Things that never should have been imported.

This commit is contained in:
David E. O'Brien 2003-03-02 19:10:30 +00:00
parent 7f158db49d
commit 18dcca33ad
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/vendor/binutils/dist/; revision=111756
36 changed files with 0 additions and 12979 deletions

View File

@ -1,50 +0,0 @@
/* coff information for Texas Instruments TMS320C3X
Copyright 2001 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#define L_LNNO_SIZE 4
#include "coff/external.h"
#define TIC30MAGIC 0xC000
#define TIC30BADMAG(x) (((x).f_magic != TIC30MAGIC))
/********************** RELOCATION DIRECTIVES **********************/
/* The external reloc has an offset field, because some of the reloc
types on the z8k don't have room in the instruction for the entire
offset - eg with segments */
struct external_reloc
{
char r_vaddr[4];
char r_symndx[4];
char r_offset[4];
char r_type[2];
char r_stuff[2];
};
#define RELOC struct external_reloc
#define RELSZ 16
/* TMS320C30 relocation types. */
#define R_TIC30_ABS16 0x100 /* 16 bit absolute. */
#define R_TIC30_ABS24 0x101 /* 24 bit absolute. */
#define R_TIC30_ABS32 0x102 /* 32 bit absolute. */
#define R_TIC30_LDP 0x103 /* LDP bits 23-16 to 7-0. */
#define R_TIC30_PC16 0x104 /* 16 bit pc relative. */

View File

@ -1,321 +0,0 @@
/* Opcode table for the ARC.
Copyright 1994, 1995, 1997, 2001 Free Software Foundation, Inc.
Contributed by Doug Evans (dje@cygnus.com).
This file is part of GAS, the GNU Assembler, GDB, the GNU debugger, and
the GNU Binutils.
GAS/GDB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS/GDB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS or GDB; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
/* List of the various cpu types.
The tables currently use bit masks to say whether the instruction or
whatever is supported by a particular cpu. This lets us have one entry
apply to several cpus.
The `base' cpu must be 0. The cpu type is treated independently of
endianness. The complete `mach' number includes endianness.
These values are internal to opcodes/bfd/binutils/gas. */
#define ARC_MACH_5 0
#define ARC_MACH_6 1
#define ARC_MACH_7 2
#define ARC_MACH_8 4
/* Additional cpu values can be inserted here and ARC_MACH_BIG moved down. */
#define ARC_MACH_BIG 16
/* Mask of number of bits necessary to record cpu type. */
#define ARC_MACH_CPU_MASK (ARC_MACH_BIG - 1)
/* Mask of number of bits necessary to record cpu type + endianness. */
#define ARC_MACH_MASK ((ARC_MACH_BIG << 1) - 1)
/* Type to denote an ARC instruction (at least a 32 bit unsigned int). */
typedef unsigned int arc_insn;
struct arc_opcode {
char *syntax; /* syntax of insn */
unsigned long mask, value; /* recognize insn if (op&mask) == value */
int flags; /* various flag bits */
/* Values for `flags'. */
/* Return CPU number, given flag bits. */
#define ARC_OPCODE_CPU(bits) ((bits) & ARC_MACH_CPU_MASK)
/* Return MACH number, given flag bits. */
#define ARC_OPCODE_MACH(bits) ((bits) & ARC_MACH_MASK)
/* First opcode flag bit available after machine mask. */
#define ARC_OPCODE_FLAG_START (ARC_MACH_MASK + 1)
/* This insn is a conditional branch. */
#define ARC_OPCODE_COND_BRANCH (ARC_OPCODE_FLAG_START)
#define SYNTAX_3OP (ARC_OPCODE_COND_BRANCH << 1)
#define SYNTAX_LENGTH (SYNTAX_3OP )
#define SYNTAX_2OP (SYNTAX_3OP << 1)
#define OP1_MUST_BE_IMM (SYNTAX_2OP << 1)
#define OP1_IMM_IMPLIED (OP1_MUST_BE_IMM << 1)
#define SYNTAX_VALID (OP1_IMM_IMPLIED << 1)
#define I(x) (((x) & 31) << 27)
#define A(x) (((x) & ARC_MASK_REG) << ARC_SHIFT_REGA)
#define B(x) (((x) & ARC_MASK_REG) << ARC_SHIFT_REGB)
#define C(x) (((x) & ARC_MASK_REG) << ARC_SHIFT_REGC)
#define R(x,b,m) (((x) & (m)) << (b)) /* value X, mask M, at bit B */
/* These values are used to optimize assembly and disassembly. Each insn
is on a list of related insns (same first letter for assembly, same
insn code for disassembly). */
struct arc_opcode *next_asm; /* Next instr to try during assembly. */
struct arc_opcode *next_dis; /* Next instr to try during disassembly. */
/* Macros to create the hash values for the lists. */
#define ARC_HASH_OPCODE(string) \
((string)[0] >= 'a' && (string)[0] <= 'z' ? (string)[0] - 'a' : 26)
#define ARC_HASH_ICODE(insn) \
((unsigned int) (insn) >> 27)
/* Macros to access `next_asm', `next_dis' so users needn't care about the
underlying mechanism. */
#define ARC_OPCODE_NEXT_ASM(op) ((op)->next_asm)
#define ARC_OPCODE_NEXT_DIS(op) ((op)->next_dis)
};
/* this is an "insert at front" linked list per Metaware spec
that new definitions override older ones. */
struct arc_opcode *arc_ext_opcodes;
struct arc_operand_value {
char *name; /* eg: "eq" */
short value; /* eg: 1 */
unsigned char type; /* index into `arc_operands' */
unsigned char flags; /* various flag bits */
/* Values for `flags'. */
/* Return CPU number, given flag bits. */
#define ARC_OPVAL_CPU(bits) ((bits) & ARC_MACH_CPU_MASK)
/* Return MACH number, given flag bits. */
#define ARC_OPVAL_MACH(bits) ((bits) & ARC_MACH_MASK)
};
struct arc_ext_operand_value {
struct arc_ext_operand_value *next;
struct arc_operand_value operand;
} *arc_ext_operands;
struct arc_operand {
/* One of the insn format chars. */
unsigned char fmt;
/* The number of bits in the operand (may be unused for a modifier). */
unsigned char bits;
/* How far the operand is left shifted in the instruction, or
the modifier's flag bit (may be unused for a modifier. */
unsigned char shift;
/* Various flag bits. */
int flags;
/* Values for `flags'. */
/* This operand is a suffix to the opcode. */
#define ARC_OPERAND_SUFFIX 1
/* This operand is a relative branch displacement. The disassembler
prints these symbolically if possible. */
#define ARC_OPERAND_RELATIVE_BRANCH 2
/* This operand is an absolute branch address. The disassembler
prints these symbolically if possible. */
#define ARC_OPERAND_ABSOLUTE_BRANCH 4
/* This operand is an address. The disassembler
prints these symbolically if possible. */
#define ARC_OPERAND_ADDRESS 8
/* This operand is a long immediate value. */
#define ARC_OPERAND_LIMM 0x10
/* This operand takes signed values. */
#define ARC_OPERAND_SIGNED 0x20
/* This operand takes signed values, but also accepts a full positive
range of values. That is, if bits is 16, it takes any value from
-0x8000 to 0xffff. */
#define ARC_OPERAND_SIGNOPT 0x40
/* This operand should be regarded as a negative number for the
purposes of overflow checking (i.e., the normal most negative
number is disallowed and one more than the normal most positive
number is allowed). This flag will only be set for a signed
operand. */
#define ARC_OPERAND_NEGATIVE 0x80
/* This operand doesn't really exist. The program uses these operands
in special ways. */
#define ARC_OPERAND_FAKE 0x100
/* separate flags operand for j and jl instructions */
#define ARC_OPERAND_JUMPFLAGS 0x200
/* allow warnings and errors to be issued after call to insert_xxxxxx */
#define ARC_OPERAND_WARN 0x400
#define ARC_OPERAND_ERROR 0x800
/* this is a load operand */
#define ARC_OPERAND_LOAD 0x8000
/* this is a store operand */
#define ARC_OPERAND_STORE 0x10000
/* Modifier values. */
/* A dot is required before a suffix. Eg: .le */
#define ARC_MOD_DOT 0x1000
/* A normal register is allowed (not used, but here for completeness). */
#define ARC_MOD_REG 0x2000
/* An auxiliary register name is expected. */
#define ARC_MOD_AUXREG 0x4000
/* Sum of all ARC_MOD_XXX bits. */
#define ARC_MOD_BITS 0x7000
/* Non-zero if the operand type is really a modifier. */
#define ARC_MOD_P(X) ((X) & ARC_MOD_BITS)
/* enforce read/write only register restrictions */
#define ARC_REGISTER_READONLY 0x01
#define ARC_REGISTER_WRITEONLY 0x02
#define ARC_REGISTER_NOSHORT_CUT 0x04
/* Insertion function. This is used by the assembler. To insert an
operand value into an instruction, check this field.
If it is NULL, execute
i |= (p & ((1 << o->bits) - 1)) << o->shift;
(I is the instruction which we are filling in, O is a pointer to
this structure, and OP is the opcode value; this assumes twos
complement arithmetic).
If this field is not NULL, then simply call it with the
instruction and the operand value. It will return the new value
of the instruction. If the ERRMSG argument is not NULL, then if
the operand value is illegal, *ERRMSG will be set to a warning
string (the operand will be inserted in any case). If the
operand value is legal, *ERRMSG will be unchanged.
REG is non-NULL when inserting a register value. */
arc_insn (*insert) PARAMS ((arc_insn insn,
const struct arc_operand *operand, int mods,
const struct arc_operand_value *reg, long value,
const char **errmsg));
/* Extraction function. This is used by the disassembler. To
extract this operand type from an instruction, check this field.
If it is NULL, compute
op = ((i) >> o->shift) & ((1 << o->bits) - 1);
if ((o->flags & ARC_OPERAND_SIGNED) != 0
&& (op & (1 << (o->bits - 1))) != 0)
op -= 1 << o->bits;
(I is the instruction, O is a pointer to this structure, and OP
is the result; this assumes twos complement arithmetic).
If this field is not NULL, then simply call it with the
instruction value. It will return the value of the operand. If
the INVALID argument is not NULL, *INVALID will be set to
non-zero if this operand type can not actually be extracted from
this operand (i.e., the instruction does not match). If the
operand is valid, *INVALID will not be changed.
INSN is a pointer to an array of two `arc_insn's. The first element is
the insn, the second is the limm if present.
Operands that have a printable form like registers and suffixes have
their struct arc_operand_value pointer stored in OPVAL. */
long (*extract) PARAMS ((arc_insn *insn,
const struct arc_operand *operand,
int mods, const struct arc_operand_value **opval,
int *invalid));
};
/* Bits that say what version of cpu we have. These should be passed to
arc_init_opcode_tables. At present, all there is is the cpu type. */
/* CPU number, given value passed to `arc_init_opcode_tables'. */
#define ARC_HAVE_CPU(bits) ((bits) & ARC_MACH_CPU_MASK)
/* MACH number, given value passed to `arc_init_opcode_tables'. */
#define ARC_HAVE_MACH(bits) ((bits) & ARC_MACH_MASK)
/* Special register values: */
#define ARC_REG_SHIMM_UPDATE 61
#define ARC_REG_SHIMM 63
#define ARC_REG_LIMM 62
/* Non-zero if REG is a constant marker. */
#define ARC_REG_CONSTANT_P(REG) ((REG) >= 61)
/* Positions and masks of various fields: */
#define ARC_SHIFT_REGA 21
#define ARC_SHIFT_REGB 15
#define ARC_SHIFT_REGC 9
#define ARC_MASK_REG 63
/* Delay slot types. */
#define ARC_DELAY_NONE 0 /* no delay slot */
#define ARC_DELAY_NORMAL 1 /* delay slot in both cases */
#define ARC_DELAY_JUMP 2 /* delay slot only if branch taken */
/* Non-zero if X will fit in a signed 9 bit field. */
#define ARC_SHIMM_CONST_P(x) ((long) (x) >= -256 && (long) (x) <= 255)
extern const struct arc_operand arc_operands[];
extern const int arc_operand_count;
extern struct arc_opcode arc_opcodes[];
extern const int arc_opcodes_count;
extern const struct arc_operand_value arc_suffixes[];
extern const int arc_suffixes_count;
extern const struct arc_operand_value arc_reg_names[];
extern const int arc_reg_names_count;
extern unsigned char arc_operand_map[];
/* Utility fns in arc-opc.c. */
int arc_get_opcode_mach PARAMS ((int, int));
/* `arc_opcode_init_tables' must be called before `arc_xxx_supported'. */
void arc_opcode_init_tables PARAMS ((int));
void arc_opcode_init_insert PARAMS ((void));
void arc_opcode_init_extract PARAMS ((void));
const struct arc_opcode *arc_opcode_lookup_asm PARAMS ((const char *));
const struct arc_opcode *arc_opcode_lookup_dis PARAMS ((unsigned int));
int arc_opcode_limm_p PARAMS ((long *));
const struct arc_operand_value *arc_opcode_lookup_suffix
PARAMS ((const struct arc_operand *type, int value));
int arc_opcode_supported PARAMS ((const struct arc_opcode *));
int arc_opval_supported PARAMS ((const struct arc_operand_value *));
int arc_limm_fixup_adjust PARAMS ((arc_insn));
int arc_insn_is_j PARAMS ((arc_insn));
int arc_insn_not_jl PARAMS ((arc_insn));
int arc_operand_type PARAMS ((int));
struct arc_operand_value *get_ext_suffix PARAMS ((char *));
int arc_get_noshortcut_flag PARAMS ((void));

