymbolBody &S) const {
// If S is an undefined weak symbol in an executable we don't need a Thunk.
// In a DSO calls to undefined symbols, including weak ones get PLT entries
// which may need a thunk.
if (S.isUndefined() && !S.isLocal() && S.symbol()->isWeak() &&
!Config->Shared)
return false;
// A state change from ARM to Thumb and vice versa must go through an
// interworking thunk if the relocation type is not R_ARM_CALL or
// R_ARM_THM_CALL.
switch (RelocType) {
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_JUMP24:
// Source is ARM, all PLT entries are ARM so no interworking required.
// Otherwise we need to interwork if Symbol has bit 0 set (Thumb).
if (Expr == R_PC && ((S.getVA() & 1) == 1))
return true;
break;
case R_ARM_THM_JUMP19:
case R_ARM_THM_JUMP24:
// Source is Thumb, all PLT entries are ARM so interworking is required.
// Otherwise we need to interwork if Symbol has bit 0 clear (ARM).
if (Expr == R_PLT_PC || ((S.getVA() & 1) == 0))
return true;
break;
}
return false;
}
void ARM::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
switch (Type) {
case R_ARM_ABS32:
case R_ARM_BASE_PREL:
case R_ARM_GLOB_DAT:
case R_ARM_GOTOFF32:
case R_ARM_GOT_BREL:
case R_ARM_GOT_PREL:
case R_ARM_REL32:
case R_ARM_RELATIVE:
case R_ARM_SBREL32:
case R_ARM_TARGET1:
case R_ARM_TARGET2:
case R_ARM_TLS_GD32:
case R_ARM_TLS_IE32:
case R_ARM_TLS_LDM32:
case R_ARM_TLS_LDO32:
case R_ARM_TLS_LE32:
case R_ARM_TLS_TPOFF32:
case R_ARM_TLS_DTPOFF32:
write32le(Loc, Val);
break;
case R_ARM_TLS_DTPMOD32:
write32le(Loc, 1);
break;
case R_ARM_PREL31:
checkInt<31>(Loc, Val, Type);
write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000));
break;
case R_ARM_CALL:
// R_ARM_CALL is used for BL and BLX instructions, depending on the
// value of bit 0 of Val, we must select a BL or BLX instruction
if (Val & 1) {
// If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
// The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
checkInt<26>(Loc, Val, Type);
write32le(Loc, 0xfa000000 | // opcode
((Val & 2) << 23) | // H
((Val >> 2) & 0x00ffffff)); // imm24
break;
}
if ((read32le(Loc) & 0xfe000000) == 0xfa000000)
// BLX (always unconditional) instruction to an ARM Target, select an
// unconditional BL.
write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff));
// fall through as BL encoding is shared with B
LLVM_FALLTHROUGH;
case R_ARM_JUMP24:
case R_ARM_PC24:
case R_ARM_PLT32:
checkInt<26>(Loc, Val, Type);
write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff));
break;
case R_ARM_THM_JUMP11:
checkInt<12>(Loc, Val, Type);
write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff));
break;
case R_ARM_THM_JUMP19:
// Encoding T3: Val = S:J2:J1:imm6:imm11:0
checkInt<21>(Loc, Val, Type);
write16le(Loc,
(read16le(Loc) & 0xfbc0) | // opcode cond
((Val >> 10) & 0x0400) | // S
((Val >> 12) & 0x003f)); // imm6
write16le(Loc + 2,
0x8000 | // opcode
((Val >> 8) & 0x0800) | // J2
((Val >> 5) & 0x2000) | // J1
((Val >> 1) & 0x07ff)); // imm11
break;
case R_ARM_THM_CALL:
// R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
// value of bit 0 of Val, we must select a BL or BLX instruction
if ((Val & 1) == 0) {
// Ensure BLX destination is 4-byte aligned. As BLX instruction may
// only be two byte aligned. This must be done before overflow check
Val = alignTo(Val, 4);
}
// Bit 12 is 0 for BLX, 1 for BL
write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12);
// Fall through as rest of encoding is the same as B.W
LLVM_FALLTHROUGH;
case R_ARM_THM_JUMP24:
// Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
// FIXME: Use of I1 and I2 require v6T2ops
checkInt<25>(Loc, Val, Type);
write16le(Loc,
0xf000 | // opcode
((Val >> 14) & 0x0400) | // S
((Val >> 12) & 0x03ff)); // imm10
write16le(Loc + 2,
(read16le(Loc + 2) & 0xd000) | // opcode
(((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1
(((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2
((Val >> 1) & 0x07ff)); // imm11
break;
case R_ARM_MOVW_ABS_NC:
case R_ARM_MOVW_PREL_NC:
write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) |
(Val & 0x0fff));
break;
case R_ARM_MOVT_ABS:
case R_ARM_MOVT_PREL:
checkInt<32>(Loc, Val, Type);
write32le(Loc, (read32le(Loc) & ~0x000f0fff) |
(((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff));
break;
case R_ARM_THM_MOVT_ABS:
case R_ARM_THM_MOVT_PREL:
// Encoding T1: A = imm4:i:imm3:imm8
checkInt<32>(Loc, Val, Type);
write16le(Loc,
0xf2c0 | // opcode
((Val >> 17) & 0x0400) | // i
((Val >> 28) & 0x000f)); // imm4
write16le(Loc + 2,
(read16le(Loc + 2) & 0x8f00) | // opcode
((Val >> 12) & 0x7000) | // imm3
((Val >> 16) & 0x00ff)); // imm8
break;
case R_ARM_THM_MOVW_ABS_NC:
case R_ARM_THM_MOVW_PREL_NC:
// Encoding T3: A = imm4:i:imm3:imm8
write16le(Loc,
0xf240 | // opcode
((Val >> 1) & 0x0400) | // i
((Val >> 12) & 0x000f)); // imm4
write16le(Loc + 2,
(read16le(Loc + 2) & 0x8f00) | // opcode
((Val << 4) & 0x7000) | // imm3
(Val & 0x00ff)); // imm8
break;
default:
error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
}
}
int64_t ARM::getImplicitAddend(const uint8_t *Buf, uint32_t Type) const {
switch (Type) {
default:
return 0;
case R_ARM_ABS32:
case R_ARM_BASE_PREL:
case R_ARM_GOTOFF32:
case R_ARM_GOT_BREL:
case R_ARM_GOT_PREL:
case R_ARM_REL32:
case R_ARM_TARGET1:
case R_ARM_TARGET2:
case R_ARM_TLS_GD32:
case R_ARM_TLS_LDM32:
case R_ARM_TLS_LDO32:
case R_ARM_TLS_IE32:
case R_ARM_TLS_LE32:
return SignExtend64<32>(read32le(Buf));
case R_ARM_PREL31:
return SignExtend64<31>(read32le(Buf));
case R_ARM_CALL:
case R_ARM_JUMP24:
case R_ARM_PC24:
case R_ARM_PLT32:
return SignExtend64<26>(read32le(Buf) << 2);
case R_ARM_THM_JUMP11:
return SignExtend64<12>(read16le(Buf) << 1);
case R_ARM_THM_JUMP19: {
// Encoding T3: A = S:J2:J1:imm10:imm6:0
uint16_t Hi = read16le(Buf);
uint16_t Lo = read16le(Buf + 2);
return SignExtend64<20>(((Hi & 0x0400) << 10) | // S
((Lo & 0x0800) << 8) | // J2
((Lo & 0x2000) << 5) | // J1
((Hi & 0x003f) << 12) | // imm6
((Lo & 0x07ff) << 1)); // imm11:0
}
case R_ARM_THM_CALL:
case R_ARM_THM_JUMP24: {
// Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
// I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
// FIXME: I1 and I2 require v6T2ops
uint16_t Hi = read16le(Buf);
uint16_t Lo = read16le(Buf + 2);
return SignExtend64<24>(((Hi & 0x0400) << 14) | // S
(~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1
(~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2
((Hi & 0x003ff) << 12) | // imm0
((Lo & 0x007ff) << 1)); // imm11:0
}
// ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
// MOVT is in the range -32768 <= A < 32768
case R_ARM_MOVW_ABS_NC:
case R_ARM_MOVT_ABS:
case R_ARM_MOVW_PREL_NC:
case R_ARM_MOVT_PREL: {
uint64_t Val = read32le(Buf) & 0x000f0fff;
return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff));
}
case R_ARM_THM_MOVW_ABS_NC:
case R_ARM_THM_MOVT_ABS:
case R_ARM_THM_MOVW_PREL_NC:
case R_ARM_THM_MOVT_PREL: {
// Encoding T3: A = imm4:i:imm3:imm8
uint16_t Hi = read16le(Buf);
uint16_t Lo = read16le(Buf + 2);
return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4
((Hi & 0x0400) << 1) | // i
((Lo & 0x7000) >> 4) | // imm3
(Lo & 0x00ff)); // imm8
}
}
}
TargetInfo *elf::createARMTargetInfo() { return make<ARM>(); }

78
ELF/Arch/AVR.cpp Normal file
View File

@ -0,0 +1,78 @@
//===- AVR.cpp ------------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// AVR is a Harvard-architecture 8-bit micrcontroller designed for small
// baremetal programs. All AVR-family processors have 32 8-bit registers.
// The tiniest AVR has 32 byte RAM and 1 KiB program memory, and the largest
// one supports up to 2^24 data address space and 2^22 code address space.
//
// Since it is a baremetal programming, there's usually no loader to load
// ELF files on AVRs. You are expected to link your program against address
// 0 and pull out a .text section from the result using objcopy, so that you
// can write the linked code to on-chip flush memory. You can do that with
// the following commands:
//
// ld.lld -Ttext=0 -o foo foo.o
// objcopy -O binary --only-section=.text foo output.bin
//
// Note that the current AVR support is very preliminary so you can't
// link any useful program yet, though.
//
//===----------------------------------------------------------------------===//
#include "Error.h"
#include "InputFiles.h"
#include "Memory.h"
#include "Symbols.h"
#include "Target.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
class AVR final : public TargetInfo {
public:
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const override;
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
};
} // namespace
RelExpr AVR::getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const {
switch (Type) {
case R_AVR_CALL:
return R_ABS;
default:
error(toString(S.File) + ": unknown relocation type: " + toString(Type));
return R_HINT;
}
}
void AVR::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
switch (Type) {
case R_AVR_CALL: {
uint16_t Hi = Val >> 17;
uint16_t Lo = Val >> 1;
write16le(Loc, read16le(Loc) | ((Hi >> 1) << 4) | (Hi & 1));
write16le(Loc + 2, Lo);
break;
}
default:
error(getErrorLocation(Loc) + "unrecognized reloc " + toString(Type));
}
}
TargetInfo *elf::createAVRTargetInfo() { return make<AVR>(); }

422
ELF/Arch/Mips.cpp Normal file
View File

@ -0,0 +1,422 @@
//===- MIPS.cpp -----------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Error.h"
#include "InputFiles.h"
#include "Memory.h"
#include "OutputSections.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
template <class ELFT> class MIPS final : public TargetInfo {
public:
MIPS();
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const override;
int64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
bool isPicRel(uint32_t Type) const override;
uint32_t getDynRel(uint32_t Type) const override;
void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
void writePltHeader(uint8_t *Buf) const override;
void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
int32_t Index, unsigned RelOff) const override;
bool needsThunk(RelExpr Expr, uint32_t RelocType, const InputFile *File,
const SymbolBody &S) const override;
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
bool usesOnlyLowPageBits(uint32_t Type) const override;
};
} // namespace
template <class ELFT> MIPS<ELFT>::MIPS() {
GotPltHeaderEntriesNum = 2;
DefaultMaxPageSize = 65536;
GotEntrySize = sizeof(typename ELFT::uint);
GotPltEntrySize = sizeof(typename ELFT::uint);
PltEntrySize = 16;
PltHeaderSize = 32;
CopyRel = R_MIPS_COPY;
PltRel = R_MIPS_JUMP_SLOT;
NeedsThunks = true;
if (ELFT::Is64Bits) {
RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32;
TlsGotRel = R_MIPS_TLS_TPREL64;
TlsModuleIndexRel = R_MIPS_TLS_DTPMOD64;
TlsOffsetRel = R_MIPS_TLS_DTPREL64;
} else {
RelativeRel = R_MIPS_REL32;
TlsGotRel = R_MIPS_TLS_TPREL32;
TlsModuleIndexRel = R_MIPS_TLS_DTPMOD32;
TlsOffsetRel = R_MIPS_TLS_DTPREL32;
}
}
template <class ELFT>
RelExpr MIPS<ELFT>::getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const {
// See comment in the calculateMipsRelChain.
if (ELFT::Is64Bits || Config->MipsN32Abi)
Type &= 0xff;
switch (Type) {
default:
return R_ABS;
case R_MIPS_JALR:
return R_HINT;
case R_MIPS_GPREL16:
case R_MIPS_GPREL32:
return R_MIPS_GOTREL;
case R_MIPS_26:
return R_PLT;
case R_MIPS_HI16:
case R_MIPS_LO16:
// R_MIPS_HI16/R_MIPS_LO16 relocations against _gp_disp calculate
// offset between start of function and 'gp' value which by default
// equal to the start of .got section. In that case we consider these
// relocations as relative.
if (&S == ElfSym::MipsGpDisp)
return R_MIPS_GOT_GP_PC;
if (&S == ElfSym::MipsLocalGp)
return R_MIPS_GOT_GP;
LLVM_FALLTHROUGH;
case R_MIPS_GOT_OFST:
return R_ABS;
case R_MIPS_PC32:
case R_MIPS_PC16:
case R_MIPS_PC19_S2:
case R_MIPS_PC21_S2:
case R_MIPS_PC26_S2:
case R_MIPS_PCHI16:
case R_MIPS_PCLO16:
return R_PC;
case R_MIPS_GOT16:
if (S.isLocal())
return R_MIPS_GOT_LOCAL_PAGE;
LLVM_FALLTHROUGH;
case R_MIPS_CALL16:
case R_MIPS_GOT_DISP:
case R_MIPS_TLS_GOTTPREL:
return R_MIPS_GOT_OFF;
case R_MIPS_CALL_HI16:
case R_MIPS_CALL_LO16:
case R_MIPS_GOT_HI16:
case R_MIPS_GOT_LO16:
return R_MIPS_GOT_OFF32;
case R_MIPS_GOT_PAGE:
return R_MIPS_GOT_LOCAL_PAGE;
case R_MIPS_TLS_GD:
return R_MIPS_TLSGD;
case R_MIPS_TLS_LDM:
return R_MIPS_TLSLD;
}
}
template <class ELFT> bool MIPS<ELFT>::isPicRel(uint32_t Type) const {
return Type == R_MIPS_32 || Type == R_MIPS_64;
}
template <class ELFT> uint32_t MIPS<ELFT>::getDynRel(uint32_t Type) const {
return RelativeRel;
}
template <class ELFT>
void MIPS<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
write32<ELFT::TargetEndianness>(Buf, InX::Plt->getVA());
}
template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
static int64_t getPcRelocAddend(const uint8_t *Loc) {
uint32_t Instr = read32<E>(Loc);
uint32_t Mask = 0xffffffff >> (32 - BSIZE);
return SignExtend64<BSIZE + SHIFT>((Instr & Mask) << SHIFT);
}
template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t V) {
uint32_t Mask = 0xffffffff >> (32 - BSIZE);
uint32_t Instr = read32<E>(Loc);
if (SHIFT > 0)
checkAlignment<(1 << SHIFT)>(Loc, V, Type);
checkInt<BSIZE + SHIFT>(Loc, V, Type);
write32<E>(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask));
}
template <endianness E> static void writeMipsHi16(uint8_t *Loc, uint64_t V) {
uint32_t Instr = read32<E>(Loc);
uint16_t Res = ((V + 0x8000) >> 16) & 0xffff;
write32<E>(Loc, (Instr & 0xffff0000) | Res);
}
template <endianness E> static void writeMipsHigher(uint8_t *Loc, uint64_t V) {
uint32_t Instr = read32<E>(Loc);
uint16_t Res = ((V + 0x80008000) >> 32) & 0xffff;
write32<E>(Loc, (Instr & 0xffff0000) | Res);
}
template <endianness E> static void writeMipsHighest(uint8_t *Loc, uint64_t V) {
uint32_t Instr = read32<E>(Loc);
uint16_t Res = ((V + 0x800080008000) >> 48) & 0xffff;
write32<E>(Loc, (Instr & 0xffff0000) | Res);
}
template <endianness E> static void writeMipsLo16(uint8_t *Loc, uint64_t V) {
uint32_t Instr = read32<E>(Loc);
write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff));
}
template <class ELFT> static bool isMipsR6() {
const auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf);
uint32_t Arch = FirstObj.getObj().getHeader()->e_flags & EF_MIPS_ARCH;
return Arch == EF_MIPS_ARCH_32R6 || Arch == EF_MIPS_ARCH_64R6;
}
template <class ELFT> void MIPS<ELFT>::writePltHeader(uint8_t *Buf) const {
const endianness E = ELFT::TargetEndianness;
if (Config->MipsN32Abi) {
write32<E>(Buf, 0x3c0e0000); // lui $14, %hi(&GOTPLT[0])
write32<E>(Buf + 4, 0x8dd90000); // lw $25, %lo(&GOTPLT[0])($14)
write32<E>(Buf + 8, 0x25ce0000); // addiu $14, $14, %lo(&GOTPLT[0])
write32<E>(Buf + 12, 0x030ec023); // subu $24, $24, $14
} else {
write32<E>(Buf, 0x3c1c0000); // lui $28, %hi(&GOTPLT[0])
write32<E>(Buf + 4, 0x8f990000); // lw $25, %lo(&GOTPLT[0])($28)
write32<E>(Buf + 8, 0x279c0000); // addiu $28, $28, %lo(&GOTPLT[0])
write32<E>(Buf + 12, 0x031cc023); // subu $24, $24, $28
}
write32<E>(Buf + 16, 0x03e07825); // move $15, $31
write32<E>(Buf + 20, 0x0018c082); // srl $24, $24, 2
write32<E>(Buf + 24, 0x0320f809); // jalr $25
write32<E>(Buf + 28, 0x2718fffe); // subu $24, $24, 2
uint64_t GotPlt = InX::GotPlt->getVA();
writeMipsHi16<E>(Buf, GotPlt);
writeMipsLo16<E>(Buf + 4, GotPlt);
writeMipsLo16<E>(Buf + 8, GotPlt);
}
template <class ELFT>
void MIPS<ELFT>::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
const endianness E = ELFT::TargetEndianness;
write32<E>(Buf, 0x3c0f0000); // lui $15, %hi(.got.plt entry)
write32<E>(Buf + 4, 0x8df90000); // l[wd] $25, %lo(.got.plt entry)($15)
// jr $25
write32<E>(Buf + 8, isMipsR6<ELFT>() ? 0x03200009 : 0x03200008);
write32<E>(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry)
writeMipsHi16<E>(Buf, GotPltEntryAddr);
writeMipsLo16<E>(Buf + 4, GotPltEntryAddr);
writeMipsLo16<E>(Buf + 12, GotPltEntryAddr);
}
template <class ELFT>
bool MIPS<ELFT>::needsThunk(RelExpr Expr, uint32_t Type, const InputFile *File,
const SymbolBody &S) const {
// Any MIPS PIC code function is invoked with its address in register $t9.
// So if we have a branch instruction from non-PIC code to the PIC one
// we cannot make the jump directly and need to create a small stubs
// to save the target function address.
// See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
if (Type != R_MIPS_26)
return false;
auto *F = dyn_cast_or_null<ELFFileBase<ELFT>>(File);
if (!F)
return false;
// If current file has PIC code, LA25 stub is not required.
if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC)
return false;
auto *D = dyn_cast<DefinedRegular>(&S);
// LA25 is required if target file has PIC code
// or target symbol is a PIC symbol.
return D && D->isMipsPIC<ELFT>();
}
template <class ELFT>
int64_t MIPS<ELFT>::getImplicitAddend(const uint8_t *Buf, uint32_t Type) const {
const endianness E = ELFT::TargetEndianness;
switch (Type) {
default:
return 0;
case R_MIPS_32:
case R_MIPS_GPREL32:
case R_MIPS_TLS_DTPREL32:
case R_MIPS_TLS_TPREL32:
return SignExtend64<32>(read32<E>(Buf));
case R_MIPS_26:
// FIXME (simon): If the relocation target symbol is not a PLT entry
// we should use another expression for calculation:
// ((A << 2) | (P & 0xf0000000)) >> 2
return SignExtend64<28>((read32<E>(Buf) & 0x3ffffff) << 2);
case R_MIPS_GPREL16:
case R_MIPS_LO16:
case R_MIPS_PCLO16:
case R_MIPS_TLS_DTPREL_HI16:
case R_MIPS_TLS_DTPREL_LO16:
case R_MIPS_TLS_TPREL_HI16:
case R_MIPS_TLS_TPREL_LO16:
return SignExtend64<16>(read32<E>(Buf));
case R_MIPS_PC16:
return getPcRelocAddend<E, 16, 2>(Buf);
case R_MIPS_PC19_S2:
return getPcRelocAddend<E, 19, 2>(Buf);
case R_MIPS_PC21_S2:
return getPcRelocAddend<E, 21, 2>(Buf);
case R_MIPS_PC26_S2:
return getPcRelocAddend<E, 26, 2>(Buf);
case R_MIPS_PC32:
return getPcRelocAddend<E, 32, 0>(Buf);
}
}
static std::pair<uint32_t, uint64_t>
calculateMipsRelChain(uint8_t *Loc, uint32_t Type, uint64_t Val) {
// MIPS N64 ABI packs multiple relocations into the single relocation
// record. In general, all up to three relocations can have arbitrary
// types. In fact, Clang and GCC uses only a few combinations. For now,
// we support two of them. That is allow to pass at least all LLVM
// test suite cases.
// <any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16
// <any relocation> / R_MIPS_64 / R_MIPS_NONE
// The first relocation is a 'real' relocation which is calculated
// using the corresponding symbol's value. The second and the third
// relocations used to modify result of the first one: extend it to
// 64-bit, extract high or low part etc. For details, see part 2.9 Relocation
// at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf
uint32_t Type2 = (Type >> 8) & 0xff;
uint32_t Type3 = (Type >> 16) & 0xff;
if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE)
return std::make_pair(Type, Val);
if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE)
return std::make_pair(Type2, Val);
if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16))
return std::make_pair(Type3, -Val);
error(getErrorLocation(Loc) + "unsupported relocations combination " +
Twine(Type));
return std::make_pair(Type & 0xff, Val);
}
template <class ELFT>
void MIPS<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
const endianness E = ELFT::TargetEndianness;
// Thread pointer and DRP offsets from the start of TLS data area.
// https://www.linux-mips.org/wiki/NPTL
if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16 ||
Type == R_MIPS_TLS_DTPREL32 || Type == R_MIPS_TLS_DTPREL64)
Val -= 0x8000;
else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16 ||
Type == R_MIPS_TLS_TPREL32 || Type == R_MIPS_TLS_TPREL64)
Val -= 0x7000;
if (ELFT::Is64Bits || Config->MipsN32Abi)
std::tie(Type, Val) = calculateMipsRelChain(Loc, Type, Val);
switch (Type) {
case R_MIPS_32:
case R_MIPS_GPREL32:
case R_MIPS_TLS_DTPREL32:
case R_MIPS_TLS_TPREL32:
write32<E>(Loc, Val);
break;
case R_MIPS_64:
case R_MIPS_TLS_DTPREL64:
case R_MIPS_TLS_TPREL64:
write64<E>(Loc, Val);
break;
case R_MIPS_26:
write32<E>(Loc, (read32<E>(Loc) & ~0x3ffffff) | ((Val >> 2) & 0x3ffffff));
break;
case R_MIPS_GOT16:
// The R_MIPS_GOT16 relocation's value in "relocatable" linking mode
// is updated addend (not a GOT index). In that case write high 16 bits
// to store a correct addend value.
if (Config->Relocatable)
writeMipsHi16<E>(Loc, Val);
else {
checkInt<16>(Loc, Val, Type);
writeMipsLo16<E>(Loc, Val);
}
break;
case R_MIPS_GOT_DISP:
case R_MIPS_GOT_PAGE:
case R_MIPS_GPREL16:
case R_MIPS_TLS_GD:
case R_MIPS_TLS_LDM:
checkInt<16>(Loc, Val, Type);
LLVM_FALLTHROUGH;
case R_MIPS_CALL16:
case R_MIPS_CALL_LO16:
case R_MIPS_GOT_LO16:
case R_MIPS_GOT_OFST:
case R_MIPS_LO16:
case R_MIPS_PCLO16:
case R_MIPS_TLS_DTPREL_LO16:
case R_MIPS_TLS_GOTTPREL:
case R_MIPS_TLS_TPREL_LO16:
writeMipsLo16<E>(Loc, Val);
break;
case R_MIPS_CALL_HI16:
case R_MIPS_GOT_HI16:
case R_MIPS_HI16:
case R_MIPS_PCHI16:
case R_MIPS_TLS_DTPREL_HI16:
case R_MIPS_TLS_TPREL_HI16:
writeMipsHi16<E>(Loc, Val);
break;
case R_MIPS_HIGHER:
writeMipsHigher<E>(Loc, Val);
break;
case R_MIPS_HIGHEST:
writeMipsHighest<E>(Loc, Val);
break;
case R_MIPS_JALR:
// Ignore this optimization relocation for now
break;
case R_MIPS_PC16:
applyMipsPcReloc<E, 16, 2>(Loc, Type, Val);
break;
case R_MIPS_PC19_S2:
applyMipsPcReloc<E, 19, 2>(Loc, Type, Val);
break;
case R_MIPS_PC21_S2:
applyMipsPcReloc<E, 21, 2>(Loc, Type, Val);
break;
case R_MIPS_PC26_S2:
applyMipsPcReloc<E, 26, 2>(Loc, Type, Val);
break;
case R_MIPS_PC32:
applyMipsPcReloc<E, 32, 0>(Loc, Type, Val);
break;
default:
error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
}
}
template <class ELFT>
bool MIPS<ELFT>::usesOnlyLowPageBits(uint32_t Type) const {
return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST;
}
template <class ELFT> TargetInfo *elf::createMipsTargetInfo() {
return make<MIPS<ELFT>>();
}
template TargetInfo *elf::createMipsTargetInfo<ELF32LE>();
template TargetInfo *elf::createMipsTargetInfo<ELF32BE>();
template TargetInfo *elf::createMipsTargetInfo<ELF64LE>();
template TargetInfo *elf::createMipsTargetInfo<ELF64BE>();