File diff suppressed because it is too large Load Diff

View File

@ -1,789 +0,0 @@
/* mips.h. Mips opcode list for GDB, the GNU debugger.
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
Free Software Foundation, Inc.
Contributed by Ralph Campbell and OSF
Commented and modified by Ian Lance Taylor, Cygnus Support
This file is part of GDB, GAS, and the GNU binutils.
GDB, GAS, and the GNU binutils are free software; you can redistribute
them and/or modify them under the terms of the GNU General Public
License as published by the Free Software Foundation; either version
1, or (at your option) any later version.
GDB, GAS, and the GNU binutils are distributed in the hope that they
will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this file; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef _MIPS_H_
#define _MIPS_H_
/* These are bit masks and shift counts to use to access the various
fields of an instruction. To retrieve the X field of an
instruction, use the expression
(i >> OP_SH_X) & OP_MASK_X
To set the same field (to j), use
i = (i &~ (OP_MASK_X << OP_SH_X)) | (j << OP_SH_X)
Make sure you use fields that are appropriate for the instruction,
of course.
The 'i' format uses OP, RS, RT and IMMEDIATE.
The 'j' format uses OP and TARGET.
The 'r' format uses OP, RS, RT, RD, SHAMT and FUNCT.
The 'b' format uses OP, RS, RT and DELTA.
The floating point 'i' format uses OP, RS, RT and IMMEDIATE.
The floating point 'r' format uses OP, FMT, FT, FS, FD and FUNCT.
A breakpoint instruction uses OP, CODE and SPEC (10 bits of the
breakpoint instruction are not defined; Kane says the breakpoint
code field in BREAK is 20 bits; yet MIPS assemblers and debuggers
only use ten bits). An optional two-operand form of break/sdbbp
allows the lower ten bits to be set too, and MIPS32 and later
architectures allow 20 bits to be set with a signal operand
(using CODE20).
The syscall instruction uses CODE20.
The general coprocessor instructions use COPZ. */
#define OP_MASK_OP 0x3f
#define OP_SH_OP 26
#define OP_MASK_RS 0x1f
#define OP_SH_RS 21
#define OP_MASK_FR 0x1f
#define OP_SH_FR 21
#define OP_MASK_FMT 0x1f
#define OP_SH_FMT 21
#define OP_MASK_BCC 0x7
#define OP_SH_BCC 18
#define OP_MASK_CODE 0x3ff
#define OP_SH_CODE 16
#define OP_MASK_CODE2 0x3ff
#define OP_SH_CODE2 6
#define OP_MASK_RT 0x1f
#define OP_SH_RT 16
#define OP_MASK_FT 0x1f
#define OP_SH_FT 16
#define OP_MASK_CACHE 0x1f
#define OP_SH_CACHE 16
#define OP_MASK_RD 0x1f
#define OP_SH_RD 11
#define OP_MASK_FS 0x1f
#define OP_SH_FS 11
#define OP_MASK_PREFX 0x1f
#define OP_SH_PREFX 11
#define OP_MASK_CCC 0x7
#define OP_SH_CCC 8
#define OP_MASK_CODE20 0xfffff /* 20 bit syscall/breakpoint code. */
#define OP_SH_CODE20 6
#define OP_MASK_SHAMT 0x1f
#define OP_SH_SHAMT 6
#define OP_MASK_FD 0x1f
#define OP_SH_FD 6
#define OP_MASK_TARGET 0x3ffffff
#define OP_SH_TARGET 0
#define OP_MASK_COPZ 0x1ffffff
#define OP_SH_COPZ 0
#define OP_MASK_IMMEDIATE 0xffff
#define OP_SH_IMMEDIATE 0
#define OP_MASK_DELTA 0xffff
#define OP_SH_DELTA 0
#define OP_MASK_FUNCT 0x3f
#define OP_SH_FUNCT 0
#define OP_MASK_SPEC 0x3f
#define OP_SH_SPEC 0
#define OP_SH_LOCC 8 /* FP condition code. */
#define OP_SH_HICC 18 /* FP condition code. */
#define OP_MASK_CC 0x7
#define OP_SH_COP1NORM 25 /* Normal COP1 encoding. */
#define OP_MASK_COP1NORM 0x1 /* a single bit. */
#define OP_SH_COP1SPEC 21 /* COP1 encodings. */
#define OP_MASK_COP1SPEC 0xf
#define OP_MASK_COP1SCLR 0x4
#define OP_MASK_COP1CMP 0x3
#define OP_SH_COP1CMP 4
#define OP_SH_FORMAT 21 /* FP short format field. */
#define OP_MASK_FORMAT 0x7
#define OP_SH_TRUE 16
#define OP_MASK_TRUE 0x1
#define OP_SH_GE 17
#define OP_MASK_GE 0x01
#define OP_SH_UNSIGNED 16
#define OP_MASK_UNSIGNED 0x1
#define OP_SH_HINT 16
#define OP_MASK_HINT 0x1f
#define OP_SH_MMI 0 /* Multimedia (parallel) op. */
#define OP_MASK_MMI 0x3f
#define OP_SH_MMISUB 6
#define OP_MASK_MMISUB 0x1f
#define OP_MASK_PERFREG 0x1f /* Performance monitoring. */
#define OP_SH_PERFREG 1
#define OP_SH_SEL 0 /* Coprocessor select field. */
#define OP_MASK_SEL 0x7 /* The sel field of mfcZ and mtcZ. */
#define OP_SH_CODE19 6 /* 19 bit wait code. */
#define OP_MASK_CODE19 0x7ffff
/* This structure holds information for a particular instruction. */
struct mips_opcode
{
/* The name of the instruction. */
const char *name;
/* A string describing the arguments for this instruction. */
const char *args;
/* The basic opcode for the instruction. When assembling, this
opcode is modified by the arguments to produce the actual opcode
that is used. If pinfo is INSN_MACRO, then this is 0. */
unsigned long match;
/* If pinfo is not INSN_MACRO, then this is a bit mask for the
relevant portions of the opcode when disassembling. If the
actual opcode anded with the match field equals the opcode field,
then we have found the correct instruction. If pinfo is
INSN_MACRO, then this field is the macro identifier. */
unsigned long mask;
/* For a macro, this is INSN_MACRO. Otherwise, it is a collection
of bits describing the instruction, notably any relevant hazard
information. */
unsigned long pinfo;
/* A collection of bits describing the instruction sets of which this
instruction or macro is a member. */
unsigned long membership;
};
/* These are the characters which may appears in the args field of an
instruction. They appear in the order in which the fields appear
when the instruction is used. Commas and parentheses in the args
string are ignored when assembling, and written into the output
when disassembling.
Each of these characters corresponds to a mask field defined above.
"<" 5 bit shift amount (OP_*_SHAMT)
">" shift amount between 32 and 63, stored after subtracting 32 (OP_*_SHAMT)
"a" 26 bit target address (OP_*_TARGET)
"b" 5 bit base register (OP_*_RS)
"c" 10 bit breakpoint code (OP_*_CODE)
"d" 5 bit destination register specifier (OP_*_RD)
"h" 5 bit prefx hint (OP_*_PREFX)
"i" 16 bit unsigned immediate (OP_*_IMMEDIATE)
"j" 16 bit signed immediate (OP_*_DELTA)
"k" 5 bit cache opcode in target register position (OP_*_CACHE)
"o" 16 bit signed offset (OP_*_DELTA)
"p" 16 bit PC relative branch target address (OP_*_DELTA)
"q" 10 bit extra breakpoint code (OP_*_CODE2)
"r" 5 bit same register used as both source and target (OP_*_RS)
"s" 5 bit source register specifier (OP_*_RS)
"t" 5 bit target register (OP_*_RT)
"u" 16 bit upper 16 bits of address (OP_*_IMMEDIATE)
"v" 5 bit same register used as both source and destination (OP_*_RS)
"w" 5 bit same register used as both target and destination (OP_*_RT)
"U" 5 bit same destination register in both OP_*_RD and OP_*_RT
(used by clo and clz)
"C" 25 bit coprocessor function code (OP_*_COPZ)
"B" 20 bit syscall/breakpoint function code (OP_*_CODE20)
"J" 19 bit wait function code (OP_*_CODE19)
"x" accept and ignore register name
"z" must be zero register
Floating point instructions:
"D" 5 bit destination register (OP_*_FD)
"M" 3 bit compare condition code (OP_*_CCC) (only used for mips4 and up)
"N" 3 bit branch condition code (OP_*_BCC) (only used for mips4 and up)
"S" 5 bit fs source 1 register (OP_*_FS)
"T" 5 bit ft source 2 register (OP_*_FT)
"R" 5 bit fr source 3 register (OP_*_FR)
"V" 5 bit same register used as floating source and destination (OP_*_FS)
"W" 5 bit same register used as floating target and destination (OP_*_FT)
Coprocessor instructions:
"E" 5 bit target register (OP_*_RT)
"G" 5 bit destination register (OP_*_RD)
"H" 3 bit sel field for (d)mtc* and (d)mfc* (OP_*_SEL)
"P" 5 bit performance-monitor register (OP_*_PERFREG)
Macro instructions:
"A" General 32 bit expression
"I" 32 bit immediate
"F" 64 bit floating point constant in .rdata
"L" 64 bit floating point constant in .lit8
"f" 32 bit floating point constant
"l" 32 bit floating point constant in .lit4
Other:
"()" parens surrounding optional value
"," separates operands
Characters used so far, for quick reference when adding more:
"<>(),"
"ABCDEFGHIJLMNPRSTUVW"
"abcdfhijklopqrstuvwxz"
*/
/* These are the bits which may be set in the pinfo field of an
instructions, if it is not equal to INSN_MACRO. */
/* Modifies the general purpose register in OP_*_RD. */
#define INSN_WRITE_GPR_D 0x00000001
/* Modifies the general purpose register in OP_*_RT. */
#define INSN_WRITE_GPR_T 0x00000002
/* Modifies general purpose register 31. */
#define INSN_WRITE_GPR_31 0x00000004
/* Modifies the floating point register in OP_*_FD. */
#define INSN_WRITE_FPR_D 0x00000008
/* Modifies the floating point register in OP_*_FS. */
#define INSN_WRITE_FPR_S 0x00000010
/* Modifies the floating point register in OP_*_FT. */
#define INSN_WRITE_FPR_T 0x00000020
/* Reads the general purpose register in OP_*_RS. */
#define INSN_READ_GPR_S 0x00000040
/* Reads the general purpose register in OP_*_RT. */
#define INSN_READ_GPR_T 0x00000080
/* Reads the floating point register in OP_*_FS. */
#define INSN_READ_FPR_S 0x00000100
/* Reads the floating point register in OP_*_FT. */
#define INSN_READ_FPR_T 0x00000200
/* Reads the floating point register in OP_*_FR. */
#define INSN_READ_FPR_R 0x00000400
/* Modifies coprocessor condition code. */
#define INSN_WRITE_COND_CODE 0x00000800
/* Reads coprocessor condition code. */
#define INSN_READ_COND_CODE 0x00001000
/* TLB operation. */
#define INSN_TLB 0x00002000
/* Reads coprocessor register other than floating point register. */
#define INSN_COP 0x00004000
/* Instruction loads value from memory, requiring delay. */
#define INSN_LOAD_MEMORY_DELAY 0x00008000
/* Instruction loads value from coprocessor, requiring delay. */
#define INSN_LOAD_COPROC_DELAY 0x00010000
/* Instruction has unconditional branch delay slot. */
#define INSN_UNCOND_BRANCH_DELAY 0x00020000
/* Instruction has conditional branch delay slot. */
#define INSN_COND_BRANCH_DELAY 0x00040000
/* Conditional branch likely: if branch not taken, insn nullified. */
#define INSN_COND_BRANCH_LIKELY 0x00080000
/* Moves to coprocessor register, requiring delay. */
#define INSN_COPROC_MOVE_DELAY 0x00100000
/* Loads coprocessor register from memory, requiring delay. */
#define INSN_COPROC_MEMORY_DELAY 0x00200000
/* Reads the HI register. */
#define INSN_READ_HI 0x00400000
/* Reads the LO register. */
#define INSN_READ_LO 0x00800000
/* Modifies the HI register. */
#define INSN_WRITE_HI 0x01000000
/* Modifies the LO register. */
#define INSN_WRITE_LO 0x02000000
/* Takes a trap (easier to keep out of delay slot). */
#define INSN_TRAP 0x04000000
/* Instruction stores value into memory. */
#define INSN_STORE_MEMORY 0x08000000
/* Instruction uses single precision floating point. */
#define FP_S 0x10000000
/* Instruction uses double precision floating point. */
#define FP_D 0x20000000
/* Instruction is part of the tx39's integer multiply family. */
#define INSN_MULT 0x40000000
/* Instruction synchronize shared memory. */
#define INSN_SYNC 0x80000000
/* Instruction is actually a macro. It should be ignored by the
disassembler, and requires special treatment by the assembler. */
#define INSN_MACRO 0xffffffff
/* Masks used to mark instructions to indicate which MIPS ISA level
they were introduced in. ISAs, as defined below, are logical
ORs of these bits, indicatingthat they support the instructions
defined at the given level. */
#define INSN_ISA_MASK 0x00000fff
#define INSN_ISA1 0x00000010
#define INSN_ISA2 0x00000020
#define INSN_ISA3 0x00000040
#define INSN_ISA4 0x00000080
#define INSN_ISA5 0x00000100
#define INSN_ISA32 0x00000200
#define INSN_ISA64 0x00000400
/* Chip specific instructions. These are bitmasks. */
/* MIPS R4650 instruction. */
#define INSN_4650 0x00010000
/* LSI R4010 instruction. */
#define INSN_4010 0x00020000
/* NEC VR4100 instruction. */
#define INSN_4100 0x00040000
/* Toshiba R3900 instruction. */
#define INSN_3900 0x00080000
/* MIPS R10000 instruction. */
#define INSN_10000 0x00100000
/* Broadcom SB-1 instruction. */
#define INSN_SB1 0x00200000
/* MIPS ISA defines, use instead of hardcoding ISA level. */
#define ISA_UNKNOWN 0 /* Gas internal use. */
#define ISA_MIPS1 (INSN_ISA1)
#define ISA_MIPS2 (ISA_MIPS1 | INSN_ISA2)
#define ISA_MIPS3 (ISA_MIPS2 | INSN_ISA3)
#define ISA_MIPS4 (ISA_MIPS3 | INSN_ISA4)
#define ISA_MIPS5 (ISA_MIPS4 | INSN_ISA5)
#define ISA_MIPS32 (ISA_MIPS2 | INSN_ISA32)
#define ISA_MIPS64 (ISA_MIPS5 | INSN_ISA32 | INSN_ISA64)
/* CPU defines, use instead of hardcoding processor number. Keep this
in sync with bfd/archures.c in order for machine selection to work. */
#define CPU_UNKNOWN 0 /* Gas internal use. */
#define CPU_R2000 2000
#define CPU_R3000 3000
#define CPU_R3900 3900
#define CPU_R4000 4000
#define CPU_R4010 4010
#define CPU_VR4100 4100
#define CPU_R4111 4111
#define CPU_R4300 4300
#define CPU_R4400 4400
#define CPU_R4600 4600
#define CPU_R4650 4650
#define CPU_R5000 5000
#define CPU_R6000 6000
#define CPU_R8000 8000
#define CPU_R10000 10000
#define CPU_R12000 12000
#define CPU_MIPS16 16
#define CPU_MIPS32 32
#define CPU_MIPS5 5
#define CPU_MIPS64 64
#define CPU_SB1 12310201 /* octal 'SB', 01. */
/* Test for membership in an ISA including chip specific ISAs.
INSN is pointer to an element of the opcode table; ISA is the
specified ISA to test against; and CPU is the CPU specific ISA
to test, or zero if no CPU specific ISA test is desired. */
#define OPCODE_IS_MEMBER(insn, isa, cpu) \
(((insn)->membership & isa) != 0 \
|| (cpu == CPU_R4650 && ((insn)->membership & INSN_4650) != 0) \
|| (cpu == CPU_R4010 && ((insn)->membership & INSN_4010) != 0) \
|| ((cpu == CPU_VR4100 || cpu == CPU_R4111) \
&& ((insn)->membership & INSN_4100) != 0) \
|| (cpu == CPU_R3900 && ((insn)->membership & INSN_3900) != 0) \
|| ((cpu == CPU_R10000 || cpu == CPU_R12000) \
&& ((insn)->membership & INSN_10000) != 0) \
|| (cpu == CPU_SB1 && ((insn)->membership & INSN_SB1) != 0) \
|| 0) /* Please keep this term for easier source merging. */
/* This is a list of macro expanded instructions.
_I appended means immediate
_A appended means address
_AB appended means address with base register
_D appended means 64 bit floating point constant
_S appended means 32 bit floating point constant. */
enum
{
M_ABS,
M_ADD_I,
M_ADDU_I,
M_AND_I,
M_BEQ,
M_BEQ_I,
M_BEQL_I,
M_BGE,
M_BGEL,
M_BGE_I,
M_BGEL_I,
M_BGEU,
M_BGEUL,
M_BGEU_I,
M_BGEUL_I,
M_BGT,
M_BGTL,
M_BGT_I,
M_BGTL_I,
M_BGTU,
M_BGTUL,
M_BGTU_I,
M_BGTUL_I,
M_BLE,
M_BLEL,
M_BLE_I,
M_BLEL_I,
M_BLEU,
M_BLEUL,
M_BLEU_I,
M_BLEUL_I,
M_BLT,
M_BLTL,
M_BLT_I,
M_BLTL_I,
M_BLTU,
M_BLTUL,
M_BLTU_I,
M_BLTUL_I,
M_BNE,
M_BNE_I,
M_BNEL_I,
M_DABS,
M_DADD_I,
M_DADDU_I,
M_DDIV_3,
M_DDIV_3I,
M_DDIVU_3,
M_DDIVU_3I,
M_DIV_3,
M_DIV_3I,
M_DIVU_3,
M_DIVU_3I,
M_DLA_AB,
M_DLI,
M_DMUL,
M_DMUL_I,
M_DMULO,
M_DMULO_I,
M_DMULOU,
M_DMULOU_I,
M_DREM_3,
M_DREM_3I,
M_DREMU_3,
M_DREMU_3I,
M_DSUB_I,
M_DSUBU_I,
M_DSUBU_I_2,
M_J_A,
M_JAL_1,
M_JAL_2,
M_JAL_A,
M_L_DOB,
M_L_DAB,
M_LA_AB,
M_LB_A,
M_LB_AB,
M_LBU_A,
M_LBU_AB,
M_LD_A,
M_LD_OB,
M_LD_AB,
M_LDC1_AB,
M_LDC2_AB,
M_LDC3_AB,
M_LDL_AB,
M_LDR_AB,
M_LH_A,
M_LH_AB,
M_LHU_A,
M_LHU_AB,
M_LI,
M_LI_D,
M_LI_DD,
M_LI_S,
M_LI_SS,
M_LL_AB,
M_LLD_AB,
M_LS_A,
M_LW_A,
M_LW_AB,
M_LWC0_A,
M_LWC0_AB,
M_LWC1_A,
M_LWC1_AB,
M_LWC2_A,
M_LWC2_AB,
M_LWC3_A,
M_LWC3_AB,
M_LWL_A,
M_LWL_AB,
M_LWR_A,
M_LWR_AB,
M_LWU_AB,
M_MOVE,
M_MUL,
M_MUL_I,
M_MULO,
M_MULO_I,
M_MULOU,
M_MULOU_I,
M_NOR_I,
M_OR_I,
M_REM_3,
M_REM_3I,
M_REMU_3,
M_REMU_3I,
M_ROL,
M_ROL_I,
M_ROR,
M_ROR_I,
M_S_DA,
M_S_DOB,
M_S_DAB,
M_S_S,
M_SC_AB,
M_SCD_AB,
M_SD_A,
M_SD_OB,
M_SD_AB,
M_SDC1_AB,
M_SDC2_AB,
M_SDC3_AB,
M_SDL_AB,
M_SDR_AB,
M_SEQ,
M_SEQ_I,
M_SGE,
M_SGE_I,
M_SGEU,
M_SGEU_I,
M_SGT,
M_SGT_I,
M_SGTU,
M_SGTU_I,
M_SLE,
M_SLE_I,
M_SLEU,
M_SLEU_I,
M_SLT_I,
M_SLTU_I,
M_SNE,
M_SNE_I,
M_SB_A,
M_SB_AB,
M_SH_A,
M_SH_AB,
M_SW_A,
M_SW_AB,
M_SWC0_A,
M_SWC0_AB,
M_SWC1_A,
M_SWC1_AB,
M_SWC2_A,
M_SWC2_AB,
M_SWC3_A,
M_SWC3_AB,
M_SWL_A,
M_SWL_AB,
M_SWR_A,
M_SWR_AB,
M_SUB_I,
M_SUBU_I,
M_SUBU_I_2,
M_TEQ_I,
M_TGE_I,
M_TGEU_I,
M_TLT_I,
M_TLTU_I,
M_TNE_I,
M_TRUNCWD,
M_TRUNCWS,
M_ULD,
M_ULD_A,
M_ULH,
M_ULH_A,
M_ULHU,
M_ULHU_A,
M_ULW,
M_ULW_A,
M_USH,
M_USH_A,
M_USW,
M_USW_A,
M_USD,
M_USD_A,
M_XOR_I,
M_COP0,
M_COP1,
M_COP2,
M_COP3,
M_NUM_MACROS
};
/* The order of overloaded instructions matters. Label arguments and
register arguments look the same. Instructions that can have either
for arguments must apear in the correct order in this table for the
assembler to pick the right one. In other words, entries with
immediate operands must apear after the same instruction with
registers.
Many instructions are short hand for other instructions (i.e., The
jal <register> instruction is short for jalr <register>). */
extern const struct mips_opcode mips_builtin_opcodes[];
extern const int bfd_mips_num_builtin_opcodes;
extern struct mips_opcode *mips_opcodes;
extern int bfd_mips_num_opcodes;
#define NUMOPCODES bfd_mips_num_opcodes
/* The rest of this file adds definitions for the mips16 TinyRISC
processor. */
/* These are the bitmasks and shift counts used for the different
fields in the instruction formats. Other than OP, no masks are
provided for the fixed portions of an instruction, since they are
not needed.
The I format uses IMM11.
The RI format uses RX and IMM8.
The RR format uses RX, and RY.
The RRI format uses RX, RY, and IMM5.
The RRR format uses RX, RY, and RZ.
The RRI_A format uses RX, RY, and IMM4.
The SHIFT format uses RX, RY, and SHAMT.
The I8 format uses IMM8.
The I8_MOVR32 format uses RY and REGR32.
The IR_MOV32R format uses REG32R and MOV32Z.
The I64 format uses IMM8.
The RI64 format uses RY and IMM5.
*/
#define MIPS16OP_MASK_OP 0x1f
#define MIPS16OP_SH_OP 11
#define MIPS16OP_MASK_IMM11 0x7ff
#define MIPS16OP_SH_IMM11 0
#define MIPS16OP_MASK_RX 0x7
#define MIPS16OP_SH_RX 8
#define MIPS16OP_MASK_IMM8 0xff
#define MIPS16OP_SH_IMM8 0
#define MIPS16OP_MASK_RY 0x7
#define MIPS16OP_SH_RY 5
#define MIPS16OP_MASK_IMM5 0x1f
#define MIPS16OP_SH_IMM5 0
#define MIPS16OP_MASK_RZ 0x7
#define MIPS16OP_SH_RZ 2
#define MIPS16OP_MASK_IMM4 0xf
#define MIPS16OP_SH_IMM4 0
#define MIPS16OP_MASK_REGR32 0x1f
#define MIPS16OP_SH_REGR32 0
#define MIPS16OP_MASK_REG32R 0x1f
#define MIPS16OP_SH_REG32R 3
#define MIPS16OP_EXTRACT_REG32R(i) ((((i) >> 5) & 7) | ((i) & 0x18))
#define MIPS16OP_MASK_MOVE32Z 0x7
#define MIPS16OP_SH_MOVE32Z 0
#define MIPS16OP_MASK_IMM6 0x3f
#define MIPS16OP_SH_IMM6 5
/* These are the characters which may appears in the args field of an
instruction. They appear in the order in which the fields appear
when the instruction is used. Commas and parentheses in the args
string are ignored when assembling, and written into the output
when disassembling.
"y" 3 bit register (MIPS16OP_*_RY)
"x" 3 bit register (MIPS16OP_*_RX)
"z" 3 bit register (MIPS16OP_*_RZ)
"Z" 3 bit register (MIPS16OP_*_MOVE32Z)
"v" 3 bit same register as source and destination (MIPS16OP_*_RX)
"w" 3 bit same register as source and destination (MIPS16OP_*_RY)
"0" zero register ($0)
"S" stack pointer ($sp or $29)
"P" program counter
"R" return address register ($ra or $31)
"X" 5 bit MIPS register (MIPS16OP_*_REGR32)
"Y" 5 bit MIPS register (MIPS16OP_*_REG32R)
"6" 6 bit unsigned break code (MIPS16OP_*_IMM6)
"a" 26 bit jump address
"e" 11 bit extension value
"l" register list for entry instruction
"L" register list for exit instruction
The remaining codes may be extended. Except as otherwise noted,
the full extended operand is a 16 bit signed value.
"<" 3 bit unsigned shift count * 0 (MIPS16OP_*_RZ) (full 5 bit unsigned)
">" 3 bit unsigned shift count * 0 (MIPS16OP_*_RX) (full 5 bit unsigned)
"[" 3 bit unsigned shift count * 0 (MIPS16OP_*_RZ) (full 6 bit unsigned)
"]" 3 bit unsigned shift count * 0 (MIPS16OP_*_RX) (full 6 bit unsigned)
"4" 4 bit signed immediate * 0 (MIPS16OP_*_IMM4) (full 15 bit signed)
"5" 5 bit unsigned immediate * 0 (MIPS16OP_*_IMM5)
"H" 5 bit unsigned immediate * 2 (MIPS16OP_*_IMM5)
"W" 5 bit unsigned immediate * 4 (MIPS16OP_*_IMM5)
"D" 5 bit unsigned immediate * 8 (MIPS16OP_*_IMM5)
"j" 5 bit signed immediate * 0 (MIPS16OP_*_IMM5)
"8" 8 bit unsigned immediate * 0 (MIPS16OP_*_IMM8)
"V" 8 bit unsigned immediate * 4 (MIPS16OP_*_IMM8)
"C" 8 bit unsigned immediate * 8 (MIPS16OP_*_IMM8)
"U" 8 bit unsigned immediate * 0 (MIPS16OP_*_IMM8) (full 16 bit unsigned)
"k" 8 bit signed immediate * 0 (MIPS16OP_*_IMM8)
"K" 8 bit signed immediate * 8 (MIPS16OP_*_IMM8)
"p" 8 bit conditional branch address (MIPS16OP_*_IMM8)
"q" 11 bit branch address (MIPS16OP_*_IMM11)
"A" 8 bit PC relative address * 4 (MIPS16OP_*_IMM8)
"B" 5 bit PC relative address * 8 (MIPS16OP_*_IMM5)
"E" 5 bit PC relative address * 4 (MIPS16OP_*_IMM5)
*/
/* For the mips16, we use the same opcode table format and a few of
the same flags. However, most of the flags are different. */
/* Modifies the register in MIPS16OP_*_RX. */
#define MIPS16_INSN_WRITE_X 0x00000001
/* Modifies the register in MIPS16OP_*_RY. */
#define MIPS16_INSN_WRITE_Y 0x00000002
/* Modifies the register in MIPS16OP_*_RZ. */
#define MIPS16_INSN_WRITE_Z 0x00000004
/* Modifies the T ($24) register. */
#define MIPS16_INSN_WRITE_T 0x00000008
/* Modifies the SP ($29) register. */
#define MIPS16_INSN_WRITE_SP 0x00000010
/* Modifies the RA ($31) register. */
#define MIPS16_INSN_WRITE_31 0x00000020
/* Modifies the general purpose register in MIPS16OP_*_REG32R. */
#define MIPS16_INSN_WRITE_GPR_Y 0x00000040
/* Reads the register in MIPS16OP_*_RX. */
#define MIPS16_INSN_READ_X 0x00000080
/* Reads the register in MIPS16OP_*_RY. */
#define MIPS16_INSN_READ_Y 0x00000100
/* Reads the register in MIPS16OP_*_MOVE32Z. */
#define MIPS16_INSN_READ_Z 0x00000200
/* Reads the T ($24) register. */
#define MIPS16_INSN_READ_T 0x00000400
/* Reads the SP ($29) register. */
#define MIPS16_INSN_READ_SP 0x00000800
/* Reads the RA ($31) register. */
#define MIPS16_INSN_READ_31 0x00001000
/* Reads the program counter. */
#define MIPS16_INSN_READ_PC 0x00002000
/* Reads the general purpose register in MIPS16OP_*_REGR32. */
#define MIPS16_INSN_READ_GPR_X 0x00004000
/* Is a branch insn. */
#define MIPS16_INSN_BRANCH 0x00010000
/* The following flags have the same value for the mips16 opcode
table:
INSN_UNCOND_BRANCH_DELAY
INSN_COND_BRANCH_DELAY
INSN_COND_BRANCH_LIKELY (never used)
INSN_READ_HI
INSN_READ_LO
INSN_WRITE_HI
INSN_WRITE_LO
INSN_TRAP
INSN_ISA3
*/
extern const struct mips_opcode mips16_opcodes[];
extern const int bfd_mips16_num_opcodes;
#endif /* _MIPS_H_ */