63
ELF/Arch/PPC.cpp Normal file
View File

@ -0,0 +1,63 @@
//===- PPC.cpp ------------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Error.h"
#include "Memory.h"
#include "Symbols.h"
#include "Target.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
class PPC final : public TargetInfo {
public:
PPC() {}
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const override;
};
} // namespace
void PPC::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
switch (Type) {
case R_PPC_ADDR16_HA:
write16be(Loc, (Val + 0x8000) >> 16);
break;
case R_PPC_ADDR16_LO:
write16be(Loc, Val);
break;
case R_PPC_ADDR32:
case R_PPC_REL32:
write32be(Loc, Val);
break;
case R_PPC_REL24:
write32be(Loc, read32be(Loc) | (Val & 0x3FFFFFC));
break;
default:
error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
}
}
RelExpr PPC::getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const {
switch (Type) {
case R_PPC_REL24:
case R_PPC_REL32:
return R_PC;
default:
return R_ABS;
}
}
TargetInfo *elf::createPPCTargetInfo() { return make<PPC>(); }

215
ELF/Arch/PPC64.cpp Normal file
View File

@ -0,0 +1,215 @@
//===- PPC64.cpp ----------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Error.h"
#include "Memory.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
static uint64_t PPC64TocOffset = 0x8000;
uint64_t elf::getPPC64TocBase() {
// The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
// TOC starts where the first of these sections starts. We always create a
// .got when we see a relocation that uses it, so for us the start is always
// the .got.
uint64_t TocVA = InX::Got->getVA();
// Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
// thus permitting a full 64 Kbytes segment. Note that the glibc startup
// code (crt1.o) assumes that you can get from the TOC base to the
// start of the .toc section with only a single (signed) 16-bit relocation.
return TocVA + PPC64TocOffset;
}
namespace {
class PPC64 final : public TargetInfo {
public:
PPC64();
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const override;
void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
int32_t Index, unsigned RelOff) const override;
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
};
} // namespace
// Relocation masks following the #lo(value), #hi(value), #ha(value),
// #higher(value), #highera(value), #highest(value), and #highesta(value)
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
// document.
static uint16_t applyPPCLo(uint64_t V) { return V; }
static uint16_t applyPPCHi(uint64_t V) { return V >> 16; }
static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; }
static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; }
static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; }
static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }
PPC64::PPC64() {
PltRel = GotRel = R_PPC64_GLOB_DAT;
RelativeRel = R_PPC64_RELATIVE;
GotEntrySize = 8;
GotPltEntrySize = 8;
PltEntrySize = 32;
PltHeaderSize = 0;
// We need 64K pages (at least under glibc/Linux, the loader won't
// set different permissions on a finer granularity than that).
DefaultMaxPageSize = 65536;
// The PPC64 ELF ABI v1 spec, says:
//
// It is normally desirable to put segments with different characteristics
// in separate 256 Mbyte portions of the address space, to give the
// operating system full paging flexibility in the 64-bit address space.
//
// And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
// use 0x10000000 as the starting address.
DefaultImageBase = 0x10000000;
}
RelExpr PPC64::getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const {
switch (Type) {
default:
return R_ABS;
case R_PPC64_TOC16:
case R_PPC64_TOC16_DS:
case R_PPC64_TOC16_HA:
case R_PPC64_TOC16_HI:
case R_PPC64_TOC16_LO:
case R_PPC64_TOC16_LO_DS:
return R_GOTREL;
case R_PPC64_TOC:
return R_PPC_TOC;
case R_PPC64_REL24:
return R_PPC_PLT_OPD;
}
}
void PPC64::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
uint64_t Off = GotPltEntryAddr - getPPC64TocBase();
// FIXME: What we should do, in theory, is get the offset of the function
// descriptor in the .opd section, and use that as the offset from %r2 (the
// TOC-base pointer). Instead, we have the GOT-entry offset, and that will
// be a pointer to the function descriptor in the .opd section. Using
// this scheme is simpler, but requires an extra indirection per PLT dispatch.
write32be(Buf, 0xf8410028); // std %r2, 40(%r1)
write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
write32be(Buf + 12, 0xe96c0000); // ld %r11,0(%r12)
write32be(Buf + 16, 0x7d6903a6); // mtctr %r11
write32be(Buf + 20, 0xe84c0008); // ld %r2,8(%r12)
write32be(Buf + 24, 0xe96c0010); // ld %r11,16(%r12)
write32be(Buf + 28, 0x4e800420); // bctr
}
static std::pair<uint32_t, uint64_t> toAddr16Rel(uint32_t Type, uint64_t Val) {
uint64_t V = Val - PPC64TocOffset;
switch (Type) {
case R_PPC64_TOC16:
return {R_PPC64_ADDR16, V};
case R_PPC64_TOC16_DS:
return {R_PPC64_ADDR16_DS, V};
case R_PPC64_TOC16_HA:
return {R_PPC64_ADDR16_HA, V};
case R_PPC64_TOC16_HI:
return {R_PPC64_ADDR16_HI, V};
case R_PPC64_TOC16_LO:
return {R_PPC64_ADDR16_LO, V};
case R_PPC64_TOC16_LO_DS:
return {R_PPC64_ADDR16_LO_DS, V};
default:
return {Type, Val};
}
}
void PPC64::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
// For a TOC-relative relocation, proceed in terms of the corresponding
// ADDR16 relocation type.
std::tie(Type, Val) = toAddr16Rel(Type, Val);
switch (Type) {
case R_PPC64_ADDR14: {
checkAlignment<4>(Loc, Val, Type);
// Preserve the AA/LK bits in the branch instruction
uint8_t AALK = Loc[3];
write16be(Loc + 2, (AALK & 3) | (Val & 0xfffc));
break;
}
case R_PPC64_ADDR16:
checkInt<16>(Loc, Val, Type);
write16be(Loc, Val);
break;
case R_PPC64_ADDR16_DS:
checkInt<16>(Loc, Val, Type);
write16be(Loc, (read16be(Loc) & 3) | (Val & ~3));
break;
case R_PPC64_ADDR16_HA:
case R_PPC64_REL16_HA:
write16be(Loc, applyPPCHa(Val));
break;
case R_PPC64_ADDR16_HI:
case R_PPC64_REL16_HI:
write16be(Loc, applyPPCHi(Val));
break;
case R_PPC64_ADDR16_HIGHER:
write16be(Loc, applyPPCHigher(Val));
break;
case R_PPC64_ADDR16_HIGHERA:
write16be(Loc, applyPPCHighera(Val));
break;
case R_PPC64_ADDR16_HIGHEST:
write16be(Loc, applyPPCHighest(Val));
break;
case R_PPC64_ADDR16_HIGHESTA:
write16be(Loc, applyPPCHighesta(Val));
break;
case R_PPC64_ADDR16_LO:
write16be(Loc, applyPPCLo(Val));
break;
case R_PPC64_ADDR16_LO_DS:
case R_PPC64_REL16_LO:
write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(Val) & ~3));
break;
case R_PPC64_ADDR32:
case R_PPC64_REL32:
checkInt<32>(Loc, Val, Type);
write32be(Loc, Val);
break;
case R_PPC64_ADDR64:
case R_PPC64_REL64:
case R_PPC64_TOC:
write64be(Loc, Val);
break;
case R_PPC64_REL24: {
uint32_t Mask = 0x03FFFFFC;
checkInt<24>(Loc, Val, Type);
write32be(Loc, (read32be(Loc) & ~Mask) | (Val & Mask));
break;
}
default:
error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
}
}
TargetInfo *elf::createPPC64TargetInfo() { return make<PPC64>(); }

363
ELF/Arch/X86.cpp Normal file
View File

@ -0,0 +1,363 @@
//===- X86.cpp ------------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Error.h"
#include "InputFiles.h"
#include "Memory.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
class X86 final : public TargetInfo {
public:
X86();
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const override;
int64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
void writeGotPltHeader(uint8_t *Buf) const override;
uint32_t getDynRel(uint32_t Type) const override;
void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
void writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const override;
void writePltHeader(uint8_t *Buf) const override;
void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
int32_t Index, unsigned RelOff) const override;
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
RelExpr Expr) const override;
void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
};
} // namespace
X86::X86() {
CopyRel = R_386_COPY;
GotRel = R_386_GLOB_DAT;
PltRel = R_386_JUMP_SLOT;
IRelativeRel = R_386_IRELATIVE;
RelativeRel = R_386_RELATIVE;
TlsGotRel = R_386_TLS_TPOFF;
TlsModuleIndexRel = R_386_TLS_DTPMOD32;
TlsOffsetRel = R_386_TLS_DTPOFF32;
GotEntrySize = 4;
GotPltEntrySize = 4;
PltEntrySize = 16;
PltHeaderSize = 16;
TlsGdRelaxSkip = 2;
// 0xCC is the "int3" (call debug exception handler) instruction.
TrapInstr = 0xcccccccc;
}
RelExpr X86::getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const {
switch (Type) {
case R_386_8:
case R_386_16:
case R_386_32:
case R_386_TLS_LDO_32:
return R_ABS;
case R_386_TLS_GD:
return R_TLSGD;
case R_386_TLS_LDM:
return R_TLSLD;
case R_386_PLT32:
return R_PLT_PC;
case R_386_PC8:
case R_386_PC16:
case R_386_PC32:
return R_PC;
case R_386_GOTPC:
return R_GOTONLY_PC_FROM_END;
case R_386_TLS_IE:
return R_GOT;
case R_386_GOT32:
case R_386_GOT32X:
// These relocations can be calculated in two different ways.
// Usual calculation is G + A - GOT what means an offset in GOT table
// (R_GOT_FROM_END). When instruction pointed by relocation has no base
// register, then relocations can be used when PIC code is disabled. In that
// case calculation is G + A, it resolves to an address of entry in GOT
// (R_GOT) and not an offset.
//
// To check that instruction has no base register we scan ModR/M byte.
// See "Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte"
// (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
// 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
if ((Loc[-1] & 0xc7) != 0x5)
return R_GOT_FROM_END;
if (Config->Pic)
error(toString(S.File) + ": relocation " + toString(Type) + " against '" +
S.getName() +
"' without base register can not be used when PIC enabled");
return R_GOT;
case R_386_TLS_GOTIE:
return R_GOT_FROM_END;
case R_386_GOTOFF:
return R_GOTREL_FROM_END;
case R_386_TLS_LE:
return R_TLS;
case R_386_TLS_LE_32:
return R_NEG_TLS;
case R_386_NONE:
return R_NONE;
default:
error(toString(S.File) + ": unknown relocation type: " + toString(Type));
return R_HINT;
}
}
RelExpr X86::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
RelExpr Expr) const {
switch (Expr) {
default:
return Expr;
case R_RELAX_TLS_GD_TO_IE:
return R_RELAX_TLS_GD_TO_IE_END;
case R_RELAX_TLS_GD_TO_LE:
return R_RELAX_TLS_GD_TO_LE_NEG;
}
}
void X86::writeGotPltHeader(uint8_t *Buf) const {
write32le(Buf, InX::Dynamic->getVA());
}
void X86::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const {
// Entries in .got.plt initially points back to the corresponding
// PLT entries with a fixed offset to skip the first instruction.
write32le(Buf, S.getPltVA() + 6);
}
void X86::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const {
// An x86 entry is the address of the ifunc resolver function.
write32le(Buf, S.getVA());
}
uint32_t X86::getDynRel(uint32_t Type) const {
if (Type == R_386_TLS_LE)
return R_386_TLS_TPOFF;
if (Type == R_386_TLS_LE_32)
return R_386_TLS_TPOFF32;
return Type;
}
void X86::writePltHeader(uint8_t *Buf) const {
if (Config->Pic) {
const uint8_t V[] = {
0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl GOTPLT+4(%ebx)
0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *GOTPLT+8(%ebx)
0x90, 0x90, 0x90, 0x90 // nop
};
memcpy(Buf, V, sizeof(V));
uint32_t Ebx = InX::Got->getVA() + InX::Got->getSize();
uint32_t GotPlt = InX::GotPlt->getVA() - Ebx;
write32le(Buf + 2, GotPlt + 4);
write32le(Buf + 8, GotPlt + 8);
return;
}
const uint8_t PltData[] = {
0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOTPLT+4)
0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *(GOTPLT+8)
0x90, 0x90, 0x90, 0x90 // nop
};
memcpy(Buf, PltData, sizeof(PltData));
uint32_t GotPlt = InX::GotPlt->getVA();
write32le(Buf + 2, GotPlt + 4);
write32le(Buf + 8, GotPlt + 8);
}
void X86::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
const uint8_t Inst[] = {
0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx)
0x68, 0x00, 0x00, 0x00, 0x00, // pushl $reloc_offset
0xe9, 0x00, 0x00, 0x00, 0x00 // jmp .PLT0@PC
};
memcpy(Buf, Inst, sizeof(Inst));
if (Config->Pic) {
// jmp *foo@GOT(%ebx)
uint32_t Ebx = InX::Got->getVA() + InX::Got->getSize();
Buf[1] = 0xa3;
write32le(Buf + 2, GotPltEntryAddr - Ebx);
} else {
// jmp *foo_in_GOT
Buf[1] = 0x25;
write32le(Buf + 2, GotPltEntryAddr);
}
write32le(Buf + 7, RelOff);
write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
}
int64_t X86::getImplicitAddend(const uint8_t *Buf, uint32_t Type) const {
switch (Type) {
default:
return 0;
case R_386_8:
case R_386_PC8:
return SignExtend64<8>(*Buf);
case R_386_16:
case R_386_PC16:
return SignExtend64<16>(read16le(Buf));
case R_386_32:
case R_386_GOT32:
case R_386_GOT32X:
case R_386_GOTOFF:
case R_386_GOTPC:
case R_386_PC32:
case R_386_PLT32:
case R_386_TLS_LDO_32:
case R_386_TLS_LE:
return SignExtend64<32>(read32le(Buf));
}
}
void X86::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
// R_386_{PC,}{8,16} are not part of the i386 psABI, but they are
// being used for some 16-bit programs such as boot loaders, so
// we want to support them.
switch (Type) {
case R_386_8:
checkUInt<8>(Loc, Val, Type);
*Loc = Val;
break;
case R_386_PC8:
checkInt<8>(Loc, Val, Type);
*Loc = Val;
break;
case R_386_16:
checkUInt<16>(Loc, Val, Type);
write16le(Loc, Val);
break;
case R_386_PC16:
// R_386_PC16 is normally used with 16 bit code. In that situation
// the PC is 16 bits, just like the addend. This means that it can
// point from any 16 bit address to any other if the possibility
// of wrapping is included.
// The only restriction we have to check then is that the destination
// address fits in 16 bits. That is impossible to do here. The problem is
// that we are passed the final value, which already had the
// current location subtracted from it.
// We just check that Val fits in 17 bits. This misses some cases, but
// should have no false positives.
checkInt<17>(Loc, Val, Type);
write16le(Loc, Val);
break;
default:
checkInt<32>(Loc, Val, Type);
write32le(Loc, Val);
}
}
void X86::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
// Convert
// leal x@tlsgd(, %ebx, 1),
// call __tls_get_addr@plt
// to
// movl %gs:0,%eax
// subl $x@ntpoff,%eax
const uint8_t Inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
0x81, 0xe8, 0x00, 0x00, 0x00, 0x00 // subl 0(%ebx), %eax
};
memcpy(Loc - 3, Inst, sizeof(Inst));
write32le(Loc + 5, Val);
}
void X86::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
// Convert
// leal x@tlsgd(, %ebx, 1),
// call __tls_get_addr@plt
// to
// movl %gs:0, %eax
// addl x@gotntpoff(%ebx), %eax
const uint8_t Inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
0x03, 0x83, 0x00, 0x00, 0x00, 0x00 // addl 0(%ebx), %eax
};
memcpy(Loc - 3, Inst, sizeof(Inst));
write32le(Loc + 5, Val);
}
// In some conditions, relocations can be optimized to avoid using GOT.
// This function does that for Initial Exec to Local Exec case.
void X86::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
// Ulrich's document section 6.2 says that @gotntpoff can
// be used with MOVL or ADDL instructions.
// @indntpoff is similar to @gotntpoff, but for use in
// position dependent code.
uint8_t Reg = (Loc[-1] >> 3) & 7;
if (Type == R_386_TLS_IE) {
if (Loc[-1] == 0xa1) {
// "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
// This case is different from the generic case below because
// this is a 5 byte instruction while below is 6 bytes.
Loc[-1] = 0xb8;
} else if (Loc[-2] == 0x8b) {
// "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
Loc[-2] = 0xc7;
Loc[-1] = 0xc0 | Reg;
} else {
// "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
Loc[-2] = 0x81;
Loc[-1] = 0xc0 | Reg;
}
} else {
assert(Type == R_386_TLS_GOTIE);
if (Loc[-2] == 0x8b) {
// "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
Loc[-2] = 0xc7;
Loc[-1] = 0xc0 | Reg;
} else {
// "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
Loc[-2] = 0x8d;
Loc[-1] = 0x80 | (Reg << 3) | Reg;
}
}
write32le(Loc, Val);
}
void X86::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
if (Type == R_386_TLS_LDO_32) {
write32le(Loc, Val);
return;
}
// Convert
// leal foo(%reg),%eax
// call ___tls_get_addr
// to
// movl %gs:0,%eax
// nop
// leal 0(%esi,1),%esi
const uint8_t Inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
0x90, // nop
0x8d, 0x74, 0x26, 0x00 // leal 0(%esi,1),%esi
};
memcpy(Loc - 2, Inst, sizeof(Inst));
}
TargetInfo *elf::createX86TargetInfo() { return make<X86>(); }

468
ELF/Arch/X86_64.cpp Normal file
View File

@ -0,0 +1,468 @@
//===- X86_64.cpp ---------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Error.h"
#include "InputFiles.h"
#include "Memory.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
namespace {
template <class ELFT> class X86_64 final : public TargetInfo {
public:
X86_64();
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const override;
bool isPicRel(uint32_t Type) const override;
void writeGotPltHeader(uint8_t *Buf) const override;
void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
void writePltHeader(uint8_t *Buf) const override;
void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
int32_t Index, unsigned RelOff) const override;
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
RelExpr Expr) const override;
void relaxGot(uint8_t *Loc, uint64_t Val) const override;
void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
private:
void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op,
uint8_t ModRm) const;
};
} // namespace
template <class ELFT> X86_64<ELFT>::X86_64() {
CopyRel = R_X86_64_COPY;
GotRel = R_X86_64_GLOB_DAT;
PltRel = R_X86_64_JUMP_SLOT;
RelativeRel = R_X86_64_RELATIVE;
IRelativeRel = R_X86_64_IRELATIVE;
TlsGotRel = R_X86_64_TPOFF64;
TlsModuleIndexRel = R_X86_64_DTPMOD64;
TlsOffsetRel = R_X86_64_DTPOFF64;
GotEntrySize = 8;
GotPltEntrySize = 8;
PltEntrySize = 16;
PltHeaderSize = 16;
TlsGdRelaxSkip = 2;
// Align to the large page size (known as a superpage or huge page).
// FreeBSD automatically promotes large, superpage-aligned allocations.
DefaultImageBase = 0x200000;
// 0xCC is the "int3" (call debug exception handler) instruction.
TrapInstr = 0xcccccccc;
}
template <class ELFT>
RelExpr X86_64<ELFT>::getRelExpr(uint32_t Type, const SymbolBody &S,
const uint8_t *Loc) const {
switch (Type) {
case R_X86_64_8:
case R_X86_64_16:
case R_X86_64_32:
case R_X86_64_32S:
case R_X86_64_64:
case R_X86_64_DTPOFF32:
case R_X86_64_DTPOFF64:
return R_ABS;
case R_X86_64_TPOFF32:
return R_TLS;
case R_X86_64_TLSLD:
return R_TLSLD_PC;
case R_X86_64_TLSGD:
return R_TLSGD_PC;
case R_X86_64_SIZE32:
case R_X86_64_SIZE64:
return R_SIZE;
case R_X86_64_PLT32:
return R_PLT_PC;
case R_X86_64_PC32:
case R_X86_64_PC64:
return R_PC;
case R_X86_64_GOT32:
case R_X86_64_GOT64:
return R_GOT_FROM_END;
case R_X86_64_GOTPCREL:
case R_X86_64_GOTPCRELX:
case R_X86_64_REX_GOTPCRELX:
case R_X86_64_GOTTPOFF:
return R_GOT_PC;
case R_X86_64_NONE:
return R_NONE;
default:
error(toString(S.File) + ": unknown relocation type: " + toString(Type));
return R_HINT;
}
}
template <class ELFT> void X86_64<ELFT>::writeGotPltHeader(uint8_t *Buf) const {
// The first entry holds the value of _DYNAMIC. It is not clear why that is
// required, but it is documented in the psabi and the glibc dynamic linker
// seems to use it (note that this is relevant for linking ld.so, not any
// other program).
write64le(Buf, InX::Dynamic->getVA());
}
template <class ELFT>
void X86_64<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const {
// See comments in X86TargetInfo::writeGotPlt.
write32le(Buf, S.getPltVA() + 6);
}
template <class ELFT> void X86_64<ELFT>::writePltHeader(uint8_t *Buf) const {
const uint8_t PltData[] = {
0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOTPLT+8(%rip)
0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOTPLT+16(%rip)
0x0f, 0x1f, 0x40, 0x00 // nop
};
memcpy(Buf, PltData, sizeof(PltData));
uint64_t GotPlt = InX::GotPlt->getVA();
uint64_t Plt = InX::Plt->getVA();
write32le(Buf + 2, GotPlt - Plt + 2); // GOTPLT+8
write32le(Buf + 8, GotPlt - Plt + 4); // GOTPLT+16
}
template <class ELFT>
void X86_64<ELFT>::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
const uint8_t Inst[] = {
0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip)
0x68, 0x00, 0x00, 0x00, 0x00, // pushq <relocation index>
0xe9, 0x00, 0x00, 0x00, 0x00 // jmpq plt[0]
};
memcpy(Buf, Inst, sizeof(Inst));
write32le(Buf + 2, GotPltEntryAddr - PltEntryAddr - 6);
write32le(Buf + 7, Index);
write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
}
template <class ELFT> bool X86_64<ELFT>::isPicRel(uint32_t Type) const {
return Type != R_X86_64_PC32 && Type != R_X86_64_32 &&
Type != R_X86_64_TPOFF32;
}
template <class ELFT>
void X86_64<ELFT>::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
uint64_t Val) const {
// Convert
// .byte 0x66
// leaq x@tlsgd(%rip), %rdi
// .word 0x6666
// rex64
// call __tls_get_addr@plt
// to
// mov %fs:0x0,%rax
// lea x@tpoff,%rax
const uint8_t Inst[] = {
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff,%rax
};
memcpy(Loc - 4, Inst, sizeof(Inst));
// The original code used a pc relative relocation and so we have to
// compensate for the -4 in had in the addend.
write32le(Loc + 8, Val + 4);
}
template <class ELFT>
void X86_64<ELFT>::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
uint64_t Val) const {
// Convert
// .byte 0x66
// leaq x@tlsgd(%rip), %rdi
// .word 0x6666
// rex64
// call __tls_get_addr@plt
// to
// mov %fs:0x0,%rax
// addq x@tpoff,%rax
const uint8_t Inst[] = {
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // addq x@tpoff,%rax
};
memcpy(Loc - 4, Inst, sizeof(Inst));
// Both code sequences are PC relatives, but since we are moving the constant
// forward by 8 bytes we have to subtract the value by 8.
write32le(Loc + 8, Val - 8);
}
// In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
// R_X86_64_TPOFF32 so that it does not use GOT.
template <class ELFT>
void X86_64<ELFT>::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
uint64_t Val) const {
uint8_t *Inst = Loc - 3;
uint8_t Reg = Loc[-1] >> 3;
uint8_t *RegSlot = Loc - 1;
// Note that ADD with RSP or R12 is converted to ADD instead of LEA
// because LEA with these registers needs 4 bytes to encode and thus
// wouldn't fit the space.
if (memcmp(Inst, "\x48\x03\x25", 3) == 0) {
// "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
memcpy(Inst, "\x48\x81\xc4", 3);
} else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) {
// "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
memcpy(Inst, "\x49\x81\xc4", 3);
} else if (memcmp(Inst, "\x4c\x03", 2) == 0) {
// "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
memcpy(Inst, "\x4d\x8d", 2);
*RegSlot = 0x80 | (Reg << 3) | Reg;
} else if (memcmp(Inst, "\x48\x03", 2) == 0) {
// "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
memcpy(Inst, "\x48\x8d", 2);
*RegSlot = 0x80 | (Reg << 3) | Reg;
} else if (memcmp(Inst, "\x4c\x8b", 2) == 0) {
// "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
memcpy(Inst, "\x49\xc7", 2);
*RegSlot = 0xc0 | Reg;
} else if (memcmp(Inst, "\x48\x8b", 2) == 0) {
// "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
memcpy(Inst, "\x48\xc7", 2);
*RegSlot = 0xc0 | Reg;
} else {
error(getErrorLocation(Loc - 3) +
"R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
}
// The original code used a PC relative relocation.
// Need to compensate for the -4 it had in the addend.
write32le(Loc, Val + 4);
}
template <class ELFT>
void X86_64<ELFT>::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
uint64_t Val) const {
// Convert
// leaq bar@tlsld(%rip), %rdi
// callq __tls_get_addr@PLT
// leaq bar@dtpoff(%rax), %rcx
// to
// .word 0x6666
// .byte 0x66
// mov %fs:0,%rax
// leaq bar@tpoff(%rax), %rcx
if (Type == R_X86_64_DTPOFF64) {
write64le(Loc, Val);
return;
}
if (Type == R_X86_64_DTPOFF32) {
write32le(Loc, Val);
return;
}
const uint8_t Inst[] = {
0x66, 0x66, // .word 0x6666
0x66, // .byte 0x66
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
};
memcpy(Loc - 3, Inst, sizeof(Inst));
}
template <class ELFT>
void X86_64<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type,
uint64_t Val) const {
switch (Type) {
case R_X86_64_8:
checkUInt<8>(Loc, Val, Type);
*Loc = Val;
break;
case R_X86_64_16:
checkUInt<16>(Loc, Val, Type);
write16le(Loc, Val);
break;
case R_X86_64_32:
checkUInt<32>(Loc, Val, Type);
write32le(Loc, Val);
break;
case R_X86_64_32S:
case R_X86_64_TPOFF32:
case R_X86_64_GOT32:
case R_X86_64_GOTPCREL:
case R_X86_64_GOTPCRELX:
case R_X86_64_REX_GOTPCRELX:
case R_X86_64_PC32:
case R_X86_64_GOTTPOFF:
case R_X86_64_PLT32:
case R_X86_64_TLSGD:
case R_X86_64_TLSLD:
case R_X86_64_DTPOFF32:
case R_X86_64_SIZE32:
checkInt<32>(Loc, Val, Type);
write32le(Loc, Val);
break;
case R_X86_64_64:
case R_X86_64_DTPOFF64:
case R_X86_64_GLOB_DAT:
case R_X86_64_PC64:
case R_X86_64_SIZE64:
case R_X86_64_GOT64:
write64le(Loc, Val);
break;
default:
llvm_unreachable("unexpected relocation");
}
}
template <class ELFT>
RelExpr X86_64<ELFT>::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
RelExpr RelExpr) const {
if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX)
return RelExpr;
const uint8_t Op = Data[-2];
const uint8_t ModRm = Data[-1];
// FIXME: When PIC is disabled and foo is defined locally in the
// lower 32 bit address space, memory operand in mov can be converted into
// immediate operand. Otherwise, mov must be changed to lea. We support only
// latter relaxation at this moment.
if (Op == 0x8b)
return R_RELAX_GOT_PC;
// Relax call and jmp.
if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25))
return R_RELAX_GOT_PC;
// Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
// If PIC then no relaxation is available.
// We also don't relax test/binop instructions without REX byte,
// they are 32bit operations and not common to have.
assert(Type == R_X86_64_REX_GOTPCRELX);
return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC;
}
// A subset of relaxations can only be applied for no-PIC. This method
// handles such relaxations. Instructions encoding information was taken from:
// "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
// (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
// 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
template <class ELFT>
void X86_64<ELFT>::relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op,
uint8_t ModRm) const {
const uint8_t Rex = Loc[-3];
// Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
if (Op == 0x85) {
// See "TEST-Logical Compare" (4-428 Vol. 2B),
// TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
// ModR/M byte has form XX YYY ZZZ, where
// YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
// XX has different meanings:
// 00: The operand's memory address is in reg1.
// 01: The operand's memory address is reg1 + a byte-sized displacement.
// 10: The operand's memory address is reg1 + a word-sized displacement.
// 11: The operand is reg1 itself.
// If an instruction requires only one operand, the unused reg2 field
// holds extra opcode bits rather than a register code
// 0xC0 == 11 000 000 binary.
// 0x38 == 00 111 000 binary.
// We transfer reg2 to reg1 here as operand.
// See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte.
// Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
// See "TEST-Logical Compare" (4-428 Vol. 2B).
Loc[-2] = 0xf7;
// Move R bit to the B bit in REX byte.
// REX byte is encoded as 0100WRXB, where
// 0100 is 4bit fixed pattern.
// REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
// default operand size is used (which is 32-bit for most but not all
// instructions).
// REX.R This 1-bit value is an extension to the MODRM.reg field.
// REX.X This 1-bit value is an extension to the SIB.index field.
// REX.B This 1-bit value is an extension to the MODRM.rm field or the
// SIB.base field.
// See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
write32le(Loc, Val);
return;
}
// If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
// or xor operations.
// Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
// Logic is close to one for test instruction above, but we also
// write opcode extension here, see below for details.
Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte.
// Primary opcode is 0x81, opcode extension is one of:
// 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
// 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
// This value was wrote to MODRM.reg in a line above.
// See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
// "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
// descriptions about each operation.
Loc[-2] = 0x81;
Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
write32le(Loc, Val);
}
template <class ELFT>
void X86_64<ELFT>::relaxGot(uint8_t *Loc, uint64_t Val) const {
const uint8_t Op = Loc[-2];
const uint8_t ModRm = Loc[-1];
// Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
if (Op == 0x8b) {
Loc[-2] = 0x8d;
write32le(Loc, Val);
return;
}
if (Op != 0xff) {
// We are relaxing a rip relative to an absolute, so compensate
// for the old -4 addend.
assert(!Config->Pic);
relaxGotNoPic(Loc, Val + 4, Op, ModRm);
return;
}
// Convert call/jmp instructions.
if (ModRm == 0x15) {
// ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
// Instead we convert to "addr32 call foo" where addr32 is an instruction
// prefix. That makes result expression to be a single instruction.
Loc[-2] = 0x67; // addr32 prefix
Loc[-1] = 0xe8; // call
write32le(Loc, Val);
return;
}
// Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
// jmp doesn't return, so it is fine to use nop here, it is just a stub.
assert(ModRm == 0x25);
Loc[-2] = 0xe9; // jmp
Loc[3] = 0x90; // nop
write32le(Loc - 1, Val + 1);
}
TargetInfo *elf::createX32TargetInfo() { return make<X86_64<ELF32LE>>(); }
TargetInfo *elf::createX86_64TargetInfo() { return make<X86_64<ELF64LE>>(); }

View File

@ -7,6 +7,15 @@ if(NOT LLD_BUILT_STANDALONE)
endif()
add_lld_library(lldELF
Arch/AArch64.cpp
Arch/AMDGPU.cpp
Arch/ARM.cpp
Arch/AVR.cpp
Arch/Mips.cpp
Arch/PPC.cpp
Arch/PPC64.cpp
Arch/X86.cpp
Arch/X86_64.cpp
Driver.cpp
DriverUtils.cpp
EhFrame.cpp

View File

@ -36,6 +36,7 @@
#include "ScriptParser.h"
#include "Strings.h"
#include "SymbolTable.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Threads.h"
#include "Writer.h"
@ -43,7 +44,6 @@
#include "lld/Driver/Driver.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Object/Decompressor.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Path.h"
@ -99,7 +99,7 @@ static std::tuple<ELFKind, uint16_t, uint8_t> parseEmulation(StringRef Emul) {
std::pair<ELFKind, uint16_t> Ret =
StringSwitch<std::pair<ELFKind, uint16_t>>(S)
.Cases("aarch64elf", "aarch64linux", {ELF64LEKind, EM_AARCH64})
.Case("armelf_linux_eabi", {ELF32LEKind, EM_ARM})
.Cases("armelf", "armelf_linux_eabi", {ELF32LEKind, EM_ARM})
.Case("elf32_x86_64", {ELF32LEKind, EM_X86_64})
.Cases("elf32btsmip", "elf32btsmipn32", {ELF32BEKind, EM_MIPS})
.Cases("elf32ltsmip", "elf32ltsmipn32", {ELF32LEKind, EM_MIPS})
@ -273,13 +273,6 @@ static void checkOptions(opt::InputArgList &Args) {
}
}
static StringRef getString(opt::InputArgList &Args, unsigned Key,
StringRef Default = "") {
if (auto *Arg = Args.getLastArg(Key))
return Arg->getValue();
return Default;
}
static int getInteger(opt::InputArgList &Args, unsigned Key, int Default) {
int V = Default;
if (auto *Arg = Args.getLastArg(Key)) {
@ -306,13 +299,11 @@ static bool hasZOption(opt::InputArgList &Args, StringRef Key) {
static uint64_t getZOptionValue(opt::InputArgList &Args, StringRef Key,
uint64_t Default) {
for (auto *Arg : Args.filtered(OPT_z)) {
StringRef Value = Arg->getValue();
size_t Pos = Value.find("=");
if (Pos != StringRef::npos && Key == Value.substr(0, Pos)) {
Value = Value.substr(Pos + 1);
std::pair<StringRef, StringRef> KV = StringRef(Arg->getValue()).split('=');
if (KV.first == Key) {
uint64_t Result;
if (!to_integer(Value, Result))
error("invalid " + Key + ": " + Value);
if (!to_integer(KV.second, Result))
error("invalid " + Key + ": " + KV.second);
return Result;
}
}
@ -463,7 +454,7 @@ static UnresolvedPolicy getUnresolvedSymbolPolicy(opt::InputArgList &Args) {
}
static Target2Policy getTarget2(opt::InputArgList &Args) {
StringRef S = getString(Args, OPT_target2, "got-rel");
StringRef S = Args.getLastArgValue(OPT_target2, "got-rel");
if (S == "rel")
return Target2Policy::Rel;
if (S == "abs")
@ -546,7 +537,7 @@ static StringMap<uint64_t> getSectionStartMap(opt::InputArgList &Args) {
}
static SortSectionPolicy getSortSection(opt::InputArgList &Args) {
StringRef S = getString(Args, OPT_sort_section);
StringRef S = Args.getLastArgValue(OPT_sort_section);
if (S == "alignment")
return SortSectionPolicy::Alignment;
if (S == "name")
@ -557,7 +548,7 @@ static SortSectionPolicy getSortSection(opt::InputArgList &Args) {
}
static std::pair<bool, bool> getHashStyle(opt::InputArgList &Args) {
StringRef S = getString(Args, OPT_hash_style, "sysv");
StringRef S = Args.getLastArgValue(OPT_hash_style, "sysv");
if (S == "sysv")
return {true, false};
if (S == "gnu")
@ -608,7 +599,7 @@ static std::vector<StringRef> getLines(MemoryBufferRef MB) {
}
static bool getCompressDebugSections(opt::InputArgList &Args) {
StringRef S = getString(Args, OPT_compress_debug_sections, "none");
StringRef S = Args.getLastArgValue(OPT_compress_debug_sections, "none");
if (S == "none")
return false;
if (S != "zlib")
@ -634,30 +625,30 @@ void LinkerDriver::readConfigs(opt::InputArgList &Args) {
Config->EhFrameHdr = Args.hasArg(OPT_eh_frame_hdr);
Config->EmitRelocs = Args.hasArg(OPT_emit_relocs);
Config->EnableNewDtags = !Args.hasArg(OPT_disable_new_dtags);
Config->Entry = getString(Args, OPT_entry);
Config->Entry = Args.getLastArgValue(OPT_entry);
Config->ExportDynamic =
getArg(Args, OPT_export_dynamic, OPT_no_export_dynamic, false);
Config->FatalWarnings =
getArg(Args, OPT_fatal_warnings, OPT_no_fatal_warnings, false);
Config->Fini = getString(Args, OPT_fini, "_fini");
Config->Fini = Args.getLastArgValue(OPT_fini, "_fini");
Config->GcSections = getArg(Args, OPT_gc_sections, OPT_no_gc_sections, false);
Config->GdbIndex = Args.hasArg(OPT_gdb_index);
Config->ICF = Args.hasArg(OPT_icf);
Config->Init = getString(Args, OPT_init, "_init");
Config->LTOAAPipeline = getString(Args, OPT_lto_aa_pipeline);
Config->LTONewPmPasses = getString(Args, OPT_lto_newpm_passes);
Config->Init = Args.getLastArgValue(OPT_init, "_init");
Config->LTOAAPipeline = Args.getLastArgValue(OPT_lto_aa_pipeline);
Config->LTONewPmPasses = Args.getLastArgValue(OPT_lto_newpm_passes);
Config->LTOO = getInteger(Args, OPT_lto_O, 2);
Config->LTOPartitions = getInteger(Args, OPT_lto_partitions, 1);
Config->MapFile = getString(Args, OPT_Map);
Config->MapFile = Args.getLastArgValue(OPT_Map);
Config->NoGnuUnique = Args.hasArg(OPT_no_gnu_unique);
Config->NoUndefinedVersion = Args.hasArg(OPT_no_undefined_version);
Config->Nostdlib = Args.hasArg(OPT_nostdlib);
Config->OFormatBinary = isOutputFormatBinary(Args);
Config->Omagic = Args.hasArg(OPT_omagic);
Config->OptRemarksFilename = getString(Args, OPT_opt_remarks_filename);
Config->OptRemarksFilename = Args.getLastArgValue(OPT_opt_remarks_filename);
Config->OptRemarksWithHotness = Args.hasArg(OPT_opt_remarks_with_hotness);
Config->Optimize = getInteger(Args, OPT_O, 1);
Config->OutputFile = getString(Args, OPT_o);
Config->OutputFile = Args.getLastArgValue(OPT_o);
Config->Pie = getArg(Args, OPT_pie, OPT_nopie, false);
Config->PrintGcSections = Args.hasArg(OPT_print_gc_sections);
Config->Rpath = getRpath(Args);
@ -667,16 +658,16 @@ void LinkerDriver::readConfigs(opt::InputArgList &Args) {
Config->SectionStartMap = getSectionStartMap(Args);
Config->Shared = Args.hasArg(OPT_shared);
Config->SingleRoRx = Args.hasArg(OPT_no_rosegment);
Config->SoName = getString(Args, OPT_soname);
Config->SoName = Args.getLastArgValue(OPT_soname);
Config->SortSection = getSortSection(Args);
Config->Strip = getStrip(Args);
Config->Sysroot = getString(Args, OPT_sysroot);
Config->Sysroot = Args.getLastArgValue(OPT_sysroot);
Config->Target1Rel = getArg(Args, OPT_target1_rel, OPT_target1_abs, false);
Config->Target2 = getTarget2(Args);
Config->ThinLTOCacheDir = getString(Args, OPT_thinlto_cache_dir);
Config->ThinLTOCachePolicy =
check(parseCachePruningPolicy(getString(Args, OPT_thinlto_cache_policy)),
"--thinlto-cache-policy: invalid cache policy");
Config->ThinLTOCacheDir = Args.getLastArgValue(OPT_thinlto_cache_dir);
Config->ThinLTOCachePolicy = check(
parseCachePruningPolicy(Args.getLastArgValue(OPT_thinlto_cache_policy)),
"--thinlto-cache-policy: invalid cache policy");
Config->ThinLTOJobs = getInteger(Args, OPT_thinlto_jobs, -1u);
Config->Threads = getArg(Args, OPT_threads, OPT_no_threads, true);
Config->Trace = Args.hasArg(OPT_trace);
@ -698,7 +689,8 @@ void LinkerDriver::readConfigs(opt::InputArgList &Args) {
Config->ZWxneeded = hasZOption(Args, "wxneeded");
if (Config->LTOO > 3)
error("invalid optimization level for LTO: " + getString(Args, OPT_lto_O));
error("invalid optimization level for LTO: " +
Args.getLastArgValue(OPT_lto_O));
if (Config->LTOPartitions == 0)
error("--lto-partitions: number of threads must be > 0");
if (Config->ThinLTOJobs == 0)
@ -1001,24 +993,20 @@ template <class ELFT> void LinkerDriver::link(opt::InputArgList &Args) {
for (InputSectionBase *S : F->getSections())
InputSections.push_back(cast<InputSection>(S));
// Do size optimizations: garbage collection and identical code folding.
// This adds a .comment section containing a version string. We have to add it
// before decompressAndMergeSections because the .comment section is a
// mergeable section.
if (!Config->Relocatable)
InputSections.push_back(createCommentSection<ELFT>());
// Do size optimizations: garbage collection, merging of SHF_MERGE sections
// and identical code folding.
if (Config->GcSections)
markLive<ELFT>();
decompressAndMergeSections();
if (Config->ICF)
doIcf<ELFT>();
// MergeInputSection::splitIntoPieces needs to be called before
// any call of MergeInputSection::getOffset. Do that.
parallelForEach(InputSections.begin(), InputSections.end(),
[](InputSectionBase *S) {
if (!S->Live)
return;
if (Decompressor::isCompressedELFSection(S->Flags, S->Name))
S->uncompress();
if (auto *MS = dyn_cast<MergeInputSection>(S))
MS->splitIntoPieces();
});
// Write the result to the file.
writeResult<ELFT>();
}