View File

@ -1,422 +0,0 @@
/* Print GOULD NPL instructions for GDB, the GNU debugger.
Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
This file is part of GDB.
GDB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
GDB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GDB; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
struct gld_opcode
{
char *name;
unsigned long opcode;
unsigned long mask;
char *args;
int length;
};
/* We store four bytes of opcode for all opcodes because that
is the most any of them need. The actual length of an instruction
is always at least 2 bytes, and at most four. The length of the
instruction is based on the opcode.
The mask component is a mask saying which bits must match
particular opcode in order for an instruction to be an instance
of that opcode.
The args component is a string containing characters
that are used to format the arguments to the instruction. */
/* Kinds of operands:
r Register in first field
R Register in second field
b Base register in first field
B Base register in second field
v Vector register in first field
V Vector register in first field
A Optional address register (base register)
X Optional index register
I Immediate data (16bits signed)
O Offset field (16bits signed)
h Offset field (15bits signed)
d Offset field (14bits signed)
S Shift count field
any other characters are printed as is...
*/
/* The assembler requires that this array be sorted as follows:
all instances of the same mnemonic must be consecutive.
All instances of the same mnemonic with the same number of operands
must be consecutive.
*/
struct gld_opcode gld_opcodes[] =
{
{ "lb", 0xb4080000, 0xfc080000, "r,xOA,X", 4 },
{ "lnb", 0xb8080000, 0xfc080000, "r,xOA,X", 4 },
{ "lbs", 0xec080000, 0xfc080000, "r,xOA,X", 4 },
{ "lh", 0xb4000001, 0xfc080001, "r,xOA,X", 4 },
{ "lnh", 0xb8000001, 0xfc080001, "r,xOA,X", 4 },
{ "lw", 0xb4000000, 0xfc080000, "r,xOA,X", 4 },
{ "lnw", 0xb8000000, 0xfc080000, "r,xOA,X", 4 },
{ "ld", 0xb4000002, 0xfc080002, "r,xOA,X", 4 },
{ "lnd", 0xb8000002, 0xfc080002, "r,xOA,X", 4 },
{ "li", 0xf8000000, 0xfc7f0000, "r,I", 4 },
{ "lpa", 0x50080000, 0xfc080000, "r,xOA,X", 4 },
{ "la", 0x50000000, 0xfc080000, "r,xOA,X", 4 },
{ "labr", 0x58080000, 0xfc080000, "b,xOA,X", 4 },
{ "lbp", 0x90080000, 0xfc080000, "r,xOA,X", 4 },
{ "lhp", 0x90000001, 0xfc080001, "r,xOA,X", 4 },
{ "lwp", 0x90000000, 0xfc080000, "r,xOA,X", 4 },
{ "ldp", 0x90000002, 0xfc080002, "r,xOA,X", 4 },
{ "suabr", 0x58000000, 0xfc080000, "b,xOA,X", 4 },
{ "lf", 0xbc000000, 0xfc080000, "r,xOA,X", 4 },
{ "lfbr", 0xbc080000, 0xfc080000, "b,xOA,X", 4 },
{ "lwbr", 0x5c000000, 0xfc080000, "b,xOA,X", 4 },
{ "stb", 0xd4080000, 0xfc080000, "r,xOA,X", 4 },
{ "sth", 0xd4000001, 0xfc080001, "r,xOA,X", 4 },
{ "stw", 0xd4000000, 0xfc080000, "r,xOA,X", 4 },
{ "std", 0xd4000002, 0xfc080002, "r,xOA,X", 4 },
{ "stf", 0xdc000000, 0xfc080000, "r,xOA,X", 4 },
{ "stfbr", 0xdc080000, 0xfc080000, "b,xOA,X", 4 },
{ "stwbr", 0x54000000, 0xfc080000, "b,xOA,X", 4 },
{ "zmb", 0xd8080000, 0xfc080000, "r,xOA,X", 4 },
{ "zmh", 0xd8000001, 0xfc080001, "r,xOA,X", 4 },
{ "zmw", 0xd8000000, 0xfc080000, "r,xOA,X", 4 },
{ "zmd", 0xd8000002, 0xfc080002, "r,xOA,X", 4 },
{ "stbp", 0x94080000, 0xfc080000, "r,xOA,X", 4 },
{ "sthp", 0x94000001, 0xfc080001, "r,xOA,X", 4 },
{ "stwp", 0x94000000, 0xfc080000, "r,xOA,X", 4 },
{ "stdp", 0x94000002, 0xfc080002, "r,xOA,X", 4 },
{ "lil", 0xf80b0000, 0xfc7f0000, "r,D", 4 },
{ "lwsl1", 0xec000000, 0xfc080000, "r,xOA,X", 4 },
{ "lwsl2", 0xfc000000, 0xfc080000, "r,xOA,X", 4 },
{ "lwsl3", 0xfc080000, 0xfc080000, "r,xOA,X", 4 },
{ "lvb", 0xb0080000, 0xfc080000, "v,xOA,X", 4 },
{ "lvh", 0xb0000001, 0xfc080001, "v,xOA,X", 4 },
{ "lvw", 0xb0000000, 0xfc080000, "v,xOA,X", 4 },
{ "lvd", 0xb0000002, 0xfc080002, "v,xOA,X", 4 },
{ "liv", 0x3c040000, 0xfc0f0000, "v,R", 2 },
{ "livf", 0x3c080000, 0xfc0f0000, "v,R", 2 },
{ "stvb", 0xd0080000, 0xfc080000, "v,xOA,X", 4 },
{ "stvh", 0xd0000001, 0xfc080001, "v,xOA,X", 4 },
{ "stvw", 0xd0000000, 0xfc080000, "v,xOA,X", 4 },
{ "stvd", 0xd0000002, 0xfc080002, "v,xOA,X", 4 },
{ "trr", 0x2c000000, 0xfc0f0000, "r,R", 2 },
{ "trn", 0x2c040000, 0xfc0f0000, "r,R", 2 },
{ "trnd", 0x2c0c0000, 0xfc0f0000, "r,R", 2 },
{ "trabs", 0x2c010000, 0xfc0f0000, "r,R", 2 },
{ "trabsd", 0x2c090000, 0xfc0f0000, "r,R", 2 },
{ "trc", 0x2c030000, 0xfc0f0000, "r,R", 2 },
{ "xcr", 0x28040000, 0xfc0f0000, "r,R", 2 },
{ "cxcr", 0x2c060000, 0xfc0f0000, "r,R", 2 },
{ "cxcrd", 0x2c0e0000, 0xfc0f0000, "r,R", 2 },
{ "tbrr", 0x2c020000, 0xfc0f0000, "r,B", 2 },
{ "trbr", 0x28030000, 0xfc0f0000, "b,R", 2 },
{ "xcbr", 0x28020000, 0xfc0f0000, "b,B", 2 },
{ "tbrbr", 0x28010000, 0xfc0f0000, "b,B", 2 },
{ "trvv", 0x28050000, 0xfc0f0000, "v,V", 2 },
{ "trvvn", 0x2c050000, 0xfc0f0000, "v,V", 2 },
{ "trvvnd", 0x2c0d0000, 0xfc0f0000, "v,V", 2 },
{ "trvab", 0x2c070000, 0xfc0f0000, "v,V", 2 },
{ "trvabd", 0x2c0f0000, 0xfc0f0000, "v,V", 2 },
{ "cmpv", 0x14060000, 0xfc0f0000, "v,V", 2 },
{ "expv", 0x14070000, 0xfc0f0000, "v,V", 2 },
{ "mrvvlt", 0x10030000, 0xfc0f0000, "v,V", 2 },
{ "mrvvle", 0x10040000, 0xfc0f0000, "v,V", 2 },
{ "mrvvgt", 0x14030000, 0xfc0f0000, "v,V", 2 },
{ "mrvvge", 0x14040000, 0xfc0f0000, "v,V", 2 },
{ "mrvveq", 0x10050000, 0xfc0f0000, "v,V", 2 },
{ "mrvvne", 0x10050000, 0xfc0f0000, "v,V", 2 },
{ "mrvrlt", 0x100d0000, 0xfc0f0000, "v,R", 2 },
{ "mrvrle", 0x100e0000, 0xfc0f0000, "v,R", 2 },
{ "mrvrgt", 0x140d0000, 0xfc0f0000, "v,R", 2 },
{ "mrvrge", 0x140e0000, 0xfc0f0000, "v,R", 2 },
{ "mrvreq", 0x100f0000, 0xfc0f0000, "v,R", 2 },
{ "mrvrne", 0x140f0000, 0xfc0f0000, "v,R", 2 },
{ "trvr", 0x140b0000, 0xfc0f0000, "r,V", 2 },
{ "trrv", 0x140c0000, 0xfc0f0000, "v,R", 2 },
{ "bu", 0x40000000, 0xff880000, "xOA,X", 4 },
{ "bns", 0x70080000, 0xff880000, "xOA,X", 4 },
{ "bnco", 0x70880000, 0xff880000, "xOA,X", 4 },
{ "bge", 0x71080000, 0xff880000, "xOA,X", 4 },
{ "bne", 0x71880000, 0xff880000, "xOA,X", 4 },
{ "bunge", 0x72080000, 0xff880000, "xOA,X", 4 },
{ "bunle", 0x72880000, 0xff880000, "xOA,X", 4 },
{ "bgt", 0x73080000, 0xff880000, "xOA,X", 4 },
{ "bnany", 0x73880000, 0xff880000, "xOA,X", 4 },
{ "bs" , 0x70000000, 0xff880000, "xOA,X", 4 },
{ "bco", 0x70800000, 0xff880000, "xOA,X", 4 },
{ "blt", 0x71000000, 0xff880000, "xOA,X", 4 },
{ "beq", 0x71800000, 0xff880000, "xOA,X", 4 },
{ "buge", 0x72000000, 0xff880000, "xOA,X", 4 },
{ "bult", 0x72800000, 0xff880000, "xOA,X", 4 },
{ "ble", 0x73000000, 0xff880000, "xOA,X", 4 },
{ "bany", 0x73800000, 0xff880000, "xOA,X", 4 },
{ "brlnk", 0x44000000, 0xfc080000, "r,xOA,X", 4 },
{ "bib", 0x48000000, 0xfc080000, "r,xOA,X", 4 },
{ "bih", 0x48080000, 0xfc080000, "r,xOA,X", 4 },
{ "biw", 0x4c000000, 0xfc080000, "r,xOA,X", 4 },
{ "bid", 0x4c080000, 0xfc080000, "r,xOA,X", 4 },
{ "bivb", 0x60000000, 0xfc080000, "r,xOA,X", 4 },
{ "bivh", 0x60080000, 0xfc080000, "r,xOA,X", 4 },
{ "bivw", 0x64000000, 0xfc080000, "r,xOA,X", 4 },
{ "bivd", 0x64080000, 0xfc080000, "r,xOA,X", 4 },
{ "bvsb", 0x68000000, 0xfc080000, "r,xOA,X", 4 },
{ "bvsh", 0x68080000, 0xfc080000, "r,xOA,X", 4 },
{ "bvsw", 0x6c000000, 0xfc080000, "r,xOA,X", 4 },
{ "bvsd", 0x6c080000, 0xfc080000, "r,xOA,X", 4 },
{ "camb", 0x80080000, 0xfc080000, "r,xOA,X", 4 },
{ "camh", 0x80000001, 0xfc080001, "r,xOA,X", 4 },
{ "camw", 0x80000000, 0xfc080000, "r,xOA,X", 4 },
{ "camd", 0x80000002, 0xfc080002, "r,xOA,X", 4 },
{ "car", 0x10000000, 0xfc0f0000, "r,R", 2 },
{ "card", 0x14000000, 0xfc0f0000, "r,R", 2 },
{ "ci", 0xf8050000, 0xfc7f0000, "r,I", 4 },
{ "chkbnd", 0x5c080000, 0xfc080000, "r,xOA,X", 4 },
{ "cavv", 0x10010000, 0xfc0f0000, "v,V", 2 },
{ "cavr", 0x10020000, 0xfc0f0000, "v,R", 2 },
{ "cavvd", 0x10090000, 0xfc0f0000, "v,V", 2 },
{ "cavrd", 0x100b0000, 0xfc0f0000, "v,R", 2 },
{ "anmb", 0x84080000, 0xfc080000, "r,xOA,X", 4 },
{ "anmh", 0x84000001, 0xfc080001, "r,xOA,X", 4 },
{ "anmw", 0x84000000, 0xfc080000, "r,xOA,X", 4 },
{ "anmd", 0x84000002, 0xfc080002, "r,xOA,X", 4 },
{ "anr", 0x04000000, 0xfc0f0000, "r,R", 2 },
{ "ani", 0xf8080000, 0xfc7f0000, "r,I", 4 },
{ "ormb", 0xb8080000, 0xfc080000, "r,xOA,X", 4 },
{ "ormh", 0xb8000001, 0xfc080001, "r,xOA,X", 4 },
{ "ormw", 0xb8000000, 0xfc080000, "r,xOA,X", 4 },
{ "ormd", 0xb8000002, 0xfc080002, "r,xOA,X", 4 },
{ "orr", 0x08000000, 0xfc0f0000, "r,R", 2 },
{ "oi", 0xf8090000, 0xfc7f0000, "r,I", 4 },
{ "eomb", 0x8c080000, 0xfc080000, "r,xOA,X", 4 },
{ "eomh", 0x8c000001, 0xfc080001, "r,xOA,X", 4 },
{ "eomw", 0x8c000000, 0xfc080000, "r,xOA,X", 4 },
{ "eomd", 0x8c000002, 0xfc080002, "r,xOA,X", 4 },
{ "eor", 0x0c000000, 0xfc0f0000, "r,R", 2 },
{ "eoi", 0xf80a0000, 0xfc7f0000, "r,I", 4 },
{ "anvv", 0x04010000, 0xfc0f0000, "v,V", 2 },
{ "anvr", 0x04020000, 0xfc0f0000, "v,R", 2 },
{ "orvv", 0x08010000, 0xfc0f0000, "v,V", 2 },
{ "orvr", 0x08020000, 0xfc0f0000, "v,R", 2 },
{ "eovv", 0x0c010000, 0xfc0f0000, "v,V", 2 },
{ "eovr", 0x0c020000, 0xfc0f0000, "v,R", 2 },
{ "sacz", 0x100c0000, 0xfc0f0000, "r,R", 2 },
{ "sla", 0x1c400000, 0xfc600000, "r,S", 2 },
{ "sll", 0x1c600000, 0xfc600000, "r,S", 2 },
{ "slc", 0x24400000, 0xfc600000, "r,S", 2 },
{ "slad", 0x20400000, 0xfc600000, "r,S", 2 },
{ "slld", 0x20600000, 0xfc600000, "r,S", 2 },
{ "sra", 0x1c000000, 0xfc600000, "r,S", 2 },
{ "srl", 0x1c200000, 0xfc600000, "r,S", 2 },
{ "src", 0x24000000, 0xfc600000, "r,S", 2 },
{ "srad", 0x20000000, 0xfc600000, "r,S", 2 },
{ "srld", 0x20200000, 0xfc600000, "r,S", 2 },
{ "sda", 0x3c030000, 0xfc0f0000, "r,R", 2 },
{ "sdl", 0x3c020000, 0xfc0f0000, "r,R", 2 },
{ "sdc", 0x3c010000, 0xfc0f0000, "r,R", 2 },
{ "sdad", 0x3c0b0000, 0xfc0f0000, "r,R", 2 },
{ "sdld", 0x3c0a0000, 0xfc0f0000, "r,R", 2 },
{ "svda", 0x3c070000, 0xfc0f0000, "v,R", 2 },
{ "svdl", 0x3c060000, 0xfc0f0000, "v,R", 2 },
{ "svdc", 0x3c050000, 0xfc0f0000, "v,R", 2 },
{ "svdad", 0x3c0e0000, 0xfc0f0000, "v,R", 2 },
{ "svdld", 0x3c0d0000, 0xfc0f0000, "v,R", 2 },
{ "sbm", 0xac080000, 0xfc080000, "f,xOA,X", 4 },
{ "zbm", 0xac000000, 0xfc080000, "f,xOA,X", 4 },
{ "tbm", 0xa8080000, 0xfc080000, "f,xOA,X", 4 },
{ "incmb", 0xa0000000, 0xfc080000, "xOA,X", 4 },
{ "incmh", 0xa0080000, 0xfc080000, "xOA,X", 4 },
{ "incmw", 0xa4000000, 0xfc080000, "xOA,X", 4 },
{ "incmd", 0xa4080000, 0xfc080000, "xOA,X", 4 },
{ "sbmd", 0x7c080000, 0xfc080000, "r,xOA,X", 4 },
{ "zbmd", 0x7c000000, 0xfc080000, "r,xOA,X", 4 },
{ "tbmd", 0x78080000, 0xfc080000, "r,xOA,X", 4 },
{ "ssm", 0x9c080000, 0xfc080000, "f,xOA,X", 4 },
{ "zsm", 0x9c000000, 0xfc080000, "f,xOA,X", 4 },
{ "tsm", 0x98080000, 0xfc080000, "f,xOA,X", 4 },
{ "admb", 0xc8080000, 0xfc080000, "r,xOA,X", 4 },
{ "admh", 0xc8000001, 0xfc080001, "r,xOA,X", 4 },
{ "admw", 0xc8000000, 0xfc080000, "r,xOA,X", 4 },
{ "admd", 0xc8000002, 0xfc080002, "r,xOA,X", 4 },
{ "adr", 0x38000000, 0xfc0f0000, "r,R", 2 },
{ "armb", 0xe8080000, 0xfc080000, "r,xOA,X", 4 },
{ "armh", 0xe8000001, 0xfc080001, "r,xOA,X", 4 },
{ "armw", 0xe8000000, 0xfc080000, "r,xOA,X", 4 },
{ "armd", 0xe8000002, 0xfc080002, "r,xOA,X", 4 },
{ "adi", 0xf8010000, 0xfc0f0000, "r,I", 4 },
{ "sumb", 0xcc080000, 0xfc080000, "r,xOA,X", 4 },
{ "sumh", 0xcc000001, 0xfc080001, "r,xOA,X", 4 },
{ "sumw", 0xcc000000, 0xfc080000, "r,xOA,X", 4 },
{ "sumd", 0xcc000002, 0xfc080002, "r,xOA,X", 4 },
{ "sur", 0x3c000000, 0xfc0f0000, "r,R", 2 },
{ "sui", 0xf8020000, 0xfc0f0000, "r,I", 4 },
{ "mpmb", 0xc0080000, 0xfc080000, "r,xOA,X", 4 },
{ "mpmh", 0xc0000001, 0xfc080001, "r,xOA,X", 4 },
{ "mpmw", 0xc0000000, 0xfc080000, "r,xOA,X", 4 },
{ "mpr", 0x38020000, 0xfc0f0000, "r,R", 2 },
{ "mprd", 0x3c0f0000, 0xfc0f0000, "r,R", 2 },
{ "mpi", 0xf8030000, 0xfc0f0000, "r,I", 4 },
{ "dvmb", 0xc4080000, 0xfc080000, "r,xOA,X", 4 },
{ "dvmh", 0xc4000001, 0xfc080001, "r,xOA,X", 4 },
{ "dvmw", 0xc4000000, 0xfc080000, "r,xOA,X", 4 },
{ "dvr", 0x380a0000, 0xfc0f0000, "r,R", 2 },
{ "dvi", 0xf8040000, 0xfc0f0000, "r,I", 4 },
{ "exs", 0x38080000, 0xfc0f0000, "r,R", 2 },
{ "advv", 0x30000000, 0xfc0f0000, "v,V", 2 },
{ "advvd", 0x30080000, 0xfc0f0000, "v,V", 2 },
{ "adrv", 0x34000000, 0xfc0f0000, "v,R", 2 },
{ "adrvd", 0x34080000, 0xfc0f0000, "v,R", 2 },
{ "suvv", 0x30010000, 0xfc0f0000, "v,V", 2 },
{ "suvvd", 0x30090000, 0xfc0f0000, "v,V", 2 },
{ "surv", 0x34010000, 0xfc0f0000, "v,R", 2 },
{ "survd", 0x34090000, 0xfc0f0000, "v,R", 2 },
{ "mpvv", 0x30020000, 0xfc0f0000, "v,V", 2 },
{ "mprv", 0x34020000, 0xfc0f0000, "v,R", 2 },
{ "adfw", 0xe0080000, 0xfc080000, "r,xOA,X", 4 },
{ "adfd", 0xe0080002, 0xfc080002, "r,xOA,X", 4 },
{ "adrfw", 0x38010000, 0xfc0f0000, "r,R", 2 },
{ "adrfd", 0x38090000, 0xfc0f0000, "r,R", 2 },
{ "surfw", 0xe0000000, 0xfc080000, "r,xOA,X", 4 },
{ "surfd", 0xe0000002, 0xfc080002, "r,xOA,X", 4 },
{ "surfw", 0x38030000, 0xfc0f0000, "r,R", 2 },
{ "surfd", 0x380b0000, 0xfc0f0000, "r,R", 2 },
{ "mpfw", 0xe4080000, 0xfc080000, "r,xOA,X", 4 },
{ "mpfd", 0xe4080002, 0xfc080002, "r,xOA,X", 4 },
{ "mprfw", 0x38060000, 0xfc0f0000, "r,R", 2 },
{ "mprfd", 0x380e0000, 0xfc0f0000, "r,R", 2 },
{ "rfw", 0xe4000000, 0xfc080000, "r,xOA,X", 4 },
{ "rfd", 0xe4000002, 0xfc080002, "r,xOA,X", 4 },
{ "rrfw", 0x0c0e0000, 0xfc0f0000, "r", 2 },
{ "rrfd", 0x0c0f0000, 0xfc0f0000, "r", 2 },
{ "advvfw", 0x30040000, 0xfc0f0000, "v,V", 2 },
{ "advvfd", 0x300c0000, 0xfc0f0000, "v,V", 2 },
{ "adrvfw", 0x34040000, 0xfc0f0000, "v,R", 2 },
{ "adrvfd", 0x340c0000, 0xfc0f0000, "v,R", 2 },
{ "suvvfw", 0x30050000, 0xfc0f0000, "v,V", 2 },
{ "suvvfd", 0x300d0000, 0xfc0f0000, "v,V", 2 },
{ "survfw", 0x34050000, 0xfc0f0000, "v,R", 2 },
{ "survfd", 0x340d0000, 0xfc0f0000, "v,R", 2 },
{ "mpvvfw", 0x30060000, 0xfc0f0000, "v,V", 2 },
{ "mpvvfd", 0x300e0000, 0xfc0f0000, "v,V", 2 },
{ "mprvfw", 0x34060000, 0xfc0f0000, "v,R", 2 },
{ "mprvfd", 0x340e0000, 0xfc0f0000, "v,R", 2 },
{ "rvfw", 0x30070000, 0xfc0f0000, "v", 2 },
{ "rvfd", 0x300f0000, 0xfc0f0000, "v", 2 },
{ "fltw", 0x38070000, 0xfc0f0000, "r,R", 2 },
{ "fltd", 0x380f0000, 0xfc0f0000, "r,R", 2 },
{ "fixw", 0x38050000, 0xfc0f0000, "r,R", 2 },
{ "fixd", 0x380d0000, 0xfc0f0000, "r,R", 2 },
{ "cfpds", 0x3c090000, 0xfc0f0000, "r,R", 2 },
{ "fltvw", 0x080d0000, 0xfc0f0000, "v,V", 2 },
{ "fltvd", 0x080f0000, 0xfc0f0000, "v,V", 2 },
{ "fixvw", 0x080c0000, 0xfc0f0000, "v,V", 2 },
{ "fixvd", 0x080e0000, 0xfc0f0000, "v,V", 2 },
{ "cfpvds", 0x0c0d0000, 0xfc0f0000, "v,V", 2 },
{ "orvrn", 0x000a0000, 0xfc0f0000, "r,V", 2 },
{ "andvrn", 0x00080000, 0xfc0f0000, "r,V", 2 },
{ "frsteq", 0x04090000, 0xfc0f0000, "r,V", 2 },
{ "sigma", 0x0c080000, 0xfc0f0000, "r,V", 2 },
{ "sigmad", 0x0c0a0000, 0xfc0f0000, "r,V", 2 },
{ "sigmf", 0x08080000, 0xfc0f0000, "r,V", 2 },
{ "sigmfd", 0x080a0000, 0xfc0f0000, "r,V", 2 },
{ "prodf", 0x04080000, 0xfc0f0000, "r,V", 2 },
{ "prodfd", 0x040a0000, 0xfc0f0000, "r,V", 2 },
{ "maxv", 0x10080000, 0xfc0f0000, "r,V", 2 },
{ "maxvd", 0x100a0000, 0xfc0f0000, "r,V", 2 },
{ "minv", 0x14080000, 0xfc0f0000, "r,V", 2 },
{ "minvd", 0x140a0000, 0xfc0f0000, "r,V", 2 },
{ "lpsd", 0xf0000000, 0xfc080000, "xOA,X", 4 },
{ "ldc", 0xf0080000, 0xfc080000, "xOA,X", 4 },
{ "spm", 0x040c0000, 0xfc0f0000, "r", 2 },
{ "rpm", 0x040d0000, 0xfc0f0000, "r", 2 },
{ "tritr", 0x00070000, 0xfc0f0000, "r", 2 },
{ "trrit", 0x00060000, 0xfc0f0000, "r", 2 },
{ "rpswt", 0x04080000, 0xfc0f0000, "r", 2 },
{ "exr", 0xf8070000, 0xfc0f0000, "", 4 },
{ "halt", 0x00000000, 0xfc0f0000, "", 2 },
{ "wait", 0x00010000, 0xfc0f0000, "", 2 },
{ "nop", 0x00020000, 0xfc0f0000, "", 2 },
{ "eiae", 0x00030000, 0xfc0f0000, "", 2 },
{ "efae", 0x000d0000, 0xfc0f0000, "", 2 },
{ "diae", 0x000e0000, 0xfc0f0000, "", 2 },
{ "dfae", 0x000f0000, 0xfc0f0000, "", 2 },
{ "spvc", 0xf8060000, 0xfc0f0000, "r,T,N", 4 },
{ "rdsts", 0x00090000, 0xfc0f0000, "r", 2 },
{ "setcpu", 0x000c0000, 0xfc0f0000, "r", 2 },
{ "cmc", 0x000b0000, 0xfc0f0000, "r", 2 },
{ "trrcu", 0x00040000, 0xfc0f0000, "r", 2 },
{ "attnio", 0x00050000, 0xfc0f0000, "", 2 },
{ "fudit", 0x28080000, 0xfc0f0000, "", 2 },
{ "break", 0x28090000, 0xfc0f0000, "", 2 },
{ "frzss", 0x280a0000, 0xfc0f0000, "", 2 },
{ "ripi", 0x04040000, 0xfc0f0000, "r,R", 2 },
{ "xcp", 0x04050000, 0xfc0f0000, "r", 2 },
{ "block", 0x04060000, 0xfc0f0000, "", 2 },
{ "unblock", 0x04070000, 0xfc0f0000, "", 2 },
{ "trsc", 0x08060000, 0xfc0f0000, "r,R", 2 },
{ "tscr", 0x08070000, 0xfc0f0000, "r,R", 2 },
{ "fq", 0x04080000, 0xfc0f0000, "r", 2 },
{ "flupte", 0x2c080000, 0xfc0f0000, "r", 2 },
{ "rviu", 0x040f0000, 0xfc0f0000, "", 2 },
{ "ldel", 0x280c0000, 0xfc0f0000, "r,R", 2 },
{ "ldu", 0x280d0000, 0xfc0f0000, "r,R", 2 },
{ "stdecc", 0x280b0000, 0xfc0f0000, "r,R", 2 },
{ "trpc", 0x08040000, 0xfc0f0000, "r", 2 },
{ "tpcr", 0x08050000, 0xfc0f0000, "r", 2 },
{ "ghalt", 0x0c050000, 0xfc0f0000, "r", 2 },
{ "grun", 0x0c040000, 0xfc0f0000, "", 2 },
{ "tmpr", 0x2c0a0000, 0xfc0f0000, "r,R", 2 },
{ "trmp", 0x2c0b0000, 0xfc0f0000, "r,R", 2 },
{ "trrve", 0x28060000, 0xfc0f0000, "r", 2 },
{ "trver", 0x28070000, 0xfc0f0000, "r", 2 },
{ "trvlr", 0x280f0000, 0xfc0f0000, "r", 2 },
{ "linkfl", 0x18000000, 0xfc0f0000, "r,R", 2 },
{ "linkbl", 0x18020000, 0xfc0f0000, "r,R", 2 },
{ "linkfp", 0x18010000, 0xfc0f0000, "r,R", 2 },
{ "linkbp", 0x18030000, 0xfc0f0000, "r,R", 2 },
{ "linkpl", 0x18040000, 0xfc0f0000, "r,R", 2 },
{ "ulinkl", 0x18080000, 0xfc0f0000, "r,R", 2 },
{ "ulinkp", 0x18090000, 0xfc0f0000, "r,R", 2 },
{ "ulinktl", 0x180a0000, 0xfc0f0000, "r,R", 2 },
{ "ulinktp", 0x180b0000, 0xfc0f0000, "r,R", 2 },
};
int numopcodes = sizeof(gld_opcodes) / sizeof(gld_opcodes[0]);
struct gld_opcode *endop = gld_opcodes + sizeof(gld_opcodes) /
sizeof(gld_opcodes[0]);