View File

@ -98,7 +98,8 @@ template <class ELFT> class ICF {
void segregate(size_t Begin, size_t End, bool Constant);
template <class RelTy>
bool constantEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB);
bool constantEq(const InputSection *A, ArrayRef<RelTy> RelsA,
const InputSection *B, ArrayRef<RelTy> RelsB);
template <class RelTy>
bool variableEq(const InputSection *A, ArrayRef<RelTy> RelsA,
@ -206,11 +207,53 @@ void ICF<ELFT>::segregate(size_t Begin, size_t End, bool Constant) {
// Compare two lists of relocations.
template <class ELFT>
template <class RelTy>
bool ICF<ELFT>::constantEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB) {
auto Eq = [](const RelTy &A, const RelTy &B) {
return A.r_offset == B.r_offset &&
A.getType(Config->IsMips64EL) == B.getType(Config->IsMips64EL) &&
getAddend<ELFT>(A) == getAddend<ELFT>(B);
bool ICF<ELFT>::constantEq(const InputSection *A, ArrayRef<RelTy> RelsA,
const InputSection *B, ArrayRef<RelTy> RelsB) {
auto Eq = [&](const RelTy &RA, const RelTy &RB) {
if (RA.r_offset != RB.r_offset ||
RA.getType(Config->IsMips64EL) != RB.getType(Config->IsMips64EL))
return false;
uint64_t AddA = getAddend<ELFT>(RA);
uint64_t AddB = getAddend<ELFT>(RB);
SymbolBody &SA = A->template getFile<ELFT>()->getRelocTargetSym(RA);
SymbolBody &SB = B->template getFile<ELFT>()->getRelocTargetSym(RB);
if (&SA == &SB)
return AddA == AddB;
auto *DA = dyn_cast<DefinedRegular>(&SA);
auto *DB = dyn_cast<DefinedRegular>(&SB);
if (!DA || !DB)
return false;
// Relocations referring to absolute symbols are constant-equal if their
// values are equal.
if (!DA->Section || !DB->Section)
return !DA->Section && !DB->Section &&
DA->Value + AddA == DB->Value + AddB;
if (DA->Section->kind() != DB->Section->kind())
return false;
// Relocations referring to InputSections are constant-equal if their
// section offsets are equal.
if (isa<InputSection>(DA->Section))
return DA->Value + AddA == DB->Value + AddB;
// Relocations referring to MergeInputSections are constant-equal if their
// offsets in the output section are equal.
auto *X = dyn_cast<MergeInputSection>(DA->Section);
if (!X)
return false;
auto *Y = cast<MergeInputSection>(DB->Section);
if (X->getParent() != Y->getParent())
return false;
uint64_t OffsetA =
SA.isSection() ? X->getOffset(AddA) : X->getOffset(DA->Value) + AddA;
uint64_t OffsetB =
SB.isSection() ? Y->getOffset(AddB) : Y->getOffset(DB->Value) + AddB;
return OffsetA == OffsetB;
};
return RelsA.size() == RelsB.size() &&
@ -226,8 +269,9 @@ bool ICF<ELFT>::equalsConstant(const InputSection *A, const InputSection *B) {
return false;
if (A->AreRelocsRela)
return constantEq(A->template relas<ELFT>(), B->template relas<ELFT>());
return constantEq(A->template rels<ELFT>(), B->template rels<ELFT>());
return constantEq(A, A->template relas<ELFT>(), B,
B->template relas<ELFT>());
return constantEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
}
// Compare two lists of relocations. Returns true if all pairs of
@ -243,22 +287,18 @@ bool ICF<ELFT>::variableEq(const InputSection *A, ArrayRef<RelTy> RelsA,
if (&SA == &SB)
return true;
auto *DA = dyn_cast<DefinedRegular>(&SA);
auto *DB = dyn_cast<DefinedRegular>(&SB);
if (!DA || !DB)
return false;
if (DA->Value != DB->Value)
return false;
auto *DA = cast<DefinedRegular>(&SA);
auto *DB = cast<DefinedRegular>(&SB);
// Either both symbols must be absolute...
if (!DA->Section || !DB->Section)
return !DA->Section && !DB->Section;
// Or the two sections must be in the same equivalence class.
// We already dealt with absolute and non-InputSection symbols in
// constantEq, and for InputSections we have already checked everything
// except the equivalence class.
if (!DA->Section)
return true;
auto *X = dyn_cast<InputSection>(DA->Section);
auto *Y = dyn_cast<InputSection>(DB->Section);
if (!X || !Y)
return false;
if (!X)
return true;
auto *Y = cast<InputSection>(DB->Section);
// Ineligible sections are in the special equivalence class 0.
// They can never be the same in terms of the equivalence class.

View File

@ -205,13 +205,27 @@ template <class ELFT>
StringRef
elf::ObjectFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections,
const Elf_Shdr &Sec) {
// Group signatures are stored as symbol names in object files.
// sh_info contains a symbol index, so we fetch a symbol and read its name.
if (this->Symbols.empty())
this->initSymtab(
Sections,
check(object::getSection<ELFT>(Sections, Sec.sh_link), toString(this)));
const Elf_Sym *Sym = check(
object::getSymbol<ELFT>(this->Symbols, Sec.sh_info), toString(this));
return check(Sym->getName(this->StringTable), toString(this));
StringRef Signature = check(Sym->getName(this->StringTable), toString(this));
// As a special case, if a symbol is a section symbol and has no name,
// we use a section name as a signature.
//
// Such SHT_GROUP sections are invalid from the perspective of the ELF
// standard, but GNU gold 1.14 (the neweset version as of July 2017) or
// older produce such sections as outputs for the -r option, so we need
// a bug-compatibility.
if (Signature.empty() && Sym->getType() == STT_SECTION)
return getSectionName(Sec);
return Signature;
}
template <class ELFT>
@ -287,8 +301,7 @@ void elf::ObjectFile<ELFT>::initializeSections(
check(this->getObj().sections(), toString(this));
uint64_t Size = ObjSections.size();
this->Sections.resize(Size);
StringRef SectionStringTable =
this->SectionStringTable =
check(Obj.getSectionStringTable(ObjSections), toString(this));
for (size_t I = 0, E = ObjSections.size(); I < E; I++) {
@ -318,7 +331,7 @@ void elf::ObjectFile<ELFT>::initializeSections(
// object files, we want to pass through basically everything.
if (IsNew) {
if (Config->Relocatable)
this->Sections[I] = createInputSection(Sec, SectionStringTable);
this->Sections[I] = createInputSection(Sec);
continue;
}
@ -342,7 +355,7 @@ void elf::ObjectFile<ELFT>::initializeSections(
case SHT_NULL:
break;
default:
this->Sections[I] = createInputSection(Sec, SectionStringTable);
this->Sections[I] = createInputSection(Sec);
}
// .ARM.exidx sections have a reverse dependency on the InputSection they
@ -386,10 +399,8 @@ InputSectionBase *toRegularSection(MergeInputSection *Sec) {
template <class ELFT>
InputSectionBase *
elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec,
StringRef SectionStringTable) {
StringRef Name = check(
this->getObj().getSectionName(&Sec, SectionStringTable), toString(this));
elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
StringRef Name = getSectionName(Sec);
switch (Sec.sh_type) {
case SHT_ARM_ATTRIBUTES:
@ -521,6 +532,12 @@ elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec,
return make<InputSection>(this, &Sec, Name);
}
template <class ELFT>
StringRef elf::ObjectFile<ELFT>::getSectionName(const Elf_Shdr &Sec) {
return check(this->getObj().getSectionName(&Sec, SectionStringTable),
toString(this));
}
template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() {
SymbolBodies.reserve(this->Symbols.size());
for (const Elf_Sym &Sym : this->Symbols)
@ -804,6 +821,8 @@ static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) {
case Triple::arm:
case Triple::thumb:
return EM_ARM;
case Triple::avr:
return EM_AVR;
case Triple::mips:
case Triple::mipsel:
case Triple::mips64:

View File

@ -194,8 +194,8 @@ template <class ELFT> class ObjectFile : public ELFFileBase<ELFT> {
void initializeSymbols();
void initializeDwarfLine();
InputSectionBase *getRelocTarget(const Elf_Shdr &Sec);
InputSectionBase *createInputSection(const Elf_Shdr &Sec,
StringRef SectionStringTable);
InputSectionBase *createInputSection(const Elf_Shdr &Sec);
StringRef getSectionName(const Elf_Shdr &Sec);
bool shouldMerge(const Elf_Shdr &Sec);
SymbolBody *createSymbolBody(const Elf_Sym *Sym);
@ -203,6 +203,9 @@ template <class ELFT> class ObjectFile : public ELFFileBase<ELFT> {
// List of all symbols referenced or defined by this file.
std::vector<SymbolBody *> SymbolBodies;
// .shstrtab contents.
StringRef SectionStringTable;
// Debugging information to retrieve source file and line for error
// reporting. Linker may find reasonable number of errors in a
// single object file, so we cache debugging information in order to

View File

@ -403,7 +403,7 @@ static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A,
uint32_t P) {
switch (Type) {
case R_ARM_THM_JUMP11:
return P + 2;
return P + 2 + A;
case R_ARM_CALL:
case R_ARM_JUMP24:
case R_ARM_PC24:
@ -411,12 +411,12 @@ static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A,
case R_ARM_PREL31:
case R_ARM_THM_JUMP19:
case R_ARM_THM_JUMP24:
return P + 4;
return P + 4 + A;
case R_ARM_THM_CALL:
// We don't want an interworking BLX to ARM
return P + 5;
return P + 5 + A;
default:
return A;
return P + A;
}
}
@ -427,9 +427,9 @@ static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
case R_AARCH64_CONDBR19:
case R_AARCH64_JUMP26:
case R_AARCH64_TSTBR14:
return P + 4;
return P + 4 + A;
default:
return A;
return P + A;
}
}
@ -515,20 +515,30 @@ static uint64_t getRelocTargetVA(uint32_t Type, int64_t A, uint64_t P,
return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() +
InX::MipsGot->getTlsIndexOff() - InX::MipsGot->getGp();
case R_PAGE_PC:
case R_PLT_PAGE_PC:
case R_PLT_PAGE_PC: {
uint64_t Dest;
if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak())
return getAArch64Page(A);
return getAArch64Page(Body.getVA(A)) - getAArch64Page(P);
case R_PC:
Dest = getAArch64Page(A);
else
Dest = getAArch64Page(Body.getVA(A));
return Dest - getAArch64Page(P);
}
case R_PC: {
uint64_t Dest;
if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) {
// On ARM and AArch64 a branch to an undefined weak resolves to the
// next instruction, otherwise the place.
if (Config->EMachine == EM_ARM)
return getARMUndefinedRelativeWeakVA(Type, A, P);
if (Config->EMachine == EM_AARCH64)
return getAArch64UndefinedRelativeWeakVA(Type, A, P);
Dest = getARMUndefinedRelativeWeakVA(Type, A, P);
else if (Config->EMachine == EM_AARCH64)
Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P);
else
Dest = Body.getVA(A);
} else {
Dest = Body.getVA(A);
}
return Body.getVA(A) - P;
return Dest - P;
}
case R_PLT:
return Body.getPltVA() + A;
case R_PLT_PC:

View File

@ -142,10 +142,7 @@ void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) {
Sym->Value = V.getValue();
} else {
Sym->Section = V.Sec;
if (Sym->Section->Flags & SHF_ALLOC)
Sym->Value = alignTo(V.Val, V.Alignment);
else
Sym->Value = V.getValue();
Sym->Value = alignTo(V.Val, V.Alignment);
}
}
@ -461,7 +458,7 @@ void LinkerScript::fabricateDefaultCommands() {
// For each OutputSection that needs a VA fabricate an OutputSectionCommand
// with an InputSectionDescription describing the InputSections
for (OutputSection *Sec : *OutputSections) {
for (OutputSection *Sec : OutputSections) {
auto *OSCmd = createOutputSectionCommand(Sec->Name, "<internal>");
OSCmd->Sec = Sec;
SecToCommand[Sec] = OSCmd;
@ -649,7 +646,9 @@ void LinkerScript::assignOffsets(OutputSectionCommand *Cmd) {
if (!Sec)
return;
if (Cmd->AddrExpr && (Sec->Flags & SHF_ALLOC))
if (!(Sec->Flags & SHF_ALLOC))
Dot = 0;
else if (Cmd->AddrExpr)
setDot(Cmd->AddrExpr, Cmd->Location, false);
if (Cmd->LMAExpr) {
@ -681,8 +680,7 @@ void LinkerScript::removeEmptyCommands() {
auto Pos = std::remove_if(
Opt.Commands.begin(), Opt.Commands.end(), [&](BaseCommand *Base) {
if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base))
return std::find(OutputSections->begin(), OutputSections->end(),
Cmd->Sec) == OutputSections->end();
return Cmd->Sec == nullptr;
return false;
});
Opt.Commands.erase(Pos, Opt.Commands.end());
@ -716,15 +714,12 @@ void LinkerScript::adjustSectionsBeforeSorting() {
auto *OutSec = make<OutputSection>(Cmd->Name, SHT_PROGBITS, Flags);
OutSec->SectionIndex = I;
OutputSections->push_back(OutSec);
Cmd->Sec = OutSec;
SecToCommand[OutSec] = Cmd;
}
}
void LinkerScript::adjustSectionsAfterSorting() {
placeOrphanSections();
// Try and find an appropriate memory region to assign offsets in.
for (BaseCommand *Base : Opt.Commands) {
if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base)) {
@ -764,106 +759,18 @@ void LinkerScript::adjustSectionsAfterSorting() {
removeEmptyCommands();
}
// When placing orphan sections, we want to place them after symbol assignments
// so that an orphan after
// begin_foo = .;
// foo : { *(foo) }
// end_foo = .;
// doesn't break the intended meaning of the begin/end symbols.
// We don't want to go over sections since Writer<ELFT>::sortSections is the
// one in charge of deciding the order of the sections.
// We don't want to go over alignments, since doing so in
// rx_sec : { *(rx_sec) }
// . = ALIGN(0x1000);
// /* The RW PT_LOAD starts here*/
// rw_sec : { *(rw_sec) }
// would mean that the RW PT_LOAD would become unaligned.
static bool shouldSkip(BaseCommand *Cmd) {
if (isa<OutputSectionCommand>(Cmd))
return false;
if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd))
return Assign->Name != ".";
return true;
}
// Orphan sections are sections present in the input files which are
// not explicitly placed into the output file by the linker script.
//
// When the control reaches this function, Opt.Commands contains
// output section commands for non-orphan sections only. This function
// adds new elements for orphan sections so that all sections are
// explicitly handled by Opt.Commands.
//
// Writer<ELFT>::sortSections has already sorted output sections.
// What we need to do is to scan OutputSections vector and
// Opt.Commands in parallel to find orphan sections. If there is an
// output section that doesn't have a corresponding entry in
// Opt.Commands, we will insert a new entry to Opt.Commands.
//
// There is some ambiguity as to where exactly a new entry should be
// inserted, because Opt.Commands contains not only output section
// commands but also other types of commands such as symbol assignment
// expressions. There's no correct answer here due to the lack of the
// formal specification of the linker script. We use heuristics to
// determine whether a new output command should be added before or
// after another commands. For the details, look at shouldSkip
// function.
void LinkerScript::placeOrphanSections() {
// The OutputSections are already in the correct order.
// This loops creates or moves commands as needed so that they are in the
// correct order.
int CmdIndex = 0;
// As a horrible special case, skip the first . assignment if it is before any
// section. We do this because it is common to set a load address by starting
// the script with ". = 0xabcd" and the expectation is that every section is
// after that.
auto FirstSectionOrDotAssignment =
std::find_if(Opt.Commands.begin(), Opt.Commands.end(),
[](BaseCommand *Cmd) { return !shouldSkip(Cmd); });
if (FirstSectionOrDotAssignment != Opt.Commands.end()) {
CmdIndex = FirstSectionOrDotAssignment - Opt.Commands.begin();
if (isa<SymbolAssignment>(**FirstSectionOrDotAssignment))
++CmdIndex;
}
for (OutputSection *Sec : *OutputSections) {
StringRef Name = Sec->Name;
// Find the last spot where we can insert a command and still get the
// correct result.
auto CmdIter = Opt.Commands.begin() + CmdIndex;
auto E = Opt.Commands.end();
while (CmdIter != E && shouldSkip(*CmdIter)) {
++CmdIter;
++CmdIndex;
}
// If there is no command corresponding to this output section,
// create one and put a InputSectionDescription in it so that both
// representations agree on which input sections to use.
OutputSectionCommand *Cmd = getCmd(Sec);
if (!Cmd) {
Cmd = createOutputSectionCommand(Name, "<internal>");
Opt.Commands.insert(CmdIter, Cmd);
++CmdIndex;
Cmd->Sec = Sec;
SecToCommand[Sec] = Cmd;
auto *ISD = make<InputSectionDescription>("");
for (InputSection *IS : Sec->Sections)
ISD->Sections.push_back(IS);
Cmd->Commands.push_back(ISD);
void LinkerScript::createOrphanCommands() {
for (OutputSection *Sec : OutputSections) {
if (Sec->SectionIndex != INT_MAX)
continue;
}
// Continue from where we found it.
while (*CmdIter != Cmd) {
++CmdIter;
++CmdIndex;
}
++CmdIndex;
OutputSectionCommand *Cmd =
createOutputSectionCommand(Sec->Name, "<internal>");
Cmd->Sec = Sec;
SecToCommand[Sec] = Cmd;
auto *ISD = make<InputSectionDescription>("");
ISD->Sections = Sec->Sections;
Cmd->Commands.push_back(ISD);
Opt.Commands.push_back(Cmd);
}
}
@ -922,9 +829,7 @@ allocateHeaders(std::vector<PhdrEntry> &Phdrs,
return false;
}
void LinkerScript::assignAddresses(
std::vector<PhdrEntry> &Phdrs,
ArrayRef<OutputSectionCommand *> OutputSectionCommands) {
void LinkerScript::assignAddresses(std::vector<PhdrEntry> &Phdrs) {
// Assign addresses as instructed by linker script SECTIONS sub-commands.
Dot = 0;
ErrorOnMissingSection = true;
@ -950,8 +855,6 @@ void LinkerScript::assignAddresses(
OutputSection *Sec = Cmd->Sec;
if (Sec->Flags & SHF_ALLOC)
MinVA = std::min<uint64_t>(MinVA, Sec->Addr);
else
Sec->Addr = 0;
}
allocateHeaders(Phdrs, OutputSectionCommands, MinVA);
@ -979,7 +882,8 @@ std::vector<PhdrEntry> LinkerScript::createPhdrs() {
}
// Add output sections to program headers.
for (OutputSection *Sec : *OutputSections) {
for (OutputSectionCommand *Cmd : OutputSectionCommands) {
OutputSection *Sec = Cmd->Sec;
if (!(Sec->Flags & SHF_ALLOC))
break;

View File

@ -267,7 +267,6 @@ class LinkerScript final {
ExprValue getSymbolValue(const Twine &Loc, StringRef S);
bool isDefined(StringRef S);
std::vector<OutputSection *> *OutputSections;
void fabricateDefaultCommands();
void addOrphanSections(OutputSectionFactory &Factory);
void removeEmptyCommands();
@ -280,10 +279,9 @@ class LinkerScript final {
bool hasLMA(OutputSection *Sec);
bool shouldKeep(InputSectionBase *S);
void assignOffsets(OutputSectionCommand *Cmd);
void placeOrphanSections();
void createOrphanCommands();
void processNonSectionCommands();
void assignAddresses(std::vector<PhdrEntry> &Phdrs,
ArrayRef<OutputSectionCommand *> OutputSectionCommands);
void assignAddresses(std::vector<PhdrEntry> &Phdrs);
void addSymbol(SymbolAssignment *Cmd);
void processCommands(OutputSectionFactory &Factory);

View File

@ -230,6 +230,8 @@ template <class ELFT> void elf::markLive() {
MarkSymbol(Symtab<ELFT>::X->find(Config->Fini));
for (StringRef S : Config->Undefined)
MarkSymbol(Symtab<ELFT>::X->find(S));
for (StringRef S : Script->Opt.ReferencedSymbols)
MarkSymbol(Symtab<ELFT>::X->find(S));
// Preserve externally-visible symbols if the symbols defined by this
// file can interrupt other ELF file's symbols at runtime.