View File

@ -1,282 +0,0 @@
/* Print GOULD PN (PowerNode) instructions for GDB, the GNU debugger.
Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
This file is part of GDB.
GDB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
GDB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GDB; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
struct gld_opcode
{
char *name;
unsigned long opcode;
unsigned long mask;
char *args;
int length;
};
/* We store four bytes of opcode for all opcodes because that
is the most any of them need. The actual length of an instruction
is always at least 2 bytes, and at most four. The length of the
instruction is based on the opcode.
The mask component is a mask saying which bits must match
particular opcode in order for an instruction to be an instance
of that opcode.
The args component is a string containing characters
that are used to format the arguments to the instruction. */
/* Kinds of operands:
r Register in first field
R Register in second field
b Base register in first field
B Base register in second field
v Vector register in first field
V Vector register in first field
A Optional address register (base register)
X Optional index register
I Immediate data (16bits signed)
O Offset field (16bits signed)
h Offset field (15bits signed)
d Offset field (14bits signed)
S Shift count field
any other characters are printed as is...
*/
/* The assembler requires that this array be sorted as follows:
all instances of the same mnemonic must be consecutive.
All instances of the same mnemonic with the same number of operands
must be consecutive.
*/
struct gld_opcode gld_opcodes[] =
{
{ "abm", 0xa0080000, 0xfc080000, "f,xOA,X", 4 },
{ "abr", 0x18080000, 0xfc0c0000, "r,f", 2 },
{ "aci", 0xfc770000, 0xfc7f8000, "r,I", 4 },
{ "adfd", 0xe0080002, 0xfc080002, "r,xOA,X", 4 },
{ "adfw", 0xe0080000, 0xfc080000, "r,xOA,X", 4 },
{ "adi", 0xc8010000, 0xfc7f0000, "r,I", 4 },
{ "admb", 0xb8080000, 0xfc080000, "r,xOA,X", 4 },
{ "admd", 0xb8000002, 0xfc080002, "r,xOA,X", 4 },
{ "admh", 0xb8000001, 0xfc080001, "r,xOA,X", 4 },
{ "admw", 0xb8000000, 0xfc080000, "r,xOA,X", 4 },
{ "adr", 0x38000000, 0xfc0f0000, "r,R", 2 },
{ "adrfd", 0x38090000, 0xfc0f0000, "r,R", 2 },
{ "adrfw", 0x38010000, 0xfc0f0000, "r,R", 2 },
{ "adrm", 0x38080000, 0xfc0f0000, "r,R", 2 },
{ "ai", 0xfc030000, 0xfc07ffff, "I", 4 },
{ "anmb", 0x84080000, 0xfc080000, "r,xOA,X", 4 },
{ "anmd", 0x84000002, 0xfc080002, "r,xOA,X", 4 },
{ "anmh", 0x84000001, 0xfc080001, "r,xOA,X", 4 },
{ "anmw", 0x84000000, 0xfc080000, "r,xOA,X", 4 },
{ "anr", 0x04000000, 0xfc0f0000, "r,R", 2 },
{ "armb", 0xe8080000, 0xfc080000, "r,xOA,X", 4 },
{ "armd", 0xe8000002, 0xfc080002, "r,xOA,X", 4 },
{ "armh", 0xe8000001, 0xfc080001, "r,xOA,X", 4 },
{ "armw", 0xe8000000, 0xfc080000, "r,xOA,X", 4 },
{ "bcf", 0xf0000000, 0xfc080000, "I,xOA,X", 4 },
{ "bct", 0xec000000, 0xfc080000, "I,xOA,X", 4 },
{ "bei", 0x00060000, 0xffff0000, "", 2 },
{ "bft", 0xf0000000, 0xff880000, "xOA,X", 4 },
{ "bib", 0xf4000000, 0xfc780000, "r,xOA", 4 },
{ "bid", 0xf4600000, 0xfc780000, "r,xOA", 4 },
{ "bih", 0xf4200000, 0xfc780000, "r,xOA", 4 },
{ "biw", 0xf4400000, 0xfc780000, "r,xOA", 4 },
{ "bl", 0xf8800000, 0xff880000, "xOA,X", 4 },
{ "bsub", 0x5c080000, 0xff8f0000, "", 2 },
{ "bsubm", 0x28080000, 0xfc080000, "", 4 },
{ "bu", 0xec000000, 0xff880000, "xOA,X", 4 },
{ "call", 0x28080000, 0xfc0f0000, "", 2 },
{ "callm", 0x5c080000, 0xff880000, "", 4 },
{ "camb", 0x90080000, 0xfc080000, "r,xOA,X", 4 },
{ "camd", 0x90000002, 0xfc080002, "r,xOA,X", 4 },
{ "camh", 0x90000001, 0xfc080001, "r,xOA,X", 4 },
{ "camw", 0x90000000, 0xfc080000, "r.xOA,X", 4 },
{ "car", 0x10000000, 0xfc0f0000, "r,R", 2 },
{ "cd", 0xfc060000, 0xfc070000, "r,f", 4 },
{ "cea", 0x000f0000, 0xffff0000, "", 2 },
{ "ci", 0xc8050000, 0xfc7f0000, "r,I", 4 },
{ "cmc", 0x040a0000, 0xfc7f0000, "r", 2 },
{ "cmmb", 0x94080000, 0xfc080000, "r,xOA,X", 4 },
{ "cmmd", 0x94000002, 0xfc080002, "r,xOA,X", 4 },
{ "cmmh", 0x94000001, 0xfc080001, "r,xOA,X", 4 },
{ "cmmw", 0x94000000, 0xfc080000, "r,xOA,X", 4 },
{ "cmr", 0x14000000, 0xfc0f0000, "r,R", 2 },
{ "daci", 0xfc7f0000, 0xfc7f8000, "r,I", 4 },
{ "dae", 0x000e0000, 0xffff0000, "", 2 },
{ "dai", 0xfc040000, 0xfc07ffff, "I", 4 },
{ "dci", 0xfc6f0000, 0xfc7f8000, "r,I", 4 },
{ "di", 0xfc010000, 0xfc07ffff, "I", 4 },
{ "dvfd", 0xe4000002, 0xfc080002, "r,xOA,X", 4 },
{ "dvfw", 0xe4000000, 0xfc080000, "r,xOA,X", 4 },
{ "dvi", 0xc8040000, 0xfc7f0000, "r,I", 4 },
{ "dvmb", 0xc4080000, 0xfc080000, "r,xOA,X", 4 },
{ "dvmh", 0xc4000001, 0xfc080001, "r,xOA,X", 4 },
{ "dvmw", 0xc4000000, 0xfc080000, "r,xOA,X", 4 },
{ "dvr", 0x380a0000, 0xfc0f0000, "r,R", 2 },
{ "dvrfd", 0x380c0000, 0xfc0f0000, "r,R", 4 },
{ "dvrfw", 0x38040000, 0xfc0f0000, "r,xOA,X", 4 },
{ "eae", 0x00080000, 0xffff0000, "", 2 },
{ "eci", 0xfc670000, 0xfc7f8080, "r,I", 4 },
{ "ecwcs", 0xfc4f0000, 0xfc7f8000, "", 4 },
{ "ei", 0xfc000000, 0xfc07ffff, "I", 4 },
{ "eomb", 0x8c080000, 0xfc080000, "r,xOA,X", 4 },
{ "eomd", 0x8c000002, 0xfc080002, "r,xOA,X", 4 },
{ "eomh", 0x8c000001, 0xfc080001, "r,xOA,X", 4 },
{ "eomw", 0x8c000000, 0xfc080000, "r,xOA,X", 4 },
{ "eor", 0x0c000000, 0xfc0f0000, "r,R", 2 },
{ "eorm", 0x0c080000, 0xfc0f0000, "r,R", 2 },
{ "es", 0x00040000, 0xfc7f0000, "r", 2 },
{ "exm", 0xa8000000, 0xff880000, "xOA,X", 4 },
{ "exr", 0xc8070000, 0xfc7f0000, "r", 2 },
{ "exrr", 0xc8070002, 0xfc7f0002, "r", 2 },
{ "fixd", 0x380d0000, 0xfc0f0000, "r,R", 2 },
{ "fixw", 0x38050000, 0xfc0f0000, "r,R", 2 },
{ "fltd", 0x380f0000, 0xfc0f0000, "r,R", 2 },
{ "fltw", 0x38070000, 0xfc0f0000, "r,R", 2 },
{ "grio", 0xfc3f0000, 0xfc7f8000, "r,I", 4 },
{ "halt", 0x00000000, 0xffff0000, "", 2 },
{ "hio", 0xfc370000, 0xfc7f8000, "r,I", 4 },
{ "jwcs", 0xfa080000, 0xff880000, "xOA,X", 4 },
{ "la", 0x50000000, 0xfc000000, "r,xOA,X", 4 },
{ "labr", 0x58080000, 0xfc080000, "b,xOA,X", 4 },
{ "lb", 0xac080000, 0xfc080000, "r,xOA,X", 4 },
{ "lcs", 0x00030000, 0xfc7f0000, "r", 2 },
{ "ld", 0xac000002, 0xfc080002, "r,xOA,X", 4 },
{ "lear", 0x80000000, 0xfc080000, "r,xOA,X", 4 },
{ "lf", 0xcc000000, 0xfc080000, "r,xOA,X", 4 },
{ "lfbr", 0xcc080000, 0xfc080000, "b,xOA,X", 4 },
{ "lh", 0xac000001, 0xfc080001, "r,xOA,X", 4 },
{ "li", 0xc8000000, 0xfc7f0000, "r,I", 4 },
{ "lmap", 0x2c070000, 0xfc7f0000, "r", 2 },
{ "lmb", 0xb0080000, 0xfc080000, "r,xOA,X", 4 },
{ "lmd", 0xb0000002, 0xfc080002, "r,xOA,X", 4 },
{ "lmh", 0xb0000001, 0xfc080001, "r,xOA,X", 4 },
{ "lmw", 0xb0000000, 0xfc080000, "r,xOA,X", 4 },
{ "lnb", 0xb4080000, 0xfc080000, "r,xOA,X", 4 },
{ "lnd", 0xb4000002, 0xfc080002, "r,xOA,X", 4 },
{ "lnh", 0xb4000001, 0xfc080001, "r,xOA,X", 4 },
{ "lnw", 0xb4000000, 0xfc080000, "r,xOA,X", 4 },
{ "lpsd", 0xf9800000, 0xff880000, "r,xOA,X", 4 },
{ "lpsdcm", 0xfa800000, 0xff880000, "r,xOA,X", 4 },
{ "lw", 0xac000000, 0xfc080000, "r,xOA,X", 4 },
{ "lwbr", 0x5c000000, 0xfc080000, "b,xOA,X", 4 },
{ "mpfd", 0xe4080002, 0xfc080002, "r,xOA,X", 4 },
{ "mpfw", 0xe4080000, 0xfc080000, "r,xOA,X", 4 },
{ "mpi", 0xc8030000, 0xfc7f0000, "r,I", 4 },
{ "mpmb", 0xc0080000, 0xfc080000, "r,xOA,X", 4 },
{ "mpmh", 0xc0000001, 0xfc080001, "r,xOA,X", 4 },
{ "mpmw", 0xc0000000, 0xfc080000, "r,xOA,X", 4 },
{ "mpr", 0x38020000, 0xfc0f0000, "r,R", 2 },
{ "mprfd", 0x380e0000, 0xfc0f0000, "r,R", 2 },
{ "mprfw", 0x38060000, 0xfc0f0000, "r,R", 2 },
{ "nop", 0x00020000, 0xffff0000, "", 2 },
{ "ormb", 0x88080000, 0xfc080000, "r,xOA,X", 4 },
{ "ormd", 0x88000002, 0xfc080002, "r,xOA,X", 4 },
{ "ormh", 0x88000001, 0xfc080001, "r,xOA,X", 4 },
{ "ormw", 0x88000000, 0xfc080000, "r,xOA,X", 4 },
{ "orr", 0x08000000, 0xfc0f0000, "r,R", 2 },
{ "orrm", 0x08080000, 0xfc0f0000, "r,R", 2 },
{ "rdsts", 0x00090000, 0xfc7f0000, "r", 2 },
{ "return", 0x280e0000, 0xfc7f0000, "", 2 },
{ "ri", 0xfc020000, 0xfc07ffff, "I", 4 },
{ "rnd", 0x00050000, 0xfc7f0000, "r", 2 },
{ "rpswt", 0x040b0000, 0xfc7f0000, "r", 2 },
{ "rschnl", 0xfc2f0000, 0xfc7f8000, "r,I", 4 },
{ "rsctl", 0xfc470000, 0xfc7f8000, "r,I", 4 },
{ "rwcs", 0x000b0000, 0xfc0f0000, "r,R", 2 },
{ "sacz", 0x10080000, 0xfc0f0000, "r,R", 2 },
{ "sbm", 0x98080000, 0xfc080000, "f,xOA,X", 4 },
{ "sbr", 0x18000000, 0xfc0c0000, "r,f", 4 },
{ "sea", 0x000d0000, 0xffff0000, "", 2 },
{ "setcpu", 0x2c090000, 0xfc7f0000, "r", 2 },
{ "sio", 0xfc170000, 0xfc7f8000, "r,I", 4 },
{ "sipu", 0x000a0000, 0xffff0000, "", 2 },
{ "sla", 0x1c400000, 0xfc600000, "r,S", 2 },
{ "slad", 0x20400000, 0xfc600000, "r,S", 2 },
{ "slc", 0x24400000, 0xfc600000, "r,S", 2 },
{ "sll", 0x1c600000, 0xfc600000, "r,S", 2 },
{ "slld", 0x20600000, 0xfc600000, "r,S", 2 },
{ "smc", 0x04070000, 0xfc070000, "", 2 },
{ "sra", 0x1c000000, 0xfc600000, "r,S", 2 },
{ "srad", 0x20000000, 0xfc600000, "r,S", 2 },
{ "src", 0x24000000, 0xfc600000, "r,S", 2 },
{ "srl", 0x1c200000, 0xfc600000, "r,S", 2 },
{ "srld", 0x20200000, 0xfc600000, "r,S", 2 },
{ "stb", 0xd4080000, 0xfc080000, "r,xOA,X", 4 },
{ "std", 0xd4000002, 0xfc080002, "r,xOA,X", 4 },
{ "stf", 0xdc000000, 0xfc080000, "r,xOA,X", 4 },
{ "stfbr", 0x54000000, 0xfc080000, "b,xOA,X", 4 },
{ "sth", 0xd4000001, 0xfc080001, "r,xOA,X", 4 },
{ "stmb", 0xd8080000, 0xfc080000, "r,xOA,X", 4 },
{ "stmd", 0xd8000002, 0xfc080002, "r,xOA,X", 4 },
{ "stmh", 0xd8000001, 0xfc080001, "r,xOA,X", 4 },
{ "stmw", 0xd8000000, 0xfc080000, "r,xOA,X", 4 },
{ "stpio", 0xfc270000, 0xfc7f8000, "r,I", 4 },
{ "stw", 0xd4000000, 0xfc080000, "r,xOA,X", 4 },
{ "stwbr", 0x54000000, 0xfc080000, "b,xOA,X", 4 },
{ "suabr", 0x58000000, 0xfc080000, "b,xOA,X", 4 },
{ "sufd", 0xe0000002, 0xfc080002, "r,xOA,X", 4 },
{ "sufw", 0xe0000000, 0xfc080000, "r,xOA,X", 4 },
{ "sui", 0xc8020000, 0xfc7f0000, "r,I", 4 },
{ "sumb", 0xbc080000, 0xfc080000, "r,xOA,X", 4 },
{ "sumd", 0xbc000002, 0xfc080002, "r,xOA,X", 4 },
{ "sumh", 0xbc000001, 0xfc080001, "r,xOA,X", 4 },
{ "sumw", 0xbc000000, 0xfc080000, "r,xOA,X", 4 },
{ "sur", 0x3c000000, 0xfc0f0000, "r,R", 2 },
{ "surfd", 0x380b0000, 0xfc0f0000, "r,xOA,X", 4 },
{ "surfw", 0x38030000, 0xfc0f0000, "r,R", 2 },
{ "surm", 0x3c080000, 0xfc0f0000, "r,R", 2 },
{ "svc", 0xc8060000, 0xffff0000, "", 4 },
{ "tbm", 0xa4080000, 0xfc080000, "f,xOA,X", 4 },
{ "tbr", 0x180c0000, 0xfc0c0000, "r,f", 2 },
{ "tbrr", 0x2c020000, 0xfc0f0000, "r,B", 2 },
{ "tccr", 0x28040000, 0xfc7f0000, "", 2 },
{ "td", 0xfc050000, 0xfc070000, "r,f", 4 },
{ "tio", 0xfc1f0000, 0xfc7f8000, "r,I", 4 },
{ "tmapr", 0x2c0a0000, 0xfc0f0000, "r,R", 2 },
{ "tpcbr", 0x280c0000, 0xfc7f0000, "r", 2 },
{ "trbr", 0x2c010000, 0xfc0f0000, "b,R", 2 },
{ "trc", 0x2c030000, 0xfc0f0000, "r,R", 2 },
{ "trcc", 0x28050000, 0xfc7f0000, "", 2 },
{ "trcm", 0x2c0b0000, 0xfc0f0000, "r,R", 2 },
{ "trn", 0x2c040000, 0xfc0f0000, "r,R", 2 },
{ "trnm", 0x2c0c0000, 0xfc0f0000, "r,R", 2 },
{ "trr", 0x2c000000, 0xfc0f0000, "r,R", 2 },
{ "trrm", 0x2c080000, 0xfc0f0000, "r,R", 2 },
{ "trsc", 0x2c0e0000, 0xfc0f0000, "r,R", 2 },
{ "trsw", 0x28000000, 0xfc7f0000, "r", 2 },
{ "tscr", 0x2c0f0000, 0xfc0f0000, "r,R", 2 },
{ "uei", 0x00070000, 0xffff0000, "", 2 },
{ "wait", 0x00010000, 0xffff0000, "", 2 },
{ "wcwcs", 0xfc5f0000, 0xfc7f8000, "", 4 },
{ "wwcs", 0x000c0000, 0xfc0f0000, "r,R", 2 },
{ "xcbr", 0x28020000, 0xfc0f0000, "b,B", 2 },
{ "xcr", 0x2c050000, 0xfc0f0000, "r,R", 2 },
{ "xcrm", 0x2c0d0000, 0xfc0f0000, "r,R", 2 },
{ "zbm", 0x9c080000, 0xfc080000, "f,xOA,X", 4 },
{ "zbr", 0x18040000, 0xfc0c0000, "r,f", 2 },
{ "zmb", 0xf8080000, 0xfc080000, "r,xOA,X", 4 },
{ "zmd", 0xf8000002, 0xfc080002, "r,xOA,X", 4 },
{ "zmh", 0xf8000001, 0xfc080001, "r,xOA,X", 4 },
{ "zmw", 0xf8000000, 0xfc080000, "r,xOA,X", 4 },
{ "zr", 0x0c000000, 0xfc0f0000, "r", 2 },
};
int numopcodes = sizeof(gld_opcodes) / sizeof(gld_opcodes[0]);
struct gld_opcode *endop = gld_opcodes + sizeof(gld_opcodes) /
sizeof(gld_opcodes[0]);

View File

@ -1,691 +0,0 @@
/* tic30.h -- Header file for TI TMS320C30 opcode table
Copyright 1998 Free Software Foundation, Inc.
Contributed by Steven Haworth (steve@pm.cse.rmit.edu.au)
This file is part of GDB, GAS, and the GNU binutils.
GDB, GAS, and the GNU binutils are free software; you can redistribute
them and/or modify them under the terms of the GNU General Public
License as published by the Free Software Foundation; either version
1, or (at your option) any later version.
GDB, GAS, and the GNU binutils are distributed in the hope that they
will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this file; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* FIXME: The opcode table should be in opcodes/tic30-opc.c, not in a
header file. */
#ifndef _TMS320_H_
#define _TMS320_H_
struct _register
{
char *name;
unsigned char opcode;
unsigned char regtype;
};
typedef struct _register reg;
#define REG_Rn 0x01
#define REG_ARn 0x02
#define REG_DP 0x03
#define REG_OTHER 0x04
static const reg tic30_regtab[] = {
{ "r0", 0x00, REG_Rn },
{ "r1", 0x01, REG_Rn },
{ "r2", 0x02, REG_Rn },
{ "r3", 0x03, REG_Rn },
{ "r4", 0x04, REG_Rn },
{ "r5", 0x05, REG_Rn },
{ "r6", 0x06, REG_Rn },
{ "r7", 0x07, REG_Rn },
{ "ar0",0x08, REG_ARn },
{ "ar1",0x09, REG_ARn },
{ "ar2",0x0A, REG_ARn },
{ "ar3",0x0B, REG_ARn },
{ "ar4",0x0C, REG_ARn },
{ "ar5",0x0D, REG_ARn },
{ "ar6",0x0E, REG_ARn },
{ "ar7",0x0F, REG_ARn },
{ "dp", 0x10, REG_DP },
{ "ir0",0x11, REG_OTHER },
{ "ir1",0x12, REG_OTHER },
{ "bk", 0x13, REG_OTHER },
{ "sp", 0x14, REG_OTHER },
{ "st", 0x15, REG_OTHER },
{ "ie", 0x16, REG_OTHER },
{ "if", 0x17, REG_OTHER },
{ "iof",0x18, REG_OTHER },
{ "rs", 0x19, REG_OTHER },
{ "re", 0x1A, REG_OTHER },
{ "rc", 0x1B, REG_OTHER },
{ "R0", 0x00, REG_Rn },
{ "R1", 0x01, REG_Rn },
{ "R2", 0x02, REG_Rn },
{ "R3", 0x03, REG_Rn },
{ "R4", 0x04, REG_Rn },
{ "R5", 0x05, REG_Rn },
{ "R6", 0x06, REG_Rn },
{ "R7", 0x07, REG_Rn },
{ "AR0",0x08, REG_ARn },
{ "AR1",0x09, REG_ARn },
{ "AR2",0x0A, REG_ARn },
{ "AR3",0x0B, REG_ARn },
{ "AR4",0x0C, REG_ARn },
{ "AR5",0x0D, REG_ARn },
{ "AR6",0x0E, REG_ARn },
{ "AR7",0x0F, REG_ARn },
{ "DP", 0x10, REG_DP },
{ "IR0",0x11, REG_OTHER },
{ "IR1",0x12, REG_OTHER },
{ "BK", 0x13, REG_OTHER },
{ "SP", 0x14, REG_OTHER },
{ "ST", 0x15, REG_OTHER },
{ "IE", 0x16, REG_OTHER },
{ "IF", 0x17, REG_OTHER },
{ "IOF",0x18, REG_OTHER },
{ "RS", 0x19, REG_OTHER },
{ "RE", 0x1A, REG_OTHER },
{ "RC", 0x1B, REG_OTHER },
{ "", 0, 0 }
};
static const reg *const tic30_regtab_end
= tic30_regtab + sizeof(tic30_regtab)/sizeof(tic30_regtab[0]);
/* Indirect Addressing Modes Modification Fields */
/* Indirect Addressing with Displacement */
#define PreDisp_Add 0x00
#define PreDisp_Sub 0x01
#define PreDisp_Add_Mod 0x02
#define PreDisp_Sub_Mod 0x03
#define PostDisp_Add_Mod 0x04
#define PostDisp_Sub_Mod 0x05
#define PostDisp_Add_Circ 0x06
#define PostDisp_Sub_Circ 0x07
/* Indirect Addressing with Index Register IR0 */
#define PreIR0_Add 0x08
#define PreIR0_Sub 0x09
#define PreIR0_Add_Mod 0x0A
#define PreIR0_Sub_Mod 0x0B
#define PostIR0_Add_Mod 0x0C
#define PostIR0_Sub_Mod 0x0D
#define PostIR0_Add_Circ 0x0E
#define PostIR0_Sub_Circ 0x0F
/* Indirect Addressing with Index Register IR1 */
#define PreIR1_Add 0x10
#define PreIR1_Sub 0x11
#define PreIR1_Add_Mod 0x12
#define PreIR1_Sub_Mod 0x13
#define PostIR1_Add_Mod 0x14
#define PostIR1_Sub_Mod 0x15
#define PostIR1_Add_Circ 0x16
#define PostIR1_Sub_Circ 0x17
/* Indirect Addressing (Special Cases) */
#define IndirectOnly 0x18
#define PostIR0_Add_BitRev 0x19
typedef struct {
char *syntax;
unsigned char modfield;
unsigned char displacement;
} ind_addr_type;
#define IMPLIED_DISP 0x01
#define DISP_REQUIRED 0x02
#define NO_DISP 0x03
static const ind_addr_type tic30_indaddr_tab[] = {
{ "*+ar", PreDisp_Add, IMPLIED_DISP },
{ "*-ar", PreDisp_Sub, IMPLIED_DISP },
{ "*++ar", PreDisp_Add_Mod, IMPLIED_DISP },
{ "*--ar", PreDisp_Sub_Mod, IMPLIED_DISP },
{ "*ar++", PostDisp_Add_Mod, IMPLIED_DISP },
{ "*ar--", PostDisp_Sub_Mod, IMPLIED_DISP },
{ "*ar++%", PostDisp_Add_Circ, IMPLIED_DISP },
{ "*ar--%", PostDisp_Sub_Circ, IMPLIED_DISP },
{ "*+ar()", PreDisp_Add, DISP_REQUIRED },
{ "*-ar()", PreDisp_Sub, DISP_REQUIRED },
{ "*++ar()", PreDisp_Add_Mod, DISP_REQUIRED },
{ "*--ar()", PreDisp_Sub_Mod, DISP_REQUIRED },
{ "*ar++()", PostDisp_Add_Mod, DISP_REQUIRED },
{ "*ar--()", PostDisp_Sub_Mod, DISP_REQUIRED },
{ "*ar++()%", PostDisp_Add_Circ, DISP_REQUIRED },
{ "*ar--()%", PostDisp_Sub_Circ, DISP_REQUIRED },
{ "*+ar(ir0)", PreIR0_Add, NO_DISP },
{ "*-ar(ir0)", PreIR0_Sub, NO_DISP },
{ "*++ar(ir0)", PreIR0_Add_Mod, NO_DISP },
{ "*--ar(ir0)", PreIR0_Sub_Mod, NO_DISP },
{ "*ar++(ir0)", PostIR0_Add_Mod, NO_DISP },
{ "*ar--(ir0)", PostIR0_Sub_Mod, NO_DISP },
{ "*ar++(ir0)%",PostIR0_Add_Circ, NO_DISP },
{ "*ar--(ir0)%",PostIR0_Sub_Circ, NO_DISP },
{ "*+ar(ir1)", PreIR1_Add, NO_DISP },
{ "*-ar(ir1)", PreIR1_Sub, NO_DISP },
{ "*++ar(ir1)", PreIR1_Add_Mod, NO_DISP },
{ "*--ar(ir1)", PreIR1_Sub_Mod, NO_DISP },
{ "*ar++(ir1)", PostIR1_Add_Mod, NO_DISP },
{ "*ar--(ir1)", PostIR1_Sub_Mod, NO_DISP },
{ "*ar++(ir1)%",PostIR1_Add_Circ, NO_DISP },
{ "*ar--(ir1)%",PostIR1_Sub_Circ, NO_DISP },
{ "*ar", IndirectOnly, NO_DISP },
{ "*ar++(ir0)b",PostIR0_Add_BitRev, NO_DISP },
{ "", 0,0 }
};
static const ind_addr_type *const tic30_indaddrtab_end
= tic30_indaddr_tab + sizeof(tic30_indaddr_tab)/sizeof(tic30_indaddr_tab[0]);
/* Possible operand types */
/* Register types */
#define Rn 0x0001
#define ARn 0x0002
#define DPReg 0x0004
#define OtherReg 0x0008
/* Addressing mode types */
#define Direct 0x0010
#define Indirect 0x0020
#define Imm16 0x0040
#define Disp 0x0080
#define Imm24 0x0100
#define Abs24 0x0200
/* 3 operand addressing mode types */
#define op3T1 0x0400
#define op3T2 0x0800
/* Interrupt vector */
#define IVector 0x1000
/* Not required */
#define NotReq 0x2000
#define GAddr1 Rn | Direct | Indirect | Imm16
#define GAddr2 GAddr1 | AllReg
#define TAddr1 op3T1 | Rn | Indirect
#define TAddr2 op3T2 | Rn | Indirect
#define Reg Rn | ARn
#define AllReg Reg | DPReg | OtherReg
typedef struct _template
{
char *name;
unsigned int operands; /* how many operands */
unsigned int base_opcode; /* base_opcode is the fundamental opcode byte */
/* the bits in opcode_modifier are used to generate the final opcode from
the base_opcode. These bits also are used to detect alternate forms of
the same instruction */
unsigned int opcode_modifier;
/* opcode_modifier bits: */
#define AddressMode 0x00600000
#define PCRel 0x02000000
#define StackOp 0x001F0000
#define Rotate StackOp
/* operand_types[i] describes the type of operand i. This is made
by OR'ing together all of the possible type masks. (e.g.
'operand_types[i] = Reg|Imm' specifies that operand i can be
either a register or an immediate operand */
unsigned int operand_types[3];
/* This defines the number type of an immediate argument to an instruction. */
int imm_arg_type;
#define Imm_None 0
#define Imm_Float 1
#define Imm_SInt 2
#define Imm_UInt 3
}
template;
static const template tic30_optab[] = {
{ "absf" ,2,0x00000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "absi" ,2,0x00800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "addc" ,2,0x01000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "addc3" ,3,0x20000000,AddressMode, { TAddr1|AllReg, TAddr2|AllReg, AllReg }, Imm_None },
{ "addf" ,2,0x01800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "addf3" ,3,0x20800000,AddressMode, { TAddr1, TAddr2, Rn }, Imm_None },
{ "addi" ,2,0x02000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "addi3" ,3,0x21000000,AddressMode, { TAddr1|AllReg, TAddr2|AllReg, AllReg }, Imm_None },
{ "and" ,2,0x02800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_UInt },
{ "and3" ,3,0x21800000,AddressMode, { TAddr1|AllReg, TAddr2|AllReg, AllReg }, Imm_None },
{ "andn" ,2,0x03000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_UInt },
{ "andn3" ,3,0x22000000,AddressMode, { TAddr1|AllReg, TAddr2|AllReg, AllReg }, Imm_None },
{ "ash" ,2,0x03800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ash3" ,3,0x22800000,AddressMode, { TAddr1|AllReg, TAddr2|AllReg, AllReg }, Imm_None },
{ "b" ,1,0x68000000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bu" ,1,0x68000000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "blo" ,1,0x68010000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bls" ,1,0x68020000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bhi" ,1,0x68030000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bhs" ,1,0x68040000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "beq" ,1,0x68050000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bne" ,1,0x68060000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "blt" ,1,0x68070000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "ble" ,1,0x68080000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bgt" ,1,0x68090000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bge" ,1,0x680A0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bz" ,1,0x68050000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bnz" ,1,0x68060000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bp" ,1,0x68090000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bn" ,1,0x68070000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bnn" ,1,0x680A0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bnv" ,1,0x680C0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bv" ,1,0x680D0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bnuf" ,1,0x680E0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "buf" ,1,0x680F0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bnc" ,1,0x68040000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bc" ,1,0x68010000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bnlv" ,1,0x68100000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "blv" ,1,0x68110000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bnluf" ,1,0x68120000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bluf" ,1,0x68130000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bzuf" ,1,0x68140000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bd" ,1,0x68200000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bud" ,1,0x68200000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "blod" ,1,0x68210000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "blsd" ,1,0x68220000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bhid" ,1,0x68230000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bhsd" ,1,0x68240000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "beqd" ,1,0x68250000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bned" ,1,0x68260000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bltd" ,1,0x68270000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bled" ,1,0x68280000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bgtd" ,1,0x68290000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bged" ,1,0x682A0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bzd" ,1,0x68250000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bnzd" ,1,0x68260000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bpd" ,1,0x68290000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bnd" ,1,0x68270000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bnnd" ,1,0x682A0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bnvd" ,1,0x682C0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bvd" ,1,0x682D0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bnufd" ,1,0x682E0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bufd" ,1,0x682F0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bncd" ,1,0x68240000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bcd" ,1,0x68210000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bnlvd" ,1,0x68300000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "blvd" ,1,0x68310000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bnlufd" ,1,0x68320000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "blufd" ,1,0x68330000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "bzufd" ,1,0x68340000,PCRel, { AllReg|Disp, 0, 0 }, Imm_None },
{ "br" ,1,0x60000000,0, { Imm24, 0, 0 }, Imm_UInt },
{ "brd" ,1,0x61000000,0, { Imm24, 0, 0 }, Imm_UInt },
{ "call" ,1,0x62000000,0, { Imm24, 0, 0 }, Imm_UInt },
{ "callu" ,1,0x70000000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "calllo" ,1,0x70010000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callls" ,1,0x70020000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callhi" ,1,0x70030000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callhs" ,1,0x70040000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "calleq" ,1,0x70050000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callne" ,1,0x70060000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "calllt" ,1,0x70070000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callle" ,1,0x70080000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callgt" ,1,0x70090000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callge" ,1,0x700A0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callz" ,1,0x70050000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callnz" ,1,0x70060000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callp" ,1,0x70090000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "calln" ,1,0x70070000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callnn" ,1,0x700A0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callnv" ,1,0x700C0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callv" ,1,0x700D0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callnuf",1,0x700E0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "calluf" ,1,0x700F0000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callnc" ,1,0x70040000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callc" ,1,0x70010000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callnlv",1,0x70100000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "calllv" ,1,0x70110000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callnluf",1,0x70120000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callluf",1,0x70130000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "callzuf",1,0x70140000,PCRel, { AllReg|Disp, 0, 0 }, Imm_UInt },
{ "cmpf" ,2,0x04000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "cmpf3" ,2,0x23000000,AddressMode, { TAddr1, TAddr2, 0 }, Imm_None },
{ "cmpi" ,2,0x04800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "cmpi3" ,2,0x23800000,AddressMode, { TAddr1|AllReg, TAddr2|AllReg, 0 }, Imm_None },
{ "db" ,2,0x6C000000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbu" ,2,0x6C000000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dblo" ,2,0x6C010000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbls" ,2,0x6C020000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbhi" ,2,0x6C030000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbhs" ,2,0x6C040000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbeq" ,2,0x6C050000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbne" ,2,0x6C060000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dblt" ,2,0x6C070000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dble" ,2,0x6C080000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbgt" ,2,0x6C090000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbge" ,2,0x6C0A0000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbz" ,2,0x6C050000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbnz" ,2,0x6C060000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbp" ,2,0x6C090000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbn" ,2,0x6C070000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbnn" ,2,0x6C0A0000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbnv" ,2,0x6C0C0000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbv" ,2,0x6C0D0000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbnuf" ,2,0x6C0E0000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbuf" ,2,0x6C0F0000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbnc" ,2,0x6C040000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbc" ,2,0x6C010000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbnlv" ,2,0x6C100000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dblv" ,2,0x6C110000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbnluf" ,2,0x6C120000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbluf" ,2,0x6C130000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbzuf" ,2,0x6C140000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbd" ,2,0x6C200000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbud" ,2,0x6C200000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dblod" ,2,0x6C210000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dblsd" ,2,0x6C220000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbhid" ,2,0x6C230000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbhsd" ,2,0x6C240000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbeqd" ,2,0x6C250000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbned" ,2,0x6C260000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbltd" ,2,0x6C270000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbled" ,2,0x6C280000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbgtd" ,2,0x6C290000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbged" ,2,0x6C2A0000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbzd" ,2,0x6C250000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbnzd" ,2,0x6C260000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbpd" ,2,0x6C290000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbnd" ,2,0x6C270000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbnnd" ,2,0x6C2A0000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbnvd" ,2,0x6C2C0000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbvd" ,2,0x6C2D0000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbnufd" ,2,0x6C2E0000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbufd" ,2,0x6C2F0000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbncd" ,2,0x6C240000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbcd" ,2,0x6C210000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbnlvd" ,2,0x6C300000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dblvd" ,2,0x6C310000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbnlufd",2,0x6C320000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dblufd" ,2,0x6C330000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "dbzufd" ,2,0x6C340000,PCRel, { ARn, AllReg|Disp, 0 }, Imm_None },