View File

@ -41,6 +41,9 @@ OutputSection *Out::PreinitArray;
OutputSection *Out::InitArray;
OutputSection *Out::FiniArray;
std::vector<OutputSection *> elf::OutputSections;
std::vector<OutputSectionCommand *> elf::OutputSectionCommands;
uint32_t OutputSection::getPhdrFlags() const {
uint32_t Ret = PF_R;
if (Flags & SHF_WRITE)

View File

@ -150,6 +150,8 @@ class OutputSectionFactory {
uint64_t getHeaderSize();
void reportDiscarded(InputSectionBase *IS);
extern std::vector<OutputSection *> OutputSections;
extern std::vector<OutputSectionCommand *> OutputSectionCommands;
} // namespace elf
} // namespace lld

View File

@ -1009,8 +1009,7 @@ ThunkSection *ThunkCreator::getOSThunkSec(OutputSection *OS,
if ((IS->Flags & SHF_EXECINSTR) == 0)
break;
}
CurTS = make<ThunkSection>(OS, Off);
ThunkSections[ISR].push_back(CurTS);
CurTS = addThunkSection(OS, ISR, Off);
}
return CurTS;
}
@ -1020,7 +1019,6 @@ ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS, OutputSection *OS) {
if (TS)
return TS;
auto *TOS = IS->getParent();
TS = make<ThunkSection>(TOS, IS->OutSecOff);
// Find InputSectionRange within TOS that IS is in
OutputSectionCommand *C = Script->getCmd(TOS);
@ -1035,11 +1033,20 @@ ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS, OutputSection *OS) {
break;
}
}
ThunkSections[Range].push_back(TS);
TS = addThunkSection(TOS, Range, IS->OutSecOff);
ThunkedSections[IS] = TS;
return TS;
}
ThunkSection *ThunkCreator::addThunkSection(OutputSection *OS,
std::vector<InputSection *> *ISR,
uint64_t Off) {
auto *TS = make<ThunkSection>(OS, Off);
ThunkSections[ISR].push_back(TS);
return TS;
}
std::pair<Thunk *, bool> ThunkCreator::getThunk(SymbolBody &Body,
uint32_t Type) {
auto res = ThunkedSymbols.insert({&Body, nullptr});
@ -1081,6 +1088,9 @@ void ThunkCreator::forEachExecInputSection(
// extension Thunks are not yet supported.
bool ThunkCreator::createThunks(
ArrayRef<OutputSectionCommand *> OutputSections) {
if (Pass > 0)
ThunkSections.clear();
// Create all the Thunks and insert them into synthetic ThunkSections. The
// ThunkSections are later inserted back into the OutputSection.
@ -1088,11 +1098,12 @@ bool ThunkCreator::createThunks(
// ThunkSections back into the OutputSection as ThunkSections are not always
// inserted into the same OutputSection as the caller.
forEachExecInputSection(
OutputSections, [=](OutputSection *OS, std::vector<InputSection*> *ISR,
OutputSections, [&](OutputSection *OS, std::vector<InputSection*> *ISR,
InputSection *IS) {
for (Relocation &Rel : IS->Relocations) {
SymbolBody &Body = *Rel.Sym;
if (!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Body))
if (Thunks.find(&Body) != Thunks.end() ||
!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Body))
continue;
Thunk *T;
bool IsNew;
@ -1105,15 +1116,16 @@ bool ThunkCreator::createThunks(
else
TS = getOSThunkSec(OS, ISR);
TS->addThunk(T);
Thunks[T->ThunkSym] = T;
}
// Redirect relocation to Thunk, we never go via the PLT to a Thunk
Rel.Sym = T->ThunkSym;
Rel.Expr = fromPlt(Rel.Expr);
}
});
// Merge all created synthetic ThunkSections back into OutputSection
mergeThunks();
++Pass;
return !ThunkSections.empty();
}

View File

@ -126,6 +126,11 @@ class ThunkCreator {
// Return true if Thunks have been added to OutputSections
bool createThunks(ArrayRef<OutputSectionCommand *> OutputSections);
// The number of completed passes of createThunks this permits us
// to do one time initialization on Pass 0 and put a limit on the
// number of times it can be called to prevent infinite loops.
uint32_t Pass = 0;
private:
void mergeThunks();
ThunkSection *getOSThunkSec(OutputSection *OS,
@ -137,14 +142,22 @@ class ThunkCreator {
InputSection *)>
Fn);
std::pair<Thunk *, bool> getThunk(SymbolBody &Body, uint32_t Type);
ThunkSection *addThunkSection(OutputSection *OS,
std::vector<InputSection *> *, uint64_t Off);
// Track Symbols that already have a Thunk
llvm::DenseMap<SymbolBody *, Thunk *> ThunkedSymbols;
// Find a Thunk from the Thunks symbol definition, we can use this to find
// the Thunk from a relocation to the Thunks symbol definition.
llvm::DenseMap<SymbolBody *, Thunk *> Thunks;
// Track InputSections that have a ThunkSection placed in front
llvm::DenseMap<InputSection *, ThunkSection *> ThunkedSections;
// Track the ThunksSections that need to be inserted into an OutputSection
// All the ThunkSections that we have created, organised by OutputSection
// will contain a mix of ThunkSections that have been created this pass, and
// ThunkSections that have been merged into the OutputSection on previous
// passes
std::map<std::vector<InputSection *> *, std::vector<ThunkSection *>>
ThunkSections;

View File

@ -73,10 +73,6 @@ class StringMatcher {
// name, it returns Optional::None.
llvm::Optional<std::string> demangle(StringRef Name);
inline StringRef toStringRef(ArrayRef<uint8_t> Arr) {
return {(const char *)Arr.data(), Arr.size()};
}
inline ArrayRef<uint8_t> toArrayRef(StringRef S) {
return {(const uint8_t *)S.data(), S.size()};
}

View File

@ -29,6 +29,7 @@
#include "lld/Config/Version.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
#include "llvm/Object/Decompressor.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MD5.h"
@ -2133,7 +2134,6 @@ MergeSyntheticSection::MergeSyntheticSection(StringRef Name, uint32_t Type,
Builder(StringTableBuilder::RAW, Alignment) {}
void MergeSyntheticSection::addSection(MergeInputSection *MS) {
assert(!Finalized);
MS->Parent = this;
Sections.push_back(MS);
}
@ -2178,9 +2178,6 @@ void MergeSyntheticSection::finalizeNoTailMerge() {
}
void MergeSyntheticSection::finalizeContents() {
if (Finalized)
return;
Finalized = true;
if (shouldTailMerge())
finalizeTailMerge();
else
@ -2188,11 +2185,65 @@ void MergeSyntheticSection::finalizeContents() {
}
size_t MergeSyntheticSection::getSize() const {
// We should finalize string builder to know the size.
const_cast<MergeSyntheticSection *>(this)->finalizeContents();
return Builder.getSize();
}
// This function decompresses compressed sections and scans over the input
// sections to create mergeable synthetic sections. It removes
// MergeInputSections from the input section array and adds new synthetic
// sections at the location of the first input section that it replaces. It then
// finalizes each synthetic section in order to compute an output offset for
// each piece of each input section.
void elf::decompressAndMergeSections() {
// splitIntoPieces needs to be called on each MergeInputSection before calling
// finalizeContents(). Do that first.
parallelForEach(InputSections.begin(), InputSections.end(),
[](InputSectionBase *S) {
if (!S->Live)
return;
if (Decompressor::isCompressedELFSection(S->Flags, S->Name))
S->uncompress();
if (auto *MS = dyn_cast<MergeInputSection>(S))
MS->splitIntoPieces();
});
std::vector<MergeSyntheticSection *> MergeSections;
for (InputSectionBase *&S : InputSections) {
MergeInputSection *MS = dyn_cast<MergeInputSection>(S);
if (!MS)
continue;
// We do not want to handle sections that are not alive, so just remove
// them instead of trying to merge.
if (!MS->Live)
continue;
StringRef OutsecName = getOutputSectionName(MS->Name);
uint64_t Flags = MS->Flags & ~(uint64_t)SHF_GROUP;
uint32_t Alignment = std::max<uint32_t>(MS->Alignment, MS->Entsize);
auto I = llvm::find_if(MergeSections, [=](MergeSyntheticSection *Sec) {
return Sec->Name == OutsecName && Sec->Flags == Flags &&
Sec->Alignment == Alignment;
});
if (I == MergeSections.end()) {
MergeSyntheticSection *Syn =
make<MergeSyntheticSection>(OutsecName, MS->Type, Flags, Alignment);
MergeSections.push_back(Syn);
I = std::prev(MergeSections.end());
S = Syn;
} else {
S = nullptr;
}
(*I)->addSection(MS);
}
for (auto *MS : MergeSections)
MS->finalizeContents();
std::vector<InputSectionBase *> &V = InputSections;
V.erase(std::remove(V.begin(), V.end(), nullptr), V.end());
}
MipsRldMapSection::MipsRldMapSection()
: SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Config->Wordsize,
".rld_map") {}

View File

@ -651,7 +651,6 @@ class MergeSyntheticSection final : public SyntheticSection {
void finalizeTailMerge();
void finalizeNoTailMerge();
bool Finalized = false;
llvm::StringTableBuilder Builder;
std::vector<MergeInputSection *> Sections;
};
@ -748,6 +747,7 @@ class ThunkSection : public SyntheticSection {
template <class ELFT> InputSection *createCommonSection();
InputSection *createInterpSection();
template <class ELFT> MergeInputSection *createCommentSection();
void decompressAndMergeSections();
SymbolBody *addSyntheticLocal(StringRef Name, uint8_t Type, uint64_t Value,
uint64_t Size, InputSectionBase *Section);

File diff suppressed because it is too large Load Diff

View File

@ -10,13 +10,13 @@
#ifndef LLD_ELF_TARGET_H
#define LLD_ELF_TARGET_H
#include "Error.h"
#include "InputSection.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Object/ELF.h"
#include <memory>
namespace lld {
std::string toString(uint32_t RelType);
namespace elf {
class InputFile;
class SymbolBody;
@ -102,14 +102,53 @@ class TargetInfo {
virtual void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const;
};
TargetInfo *createAArch64TargetInfo();
TargetInfo *createAMDGPUTargetInfo();
TargetInfo *createARMTargetInfo();
TargetInfo *createAVRTargetInfo();
TargetInfo *createPPC64TargetInfo();
TargetInfo *createPPCTargetInfo();
TargetInfo *createX32TargetInfo();
TargetInfo *createX86TargetInfo();
TargetInfo *createX86_64TargetInfo();
template <class ELFT> TargetInfo *createMipsTargetInfo();
std::string getErrorLocation(const uint8_t *Loc);
uint64_t getPPC64TocBase();
uint64_t getAArch64Page(uint64_t Expr);
extern TargetInfo *Target;
TargetInfo *createTarget();
template <unsigned N>
static void checkInt(uint8_t *Loc, int64_t V, uint32_t Type) {
if (!llvm::isInt<N>(V))
error(getErrorLocation(Loc) + "relocation " + lld::toString(Type) +
" out of range");
}
std::string toString(uint32_t RelType);
template <unsigned N>
static void checkUInt(uint8_t *Loc, uint64_t V, uint32_t Type) {
if (!llvm::isUInt<N>(V))
error(getErrorLocation(Loc) + "relocation " + lld::toString(Type) +
" out of range");
}
template <unsigned N>
static void checkIntUInt(uint8_t *Loc, uint64_t V, uint32_t Type) {
if (!llvm::isInt<N>(V) && !llvm::isUInt<N>(V))
error(getErrorLocation(Loc) + "relocation " + lld::toString(Type) +
" out of range");
}
template <unsigned N>
static void checkAlignment(uint8_t *Loc, uint64_t V, uint32_t Type) {
if ((V & (N - 1)) != 0)
error(getErrorLocation(Loc) + "improper alignment for relocation " +
lld::toString(Type));
}
} // namespace elf
}
#endif