{ "fix" ,2,0x05000000,AddressMode, { GAddr1, AllReg, 0 }, Imm_Float },
{ "float" ,2,0x05800000,AddressMode, { GAddr2, Rn, 0 }, Imm_SInt },
{ "iack" ,1,0x1B000000,AddressMode, { Direct|Indirect, 0, 0 }, Imm_None },
{ "idle" ,0,0x06000000,0, { 0, 0, 0 }, Imm_None },
{ "idle2" ,0,0x06000001,0, { 0, 0, 0 }, Imm_None }, /* LC31 Only */
{ "lde" ,2,0x06800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldf" ,2,0x07000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfu" ,2,0x40000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldflo" ,2,0x40800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfls" ,2,0x41000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfhi" ,2,0x41800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfhs" ,2,0x42000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfeq" ,2,0x42800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfne" ,2,0x43000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldflt" ,2,0x43800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfle" ,2,0x44000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfgt" ,2,0x44800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfge" ,2,0x45000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfz" ,2,0x42800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfnz" ,2,0x43000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfp" ,2,0x44800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfn" ,2,0x43800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfnn" ,2,0x45000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfnv" ,2,0x46000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfv" ,2,0x46800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfnuf" ,2,0x47000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfuf" ,2,0x47800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfnc" ,2,0x42000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfc" ,2,0x40800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfnlv" ,2,0x48000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldflv" ,2,0x48800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfnluf",2,0x49000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfluf" ,2,0x49800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfzuf" ,2,0x4A000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldfi" ,2,0x07800000,AddressMode, { Direct|Indirect, Rn, 0 }, Imm_None },
{ "ldi" ,2,0x08000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldiu" ,2,0x50000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldilo" ,2,0x50800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldils" ,2,0x51000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldihi" ,2,0x51800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldihs" ,2,0x52000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldieq" ,2,0x52800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldine" ,2,0x53000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldilt" ,2,0x53800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldile" ,2,0x54000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldigt" ,2,0x54800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldige" ,2,0x55000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldiz" ,2,0x52800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldinz" ,2,0x53000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldip" ,2,0x54800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldin" ,2,0x53800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldinn" ,2,0x55000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldinv" ,2,0x56000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldiv" ,2,0x56800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldinuf" ,2,0x57000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldiuf" ,2,0x57800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldinc" ,2,0x52000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldic" ,2,0x50800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldinlv" ,2,0x58000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldilv" ,2,0x58800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldinluf",2,0x59000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldiluf" ,2,0x59800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldizuf" ,2,0x5A000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "ldii" ,2,0x08800000,AddressMode, { Direct|Indirect, AllReg, 0 }, Imm_None },
{ "ldm" ,2,0x09000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "ldp" ,2,0x08700000,0, { Abs24|Direct, DPReg|NotReq, 0 }, Imm_UInt },
{ "lopower",0,0x10800001,0, { 0, 0, 0 }, Imm_None }, /* LC31 Only */
{ "lsh" ,2,0x09800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_UInt },
{ "lsh3" ,3,0x24000000,AddressMode, { TAddr1|AllReg, TAddr2|AllReg, AllReg }, Imm_None },
{ "maxspeed",0,0x10800000,0, { 0, 0, 0 }, Imm_None }, /* LC31 Only */
{ "mpyf" ,2,0x0A000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "mpyf3" ,3,0x24800000,AddressMode, { TAddr1, TAddr2, Rn }, Imm_None },
{ "mpyi" ,2,0x0A800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "mpyi3" ,3,0x25000000,AddressMode, { TAddr1|AllReg, TAddr2|AllReg, AllReg }, Imm_None },
{ "negb" ,2,0x0B000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "negf" ,2,0x0B800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "negi" ,2,0x0C000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "nop" ,1,0x0C800000,AddressMode, { AllReg|Indirect|NotReq, 0, 0 }, Imm_None },
{ "norm" ,2,0x0D000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float }, /*Check another source*/
{ "not" ,2,0x0D800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_UInt },
{ "or" ,2,0x10000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_UInt },
{ "or3" ,3,0x25800000,AddressMode, { TAddr1|AllReg, TAddr2|AllReg, AllReg }, Imm_None },
{ "pop" ,1,0x0E200000,StackOp, { AllReg, 0, 0 }, Imm_None },
{ "popf" ,1,0x0EA00000,StackOp, { Rn, 0, 0 }, Imm_None },
{ "push" ,1,0x0F200000,StackOp, { AllReg, 0, 0 }, Imm_None },
{ "pushf" ,1,0x0FA00000,StackOp, { Rn, 0, 0 }, Imm_None },
{ "reti" ,0,0x78000000,0, { 0, 0, 0 }, Imm_None },
{ "retiu" ,0,0x78000000,0, { 0, 0, 0 }, Imm_None },
{ "retilo" ,0,0x78010000,0, { 0, 0, 0 }, Imm_None },
{ "retils" ,0,0x78020000,0, { 0, 0, 0 }, Imm_None },
{ "retihi" ,0,0x78030000,0, { 0, 0, 0 }, Imm_None },
{ "retihs" ,0,0x78040000,0, { 0, 0, 0 }, Imm_None },
{ "retieq" ,0,0x78050000,0, { 0, 0, 0 }, Imm_None },
{ "retine" ,0,0x78060000,0, { 0, 0, 0 }, Imm_None },
{ "retilt" ,0,0x78070000,0, { 0, 0, 0 }, Imm_None },
{ "retile" ,0,0x78080000,0, { 0, 0, 0 }, Imm_None },
{ "retigt" ,0,0x78090000,0, { 0, 0, 0 }, Imm_None },
{ "retige" ,0,0x780A0000,0, { 0, 0, 0 }, Imm_None },
{ "retiz" ,0,0x78050000,0, { 0, 0, 0 }, Imm_None },
{ "retinz" ,0,0x78060000,0, { 0, 0, 0 }, Imm_None },
{ "retip" ,0,0x78090000,0, { 0, 0, 0 }, Imm_None },
{ "retin" ,0,0x78070000,0, { 0, 0, 0 }, Imm_None },
{ "retinn" ,0,0x780A0000,0, { 0, 0, 0 }, Imm_None },
{ "retinv" ,0,0x780C0000,0, { 0, 0, 0 }, Imm_None },
{ "retiv" ,0,0x780D0000,0, { 0, 0, 0 }, Imm_None },
{ "retinuf",0,0x780E0000,0, { 0, 0, 0 }, Imm_None },
{ "retiuf" ,0,0x780F0000,0, { 0, 0, 0 }, Imm_None },
{ "retinc" ,0,0x78040000,0, { 0, 0, 0 }, Imm_None },
{ "retic" ,0,0x78010000,0, { 0, 0, 0 }, Imm_None },
{ "retinlv",0,0x78100000,0, { 0, 0, 0 }, Imm_None },
{ "retilv" ,0,0x78110000,0, { 0, 0, 0 }, Imm_None },
{ "retinluf",0,0x78120000,0, { 0, 0, 0 }, Imm_None },
{ "retiluf",0,0x78130000,0, { 0, 0, 0 }, Imm_None },
{ "retizuf",0,0x78140000,0, { 0, 0, 0 }, Imm_None },
{ "rets" ,0,0x78800000,0, { 0, 0, 0 }, Imm_None },
{ "retsu" ,0,0x78800000,0, { 0, 0, 0 }, Imm_None },
{ "retslo" ,0,0x78810000,0, { 0, 0, 0 }, Imm_None },
{ "retsls" ,0,0x78820000,0, { 0, 0, 0 }, Imm_None },
{ "retshi" ,0,0x78830000,0, { 0, 0, 0 }, Imm_None },
{ "retshs" ,0,0x78840000,0, { 0, 0, 0 }, Imm_None },
{ "retseq" ,0,0x78850000,0, { 0, 0, 0 }, Imm_None },
{ "retsne" ,0,0x78860000,0, { 0, 0, 0 }, Imm_None },
{ "retslt" ,0,0x78870000,0, { 0, 0, 0 }, Imm_None },
{ "retsle" ,0,0x78880000,0, { 0, 0, 0 }, Imm_None },
{ "retsgt" ,0,0x78890000,0, { 0, 0, 0 }, Imm_None },
{ "retsge" ,0,0x788A0000,0, { 0, 0, 0 }, Imm_None },
{ "retsz" ,0,0x78850000,0, { 0, 0, 0 }, Imm_None },
{ "retsnz" ,0,0x78860000,0, { 0, 0, 0 }, Imm_None },
{ "retsp" ,0,0x78890000,0, { 0, 0, 0 }, Imm_None },
{ "retsn" ,0,0x78870000,0, { 0, 0, 0 }, Imm_None },
{ "retsnn" ,0,0x788A0000,0, { 0, 0, 0 }, Imm_None },
{ "retsnv" ,0,0x788C0000,0, { 0, 0, 0 }, Imm_None },
{ "retsv" ,0,0x788D0000,0, { 0, 0, 0 }, Imm_None },
{ "retsnuf",0,0x788E0000,0, { 0, 0, 0 }, Imm_None },
{ "retsuf" ,0,0x788F0000,0, { 0, 0, 0 }, Imm_None },
{ "retsnc" ,0,0x78840000,0, { 0, 0, 0 }, Imm_None },
{ "retsc" ,0,0x78810000,0, { 0, 0, 0 }, Imm_None },
{ "retsnlv",0,0x78900000,0, { 0, 0, 0 }, Imm_None },
{ "retslv" ,0,0x78910000,0, { 0, 0, 0 }, Imm_None },
{ "retsnluf",0,0x78920000,0, { 0, 0, 0 }, Imm_None },
{ "retsluf",0,0x78930000,0, { 0, 0, 0 }, Imm_None },
{ "retszuf",0,0x78940000,0, { 0, 0, 0 }, Imm_None },
{ "rnd" ,2,0x11000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "rol" ,1,0x11E00001,Rotate, { AllReg, 0, 0 }, Imm_None },
{ "rolc" ,1,0x12600001,Rotate, { AllReg, 0, 0 }, Imm_None },
{ "ror" ,1,0x12E0FFFF,Rotate, { AllReg, 0, 0 }, Imm_None },
{ "rorc" ,1,0x1360FFFF,Rotate, { AllReg, 0, 0 }, Imm_None },
{ "rptb" ,1,0x64000000,0, { Imm24, 0, 0 }, Imm_UInt },
{ "rpts" ,1,0x139B0000,AddressMode, { GAddr2, 0, 0 }, Imm_UInt },
{ "sigi" ,0,0x16000000,0, { 0, 0, 0 }, Imm_None },
{ "stf" ,2,0x14000000,AddressMode, { Rn, Direct|Indirect, 0 }, Imm_Float },
{ "stfi" ,2,0x14800000,AddressMode, { Rn, Direct|Indirect, 0 }, Imm_Float },
{ "sti" ,2,0x15000000,AddressMode, { AllReg, Direct|Indirect, 0 }, Imm_SInt },
{ "stii" ,2,0x15800000,AddressMode, { AllReg, Direct|Indirect, 0 }, Imm_SInt },
{ "subb" ,2,0x16800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "subb3" ,3,0x26000000,AddressMode, { TAddr1|AllReg, TAddr2|AllReg, AllReg }, Imm_None },
{ "subc" ,2,0x17000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_UInt },
{ "subf" ,2,0x17800000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "subf3" ,3,0x26800000,AddressMode, { TAddr1, TAddr2, Rn }, Imm_None },
{ "subi" ,2,0x18000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "subi3" ,3,0x27000000,AddressMode, { TAddr1|AllReg, TAddr2|AllReg, AllReg }, Imm_None },
{ "subrb" ,2,0x18800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "subrf" ,2,0x19000000,AddressMode, { GAddr1, Rn, 0 }, Imm_Float },
{ "subri" ,2,0x19800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_SInt },
{ "swi" ,0,0x66000000,0, { 0, 0, 0 }, Imm_None },
{ "trap" ,1,0x74800020,0, { IVector, 0, 0 }, Imm_None },
{ "trapu" ,1,0x74800020,0, { IVector, 0, 0 }, Imm_None },
{ "traplo" ,1,0x74810020,0, { IVector, 0, 0 }, Imm_None },
{ "trapls" ,1,0x74820020,0, { IVector, 0, 0 }, Imm_None },
{ "traphi" ,1,0x74830020,0, { IVector, 0, 0 }, Imm_None },
{ "traphs" ,1,0x74840020,0, { IVector, 0, 0 }, Imm_None },
{ "trapeq" ,1,0x74850020,0, { IVector, 0, 0 }, Imm_None },
{ "trapne" ,1,0x74860020,0, { IVector, 0, 0 }, Imm_None },
{ "traplt" ,1,0x74870020,0, { IVector, 0, 0 }, Imm_None },
{ "traple" ,1,0x74880020,0, { IVector, 0, 0 }, Imm_None },
{ "trapgt" ,1,0x74890020,0, { IVector, 0, 0 }, Imm_None },
{ "trapge" ,1,0x748A0020,0, { IVector, 0, 0 }, Imm_None },
{ "trapz" ,1,0x74850020,0, { IVector, 0, 0 }, Imm_None },
{ "trapnz" ,1,0x74860020,0, { IVector, 0, 0 }, Imm_None },
{ "trapp" ,1,0x74890020,0, { IVector, 0, 0 }, Imm_None },
{ "trapn" ,1,0x74870020,0, { IVector, 0, 0 }, Imm_None },
{ "trapnn" ,1,0x748A0020,0, { IVector, 0, 0 }, Imm_None },
{ "trapnv" ,1,0x748C0020,0, { IVector, 0, 0 }, Imm_None },
{ "trapv" ,1,0x748D0020,0, { IVector, 0, 0 }, Imm_None },
{ "trapnuf",1,0x748E0020,0, { IVector, 0, 0 }, Imm_None },
{ "trapuf" ,1,0x748F0020,0, { IVector, 0, 0 }, Imm_None },
{ "trapnc" ,1,0x74840020,0, { IVector, 0, 0 }, Imm_None },
{ "trapc" ,1,0x74810020,0, { IVector, 0, 0 }, Imm_None },
{ "trapnlv",1,0x74900020,0, { IVector, 0, 0 }, Imm_None },
{ "traplv" ,1,0x74910020,0, { IVector, 0, 0 }, Imm_None },
{ "trapnluf",1,0x74920020,0, { IVector, 0, 0 }, Imm_None },
{ "trapluf",1,0x74930020,0, { IVector, 0, 0 }, Imm_None },
{ "trapzuf",1,0x74940020,0, { IVector, 0, 0 }, Imm_None },
{ "tstb" ,2,0x1A000000,AddressMode, { GAddr2, AllReg, 0 }, Imm_UInt },
{ "tstb3" ,2,0x27800000,AddressMode, { TAddr1|AllReg, TAddr2|AllReg, 0 }, Imm_None },
{ "xor" ,2,0x1A800000,AddressMode, { GAddr2, AllReg, 0 }, Imm_UInt },
{ "xor3" ,3,0x28000000,AddressMode, { TAddr1|AllReg, TAddr2|AllReg, AllReg }, Imm_None },
{ "" ,0,0x00000000,0, { 0, 0, 0 }, 0 }
};
static const template *const tic30_optab_end =
tic30_optab + sizeof(tic30_optab)/sizeof(tic30_optab[0]);
typedef struct {
char *name;
unsigned int operands_1;
unsigned int operands_2;
unsigned int base_opcode;
unsigned int operand_types[2][3];
/* Which operand fits into which part of the final opcode word. */
int oporder;
} partemplate;
/* oporder defines - not very descriptive. */
#define OO_4op1 0
#define OO_4op2 1
#define OO_4op3 2
#define OO_5op1 3
#define OO_5op2 4
#define OO_PField 5
static const partemplate tic30_paroptab[] = {
{ "q_absf_stf", 2,2,0xC8000000, { { Indirect, Rn, 0 }, { Rn, Indirect, 0 } },
OO_4op1 },
{ "q_absi_sti", 2,2,0xCA000000, { { Indirect, Rn, 0 }, { Rn, Indirect, 0 } },
OO_4op1 },
{ "q_addf3_stf", 3,2,0xCC000000, { { Indirect, Rn, Rn }, { Rn, Indirect, 0 } },
OO_5op1 },
{ "q_addi3_sti", 3,2,0xCE000000, { { Indirect, Rn, Rn }, { Rn, Indirect, 0 } },
OO_5op1 },
{ "q_and3_sti", 3,2,0xD0000000, { { Indirect, Rn, Rn }, { Rn, Indirect, 0 } },
OO_5op1 },
{ "q_ash3_sti", 3,2,0xD2000000, { { Rn, Indirect, Rn }, { Rn, Indirect, 0 } },
OO_5op2 },
{ "q_fix_sti", 2,2,0xD4000000, { { Indirect, Rn, 0 }, { Rn, Indirect, 0 } },
OO_4op1 },
{ "q_float_stf", 2,2,0xD6000000, { { Indirect, Rn, 0 }, { Rn, Indirect, 0 } },
OO_4op1 },
{ "q_ldf_ldf", 2,2,0xC4000000, { { Indirect, Rn, 0 }, { Indirect, Rn, 0 } },
OO_4op2 },
{ "q_ldf_stf", 2,2,0xD8000000, { { Indirect, Rn, 0 }, { Rn, Indirect, 0 } },
OO_4op1 },
{ "q_ldi_ldi", 2,2,0xC6000000, { { Indirect, Rn, 0 }, { Indirect, Rn, 0 } },
OO_4op2 },
{ "q_ldi_sti", 2,2,0xDA000000, { { Indirect, Rn, 0 }, { Rn, Indirect, 0 } },
OO_4op1 },
{ "q_lsh3_sti", 3,2,0xDC000000, { { Rn, Indirect, Rn }, { Rn, Indirect, 0 } },
OO_5op2 },
{ "q_mpyf3_addf3",3,3,0x80000000, { { Rn | Indirect, Rn | Indirect, Rn },
{ Rn | Indirect, Rn | Indirect, Rn } }, OO_PField },
{ "q_mpyf3_stf", 3,2,0xDE000000, { { Indirect, Rn, Rn }, { Rn, Indirect, 0 } },
OO_5op1 },
{ "q_mpyf3_subf3",3,3,0x84000000, { { Rn | Indirect, Rn | Indirect, Rn },
{ Rn | Indirect, Rn | Indirect, Rn } }, OO_PField },
{ "q_mpyi3_addi3",3,3,0x88000000, { { Rn | Indirect, Rn | Indirect, Rn },
{ Rn | Indirect, Rn | Indirect, Rn } }, OO_PField },
{ "q_mpyi3_sti", 3,2,0xE0000000, { { Indirect, Rn, Rn }, { Rn, Indirect, 0 } },
OO_5op1 },
{ "q_mpyi3_subi3",3,3,0x8C000000, { { Rn | Indirect, Rn | Indirect, Rn },
{ Rn | Indirect, Rn | Indirect, Rn } }, OO_PField },
{ "q_negf_stf", 2,2,0xE2000000, { { Indirect, Rn, 0 }, { Rn, Indirect, 0 } },
OO_4op1 },
{ "q_negi_sti", 2,2,0xE4000000, { { Indirect, Rn, 0 }, { Rn, Indirect, 0 } },
OO_4op1 },
{ "q_not_sti", 2,2,0xE6000000, { { Indirect, Rn, 0 }, { Rn, Indirect, 0 } },
OO_4op1 },
{ "q_or3_sti", 3,2,0xE8000000, { { Indirect, Rn, Rn }, { Rn, Indirect, 0 } },
OO_5op1 },
{ "q_stf_stf", 2,2,0xC0000000, { { Rn, Indirect, 0 }, { Rn, Indirect, 0 } },
OO_4op3 },
{ "q_sti_sti", 2,2,0xC2000000, { { Rn, Indirect, 0 }, { Rn, Indirect, 0 } },
OO_4op3 },
{ "q_subf3_stf", 3,2,0xEA000000, { { Rn, Indirect, Rn }, { Rn, Indirect, 0 } },
OO_5op2 },
{ "q_subi3_sti", 3,2,0xEC000000, { { Rn, Indirect, Rn }, { Rn, Indirect, 0 } },
OO_5op2 },
{ "q_xor3_sti", 3,2,0xEE000000, { { Indirect, Rn, Rn }, { Rn, Indirect, 0 } },
OO_5op1 },
{ "", 0,0,0x00000000, { { 0, 0, 0 }, { 0, 0, 0 } }, 0 }
};
static const partemplate *const tic30_paroptab_end =
tic30_paroptab + sizeof(tic30_paroptab)/sizeof(tic30_paroptab[0]);
#endif