View File

@ -73,8 +73,6 @@ template <class ELFT> class Writer {
std::unique_ptr<FileOutputBuffer> Buffer;
std::vector<OutputSection *> OutputSections;
std::vector<OutputSectionCommand *> OutputSectionCommands;
OutputSectionFactory Factory{OutputSections};
void addRelIpltSymbols();
@ -137,46 +135,6 @@ template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() {
Phdrs.erase(I, Phdrs.end());
}
// This function scans over the input sections and creates mergeable
// synthetic sections. It removes MergeInputSections from array and
// adds new synthetic ones. Each synthetic section is added to the
// location of the first input section it replaces.
static void combineMergableSections() {
std::vector<MergeSyntheticSection *> MergeSections;
for (InputSectionBase *&S : InputSections) {
MergeInputSection *MS = dyn_cast<MergeInputSection>(S);
if (!MS)
continue;
// We do not want to handle sections that are not alive, so just remove
// them instead of trying to merge.
if (!MS->Live)
continue;
StringRef OutsecName = getOutputSectionName(MS->Name);
uint64_t Flags = MS->Flags & ~(uint64_t)SHF_GROUP;
uint32_t Alignment = std::max<uint32_t>(MS->Alignment, MS->Entsize);
auto I = llvm::find_if(MergeSections, [=](MergeSyntheticSection *Sec) {
return Sec->Name == OutsecName && Sec->Flags == Flags &&
Sec->Alignment == Alignment;
});
if (I == MergeSections.end()) {
MergeSyntheticSection *Syn =
make<MergeSyntheticSection>(OutsecName, MS->Type, Flags, Alignment);
MergeSections.push_back(Syn);
I = std::prev(MergeSections.end());
S = Syn;
} else {
S = nullptr;
}
(*I)->addSection(MS);
}
std::vector<InputSectionBase *> &V = InputSections;
V.erase(std::remove(V.begin(), V.end(), nullptr), V.end());
}
template <class ELFT> static void combineEhFrameSections() {
for (InputSectionBase *&S : InputSections) {
EhInputSection *ES = dyn_cast<EhInputSection>(S);
@ -192,6 +150,10 @@ template <class ELFT> static void combineEhFrameSections() {
}
template <class ELFT> void Writer<ELFT>::clearOutputSections() {
if (Script->Opt.HasSections)
Script->createOrphanCommands();
else
Script->fabricateDefaultCommands();
// Clear the OutputSections to make sure it is not used anymore. Any
// code from this point on should be using the linker script
// commands.
@ -205,7 +167,6 @@ template <class ELFT> void Writer<ELFT>::run() {
// Create linker-synthesized sections such as .got or .plt.
// Such sections are of type input section.
createSyntheticSections();
combineMergableSections();
if (!Config->Relocatable)
combineEhFrameSections<ELFT>();
@ -215,7 +176,6 @@ template <class ELFT> void Writer<ELFT>::run() {
addReservedSymbols();
// Create output sections.
Script->OutputSections = &OutputSections;
if (Script->Opt.HasSections) {
// If linker script contains SECTIONS commands, let it create sections.
Script->processCommands(Factory);
@ -256,7 +216,7 @@ template <class ELFT> void Writer<ELFT>::run() {
OutputSectionCommands.begin(), OutputSectionCommands.end(),
[](OutputSectionCommand *Cmd) { Cmd->maybeCompress<ELFT>(); });
Script->assignAddresses(Phdrs, OutputSectionCommands);
Script->assignAddresses(Phdrs);
// Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
// 0 sized region. This has to be done late since only after assignAddresses
@ -340,9 +300,6 @@ template <class ELFT> void Writer<ELFT>::createSyntheticSections() {
InX::Interp = nullptr;
}
if (!Config->Relocatable)
Add(createCommentSection<ELFT>());
if (Config->Strip != StripPolicy::All) {
InX::StrTab = make<StringTableSection>(".strtab", false);
InX::SymTab = make<SymbolTableSection<ELFT>>(*InX::StrTab);
@ -772,8 +729,9 @@ static unsigned getSectionRank(const OutputSection *Sec) {
return Rank;
}
static bool compareSectionsNonScript(const OutputSection *A,
const OutputSection *B) {
static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) {
const OutputSection *A = cast<OutputSectionCommand>(ACmd)->Sec;
const OutputSection *B = cast<OutputSectionCommand>(BCmd)->Sec;
if (A->SortRank != B->SortRank)
return A->SortRank < B->SortRank;
if (!(A->SortRank & RF_NOT_ADDR_SET))
@ -782,19 +740,6 @@ static bool compareSectionsNonScript(const OutputSection *A,
return false;
}
// Output section ordering is determined by this function.
static bool compareSections(const OutputSection *A, const OutputSection *B) {
// For now, put sections mentioned in a linker script
// first. Sections not on linker script will have a SectionIndex of
// INT_MAX.
int AIndex = A->SectionIndex;
int BIndex = B->SectionIndex;
if (AIndex != BIndex)
return AIndex < BIndex;
return compareSectionsNonScript(A, B);
}
void PhdrEntry::add(OutputSection *Sec) {
Last = Sec;
if (!First)
@ -1004,30 +949,70 @@ template <class ELFT> void Writer<ELFT>::createSections() {
// The more branches in getSectionRank that match, the more similar they are.
// Since each branch corresponds to a bit flag, we can just use
// countLeadingZeros.
static unsigned getRankProximity(OutputSection *A, OutputSection *B) {
static int getRankProximity(OutputSection *A, OutputSection *B) {
return countLeadingZeros(A->SortRank ^ B->SortRank);
}
static int getRankProximity(OutputSection *A, BaseCommand *B) {
if (auto *Cmd = dyn_cast<OutputSectionCommand>(B))
if (Cmd->Sec)
return getRankProximity(A, Cmd->Sec);
return -1;
}
// When placing orphan sections, we want to place them after symbol assignments
// so that an orphan after
// begin_foo = .;
// foo : { *(foo) }
// end_foo = .;
// doesn't break the intended meaning of the begin/end symbols.
// We don't want to go over sections since findOrphanPos is the
// one in charge of deciding the order of the sections.
// We don't want to go over changes to '.', since doing so in
// rx_sec : { *(rx_sec) }
// . = ALIGN(0x1000);
// /* The RW PT_LOAD starts here*/
// rw_sec : { *(rw_sec) }
// would mean that the RW PT_LOAD would become unaligned.
static bool shouldSkip(BaseCommand *Cmd) {
if (isa<OutputSectionCommand>(Cmd))
return false;
if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd))
return Assign->Name != ".";
return true;
}
// We want to place orphan sections so that they share as much
// characteristics with their neighbors as possible. For example, if
// both are rw, or both are tls.
template <typename ELFT>
static std::vector<OutputSection *>::iterator
findOrphanPos(std::vector<OutputSection *>::iterator B,
std::vector<OutputSection *>::iterator E) {
OutputSection *Sec = *E;
static std::vector<BaseCommand *>::iterator
findOrphanPos(std::vector<BaseCommand *>::iterator B,
std::vector<BaseCommand *>::iterator E) {
OutputSection *Sec = cast<OutputSectionCommand>(*E)->Sec;
// Find the first element that has as close a rank as possible.
auto I = std::max_element(B, E, [=](OutputSection *A, OutputSection *B) {
auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) {
return getRankProximity(Sec, A) < getRankProximity(Sec, B);
});
if (I == E)
return E;
// Consider all existing sections with the same proximity.
unsigned Proximity = getRankProximity(Sec, *I);
while (I != E && getRankProximity(Sec, *I) == Proximity &&
Sec->SortRank >= (*I)->SortRank)
int Proximity = getRankProximity(Sec, *I);
for (; I != E; ++I) {
auto *Cmd = dyn_cast<OutputSectionCommand>(*I);
if (!Cmd || !Cmd->Sec)
continue;
if (getRankProximity(Sec, Cmd->Sec) != Proximity ||
Sec->SortRank < Cmd->Sec->SortRank)
break;
}
auto J = std::find_if(
llvm::make_reverse_iterator(I), llvm::make_reverse_iterator(B),
[](BaseCommand *Cmd) { return isa<OutputSectionCommand>(Cmd); });
I = J.base();
while (I != E && shouldSkip(*I))
++I;
return I;
}
@ -1041,19 +1026,38 @@ template <class ELFT> void Writer<ELFT>::sortSections() {
if (Script->Opt.HasSections)
Script->adjustSectionsBeforeSorting();
for (OutputSection *Sec : OutputSections)
Sec->SortRank = getSectionRank(Sec);
for (BaseCommand *Base : Script->Opt.Commands)
if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base))
if (OutputSection *Sec = Cmd->Sec)
Sec->SortRank = getSectionRank(Sec);
if (!Script->Opt.HasSections) {
std::stable_sort(OutputSections.begin(), OutputSections.end(),
compareSectionsNonScript);
// We know that all the OutputSectionCommands are contiguous in
// this case.
auto E = Script->Opt.Commands.end();
auto I = Script->Opt.Commands.begin();
auto IsSection = [](BaseCommand *Base) {
return isa<OutputSectionCommand>(Base);
};
I = std::find_if(I, E, IsSection);
E = std::find_if(llvm::make_reverse_iterator(E),
llvm::make_reverse_iterator(I), IsSection)
.base();
std::stable_sort(I, E, compareSections);
return;
}
// Orphan sections are sections present in the input files which are
// not explicitly placed into the output file by the linker script.
//
// The sections in the linker script are already in the correct
// order. We have to figuere out where to insert the orphan
// sections.
//
// The order of the sections in the script is arbitrary and may not agree with
// compareSectionsNonScript. This means that we cannot easily define a
// strict weak ordering. To see why, consider a comparison of a section in the
// script and one not in the script. We have a two simple options:
// compareSections. This means that we cannot easily define a strict weak
// ordering. To see why, consider a comparison of a section in the script and
// one not in the script. We have a two simple options:
// * Make them equivalent (a is not less than b, and b is not less than a).
// The problem is then that equivalence has to be transitive and we can
// have sections a, b and c with only b in a script and a less than c
@ -1068,27 +1072,51 @@ template <class ELFT> void Writer<ELFT>::sortSections() {
// .d (ro) # not in script
//
// The way we define an order then is:
// * First put script sections at the start and sort the script sections.
// * Move each non-script section to its preferred position. We try
// * Sort only the orphan sections. They are in the end right now.
// * Move each orphan section to its preferred position. We try
// to put each section in the last position where it it can share
// a PT_LOAD.
//
// There is some ambiguity as to where exactly a new entry should be
// inserted, because Opt.Commands contains not only output section
// commands but also other types of commands such as symbol assignment
// expressions. There's no correct answer here due to the lack of the
// formal specification of the linker script. We use heuristics to
// determine whether a new output command should be added before or
// after another commands. For the details, look at shouldSkip
// function.
std::stable_sort(OutputSections.begin(), OutputSections.end(),
compareSections);
auto I = Script->Opt.Commands.begin();
auto E = Script->Opt.Commands.end();
auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) {
if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base))
return Cmd->Sec && Cmd->Sec->SectionIndex == INT_MAX;
return false;
});
// Sort the orphan sections.
std::stable_sort(NonScriptI, E, compareSections);
// As a horrible special case, skip the first . assignment if it is before any
// section. We do this because it is common to set a load address by starting
// the script with ". = 0xabcd" and the expectation is that every section is
// after that.
auto FirstSectionOrDotAssignment =
std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); });
if (FirstSectionOrDotAssignment != E &&
isa<SymbolAssignment>(**FirstSectionOrDotAssignment))
++FirstSectionOrDotAssignment;
I = FirstSectionOrDotAssignment;
auto I = OutputSections.begin();
auto E = OutputSections.end();
auto NonScriptI =
std::find_if(OutputSections.begin(), E,
[](OutputSection *S) { return S->SectionIndex == INT_MAX; });
while (NonScriptI != E) {
auto Pos = findOrphanPos<ELFT>(I, NonScriptI);
OutputSection *Orphan = cast<OutputSectionCommand>(*NonScriptI)->Sec;
// As an optimization, find all sections with the same sort rank
// and insert them with one rotate.
unsigned Rank = (*NonScriptI)->SortRank;
auto End = std::find_if(NonScriptI + 1, E, [=](OutputSection *Sec) {
return Sec->SortRank != Rank;
unsigned Rank = Orphan->SortRank;
auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) {
return cast<OutputSectionCommand>(Cmd)->Sec->SortRank != Rank;
});
std::rotate(Pos, NonScriptI, End);
NonScriptI = End;
@ -1194,25 +1222,27 @@ template <class ELFT> void Writer<ELFT>::finalizeSections() {
addPredefinedSections();
removeUnusedSyntheticSections(OutputSections);
clearOutputSections();
sortSections();
// Now that we have the final list, create a list of all the
// OutputSectionCommands for convenience.
for (BaseCommand *Base : Script->Opt.Commands)
if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base))
OutputSectionCommands.push_back(Cmd);
// This is a bit of a hack. A value of 0 means undef, so we set it
// to 1 t make __ehdr_start defined. The section number is not
// particularly relevant.
Out::ElfHeader->SectionIndex = 1;
unsigned I = 1;
for (OutputSection *Sec : OutputSections) {
for (OutputSectionCommand *Cmd : OutputSectionCommands) {
OutputSection *Sec = Cmd->Sec;
Sec->SectionIndex = I++;
Sec->ShName = InX::ShStrTab->addString(Sec->Name);
}
if (!Script->Opt.HasSections)
Script->fabricateDefaultCommands();
for (BaseCommand *Base : Script->Opt.Commands)
if (auto *Cmd = dyn_cast<OutputSectionCommand>(Base))
OutputSectionCommands.push_back(Cmd);
// Binary and relocatable output does not have PHDRS.
// The headers have to be created before finalize as that can influence the
// image base and the dynamic section on mips includes the image base.
@ -1222,8 +1252,6 @@ template <class ELFT> void Writer<ELFT>::finalizeSections() {
Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size();
}
clearOutputSections();
// Compute the size of .rela.dyn and .rela.plt early since we need
// them to populate .dynamic.
for (SyntheticSection *SS : {In<ELFT>::RelaDyn, In<ELFT>::RelaPlt})
@ -1253,9 +1281,12 @@ template <class ELFT> void Writer<ELFT>::finalizeSections() {
// are out of range. This will need to turn into a loop that converges
// when no more Thunks are added
ThunkCreator TC;
if (TC.createThunks(OutputSectionCommands))
if (TC.createThunks(OutputSectionCommands)) {
applySynthetic({InX::MipsGot},
[](SyntheticSection *SS) { SS->updateAllocSize(); });
if (TC.createThunks(OutputSectionCommands))
fatal("All non-range thunks should be created in first call");
}
}
// Fill other section headers. The dynamic table is finalized
@ -1386,7 +1417,7 @@ template <class ELFT> std::vector<PhdrEntry> Writer<ELFT>::createPhdrs() {
AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders);
// PT_INTERP must be the second entry if exists.
if (OutputSection *Sec = findSection(".interp"))
if (OutputSection *Sec = findSectionInScript(".interp"))
AddHdr(PT_INTERP, Sec->getPhdrFlags())->add(Sec);
// Add the first PT_LOAD segment for regular output sections.
@ -1397,7 +1428,8 @@ template <class ELFT> std::vector<PhdrEntry> Writer<ELFT>::createPhdrs() {
Load->add(Out::ElfHeader);
Load->add(Out::ProgramHeaders);
for (OutputSection *Sec : OutputSections) {
for (OutputSectionCommand *Cmd : OutputSectionCommands) {
OutputSection *Sec = Cmd->Sec;
if (!(Sec->Flags & SHF_ALLOC))
break;
if (!needsPtLoad(Sec))
@ -1419,9 +1451,11 @@ template <class ELFT> std::vector<PhdrEntry> Writer<ELFT>::createPhdrs() {
// Add a TLS segment if any.
PhdrEntry TlsHdr(PT_TLS, PF_R);
for (OutputSection *Sec : OutputSections)
for (OutputSectionCommand *Cmd : OutputSectionCommands) {
OutputSection *Sec = Cmd->Sec;
if (Sec->Flags & SHF_TLS)
TlsHdr.add(Sec);
}
if (TlsHdr.First)
Ret.push_back(std::move(TlsHdr));
@ -1433,9 +1467,11 @@ template <class ELFT> std::vector<PhdrEntry> Writer<ELFT>::createPhdrs() {
// PT_GNU_RELRO includes all sections that should be marked as
// read-only by dynamic linker after proccessing relocations.
PhdrEntry RelRo(PT_GNU_RELRO, PF_R);
for (OutputSection *Sec : OutputSections)
for (OutputSectionCommand *Cmd : OutputSectionCommands) {
OutputSection *Sec = Cmd->Sec;
if (needsPtLoad(Sec) && isRelroSection(Sec))
RelRo.add(Sec);
}
if (RelRo.First)
Ret.push_back(std::move(RelRo));
@ -1447,7 +1483,7 @@ template <class ELFT> std::vector<PhdrEntry> Writer<ELFT>::createPhdrs() {
// PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
// the dynamic linker fill the segment with random data.
if (OutputSection *Sec = findSection(".openbsd.randomdata"))
if (OutputSection *Sec = findSectionInScript(".openbsd.randomdata"))
AddHdr(PT_OPENBSD_RANDOMIZE, Sec->getPhdrFlags())->add(Sec);
// PT_GNU_STACK is a special section to tell the loader to make the
@ -1470,7 +1506,8 @@ template <class ELFT> std::vector<PhdrEntry> Writer<ELFT>::createPhdrs() {
// Create one PT_NOTE per a group of contiguous .note sections.
PhdrEntry *Note = nullptr;
for (OutputSection *Sec : OutputSections) {
for (OutputSectionCommand *Cmd : OutputSectionCommands) {
OutputSection *Sec = Cmd->Sec;
if (Sec->Type == SHT_NOTE) {
if (!Note || Script->hasLMA(Sec))
Note = AddHdr(PT_NOTE, PF_R);
@ -1486,15 +1523,17 @@ template <class ELFT>
void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry> &Phdrs) {
if (Config->EMachine != EM_ARM)
return;
auto I = std::find_if(
OutputSections.begin(), OutputSections.end(),
[](OutputSection *Sec) { return Sec->Type == SHT_ARM_EXIDX; });
if (I == OutputSections.end())
auto I =
std::find_if(OutputSectionCommands.begin(), OutputSectionCommands.end(),
[](OutputSectionCommand *Cmd) {
return Cmd->Sec->Type == SHT_ARM_EXIDX;
});
if (I == OutputSectionCommands.end())
return;
// PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
PhdrEntry ARMExidx(PT_ARM_EXIDX, PF_R);
ARMExidx.add(*I);
ARMExidx.add((*I)->Sec);
Phdrs.push_back(ARMExidx);
}

View File

@ -48,11 +48,8 @@ Creating DLL
file.
Windows resource files support
:good:`Done`. If an ``.rc`` file is given, LLD converts the file to a COFF
file using some external commands and link it. Specifically, ``rc.exe`` is
used to compile a resource file (.rc) to a compiled resource (.res)
file. ``rescvt.exe`` is then used to convert a compiled resource file to a
COFF object file section. Both tools are shipped with MSVC.
:good:`Done`. If an ``.res`` file is given, LLD converts the file to a COFF
file using ``cvtres.exe`` command and link it.
Safe Structured Exception Handler (SEH)
:good:`Done` for both x86 and x64.

View File

@ -3,8 +3,5 @@ target triple = "i686-unknown-windows-msvc18.0.0"
@__CFConstantStringClassReference = common global [32 x i32] zeroinitializer, align 4
!llvm.module.flags = !{!0}
!0 = !{i32 6, !"Linker Options", !1}
!1 = !{!2}
!2 = !{!" -export:___CFConstantStringClassReference,CONSTANT"}
!llvm.linker.options = !{!0}
!0 = !{!" -export:___CFConstantStringClassReference,CONSTANT"}

View File

@ -0,0 +1,5 @@
LIBRARY library
EXPORTS
function
data DATA
constant CONSTANT

View File

@ -10,7 +10,77 @@ sections:
- Name: '.debug$S'
Characteristics: [ IMAGE_SCN_CNT_INITIALIZED_DATA, IMAGE_SCN_MEM_DISCARDABLE, IMAGE_SCN_MEM_READ ]
Alignment: 1
SectionData: 04000000F1000000580000001A00011100000000443A5C625C72657434322D6D61696E2E6F626A003A003C1100600000D00013000000F259000013000000F25900004D6963726F736F667420285229204F7074696D697A696E6720436F6D70696C657200F10000004E0000002A0047110000000000000000000000000E000000040000000900000005100000000000000000006D61696E001C001210280000000000000000000000000000000000000000000042110002004F110000F20000002000000000000000000000000E0000000000000001000000140000000000000002000080F400000018000000010000001001C538722F63570DF6705DDE06FE96E5D10000F30000001300000000643A5C625C72657434322D6D61696E2E630000F10000000800000006004C110E100000
Subsections:
- !Symbols
Records:
- Kind: S_OBJNAME
ObjNameSym:
Signature: 0
ObjectName: 'D:\b\ret42-main.obj'
- Kind: S_COMPILE3
Compile3Sym:
Flags: [ SecurityChecks, HotPatch ]
Machine: X64
FrontendMajor: 19
FrontendMinor: 0
FrontendBuild: 23026
FrontendQFE: 0
BackendMajor: 19
BackendMinor: 0
BackendBuild: 23026
BackendQFE: 0
Version: 'Microsoft (R) Optimizing Compiler'
- !Symbols
Records:
- Kind: S_GPROC32_ID
ProcSym:
PtrParent: 0
PtrEnd: 0
PtrNext: 0
CodeSize: 14
DbgStart: 4
DbgEnd: 9
FunctionType: 4101
Segment: 0
Flags: [ ]
DisplayName: main
- Kind: S_FRAMEPROC
FrameProcSym:
TotalFrameBytes: 40
PaddingFrameBytes: 0
OffsetToPadding: 0
BytesOfCalleeSavedRegisters: 0
OffsetOfExceptionHandler: 0
SectionIdOfExceptionHandler: 0
Flags: [ AsynchronousExceptionHandling, OptimizedForSpeed ]
- Kind: S_PROC_ID_END
ScopeEndSym:
- !Lines
CodeSize: 14
Flags: [ ]
RelocOffset: 0
RelocSegment: 0
Blocks:
- FileName: 'd:\b\ret42-main.c'
Lines:
- Offset: 0
LineStart: 2
IsStatement: true
EndDelta: 0
Columns:
- !FileChecksums
Checksums:
- FileName: 'd:\b\ret42-main.c'
Kind: MD5
Checksum: C538722F63570DF6705DDE06FE96E5D1
- !StringTable
Strings:
- 'd:\b\ret42-main.c'
- !Symbols
Records:
- Kind: S_BUILDINFO
BuildInfoSym:
BuildId: 4110
Relocations:
- VirtualAddress: 140
SymbolName: main
@ -27,7 +97,71 @@ sections:
- Name: '.debug$T'
Characteristics: [ IMAGE_SCN_CNT_INITIALIZED_DATA, IMAGE_SCN_MEM_DISCARDABLE, IMAGE_SCN_MEM_READ ]
Alignment: 1
SectionData: 0400000006000112000000000E0008107400000000000000001000000A000210011000000C0001000A00011201000000000000000E0008107400000000000000031000001200011600000000041000006D61696E00F3F2F10E0001160000000001100000666F6F000E00051600000000443A5C6200F3F2F12200051600000000433A5C767331345C56435C42494E5C616D6436345C636C2E6578650002010516000000002D5A37202D63202D4D54202D49433A5C767331345C56435C494E434C554445202D49433A5C767331345C56435C41544C4D46435C494E434C554445202D4922433A5C50726F6772616D2046696C65732028783836295C57696E646F7773204B6974735C31305C696E636C7564655C31302E302E31303135302E305C7563727422202D4922433A5C50726F6772616D2046696C65732028783836295C57696E646F7773204B6974735C4E4554465853444B5C342E365C696E636C7564655C756D22202D4922433A5C50726F6772616D2046696C65732028783836295C57696E646F7773204B6974735C382E315C696E636C7564655C73686172656422000A0004160100000009100000820005160A100000202D4922433A5C50726F6772616D2046696C65732028783836295C57696E646F7773204B6974735C382E315C696E636C7564655C756D22202D4922433A5C50726F6772616D2046696C65732028783836295C57696E646F7773204B6974735C382E315C696E636C7564655C77696E727422202D5443202D5800F3F2F1160005160000000072657434322D6D61696E2E6300F3F2F11600051600000000443A5C625C76633134302E70646200F11A000316050007100000081000000C1000000D1000000B100000F2F1
Types:
- Kind: LF_ARGLIST
ArgList:
ArgIndices: [ ]
- Kind: LF_PROCEDURE
Procedure:
ReturnType: 116
CallConv: NearC
Options: [ None ]
ParameterCount: 0
ArgumentList: 4096
- Kind: LF_POINTER
Pointer:
ReferentType: 4097
Attrs: 65548
- Kind: LF_ARGLIST
ArgList:
ArgIndices: [ 0 ]
- Kind: LF_PROCEDURE
Procedure:
ReturnType: 116
CallConv: NearC
Options: [ None ]
ParameterCount: 0
ArgumentList: 4099
- Kind: LF_FUNC_ID
FuncId:
ParentScope: 0
FunctionType: 4100
Name: main
- Kind: LF_FUNC_ID
FuncId:
ParentScope: 0
FunctionType: 4097
Name: foo
- Kind: LF_STRING_ID
StringId:
Id: 0
String: 'D:\b'
- Kind: LF_STRING_ID
StringId:
Id: 0
String: 'C:\vs14\VC\BIN\amd64\cl.exe'
- Kind: LF_STRING_ID
StringId:
Id: 0
String: '-Z7 -c -MT -IC:\vs14\VC\INCLUDE -IC:\vs14\VC\ATLMFC\INCLUDE -I"C:\Program Files (x86)\Windows Kits\10\include\10.0.10150.0\ucrt" -I"C:\Program Files (x86)\Windows Kits\NETFXSDK\4.6\include\um" -I"C:\Program Files (x86)\Windows Kits\8.1\include\shared"'
- Kind: LF_SUBSTR_LIST
StringList:
StringIndices: [ 4105 ]
- Kind: LF_STRING_ID
StringId:
Id: 4106
String: ' -I"C:\Program Files (x86)\Windows Kits\8.1\include\um" -I"C:\Program Files (x86)\Windows Kits\8.1\include\winrt" -TC -X'
- Kind: LF_STRING_ID
StringId:
Id: 0
String: ret42-main.c
- Kind: LF_STRING_ID
StringId:
Id: 0
String: 'D:\b\vc140.pdb'
- Kind: LF_BUILDINFO
BuildInfo:
ArgIndices: [ 4103, 4104, 4108, 4109, 4107 ]
- Name: '.text$mn'
Characteristics: [ IMAGE_SCN_CNT_CODE, IMAGE_SCN_MEM_EXECUTE, IMAGE_SCN_MEM_READ ]
Alignment: 16

View File

@ -10,7 +10,77 @@ sections:
- Name: '.debug$S'
Characteristics: [ IMAGE_SCN_CNT_INITIALIZED_DATA, IMAGE_SCN_MEM_DISCARDABLE, IMAGE_SCN_MEM_READ ]
Alignment: 1
SectionData: 04000000F1000000570000001900011100000000443A5C625C72657434322D7375622E6F626A003A003C1100600000D00013000000F259000013000000F25900004D6963726F736F667420285229204F7074696D697A696E6720436F6D70696C65720000F10000004D000000290047110000000000000000000000000600000000000000050000000210000000000000000000666F6F001C001210000000000000000000000000000000000000000000000042110002004F11000000F2000000200000000000000000000000060000000000000001000000140000000000000001000080F400000018000000010000001001EC2D89EFF5A1FEB6B74EE4D79074072F0000F30000001200000000643A5C625C72657434322D7375622E63000000F10000000800000006004C110A100000
Subsections:
- !Symbols
Records:
- Kind: S_OBJNAME
ObjNameSym:
Signature: 0
ObjectName: 'D:\b\ret42-sub.obj'
- Kind: S_COMPILE3
Compile3Sym:
Flags: [ SecurityChecks, HotPatch ]
Machine: X64
FrontendMajor: 19
FrontendMinor: 0
FrontendBuild: 23026
FrontendQFE: 0
BackendMajor: 19
BackendMinor: 0
BackendBuild: 23026
BackendQFE: 0
Version: 'Microsoft (R) Optimizing Compiler'
- !Symbols
Records:
- Kind: S_GPROC32_ID
ProcSym:
PtrParent: 0
PtrEnd: 0
PtrNext: 0
CodeSize: 6
DbgStart: 0
DbgEnd: 5
FunctionType: 4098
Segment: 0
Flags: [ ]
DisplayName: foo
- Kind: S_FRAMEPROC
FrameProcSym:
TotalFrameBytes: 0
PaddingFrameBytes: 0
OffsetToPadding: 0
BytesOfCalleeSavedRegisters: 0
OffsetOfExceptionHandler: 0
SectionIdOfExceptionHandler: 0
Flags: [ AsynchronousExceptionHandling, OptimizedForSpeed ]
- Kind: S_PROC_ID_END
ScopeEndSym:
- !Lines
CodeSize: 6
Flags: [ ]
RelocOffset: 0
RelocSegment: 0
Blocks:
- FileName: 'd:\b\ret42-sub.c'
Lines:
- Offset: 0
LineStart: 1
IsStatement: true
EndDelta: 0
Columns:
- !FileChecksums
Checksums:
- FileName: 'd:\b\ret42-sub.c'
Kind: MD5
Checksum: EC2D89EFF5A1FEB6B74EE4D79074072F
- !StringTable
Strings:
- 'd:\b\ret42-sub.c'
- !Symbols
Records:
- Kind: S_BUILDINFO
BuildInfoSym:
BuildId: 4106
Relocations:
- VirtualAddress: 140
SymbolName: foo
@ -27,7 +97,52 @@ sections:
- Name: '.debug$T'
Characteristics: [ IMAGE_SCN_CNT_INITIALIZED_DATA, IMAGE_SCN_MEM_DISCARDABLE, IMAGE_SCN_MEM_READ ]
Alignment: 1
SectionData: 0400000006000112000000000E0008107400000000000000001000000E0001160000000001100000666F6F000E00051600000000443A5C6200F3F2F12200051600000000433A5C767331345C56435C42494E5C616D6436345C636C2E6578650002010516000000002D5A37202D63202D4D54202D49433A5C767331345C56435C494E434C554445202D49433A5C767331345C56435C41544C4D46435C494E434C554445202D4922433A5C50726F6772616D2046696C65732028783836295C57696E646F7773204B6974735C31305C696E636C7564655C31302E302E31303135302E305C7563727422202D4922433A5C50726F6772616D2046696C65732028783836295C57696E646F7773204B6974735C4E4554465853444B5C342E365C696E636C7564655C756D22202D4922433A5C50726F6772616D2046696C65732028783836295C57696E646F7773204B6974735C382E315C696E636C7564655C73686172656422000A00041601000000051000008200051606100000202D4922433A5C50726F6772616D2046696C65732028783836295C57696E646F7773204B6974735C382E315C696E636C7564655C756D22202D4922433A5C50726F6772616D2046696C65732028783836295C57696E646F7773204B6974735C382E315C696E636C7564655C77696E727422202D5443202D5800F3F2F1120005160000000072657434322D7375622E63001600051600000000443A5C625C76633134302E70646200F11A00031605000310000004100000081000000910000007100000F2F1
Types:
- Kind: LF_ARGLIST
ArgList:
ArgIndices: [ ]
- Kind: LF_PROCEDURE
Procedure:
ReturnType: 116
CallConv: NearC
Options: [ None ]
ParameterCount: 0
ArgumentList: 4096
- Kind: LF_FUNC_ID
FuncId:
ParentScope: 0
FunctionType: 4097
Name: foo
- Kind: LF_STRING_ID
StringId:
Id: 0
String: 'D:\b'
- Kind: LF_STRING_ID
StringId:
Id: 0
String: 'C:\vs14\VC\BIN\amd64\cl.exe'
- Kind: LF_STRING_ID
StringId:
Id: 0
String: '-Z7 -c -MT -IC:\vs14\VC\INCLUDE -IC:\vs14\VC\ATLMFC\INCLUDE -I"C:\Program Files (x86)\Windows Kits\10\include\10.0.10150.0\ucrt" -I"C:\Program Files (x86)\Windows Kits\NETFXSDK\4.6\include\um" -I"C:\Program Files (x86)\Windows Kits\8.1\include\shared"'
- Kind: LF_SUBSTR_LIST
StringList:
StringIndices: [ 4101 ]
- Kind: LF_STRING_ID
StringId:
Id: 4102
String: ' -I"C:\Program Files (x86)\Windows Kits\8.1\include\um" -I"C:\Program Files (x86)\Windows Kits\8.1\include\winrt" -TC -X'
- Kind: LF_STRING_ID
StringId:
Id: 0
String: ret42-sub.c
- Kind: LF_STRING_ID
StringId:
Id: 0
String: 'D:\b\vc140.pdb'
- Kind: LF_BUILDINFO
BuildInfo:
ArgIndices: [ 4099, 4100, 4104, 4105, 4103 ]
- Name: '.text$mn'
Characteristics: [ IMAGE_SCN_CNT_CODE, IMAGE_SCN_MEM_EXECUTE, IMAGE_SCN_MEM_READ ]
Alignment: 16

View File

@ -17,8 +17,5 @@ define i32 @foo() {
ret i32 0
}
!llvm.module.flags = !{!0}
!0 = !{i32 6, !"Linker Options", !1}
!1 = !{!2}
!2 = !{!"/INCLUDE:foo"}
!llvm.linker.options = !{!0}
!0 = !{!"/INCLUDE:foo"}

11
test/COFF/lib.test Normal file
View File

@ -0,0 +1,11 @@
# RUN: lld-link /machine:x64 /def:%S/Inputs/library.def /out:%t.lib
# RUN: llvm-nm %t.lib | FileCheck %s
CHECK: 00000000 R __imp_constant
CHECK: 00000000 R constant
CHECK: 00000000 D __imp_data
CHECK: 00000000 T __imp_function
CHECK: 00000000 T function

View File

@ -4,8 +4,5 @@
target datalayout = "e-m:w-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-windows-msvc"
!llvm.module.flags = !{!0}
!0 = !{i32 6, !"Linker Options", !1}
!1 = !{!2}
!2 = !{!"/DEFAULTLIB:ret42.lib"}
!llvm.linker.options = !{!0}
!0 = !{!"/DEFAULTLIB:ret42.lib"}

32
test/COFF/pdb-lib.s Normal file
View File

@ -0,0 +1,32 @@
# RUN: rm -rf %t && mkdir -p %t && cd %t
# RUN: llvm-mc -filetype=obj -triple=i686-windows-msvc %s -o foo.obj
# RUN: llc %S/Inputs/bar.ll -filetype=obj -mtriple=i686-windows-msvc -o bar.obj
# RUN: llvm-lib bar.obj -out:bar.lib
# RUN: lld-link -debug -pdb:foo.pdb foo.obj bar.lib -out:foo.exe -entry:main
# RUN: llvm-pdbutil raw -modules %t/foo.pdb | FileCheck %s
# Make sure that the PDB has module descriptors. foo.obj and bar.lib should be
# absolute paths, and bar.obj should be the relative path passed to llvm-lib.
# CHECK: Modules
# CHECK-NEXT: ============================================================
# CHECK-NEXT: Mod 0000 | Name: `{{.*pdb-lib.s.tmp[/\\]foo.obj}}`:
# CHECK-NEXT: Obj: `{{.*pdb-lib.s.tmp[/\\]foo.obj}}`:
# CHECK-NEXT: debug stream: 9, # files: 0, has ec info: false
# CHECK-NEXT: Mod 0001 | Name: `bar.obj`:
# CHECK-NEXT: Obj: `{{.*pdb-lib.s.tmp[/\\]bar.lib}}`:
# CHECK-NEXT: debug stream: 10, # files: 0, has ec info: false
# CHECK-NEXT: Mod 0002 | Name: `* Linker *`:
# CHECK-NEXT: Obj: ``:
# CHECK-NEXT: debug stream: 11, # files: 0, has ec info: false
.def _main;
.scl 2;
.type 32;
.endef
.globl _main
_main:
calll _bar
xor %eax, %eax
retl

View File

@ -9,5 +9,6 @@
# CHECK-NEXT: Age: 0
# CHECK-NEXT: Guid: '{00000000-0000-0000-0000-000000000000}'
# CHECK-NEXT: Signature: 0
# CHECK-NEXT: Features: [ VC140 ]
# CHECK-NEXT: Version: VC70

View File

@ -2,6 +2,7 @@
# RUN: yaml2obj < %p/Inputs/pdb2.yaml > %t2.obj
; If /DEBUG is not specified, /pdb is ignored.
# RUN: rm -f %t.pdb
# RUN: lld-link /pdb:%t.pdb /entry:main /nodefaultlib %t1.obj %t2.obj
# RUN: not ls %t.pdb

View File

@ -6,8 +6,8 @@
# RUN: llvm-pdbutil pdb2yaml -stream-metadata -stream-directory -pdb-stream \
# RUN: -dbi-stream -ipi-stream -tpi-stream %t.pdb | FileCheck %s
# RUN: llvm-pdbutil raw -modules -section-map -section-headers -section-contribs \
# RUN: -tpi-records %t.pdb | FileCheck -check-prefix RAW %s
# RUN: llvm-pdbutil raw -modules -section-map -section-contribs \
# RUN: -types -ids %t.pdb | FileCheck -check-prefix RAW %s
# CHECK: MSF:
# CHECK-NEXT: SuperBlock:
@ -19,14 +19,15 @@
# CHECK-NEXT: BlockMapAddr:
# CHECK-NEXT: NumDirectoryBlocks:
# CHECK-NEXT: DirectoryBlocks:
# CHECK-NEXT: NumStreams:
# CHECK-NEXT: FileSize:
# CHECK-NEXT: StreamSizes:
# CHECK-NEXT: NumStreams:
# CHECK-NEXT: FileSize:
# CHECK-NEXT: StreamSizes:
# CHECK-NEXT: StreamMap:
# CHECK: PdbStream:
# CHECK-NEXT: Age: 1
# CHECK-NEXT: Guid:
# CHECK-NEXT: Signature: 0
# CHECK-NEXT: Features: [ VC140 ]
# CHECK-NEXT: Version: VC70
# CHECK-NEXT: DbiStream:
# CHECK-NEXT: VerHeader: V110
@ -114,296 +115,85 @@
# CHECK-NEXT: BuildInfo:
# CHECK-NEXT: ArgIndices: [ 4098, 4099, 4106, 4104, 4102 ]
# RAW: Type Info Stream (TPI) {
# RAW-NEXT: TPI Version: 20040203
# RAW-NEXT: Record count: 5
# RAW-NEXT: Records [
# RAW-NEXT: {
# RAW-NEXT: ArgList (0x1000) {
# RAW-NEXT: TypeLeafKind: LF_ARGLIST (0x1201)
# RAW-NEXT: NumArgs: 0
# RAW-NEXT: Arguments [
# RAW-NEXT: ]
# RAW-NEXT: }
# RAW-NEXT: }
# RAW-NEXT: {
# RAW-NEXT: Procedure (0x1001) {
# RAW-NEXT: TypeLeafKind: LF_PROCEDURE (0x1008)
# RAW-NEXT: ReturnType: int (0x74)
# RAW-NEXT: CallingConvention: NearC (0x0)
# RAW-NEXT: FunctionOptions [ (0x0)
# RAW-NEXT: ]
# RAW-NEXT: NumParameters: 0
# RAW-NEXT: ArgListType: () (0x1000)
# RAW-NEXT: }
# RAW-NEXT: }
# RAW-NEXT: {
# RAW-NEXT: Pointer (0x1002) {
# RAW-NEXT: TypeLeafKind: LF_POINTER (0x1002)
# RAW-NEXT: PointeeType: int () (0x1001)
# RAW-NEXT: PointerAttributes: 0x1000C
# RAW-NEXT: PtrType: Near64 (0xC)
# RAW-NEXT: PtrMode: Pointer (0x0)
# RAW-NEXT: IsFlat: 0
# RAW-NEXT: IsConst: 0
# RAW-NEXT: IsVolatile: 0
# RAW-NEXT: IsUnaligned: 0
# RAW-NEXT: SizeOf: 8
# RAW-NEXT: }
# RAW-NEXT: }
# RAW-NEXT: {
# RAW-NEXT: ArgList (0x1003) {
# RAW-NEXT: TypeLeafKind: LF_ARGLIST (0x1201)
# RAW-NEXT: NumArgs: 1
# RAW-NEXT: Arguments [
# RAW-NEXT: ArgType: 0x0
# RAW-NEXT: ]
# RAW-NEXT: }
# RAW-NEXT: }
# RAW-NEXT: {
# RAW-NEXT: Procedure (0x1004) {
# RAW-NEXT: TypeLeafKind: LF_PROCEDURE (0x1008)
# RAW-NEXT: ReturnType: int (0x74)
# RAW-NEXT: CallingConvention: NearC (0x0)
# RAW-NEXT: FunctionOptions [ (0x0)
# RAW-NEXT: ]
# RAW-NEXT: NumParameters: 0
# RAW-NEXT: ArgListType: (<no type>) (0x1003)
# RAW-NEXT: }
# RAW-NEXT: }
# RAW-NEXT: TypeIndexOffsets [
# RAW-NEXT: Index: 0x1000, Offset: 0
# RAW-NEXT: ]
# RAW-NEXT: ]
# RAW-NEXT: }
# RAW-NEXT: DBI Stream {
# RAW-NEXT: Dbi Version: 20091201
# RAW-NEXT: Age: 1
# RAW-NEXT: Incremental Linking: No
# RAW-NEXT: Has CTypes: No
# RAW-NEXT: Is Stripped: No
# RAW-NEXT: Machine Type: x86
# RAW-NEXT: Symbol Record Stream Index: 65535
# RAW-NEXT: Public Symbol Stream Index: 65535
# RAW-NEXT: Global Symbol Stream Index: 65535
# RAW-NEXT: Toolchain Version: 0.0
# RAW-NEXT: mspdb00.dll version: 0.0.0
# RAW-NEXT: Modules [
# RAW-NEXT: {
# RAW-NEXT: Name: * Linker *
# RAW-NEXT: Debug Stream Index: 9
# RAW-NEXT: Object File Name:
# RAW-NEXT: Num Files: 0
# RAW-NEXT: Source File Name Idx: 0
# RAW-NEXT: Pdb File Name Idx: 0
# RAW-NEXT: Line Info Byte Size: 0
# RAW-NEXT: C13 Line Info Byte Size: 0
# RAW-NEXT: Symbol Byte Size: 4
# RAW-NEXT: Type Server Index: 0
# RAW-NEXT: Has EC Info: No
# RAW-NEXT: }
# RAW-NEXT: ]
# RAW-NEXT: }
# RAW-NEXT: Section Contributions [
# RAW-NEXT: Contribution {
# RAW-NEXT: ISect: 0
# RAW-NEXT: Off: 1288
# RAW-NEXT: Size: 14
# RAW-NEXT: Characteristics [ (0x60500020)
# RAW-NEXT: IMAGE_SCN_ALIGN_16BYTES (0x500000)
# RAW-NEXT: IMAGE_SCN_CNT_CODE (0x20)
# RAW-NEXT: IMAGE_SCN_MEM_EXECUTE (0x20000000)
# RAW-NEXT: IMAGE_SCN_MEM_READ (0x40000000)
# RAW-NEXT: ]
# RAW-NEXT: Module {
# RAW-NEXT: Index: 0
# RAW-NEXT: Name: * Linker *
# RAW-NEXT: }
# RAW-NEXT: Data CRC: 0
# RAW-NEXT: Reloc CRC: 0
# RAW-NEXT: }
# RAW-NEXT: Contribution {
# RAW-NEXT: ISect: 0
# RAW-NEXT: Off: 1312
# RAW-NEXT: Size: 8
# RAW-NEXT: Characteristics [ (0x40300040)
# RAW-NEXT: IMAGE_SCN_ALIGN_4BYTES (0x300000)
# RAW-NEXT: IMAGE_SCN_CNT_INITIALIZED_DATA (0x40)
# RAW-NEXT: IMAGE_SCN_MEM_READ (0x40000000)
# RAW-NEXT: ]
# RAW-NEXT: Module {
# RAW-NEXT: Index: 0
# RAW-NEXT: Name: * Linker *
# RAW-NEXT: }
# RAW-NEXT: Data CRC: 0
# RAW-NEXT: Reloc CRC: 0
# RAW-NEXT: }
# RAW-NEXT: Contribution {
# RAW-NEXT: ISect: 0
# RAW-NEXT: Off: 1320
# RAW-NEXT: Size: 12
# RAW-NEXT: Characteristics [ (0x40300040)
# RAW-NEXT: IMAGE_SCN_ALIGN_4BYTES (0x300000)
# RAW-NEXT: IMAGE_SCN_CNT_INITIALIZED_DATA (0x40)
# RAW-NEXT: IMAGE_SCN_MEM_READ (0x40000000)
# RAW-NEXT: ]
# RAW-NEXT: Module {
# RAW-NEXT: Index: 0
# RAW-NEXT: Name: * Linker *
# RAW-NEXT: }
# RAW-NEXT: Data CRC: 0
# RAW-NEXT: Reloc CRC: 0
# RAW-NEXT: }
# RAW-NEXT: Contribution {
# RAW-NEXT: ISect: 0
# RAW-NEXT: Off: 1144
# RAW-NEXT: Size: 6
# RAW-NEXT: Characteristics [ (0x60500020)
# RAW-NEXT: IMAGE_SCN_ALIGN_16BYTES (0x500000)
# RAW-NEXT: IMAGE_SCN_CNT_CODE (0x20)
# RAW-NEXT: IMAGE_SCN_MEM_EXECUTE (0x20000000)
# RAW-NEXT: IMAGE_SCN_MEM_READ (0x40000000)
# RAW-NEXT: ]
# RAW-NEXT: Module {
# RAW-NEXT: Index: 0
# RAW-NEXT: Name: * Linker *
# RAW-NEXT: }
# RAW-NEXT: Data CRC: 0
# RAW-NEXT: Reloc CRC: 0
# RAW-NEXT: }
# RAW-NEXT: ]
# RAW-NEXT: Section Map [
# RAW-NEXT: Entry {
# RAW-NEXT: Flags [ (0x109)
# RAW-NEXT: AddressIs32Bit (0x8)
# RAW-NEXT: IsSelector (0x100)
# RAW-NEXT: Read (0x1)
# RAW-NEXT: ]
# RAW-NEXT: Ovl: 0
# RAW-NEXT: Group: 0
# RAW-NEXT: Frame: 1
# RAW-NEXT: SecName: 65535
# RAW-NEXT: ClassName: 65535
# RAW-NEXT: Offset: 0
# RAW-NEXT: SecByteLength: 12
# RAW-NEXT: }
# RAW-NEXT: Entry {
# RAW-NEXT: Flags [ (0x10D)
# RAW-NEXT: AddressIs32Bit (0x8)
# RAW-NEXT: Execute (0x4)
# RAW-NEXT: IsSelector (0x100)
# RAW-NEXT: Read (0x1)
# RAW-NEXT: ]
# RAW-NEXT: Ovl: 0
# RAW-NEXT: Group: 0
# RAW-NEXT: Frame: 2
# RAW-NEXT: SecName: 65535
# RAW-NEXT: ClassName: 65535
# RAW-NEXT: Offset: 0
# RAW-NEXT: SecByteLength: 22
# RAW-NEXT: }
# RAW-NEXT: Entry {
# RAW-NEXT: Flags [ (0x109)
# RAW-NEXT: AddressIs32Bit (0x8)
# RAW-NEXT: IsSelector (0x100)
# RAW-NEXT: Read (0x1)
# RAW-NEXT: ]
# RAW-NEXT: Ovl: 0
# RAW-NEXT: Group: 0
# RAW-NEXT: Frame: 3
# RAW-NEXT: SecName: 65535
# RAW-NEXT: ClassName: 65535
# RAW-NEXT: Offset: 0
# RAW-NEXT: SecByteLength: 8
# RAW-NEXT: }
# RAW-NEXT: Entry {
# RAW-NEXT: Flags [ (0x109)
# RAW-NEXT: AddressIs32Bit (0x8)
# RAW-NEXT: IsSelector (0x100)
# RAW-NEXT: Read (0x1)
# RAW-NEXT: ]
# RAW-NEXT: Ovl: 0
# RAW-NEXT: Group: 0
# RAW-NEXT: Frame: 4
# RAW-NEXT: SecName: 65535
# RAW-NEXT: ClassName: 65535
# RAW-NEXT: Offset: 0
# RAW-NEXT: SecByteLength:
# RAW-NEXT: }
# RAW-NEXT: Entry {
# RAW-NEXT: Flags [ (0x208)
# RAW-NEXT: AddressIs32Bit (0x8)
# RAW-NEXT: IsAbsoluteAddress (0x200)
# RAW-NEXT: ]
# RAW-NEXT: Ovl: 0
# RAW-NEXT: Group: 0
# RAW-NEXT: Frame: 5
# RAW-NEXT: SecName: 65535
# RAW-NEXT: ClassName: 65535
# RAW-NEXT: Offset: 0
# RAW-NEXT: SecByteLength: 4294967295
# RAW-NEXT: }
# RAW-NEXT: ]
# RAW-NEXT: Section Headers [
# RAW-NEXT: {
# RAW-NEXT: Name: .pdata
# RAW-NEXT: Virtual Size: 12
# RAW-NEXT: Virtual Address: 4096
# RAW-NEXT: Size of Raw Data: 512
# RAW-NEXT: File Pointer to Raw Data: 1024
# RAW-NEXT: File Pointer to Relocations: 0
# RAW-NEXT: File Pointer to Linenumbers: 0
# RAW-NEXT: Number of Relocations: 0
# RAW-NEXT: Number of Linenumbers: 0
# RAW-NEXT: Characteristics [ (0x40000040)
# RAW-NEXT: IMAGE_SCN_CNT_INITIALIZED_DATA (0x40)
# RAW-NEXT: IMAGE_SCN_MEM_READ (0x40000000)
# RAW-NEXT: ]
# RAW-NEXT: }
# RAW-NEXT: {
# RAW-NEXT: Name: .text
# RAW-NEXT: Virtual Size: 22
# RAW-NEXT: Virtual Address: 8192
# RAW-NEXT: Size of Raw Data: 512
# RAW-NEXT: File Pointer to Raw Data: 1536
# RAW-NEXT: File Pointer to Relocations: 0
# RAW-NEXT: File Pointer to Linenumbers: 0
# RAW-NEXT: Number of Relocations: 0
# RAW-NEXT: Number of Linenumbers: 0
# RAW-NEXT: Characteristics [ (0x60000020)
# RAW-NEXT: IMAGE_SCN_CNT_CODE (0x20)
# RAW-NEXT: IMAGE_SCN_MEM_EXECUTE (0x20000000)
# RAW-NEXT: IMAGE_SCN_MEM_READ (0x40000000)
# RAW-NEXT: ]
# RAW-NEXT: }
# RAW-NEXT: {
# RAW-NEXT: Name: .xdata
# RAW-NEXT: Virtual Size: 8
# RAW-NEXT: Virtual Address: 12288
# RAW-NEXT: Size of Raw Data: 512
# RAW-NEXT: File Pointer to Raw Data: 2048
# RAW-NEXT: File Pointer to Relocations: 0
# RAW-NEXT: File Pointer to Linenumbers: 0
# RAW-NEXT: Number of Relocations: 0
# RAW-NEXT: Number of Linenumbers: 0
# RAW-NEXT: Characteristics [ (0x40000040)
# RAW-NEXT: IMAGE_SCN_CNT_INITIALIZED_DATA (0x40)
# RAW-NEXT: IMAGE_SCN_MEM_READ (0x40000000)
# RAW-NEXT: ]
# RAW-NEXT: }
# RAW-NEXT: {
# RAW-NEXT: Name: .rdata
# RAW-NEXT: Virtual Size:
# RAW-NEXT: Virtual Address: 16384
# RAW-NEXT: Size of Raw Data: 512
# RAW-NEXT: File Pointer to Raw Data: 2560
# RAW-NEXT: File Pointer to Relocations: 0
# RAW-NEXT: File Pointer to Linenumbers: 0
# RAW-NEXT: Number of Relocations: 0
# RAW-NEXT: Number of Linenumbers: 0
# RAW-NEXT: Characteristics [ (0x40000040)
# RAW-NEXT: IMAGE_SCN_CNT_INITIALIZED_DATA (0x40)
# RAW-NEXT: IMAGE_SCN_MEM_READ (0x40000000)
# RAW-NEXT: ]
# RAW-NEXT: }
# RAW-NEXT: ]
RAW: Modules
RAW-NEXT: ============================================================
RAW-NEXT: Mod 0000 | Name: `{{.*}}pdb.test.tmp1.obj`:
RAW-NEXT: Obj: `{{.*}}pdb.test.tmp1.obj`:
RAW-NEXT: debug stream: 9, # files: 0, has ec info: false
RAW-NEXT: Mod 0001 | Name: `{{.*}}pdb.test.tmp2.obj`:
RAW-NEXT: Obj: `{{.*}}pdb.test.tmp2.obj`:
RAW-NEXT: debug stream: 10, # files: 0, has ec info: false
RAW-NEXT: Mod 0002 | Name: `* Linker *`:
RAW-NEXT: Obj: ``:
RAW-NEXT: debug stream: 11, # files: 0, has ec info: false
RAW: Types (TPI Stream)
RAW-NEXT: ============================================================
RAW-NEXT: Showing 5 records
RAW-NEXT: 0x1000 | LF_ARGLIST [size = 8]
RAW-NEXT: 0x1001 | LF_PROCEDURE [size = 16]
RAW-NEXT: return type = 0x0074 (int), # args = 0, param list = 0x1000
RAW-NEXT: calling conv = cdecl, options = None
RAW-NEXT: 0x1002 | LF_POINTER [size = 12]
RAW-NEXT: referent = 0x1001, mode = pointer, opts = None, kind = ptr64
RAW-NEXT: 0x1003 | LF_ARGLIST [size = 12]
RAW-NEXT: <no type>: ``
RAW-NEXT: 0x1004 | LF_PROCEDURE [size = 16]
RAW-NEXT: return type = 0x0074 (int), # args = 0, param list = 0x1003
RAW-NEXT: calling conv = cdecl, options = None
RAW: Types (IPI Stream)
RAW-NEXT: ============================================================
RAW-NEXT: Showing 12 records
RAW-NEXT: 0x1000 | LF_FUNC_ID [size = 20]
RAW-NEXT: name = main, type = 0x1004, parent scope = <no type>
RAW-NEXT: 0x1001 | LF_FUNC_ID [size = 16]
RAW-NEXT: name = foo, type = 0x1001, parent scope = <no type>
RAW-NEXT: 0x1002 | LF_STRING_ID [size = 16] ID: <no type>, String: D:\b
RAW-NEXT: 0x1003 | LF_STRING_ID [size = 36] ID: <no type>, String: C:\vs14\VC\BIN\amd64\cl.exe
RAW-NEXT: 0x1004 | LF_STRING_ID [size = 260] ID: <no type>, String: -Z7 -c -MT -IC:\vs14\VC\INCLUDE -IC:\vs14\VC\ATLMFC\INCLUDE -I"C:\Program Files (x86)\Windows Kits\10\include\10.0.10150.0\ucrt" -I"C:\Program Files (x86)\Windows Kits\NETFXSDK\4.6\include\um" -I"C:\Program Files (x86)\Windows Kits\8.1\include\shared"
RAW-NEXT: 0x1005 | LF_SUBSTR_LIST [size = 12]
RAW-NEXT: 0x1004: `-Z7 -c -MT -IC:\vs14\VC\INCLUDE -IC:\vs14\VC\ATLMFC\INCLUDE -I"C:\Program Files (x86)\Windows Kits\10\include\10.0.10150.0\ucrt" -I"C:\Program Files (x86)\Windows Kits\NETFXSDK\4.6\include\um" -I"C:\Program Files (x86)\Windows Kits\8.1\include\shared"`
RAW-NEXT: 0x1006 | LF_STRING_ID [size = 132] ID: 0x1005, String: -I"C:\Program Files (x86)\Windows Kits\8.1\include\um" -I"C:\Program Files (x86)\Windows Kits\8.1\include\winrt" -TC -X
RAW-NEXT: 0x1007 | LF_STRING_ID [size = 24] ID: <no type>, String: ret42-main.c
RAW-NEXT: 0x1008 | LF_STRING_ID [size = 24] ID: <no type>, String: D:\b\vc140.pdb
RAW-NEXT: 0x1009 | LF_BUILDINFO [size = 28]
RAW-NEXT: 0x1002: `D:\b`
RAW-NEXT: 0x1003: `C:\vs14\VC\BIN\amd64\cl.exe`
RAW-NEXT: 0x1007: `ret42-main.c`
RAW-NEXT: 0x1008: `D:\b\vc140.pdb`
RAW-NEXT: 0x1006: ` -I"C:\Program Files (x86)\Windows Kits\8.1\include\um" -I"C:\Program Files (x86)\Windows Kits\8.1\include\winrt" -TC -X`
RAW-NEXT: 0x100A | LF_STRING_ID [size = 20] ID: <no type>, String: ret42-sub.c
RAW-NEXT: 0x100B | LF_BUILDINFO [size = 28]
RAW-NEXT: 0x1002: `D:\b`
RAW-NEXT: 0x1003: `C:\vs14\VC\BIN\amd64\cl.exe`
RAW-NEXT: 0x100A: `ret42-sub.c`
RAW-NEXT: 0x1008: `D:\b\vc140.pdb`
RAW-NEXT: 0x1006: ` -I"C:\Program Files (x86)\Windows Kits\8.1\include\um" -I"C:\Program Files (x86)\Windows Kits\8.1\include\winrt" -TC -X`
RAW: Section Contributions
RAW-NEXT: ============================================================
RAW-NEXT: SC | mod = 0, 65535:1288, size = 14, data crc = 0, reloc crc = 0
RAW-NEXT: IMAGE_SCN_CNT_CODE | IMAGE_SCN_ALIGN_16BYTES | IMAGE_SCN_MEM_EXECUTE |
RAW-NEXT: IMAGE_SCN_MEM_READ
RAW-NEXT: SC | mod = 0, 65535:1312, size = 8, data crc = 0, reloc crc = 0
RAW-NEXT: IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_ALIGN_4BYTES | IMAGE_SCN_MEM_READ
RAW-NEXT: SC | mod = 0, 65535:1320, size = 12, data crc = 0, reloc crc = 0
RAW-NEXT: IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_ALIGN_4BYTES | IMAGE_SCN_MEM_READ
RAW-NEXT: SC | mod = 1, 65535:1144, size = 6, data crc = 0, reloc crc = 0
RAW-NEXT: IMAGE_SCN_CNT_CODE | IMAGE_SCN_ALIGN_16BYTES | IMAGE_SCN_MEM_EXECUTE |
RAW-NEXT: IMAGE_SCN_MEM_READ
RAW: Section Map
RAW-NEXT: ============================================================
RAW-NEXT: Section 0000 | ovl = 0, group = 0, frame = 0, name = 1
RAW-NEXT: class = 65535, offset = 0, size =
RAW-NEXT: flags = read | 32 bit addr | selector
RAW-NEXT: Section 0001 | ovl = 1, group = 0, frame = 0, name = 2
RAW-NEXT: class = 65535, offset = 0, size =
RAW-NEXT: flags = read | execute | 32 bit addr | selector
RAW-NEXT: Section 0002 | ovl = 2, group = 0, frame = 0, name = 3
RAW-NEXT: class = 65535, offset = 0, size =
RAW-NEXT: flags = read | 32 bit addr | selector
RAW-NEXT: Section 0003 | ovl = 3, group = 0, frame = 0, name = 4
RAW-NEXT: class = 65535, offset = 0, size =
RAW-NEXT: flags = read | 32 bit addr | selector
RAW-NEXT: Section 0004 | ovl = 4, group = 0, frame = 0, name = 5
RAW-NEXT: class = 65535, offset = 0, size =
RAW-NEXT: flags = 32 bit addr | absolute addr