View File

@ -1,165 +0,0 @@
/* v850.h -- Header file for NEC V850 opcode table
Copyright 1996, 1997, 2001 Free Software Foundation, Inc.
Written by J.T. Conklin, Cygnus Support
This file is part of GDB, GAS, and the GNU binutils.
GDB, GAS, and the GNU binutils are free software; you can redistribute
them and/or modify them under the terms of the GNU General Public
License as published by the Free Software Foundation; either version
1, or (at your option) any later version.
GDB, GAS, and the GNU binutils are distributed in the hope that they
will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this file; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef V850_H
#define V850_H
/* The opcode table is an array of struct v850_opcode. */
struct v850_opcode
{
/* The opcode name. */
const char *name;
/* The opcode itself. Those bits which will be filled in with
operands are zeroes. */
unsigned long opcode;
/* The opcode mask. This is used by the disassembler. This is a
mask containing ones indicating those bits which must match the
opcode field, and zeroes indicating those bits which need not
match (and are presumably filled in by operands). */
unsigned long mask;
/* An array of operand codes. Each code is an index into the
operand table. They appear in the order which the operands must
appear in assembly code, and are terminated by a zero. */
unsigned char operands[8];
/* Which (if any) operand is a memory operand. */
unsigned int memop;
/* Target processor(s). A bit field of processors which support
this instruction. Note a bit field is used as some instructions
are available on multiple, different processor types, whereas
other instructions are only available on one specific type. */
unsigned int processors;
};
/* Values for the processors field in the v850_opcode structure. */
#define PROCESSOR_V850 (1 << 0) /* Just the V850. */
#define PROCESSOR_ALL -1 /* Any processor. */
#define PROCESSOR_V850E (1 << 1) /* Just the V850E. */
#define PROCESSOR_NOT_V850 (~ PROCESSOR_V850) /* Any processor except the V850. */
#define PROCESSOR_V850EA (1 << 2) /* Just the V850EA. */
/* The table itself is sorted by major opcode number, and is otherwise
in the order in which the disassembler should consider
instructions. */
extern const struct v850_opcode v850_opcodes[];
extern const int v850_num_opcodes;
/* The operands table is an array of struct v850_operand. */
struct v850_operand
{
/* The number of bits in the operand. */
/* If this value is -1 then the operand's bits are in a discontinous distribution in the instruction. */
int bits;
/* (bits >= 0): How far the operand is left shifted in the instruction. */
/* (bits == -1): Bit mask of the bits in the operand. */
int shift;
/* Insertion function. This is used by the assembler. To insert an
operand value into an instruction, check this field.
If it is NULL, execute
i |= (op & ((1 << o->bits) - 1)) << o->shift;
(i is the instruction which we are filling in, o is a pointer to
this structure, and op is the opcode value; this assumes twos
complement arithmetic).
If this field is not NULL, then simply call it with the
instruction and the operand value. It will return the new value
of the instruction. If the ERRMSG argument is not NULL, then if
the operand value is illegal, *ERRMSG will be set to a warning
string (the operand will be inserted in any case). If the
operand value is legal, *ERRMSG will be unchanged (most operands
can accept any value). */
unsigned long (* insert) PARAMS ((unsigned long instruction, long op,
const char ** errmsg));
/* Extraction function. This is used by the disassembler. To
extract this operand type from an instruction, check this field.
If it is NULL, compute
op = o->bits == -1 ? ((i) & o->shift) : ((i) >> o->shift) & ((1 << o->bits) - 1);
if (o->flags & V850_OPERAND_SIGNED)
op = (op << (32 - o->bits)) >> (32 - o->bits);
(i is the instruction, o is a pointer to this structure, and op
is the result; this assumes twos complement arithmetic).
If this field is not NULL, then simply call it with the
instruction value. It will return the value of the operand. If
the INVALID argument is not NULL, *INVALID will be set to
non-zero if this operand type can not actually be extracted from
this operand (i.e., the instruction does not match). If the
operand is valid, *INVALID will not be changed. */
unsigned long (* extract) PARAMS ((unsigned long instruction, int * invalid));
/* One bit syntax flags. */
int flags;
};
/* Elements in the table are retrieved by indexing with values from
the operands field of the v850_opcodes table. */
extern const struct v850_operand v850_operands[];
/* Values defined for the flags field of a struct v850_operand. */
/* This operand names a general purpose register */
#define V850_OPERAND_REG 0x01
/* This operand names a system register */
#define V850_OPERAND_SRG 0x02
/* This operand names a condition code used in the setf instruction */
#define V850_OPERAND_CC 0x04
/* This operand takes signed values */
#define V850_OPERAND_SIGNED 0x08
/* This operand is the ep register. */
#define V850_OPERAND_EP 0x10
/* This operand is a PC displacement */
#define V850_OPERAND_DISP 0x20
/* This is a relaxable operand. Only used for D9->D22 branch relaxing
right now. We may need others in the future (or maybe handle them like
promoted operands on the mn10300?) */
#define V850_OPERAND_RELAX 0x40
/* The register specified must not be r0 */
#define V850_NOT_R0 0x80
/* push/pop type instruction, V850E specific. */
#define V850E_PUSH_POP 0x100
/* 16 bit immediate follows instruction, V850E specific. */
#define V850E_IMMEDIATE16 0x200
/* 32 bit immediate follows instruction, V850E specific. */
#define V850E_IMMEDIATE32 0x400
#endif /* V850_H */

View File

@ -1,11 +0,0 @@
SCRIPT_NAME=elf
OUTPUT_FORMAT="elf32-littlearc"
LITTLE_OUTPUT_FORMAT="elf32-littlearc"
BIG_OUTPUT_FORMAT="elf32-bigarc"
TEXT_START_ADDR=0x0
MAXPAGESIZE=0x1000
NONPAGED_TEXT_START_ADDR=0x0
ARCH=arc
MACHINE=
ENTRY=start
#TEMPLATE_NAME=elf32

View File

@ -1,10 +0,0 @@
# If you change this file, please also look at files which source this one:
# elf32l4300.sh
EMBEDDED=yes
. ${srcdir}/emulparams/elf32bmip.sh
TEXT_START_ADDR=0xa0020000
unset NONPAGED_TEXT_START_ADDR
unset SHLIB_TEXT_START_ADDR
EXECUTABLE_SYMBOLS='_DYNAMIC_LINK = 0;'
DYNAMIC_LINK=false

View File

@ -1,36 +0,0 @@
# If you change this file, please also look at files which source this one:
# elf32b4300.sh elf32bsmip.sh elf32btsmip.sh elf32ebmip.sh elf32lmip.sh
SCRIPT_NAME=elf
OUTPUT_FORMAT="elf32-bigmips"
BIG_OUTPUT_FORMAT="elf32-bigmips"
LITTLE_OUTPUT_FORMAT="elf32-littlemips"
TEXT_START_ADDR=0x0400000
test -n "${EMBEDDED}" || DATA_ADDR=0x10000000
MAXPAGESIZE=0x40000
NONPAGED_TEXT_START_ADDR=0x0400000
SHLIB_TEXT_START_ADDR=0x5ffe0000
test -n "${EMBEDDED}" || TEXT_DYNAMIC=
INITIAL_READONLY_SECTIONS="
.reginfo ${RELOCATING-0} : { *(.reginfo) }
"
OTHER_TEXT_SECTIONS='*(.mips16.fn.*) *(.mips16.call.*)'
OTHER_GOT_SYMBOLS='
_gp = ALIGN(16) + 0x7ff0;
'
OTHER_SDATA_SECTIONS="
.lit8 ${RELOCATING-0} : { *(.lit8) }
.lit4 ${RELOCATING-0} : { *(.lit4) }
"
TEXT_START_SYMBOLS='_ftext = . ;'
DATA_START_SYMBOLS='_fdata = . ;'
OTHER_BSS_SYMBOLS='_fbss = .;'
OTHER_SECTIONS='
.gptab.sdata : { *(.gptab.data) *(.gptab.sdata) }
.gptab.sbss : { *(.gptab.bss) *(.gptab.sbss) }
'
ARCH=mips
MACHINE=
TEMPLATE_NAME=elf32
EXTRA_EM_FILE=mipself
GENERATE_SHLIB_SCRIPT=yes

View File

@ -1,71 +0,0 @@
# If you change this file, please also look at files which source this one:
# elf64bmip.sh elf64btsmip.sh
# This is an ELF platform.
SCRIPT_NAME=elf
# Handle both big- and little-ended 32-bit MIPS objects.
ARCH=mips
OUTPUT_FORMAT="elf32-bigmips"
BIG_OUTPUT_FORMAT="elf32-bigmips"
LITTLE_OUTPUT_FORMAT="elf32-littlemips"
TEMPLATE_NAME=elf32
TEXT_START_ADDR=0x10000000
MAXPAGESIZE=0x100000
ENTRY=__start
# GOT-related settings.
OTHER_GOT_SYMBOLS='
_gp = ALIGN(16) + 0x7ff0;
'
OTHER_SDATA_SECTIONS="
.lit8 ${RELOCATING-0} : { *(.lit8) }
.lit4 ${RELOCATING-0} : { *(.lit4) }
.srdata ${RELOCATING-0} : { *(.srdata) }
"
# Magic symbols.
TEXT_START_SYMBOLS='_ftext = . ;'
DATA_START_SYMBOLS='_fdata = . ;'
OTHER_BSS_SYMBOLS='_fbss = .;'
# IRIX6 defines these symbols. 0x34 is the size of the ELF header.
EXECUTABLE_SYMBOLS="
__dso_displacement = 0;
__elf_header = ${TEXT_START_ADDR};
__program_header_table = ${TEXT_START_ADDR} + 0x34;
"
# There are often dynamic relocations against the .rodata section.
# Setting DT_TEXTREL in the .dynamic section does not convince the
# IRIX6 linker to permit relocations against the text segment.
# Following the IRIX linker, we simply put .rodata in the data
# segment.
WRITABLE_RODATA=
OTHER_SECTIONS="
.MIPS.events.text ${RELOCATING-0} :
{
*(.MIPS.events.text${RELOCATING+ .MIPS.events.gnu.linkonce.t*})
}
.MIPS.content.text ${RELOCATING-0} :
{
*(.MIPS.content.text${RELOCATING+ .MIPS.content.gnu.linkonce.t*})
}
.MIPS.events.data ${RELOCATING-0} :
{
*(.MIPS.events.data${RELOCATING+ .MIPS.events.gnu.linkonce.d*})
}
.MIPS.content.data ${RELOCATING-0} :
{
*(.MIPS.content.data${RELOCATING+ .MIPS.content.gnu.linkonce.d*})
}
.MIPS.events.rodata ${RELOCATING-0} :
{
*(.MIPS.events.rodata${RELOCATING+ .MIPS.events.gnu.linkonce.r*})
}
.MIPS.content.rodata ${RELOCATING-0} :
{
*(.MIPS.content.rodata${RELOCATING+ .MIPS.content.gnu.linkonce.r*})
}"

View File

@ -1,2 +0,0 @@
. ${srcdir}/emulparams/elf32bmip.sh
ENTRY=__start

View File

@ -1,2 +0,0 @@
EMBEDDED=yes
. ${srcdir}/emulparams/elf32bmip.sh

View File

@ -1,2 +0,0 @@
EMBEDDED=yes
. ${srcdir}/emulparams/elf32lmip.sh

View File

@ -1,4 +0,0 @@
. ${srcdir}/emulparams/elf32b4300.sh
OUTPUT_FORMAT="elf32-littlemips"
BIG_OUTPUT_FORMAT="elf32-bigmips"
LITTLE_OUTPUT_FORMAT="elf32-littlemips"

View File

@ -1,7 +0,0 @@
# If you change this file, please also look at files which source this one:
# elf32elmip.sh elf32lsmip.sh
. ${srcdir}/emulparams/elf32bmip.sh
OUTPUT_FORMAT="elf32-littlemips"
BIG_OUTPUT_FORMAT="elf32-bigmips"
LITTLE_OUTPUT_FORMAT="elf32-littlemips"

View File

@ -1,2 +0,0 @@
. ${srcdir}/emulparams/elf32lmip.sh
ENTRY=__start

View File

@ -1,12 +0,0 @@
. ${srcdir}/emulparams/elf32bmipn32.sh
OUTPUT_FORMAT="elf64-bigmips"
BIG_OUTPUT_FORMAT="elf64-bigmips"
LITTLE_OUTPUT_FORMAT="elf64-littlemips"
ELFSIZE=64
# IRIX6 defines these symbols. 0x40 is the size of the ELF header.
EXECUTABLE_SYMBOLS="
__dso_displacement = 0;
__elf_header = ${TEXT_START_ADDR};
__program_header_table = ${TEXT_START_ADDR} + 0x40;
"

View File

@ -1,8 +0,0 @@
# If you change this file, please also look at files which source this one:
# shl.sh
SCRIPT_NAME=sh
OUTPUT_FORMAT="coff-sh"
TEXT_START_ADDR=0x8000
TARGET_PAGE_SIZE=128
ARCH=sh

View File

@ -1,32 +0,0 @@
# If you change this file, please also look at files which source this one:
# shlelf.sh, shelf_nbsd.sh
SCRIPT_NAME=elf
OUTPUT_FORMAT="elf32-sh"
TEXT_START_ADDR=0x1000
MAXPAGESIZE=128
ARCH=sh
MACHINE=
TEMPLATE_NAME=elf32
GENERATE_SHLIB_SCRIPT=yes
EMBEDDED=yes
# These are for compatibility with the COFF toolchain.
ENTRY=start
CTOR_START='___ctors = .;'
CTOR_END='___ctors_end = .;'
DTOR_START='___dtors = .;'
DTOR_END='___dtors_end = .;'
# This is like setting STACK_ADDR to 0x30000, except that the setting can
# be overridden, e.g. --defsym _stack=0x0f00, and that we put an extra
# sentinal value at the bottom.
# N.B. We can't use PROVIDE to set the default value in a symbol because
# the address is needed to place the .stack section, which in turn is needed
# to hold the sentinel value(s).
OTHER_SECTIONS=" .stack ${RELOCATING-0}${RELOCATING+(DEFINED(_stack) ? _stack : 0x30000)} :
{
${RELOCATING+_stack = .;}
*(.stack)
LONG(0xdeaddead)
}"

View File

@ -1,2 +0,0 @@
. ${srcdir}/emulparams/shlelf_linux.sh
OUTPUT_FORMAT="elf32-shbig-linux"

View File

@ -1,2 +0,0 @@
. ${srcdir}/emulparams/sh.sh
OUTPUT_FORMAT="coff-shl"

View File

@ -1,2 +0,0 @@
. ${srcdir}/emulparams/shelf.sh
OUTPUT_FORMAT="elf32-shl"

View File

@ -1,7 +0,0 @@
SCRIPT_NAME=tic30aout
OUTPUT_FORMAT="a.out-tic30"
OUTPUT_ARCH="tms320c30"
TEXT_START_ADDR=0x0
TARGET_PAGE_SIZE=128
ARCH=tms320c30
BIG=1

View File

@ -1,7 +0,0 @@
SCRIPT_NAME=tic30coff
OUTPUT_FORMAT="coff-tic30"
OUTPUT_ARCH="tms320c30"
TEXT_START_ADDR=0x0
TARGET_PAGE_SIZE=128
ARCH=tms320c30
BIG=1

View File

@ -1,14 +0,0 @@
MACHINE=
SCRIPT_NAME=v850
OUTPUT_FORMAT="elf32-v850"
TEXT_START_ADDR=0x100000
ZDATA_START_ADDR=0x160
ROZDATA_START_ADDR="ALIGN (4)"
SDATA_START_ADDR="ALIGN (4)"
ROSDATA_START_ADDR="ALIGN (4)"
TDATA_START_ADDR="ALIGN (4)"
CALL_TABLE_START_ADDR="ALIGN (4)"
ARCH=v850
MAXPAGESIZE=256
ENTRY=_start
EMBEDDED=yes

View File

@ -1,8 +0,0 @@
SCRIPT_NAME=aout
OUTPUT_FORMAT="a.out-i386"
TEXT_START_ADDR=0x1020
TARGET_PAGE_SIZE=0x1000
SEGMENT_SIZE=0x400000
NONPAGED_TEXT_START_ADDR=0x0
ARCH=i386

View File

@ -1,7 +0,0 @@
SCRIPT_NAME=z8000
OUTPUT_FORMAT="coff-z8k"
OUTPUT_ARCH="z8001"
TEXT_START_ADDR=0x0
TARGET_PAGE_SIZE=128
ARCH=z8k
BIG=1

View File

@ -1,6 +0,0 @@
SCRIPT_NAME=z8000
OUTPUT_FORMAT="coff-z8k"
OUTPUT_ARCH="z8002"
TEXT_START_ADDR=0x0
TARGET_PAGE_SIZE=128
ARCH=z8002