View File

@ -35,7 +35,46 @@ sections:
- Name: '.debug$S'
Characteristics: [ IMAGE_SCN_CNT_INITIALIZED_DATA, IMAGE_SCN_MEM_DISCARDABLE, IMAGE_SCN_MEM_READ ]
Alignment: 1
SectionData: 04000000F1000000300000002A00471100000000000000000000000010000000000000000000000000000000000000000000006D61696E0002004F11F200000024000000000000000000010010000000000000000100000018000000000000000100000000000000F4000000080000000100000000000000F30000003C000000005C7573725C6C6F63616C5C676F6F676C655C686F6D655C6D616A6E656D65725C6C6C766D5C7372635C746F6F6C735C6C6C645C3C737464696E3E00
Subsections:
- !Symbols
Records:
- Kind: S_GPROC32_ID
ProcSym:
PtrParent: 0
PtrEnd: 0
PtrNext: 0
CodeSize: 16
DbgStart: 0
DbgEnd: 0
FunctionType: 0
Segment: 0
Flags: [ ]
DisplayName: main
- Kind: S_PROC_ID_END
ScopeEndSym:
- !Lines
CodeSize: 16
Flags: [ HasColumnInfo ]
RelocOffset: 0
RelocSegment: 0
Blocks:
- FileName: '\usr\local\google\home\majnemer\llvm\src\tools\lld\<stdin>'
Lines:
- Offset: 0
LineStart: 1
IsStatement: false
EndDelta: 0
Columns:
- StartColumn: 0
EndColumn: 0
- !FileChecksums
Checksums:
- FileName: '\usr\local\google\home\majnemer\llvm\src\tools\lld\<stdin>'
Kind: None
Checksum: ''
- !StringTable
Strings:
- '\usr\local\google\home\majnemer\llvm\src\tools\lld\<stdin>'
Relocations:
- VirtualAddress: 44
SymbolName: _main

View File

@ -0,0 +1,9 @@
.section .rodata.str,"aMS",@progbits,1
.asciz "bar"
.asciz "baz"
.asciz "foo"
.section .text.f2,"ax"
.globl f2
f2:
.quad .rodata.str+8

View File

@ -0,0 +1,10 @@
.section .rodata.str,"aMS",@progbits,1
.asciz "bar"
.asciz "baz"
foo:
.asciz "foo"
.section .text.f2,"ax"
.globl f2
f2:
lea foo+42(%rip), %rax

View File

@ -0,0 +1,10 @@
.section .rodata.str,"aMS",@progbits,1
.asciz "bar"
.asciz "baz"
boo:
.asciz "boo"
.section .text.f2,"ax"
.globl f2
f2:
lea boo+42(%rip), %rax

View File

@ -0,0 +1,10 @@
.section .rodata.str,"aMS",@progbits,1
.asciz "bar"
.asciz "baz"
foo:
.asciz "foo"
.section .text.f2,"ax"
.globl f2
f2:
lea foo+43(%rip), %rax

Binary file not shown.

View File

@ -0,0 +1,14 @@
# sht-group-gold-r.elf is produced by
#
# llvm-mc -filetype=obj -triple=x86_64-pc-linux sht-group-gold-r.s -o sht-group-gold-r.o
# ld.gold -o sht-group-gold-r.elf -r sht-group-gold-r.o
.global foo, bar
.section .text.foo,"aG",@progbits,group_foo,comdat
foo:
nop
.section .text.bar,"aG",@progbits,group_bar,comdat
bar:
nop

View File

@ -33,12 +33,12 @@ _start:
// CHECK: Disassembly of section .text:
// 131076 = 0x20004
// CHECK: 20000: {{.*}} b #131076
// CHECK-NEXT: 20004: {{.*}} bl #131080
// CHECK-NEXT: 20008: {{.*}} b.eq #131084
// CHECK-NEXT: 2000c: {{.*}} cbz x1, #131088
// CHECK: 20000: {{.*}} b #4
// CHECK-NEXT: 20004: {{.*}} bl #4
// CHECK-NEXT: 20008: {{.*}} b.eq #4
// CHECK-NEXT: 2000c: {{.*}} cbz x1, #4
// CHECK-NEXT: 20010: {{.*}} adr x0, #0
// CHECK-NEXT: 20014: {{.*}} adrp x0, #0
// CHECK-NEXT: 20014: {{.*}} adrp x0, #-131072
// CHECK: 20018: {{.*}} .word 0x00000000
// CHECK-NEXT: 2001c: {{.*}} .word 0x00000000
// CHECK-NEXT: 20020: {{.*}} .word 0x00000000

View File

@ -19,6 +19,6 @@ _start:
// CHECK: Disassembly of section .text:
// CHECK-NEXT: _start:
// 69636 = 0x11004 = next instruction
// CHECK: 11000: {{.*}} bl #69636
// CHECK-NEXT: 11004: {{.*}} b.w #69640
// CHECK-NEXT: 11008: {{.*}} b.w #69644
// CHECK: 11000: {{.*}} bl #0
// CHECK-NEXT: 11004: {{.*}} b.w #0 <_start+0x8>
// CHECK-NEXT: 11008: {{.*}} b.w #0 <_start+0xC>

View File

@ -29,10 +29,10 @@ _start:
// CHECK: Disassembly of section .text:
// 69636 = 0x11004
// CHECK: 11000: {{.*}} beq.w #69636
// CHECK-NEXT: 11004: {{.*}} b.w #69640
// CHECK-NEXT: 11008: {{.*}} bl #69644
// CHECK: 11000: {{.*}} beq.w #0 <_start+0x4>
// CHECK-NEXT: 11004: {{.*}} b.w #0 <_start+0x8>
// CHECK-NEXT: 11008: {{.*}} bl #0
// blx is transformed into bl so we don't change state
// CHECK-NEXT: 1100c: {{.*}} bl #69648
// CHECK-NEXT: 1100c: {{.*}} bl #0
// CHECK-NEXT: 11010: {{.*}} movt r0, #0
// CHECK-NEXT: 11014: {{.*}} movw r0, #0

View File

@ -29,10 +29,10 @@ _start:
// CHECK: Disassembly of section .text:
// 69636 = 0x11004
// CHECK: 11000: {{.*}} b #69636
// CHECK-NEXT: 11004: {{.*}} bl #69640
// CHECK: 11000: {{.*}} b #-4 <_start+0x4>
// CHECK-NEXT: 11004: {{.*}} bl #-4 <_start+0x8>
// blx is transformed into bl so we don't change state
// CHECK-NEXT: 11008: {{.*}} bl #69644
// CHECK-NEXT: 11008: {{.*}} bl #-4 <_start+0xC>
// CHECK-NEXT: 1100c: {{.*}} movt r0, #0
// CHECK-NEXT: 11010: {{.*}} movw r0, #0
// CHECK: 11014: {{.*}} .word 0x00000000

14
test/ELF/basic-avr.s Normal file
View File

@ -0,0 +1,14 @@
# REQUIRES: avr
# RUN: llvm-mc -filetype=obj -triple=avr-unknown-linux -mcpu=atmega328p %s -o %t.o
# RUN: ld.lld %t.o -o %t.exe -Ttext=0
# RUN: llvm-objdump -d %t.exe | FileCheck %s
main:
call foo
foo:
jmp foo
# CHECK: main:
# CHECK-NEXT: 0: 0e 94 02 00 <unknown>
# CHECK: foo:
# CHECK-NEXT: 4: 0c 94 02 00 <unknown>

18
test/ELF/icf-merge-sec.s Normal file
View File

@ -0,0 +1,18 @@
# REQUIRES: x86
# RUN: llvm-mc -filetype=obj -triple=x86_64-unknown-linux %s -o %t
# RUN: llvm-mc -filetype=obj -triple=x86_64-unknown-linux %S/Inputs/icf-merge-sec.s -o %t2
# RUN: ld.lld %t %t2 -o %t3 --icf=all --verbose | FileCheck %s
# CHECK: selected .text.f1
# CHECK: removed .text.f2
.section .rodata.str,"aMS",@progbits,1
.asciz "foo"
.asciz "string 1"
.asciz "string 2"
.section .text.f1,"ax"
.globl f1
f1:
.quad .rodata.str

27
test/ELF/icf-merge.s Normal file
View File

@ -0,0 +1,27 @@
# REQUIRES: x86
# RUN: llvm-mc -filetype=obj -triple=x86_64-unknown-linux %s -o %t
# RUN: llvm-mc -filetype=obj -triple=x86_64-unknown-linux %S/Inputs/icf-merge.s -o %t1
# RUN: ld.lld %t %t1 -o %t1.out --icf=all --verbose | FileCheck %s
# RUN: llvm-mc -filetype=obj -triple=x86_64-unknown-linux %S/Inputs/icf-merge2.s -o %t2
# RUN: ld.lld %t %t2 -o %t3.out --icf=all --verbose | FileCheck --check-prefix=NOMERGE %s
# RUN: llvm-mc -filetype=obj -triple=x86_64-unknown-linux %S/Inputs/icf-merge3.s -o %t3
# RUN: ld.lld %t %t3 -o %t3.out --icf=all --verbose | FileCheck --check-prefix=NOMERGE %s
# CHECK: selected .text.f1
# CHECK: removed .text.f2
# NOMERGE-NOT: selected .text.f
.section .rodata.str,"aMS",@progbits,1
foo:
.asciz "foo"
.asciz "string 1"
.asciz "string 2"
.section .text.f1,"ax"
.globl f1
f1:
lea foo+42(%rip), %rax

View File

@ -0,0 +1,16 @@
# REQUIRES: x86
# RUN: llvm-mc -filetype=obj -triple=x86_64-unknown-linux %s -o %t.o
# RUN: echo "SECTIONS { .text : { *(.text*) QUAD(bar) } }" > %t.script
# RUN: ld.lld --gc-sections -o %t %t.o --script %t.script | FileCheck -allow-empty %s
# CHECK-NOT: unable to evaluate expression: input section .rodata.bar has no output section assigned
.section .rodata.bar
.quad 0x1122334455667788
.global bar
bar:
.section .text
.global _start
_start:
nop

View File

@ -1,7 +1,7 @@
# REQUIRES: x86
# RUN: llvm-mc -filetype=obj -triple=x86_64-pc-linux %s -o %t.o
# RUN: echo "SECTIONS {" > %t.script
# RUN: echo ". = 0x20; . = 0x10; }" >> %t.script
# RUN: echo ". = 0x20; . = 0x10; .text : {} }" >> %t.script
# RUN: not ld.lld %t.o --script %t.script -o %t -shared 2>&1 | FileCheck %s
# CHECK: {{.*}}.script:2: unable to move location counter backward

View File

@ -9,8 +9,11 @@
# RUN: ld.lld -o %t2 --script %t.script %t
# RUN: llvm-objdump -section-headers -t %t2 | FileCheck %s
# CHECK: Sections:
# CHECK: .nonalloc 00000008 0000000000000000
# CHECK: SYMBOL TABLE:
# CHECK: 00000000000000f0 .nonalloc 00000000 Sym
# CHECK: 0000000000000008 .nonalloc 00000000 Sym
.section .nonalloc,""
.quad 0

View File

@ -0,0 +1,17 @@
# GNU gold 1.14 (the newest version as of July 2017) seems to create
# non-standard-compliant SHT_GROUP sections when the -r option is given.
#
# Such SHT_GROUP sections use section names as their signatures
# instead of symbols pointed by sh_link field. Since it is prevalent,
# we accept such nonstandard sections.
# RUN: llvm-mc -filetype=obj -triple=x86_64-unknown-linux %s -o %t.o
# RUN: ld.lld %p/Inputs/sht-group-gold-r.elf %t.o -o %t.exe
# RUN: llvm-objdump -t %t.exe | FileCheck %s
# CHECK: .text 00000000 bar
# CHECK: .text 00000000 foo
.globl _start
_start:
ret

View File

@ -45,7 +45,7 @@ else:
config.test_format = lit.formats.ShTest(execute_external)
# suffixes: A list of file extensions to treat as test files.
config.suffixes = ['.ll', '.objtxt', '.test']
config.suffixes = ['.ll', '.s', '.objtxt', '.test']
# excludes: A list of directories to exclude from the testsuite. The 'Inputs'
# subdirectories contain auxiliary inputs for various tests in their parent
@ -167,6 +167,7 @@ tool_patterns = [r"\bFileCheck\b",
r"\bllvm-mc\b",
r"\bllvm-nm\b",
r"\bllvm-objdump\b",
r"\bllvm-pdbutil\b",
r"\bllvm-readobj\b",
r"\bobj2yaml\b",
r"\byaml2obj\b"]
@ -246,6 +247,8 @@ if re.search(r'AArch64', archs):
config.available_features.add('aarch64')
if re.search(r'ARM', archs):
config.available_features.add('arm')
if re.search(r'AVR', archs):
config.available_features.add('avr')
if re.search(r'Mips', archs):
config.available_features.add('mips')
if re.search(r'X86', archs):