View File

@ -1,710 +0,0 @@
/* Disassembly routines for TMS320C30 architecture
Copyright 1998, 1999, 2000 Free Software Foundation, Inc.
Contributed by Steven Haworth (steve@pm.cse.rmit.edu.au)
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include <errno.h>
#include <math.h>
#include "sysdep.h"
#include "dis-asm.h"
#include "opcode/tic30.h"
#define NORMAL_INSN 1
#define PARALLEL_INSN 2
/* Gets the type of instruction based on the top 2 or 3 bits of the
instruction word. */
#define GET_TYPE(insn) (insn & 0x80000000 ? insn & 0xC0000000 : insn & 0xE0000000)
/* Instruction types. */
#define TWO_OPERAND_1 0x00000000
#define TWO_OPERAND_2 0x40000000
#define THREE_OPERAND 0x20000000
#define PAR_STORE 0xC0000000
#define MUL_ADDS 0x80000000
#define BRANCHES 0x60000000
/* Specific instruction id bits. */
#define NORMAL_IDEN 0x1F800000
#define PAR_STORE_IDEN 0x3E000000
#define MUL_ADD_IDEN 0x2C000000
#define BR_IMM_IDEN 0x1F000000
#define BR_COND_IDEN 0x1C3F0000
/* Addressing modes. */
#define AM_REGISTER 0x00000000
#define AM_DIRECT 0x00200000
#define AM_INDIRECT 0x00400000
#define AM_IMM 0x00600000
#define P_FIELD 0x03000000
#define REG_AR0 0x08
#define LDP_INSN 0x08700000
/* TMS320C30 program counter for current instruction. */
static unsigned int _pc;
struct instruction
{
int type;
template *tm;
partemplate *ptm;
};
int get_tic30_instruction PARAMS ((unsigned long, struct instruction *));
int print_two_operand
PARAMS ((disassemble_info *, unsigned long, struct instruction *));
int print_three_operand
PARAMS ((disassemble_info *, unsigned long, struct instruction *));
int print_par_insn
PARAMS ((disassemble_info *, unsigned long, struct instruction *));
int print_branch
PARAMS ((disassemble_info *, unsigned long, struct instruction *));
int get_indirect_operand PARAMS ((unsigned short, int, char *));
int get_register_operand PARAMS ((unsigned char, char *));
int cnvt_tmsfloat_ieee PARAMS ((unsigned long, int, float *));
int
print_insn_tic30 (pc, info)
bfd_vma pc;
disassemble_info *info;
{
unsigned long insn_word;
struct instruction insn = { 0, NULL, NULL };
bfd_vma bufaddr = pc - info->buffer_vma;
/* Obtain the current instruction word from the buffer. */
insn_word = (*(info->buffer + bufaddr) << 24) | (*(info->buffer + bufaddr + 1) << 16) |
(*(info->buffer + bufaddr + 2) << 8) | *(info->buffer + bufaddr + 3);
_pc = pc / 4;
/* Get the instruction refered to by the current instruction word
and print it out based on its type. */
if (!get_tic30_instruction (insn_word, &insn))
return -1;
switch (GET_TYPE (insn_word))
{
case TWO_OPERAND_1:
case TWO_OPERAND_2:
if (!print_two_operand (info, insn_word, &insn))
return -1;
break;
case THREE_OPERAND:
if (!print_three_operand (info, insn_word, &insn))
return -1;
break;
case PAR_STORE:
case MUL_ADDS:
if (!print_par_insn (info, insn_word, &insn))
return -1;
break;
case BRANCHES:
if (!print_branch (info, insn_word, &insn))
return -1;
break;
}
return 4;
}
int
get_tic30_instruction (insn_word, insn)
unsigned long insn_word;
struct instruction *insn;
{
switch (GET_TYPE (insn_word))
{
case TWO_OPERAND_1:
case TWO_OPERAND_2:
case THREE_OPERAND:
insn->type = NORMAL_INSN;
{
template *current_optab = (template *) tic30_optab;
for (; current_optab < tic30_optab_end; current_optab++)
{
if (GET_TYPE (current_optab->base_opcode) == GET_TYPE (insn_word))
{
if (current_optab->operands == 0)
{
if (current_optab->base_opcode == insn_word)
{
insn->tm = current_optab;
break;
}
}
else if ((current_optab->base_opcode & NORMAL_IDEN) == (insn_word & NORMAL_IDEN))
{
insn->tm = current_optab;
break;
}
}
}
}
break;
case PAR_STORE:
insn->type = PARALLEL_INSN;
{
partemplate *current_optab = (partemplate *) tic30_paroptab;
for (; current_optab < tic30_paroptab_end; current_optab++)
{
if (GET_TYPE (current_optab->base_opcode) == GET_TYPE (insn_word))
{
if ((current_optab->base_opcode & PAR_STORE_IDEN) == (insn_word & PAR_STORE_IDEN))
{
insn->ptm = current_optab;
break;
}
}
}
}
break;
case MUL_ADDS:
insn->type = PARALLEL_INSN;
{
partemplate *current_optab = (partemplate *) tic30_paroptab;
for (; current_optab < tic30_paroptab_end; current_optab++)
{
if (GET_TYPE (current_optab->base_opcode) == GET_TYPE (insn_word))
{
if ((current_optab->base_opcode & MUL_ADD_IDEN) == (insn_word & MUL_ADD_IDEN))
{
insn->ptm = current_optab;
break;
}
}
}
}
break;
case BRANCHES:
insn->type = NORMAL_INSN;
{
template *current_optab = (template *) tic30_optab;
for (; current_optab < tic30_optab_end; current_optab++)
{
if (GET_TYPE (current_optab->base_opcode) == GET_TYPE (insn_word))
{
if (current_optab->operand_types[0] & Imm24)
{
if ((current_optab->base_opcode & BR_IMM_IDEN) == (insn_word & BR_IMM_IDEN))
{
insn->tm = current_optab;
break;
}
}
else if (current_optab->operands > 0)
{
if ((current_optab->base_opcode & BR_COND_IDEN) == (insn_word & BR_COND_IDEN))
{
insn->tm = current_optab;
break;
}
}
else
{
if ((current_optab->base_opcode & (BR_COND_IDEN | 0x00800000)) == (insn_word & (BR_COND_IDEN | 0x00800000)))
{
insn->tm = current_optab;
break;
}
}
}
}
}
break;
default:
return 0;
}
return 1;
}
int
print_two_operand (info, insn_word, insn)
disassemble_info *info;
unsigned long insn_word;
struct instruction *insn;
{
char name[12];
char operand[2][13] =
{
{0},
{0}};
float f_number;
if (insn->tm == NULL)
return 0;
strcpy (name, insn->tm->name);
if (insn->tm->opcode_modifier == AddressMode)
{
int src_op, dest_op;
/* Determine whether instruction is a store or a normal instruction. */
if ((insn->tm->operand_types[1] & (Direct | Indirect)) == (Direct | Indirect))
{
src_op = 1;
dest_op = 0;
}
else
{
src_op = 0;
dest_op = 1;
}
/* Get the destination register. */
if (insn->tm->operands == 2)
get_register_operand ((insn_word & 0x001F0000) >> 16, operand[dest_op]);
/* Get the source operand based on addressing mode. */
switch (insn_word & AddressMode)
{
case AM_REGISTER:
/* Check for the NOP instruction before getting the operand. */
if ((insn->tm->operand_types[0] & NotReq) == 0)
get_register_operand ((insn_word & 0x0000001F), operand[src_op]);
break;
case AM_DIRECT:
sprintf (operand[src_op], "@0x%lX", (insn_word & 0x0000FFFF));
break;
case AM_INDIRECT:
get_indirect_operand ((insn_word & 0x0000FFFF), 2, operand[src_op]);
break;
case AM_IMM:
/* Get the value of the immediate operand based on variable type. */
switch (insn->tm->imm_arg_type)
{
case Imm_Float:
cnvt_tmsfloat_ieee ((insn_word & 0x0000FFFF), 2, &f_number);
sprintf (operand[src_op], "%2.2f", f_number);
break;
case Imm_SInt:
sprintf (operand[src_op], "%d", (short) (insn_word & 0x0000FFFF));
break;
case Imm_UInt:
sprintf (operand[src_op], "%lu", (insn_word & 0x0000FFFF));
break;
default:
return 0;
}
/* Handle special case for LDP instruction. */
if ((insn_word & 0xFFFFFF00) == LDP_INSN)
{
strcpy (name, "ldp");
sprintf (operand[0], "0x%06lX", (insn_word & 0x000000FF) << 16);
operand[1][0] = '\0';
}
}
}
/* Handle case for stack and rotate instructions. */
else if (insn->tm->operands == 1)
{
if (insn->tm->opcode_modifier == StackOp)
{
get_register_operand ((insn_word & 0x001F0000) >> 16, operand[0]);
}
}
/* Output instruction to stream. */
info->fprintf_func (info->stream, " %s %s%c%s", name,
operand[0][0] ? operand[0] : "",
operand[1][0] ? ',' : ' ',
operand[1][0] ? operand[1] : "");
return 1;
}
int
print_three_operand (info, insn_word, insn)
disassemble_info *info;
unsigned long insn_word;
struct instruction *insn;
{
char operand[3][13] =
{
{0},
{0},
{0}};
if (insn->tm == NULL)
return 0;
switch (insn_word & AddressMode)
{
case AM_REGISTER:
get_register_operand ((insn_word & 0x000000FF), operand[0]);
get_register_operand ((insn_word & 0x0000FF00) >> 8, operand[1]);
break;
case AM_DIRECT:
get_register_operand ((insn_word & 0x000000FF), operand[0]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1]);
break;
case AM_INDIRECT:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0]);
get_register_operand ((insn_word & 0x0000FF00) >> 8, operand[1]);
break;
case AM_IMM:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1]);
break;
default:
return 0;
}
if (insn->tm->operands == 3)
get_register_operand ((insn_word & 0x001F0000) >> 16, operand[2]);
info->fprintf_func (info->stream, " %s %s,%s%c%s", insn->tm->name,
operand[0], operand[1],
operand[2][0] ? ',' : ' ',
operand[2][0] ? operand[2] : "");
return 1;
}
int
print_par_insn (info, insn_word, insn)
disassemble_info *info;
unsigned long insn_word;
struct instruction *insn;
{
size_t i, len;
char *name1, *name2;
char operand[2][3][13] =
{
{
{0},
{0},
{0}},
{
{0},
{0},
{0}}};
if (insn->ptm == NULL)
return 0;
/* Parse out the names of each of the parallel instructions from the
q_insn1_insn2 format. */
name1 = (char *) strdup (insn->ptm->name + 2);
name2 = "";
len = strlen (name1);
for (i = 0; i < len; i++)
{
if (name1[i] == '_')
{
name2 = &name1[i + 1];
name1[i] = '\0';
break;
}
}
/* Get the operands of the instruction based on the operand order. */
switch (insn->ptm->oporder)
{
case OO_4op1:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][0]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][1]);
get_register_operand ((insn_word >> 16) & 0x07, operand[1][0]);
get_register_operand ((insn_word >> 22) & 0x07, operand[0][1]);
break;
case OO_4op2:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][0]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][0]);
get_register_operand ((insn_word >> 19) & 0x07, operand[1][1]);
get_register_operand ((insn_word >> 22) & 0x07, operand[0][1]);
break;
case OO_4op3:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][1]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][1]);
get_register_operand ((insn_word >> 16) & 0x07, operand[1][0]);
get_register_operand ((insn_word >> 22) & 0x07, operand[0][0]);
break;
case OO_5op1:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][0]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][1]);
get_register_operand ((insn_word >> 16) & 0x07, operand[1][0]);
get_register_operand ((insn_word >> 19) & 0x07, operand[0][1]);
get_register_operand ((insn_word >> 22) & 0x07, operand[0][2]);
break;
case OO_5op2:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][1]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][1]);
get_register_operand ((insn_word >> 16) & 0x07, operand[1][0]);
get_register_operand ((insn_word >> 19) & 0x07, operand[0][0]);
get_register_operand ((insn_word >> 22) & 0x07, operand[0][2]);
break;
case OO_PField:
if (insn_word & 0x00800000)
get_register_operand (0x01, operand[0][2]);
else
get_register_operand (0x00, operand[0][2]);
if (insn_word & 0x00400000)
get_register_operand (0x03, operand[1][2]);
else
get_register_operand (0x02, operand[1][2]);
switch (insn_word & P_FIELD)
{
case 0x00000000:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][1]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[0][0]);
get_register_operand ((insn_word >> 16) & 0x07, operand[1][1]);
get_register_operand ((insn_word >> 19) & 0x07, operand[1][0]);
break;
case 0x01000000:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[1][0]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[0][0]);
get_register_operand ((insn_word >> 16) & 0x07, operand[1][1]);
get_register_operand ((insn_word >> 19) & 0x07, operand[0][1]);
break;
case 0x02000000:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[1][1]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][0]);
get_register_operand ((insn_word >> 16) & 0x07, operand[0][1]);
get_register_operand ((insn_word >> 19) & 0x07, operand[0][0]);
break;
case 0x03000000:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[1][1]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[0][0]);
get_register_operand ((insn_word >> 16) & 0x07, operand[1][0]);
get_register_operand ((insn_word >> 19) & 0x07, operand[0][1]);
break;
}
break;
default:
return 0;
}
info->fprintf_func (info->stream, " %s %s,%s%c%s", name1,
operand[0][0], operand[0][1],
operand[0][2][0] ? ',' : ' ',
operand[0][2][0] ? operand[0][2] : "");
info->fprintf_func (info->stream, "\n\t\t\t|| %s %s,%s%c%s", name2,
operand[1][0], operand[1][1],
operand[1][2][0] ? ',' : ' ',
operand[1][2][0] ? operand[1][2] : "");
free (name1);
return 1;
}
int
print_branch (info, insn_word, insn)
disassemble_info *info;
unsigned long insn_word;
struct instruction *insn;
{
char operand[2][13] =
{
{0},
{0}};
unsigned long address;
int print_label = 0;
if (insn->tm == NULL)
return 0;
/* Get the operands for 24-bit immediate jumps. */
if (insn->tm->operand_types[0] & Imm24)
{
address = insn_word & 0x00FFFFFF;
sprintf (operand[0], "0x%lX", address);
print_label = 1;
}
/* Get the operand for the trap instruction. */
else if (insn->tm->operand_types[0] & IVector)
{
address = insn_word & 0x0000001F;
sprintf (operand[0], "0x%lX", address);
}
else
{
address = insn_word & 0x0000FFFF;
/* Get the operands for the DB instructions. */
if (insn->tm->operands == 2)
{
get_register_operand (((insn_word & 0x01C00000) >> 22) + REG_AR0, operand[0]);
if (insn_word & PCRel)
{
sprintf (operand[1], "%d", (short) address);
print_label = 1;
}
else
get_register_operand (insn_word & 0x0000001F, operand[1]);
}
/* Get the operands for the standard branches. */
else if (insn->tm->operands == 1)
{
if (insn_word & PCRel)
{
address = (short) address;
sprintf (operand[0], "%ld", address);
print_label = 1;
}
else
get_register_operand (insn_word & 0x0000001F, operand[0]);
}
}
info->fprintf_func (info->stream, " %s %s%c%s", insn->tm->name,
operand[0][0] ? operand[0] : "",
operand[1][0] ? ',' : ' ',
operand[1][0] ? operand[1] : "");
/* Print destination of branch in relation to current symbol. */
if (print_label && info->symbols)
{
asymbol *sym = *info->symbols;
if ((insn->tm->opcode_modifier == PCRel) && (insn_word & PCRel))
{
address = (_pc + 1 + (short) address) - ((sym->section->vma + sym->value) / 4);
/* Check for delayed instruction, if so adjust destination. */
if (insn_word & 0x00200000)
address += 2;
}
else
{
address -= ((sym->section->vma + sym->value) / 4);
}
if (address == 0)
info->fprintf_func (info->stream, " <%s>", sym->name);
else
info->fprintf_func (info->stream, " <%s %c %d>", sym->name,
((short) address < 0) ? '-' : '+',
abs (address));
}
return 1;
}
int
get_indirect_operand (fragment, size, buffer)
unsigned short fragment;
int size;
char *buffer;
{
unsigned char mod;
unsigned arnum;
unsigned char disp;
if (buffer == NULL)
return 0;
/* Determine which bits identify the sections of the indirect
operand based on the size in bytes. */
switch (size)
{
case 1:
mod = (fragment & 0x00F8) >> 3;
arnum = (fragment & 0x0007);
disp = 0;
break;
case 2:
mod = (fragment & 0xF800) >> 11;
arnum = (fragment & 0x0700) >> 8;
disp = (fragment & 0x00FF);
break;
default:
return 0;
}
{
const ind_addr_type *current_ind = tic30_indaddr_tab;
for (; current_ind < tic30_indaddrtab_end; current_ind++)
{
if (current_ind->modfield == mod)
{
if (current_ind->displacement == IMPLIED_DISP && size == 2)
{
continue;
}
else
{
size_t i, len;
int bufcnt;
len = strlen (current_ind->syntax);
for (i = 0, bufcnt = 0; i < len; i++, bufcnt++)
{
buffer[bufcnt] = current_ind->syntax[i];
if (buffer[bufcnt - 1] == 'a' && buffer[bufcnt] == 'r')
buffer[++bufcnt] = arnum + '0';
if (buffer[bufcnt] == '('
&& current_ind->displacement == DISP_REQUIRED)
{
sprintf (&buffer[bufcnt + 1], "%u", disp);
bufcnt += strlen (&buffer[bufcnt + 1]);
}
}
buffer[bufcnt + 1] = '\0';
break;
}
}
}
}
return 1;
}
int
get_register_operand (fragment, buffer)
unsigned char fragment;
char *buffer;
{
const reg *current_reg = tic30_regtab;
if (buffer == NULL)
return 0;
for (; current_reg < tic30_regtab_end; current_reg++)
{
if ((fragment & 0x1F) == current_reg->opcode)
{
strcpy (buffer, current_reg->name);
return 1;
}
}
return 0;
}
int
cnvt_tmsfloat_ieee (tmsfloat, size, ieeefloat)
unsigned long tmsfloat;
int size;
float *ieeefloat;
{
unsigned long exp, sign, mant;
if (size == 2)
{
if ((tmsfloat & 0x0000F000) == 0x00008000)
tmsfloat = 0x80000000;
else
{
tmsfloat <<= 16;
tmsfloat = (long) tmsfloat >> 4;
}
}
exp = tmsfloat & 0xFF000000;
if (exp == 0x80000000)
{
*ieeefloat = 0.0;
return 1;
}
exp += 0x7F000000;
sign = (tmsfloat & 0x00800000) << 8;
mant = tmsfloat & 0x007FFFFF;
if (exp == 0xFF000000)
{
if (mant == 0)
*ieeefloat = ERANGE;
if (sign == 0)
*ieeefloat = 1.0 / 0.0;
else
*ieeefloat = -1.0 / 0.0;
return 1;
}
exp >>= 1;
if (sign)
{
mant = (~mant) & 0x007FFFFF;
mant += 1;
exp += mant & 0x00800000;
exp &= 0x7F800000;
mant &= 0x007FFFFF;
}
if (tmsfloat == 0x80000000)
sign = mant = exp = 0;
tmsfloat = sign | exp | mant;
*ieeefloat = *((float *) &tmsfloat);
return 1;
}

View File

@ -1,384 +0,0 @@
/* Disassemble V850 instructions.
Copyright 1996, 1997, 1998, 2000, 2001 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include <stdio.h>
#include "sysdep.h"
#include "opcode/v850.h"
#include "dis-asm.h"
#include "opintl.h"
static const char *const v850_reg_names[] =
{ "r0", "r1", "r2", "sp", "gp", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "ep", "lp" };
static const char *const v850_sreg_names[] =
{ "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
"ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
"sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
"sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
"sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31" };
static const char *const v850_cc_names[] =
{ "v", "c/l", "z", "nh", "s/n", "t", "lt", "le",
"nv", "nc/nl", "nz", "h", "ns/p", "sa", "ge", "gt" };
static int disassemble
PARAMS ((bfd_vma, struct disassemble_info *, unsigned long));
static int
disassemble (memaddr, info, insn)
bfd_vma memaddr;
struct disassemble_info *info;
unsigned long insn;
{
struct v850_opcode * op = (struct v850_opcode *)v850_opcodes;
const struct v850_operand * operand;
int match = 0;
int short_op = ((insn & 0x0600) != 0x0600);
int bytes_read;
int target_processor;
/* Special case: 32 bit MOV */
if ((insn & 0xffe0) == 0x0620)
short_op = true;
bytes_read = short_op ? 2 : 4;
/* If this is a two byte insn, then mask off the high bits. */
if (short_op)
insn &= 0xffff;
switch (info->mach)
{
case 0:
default:
target_processor = PROCESSOR_V850;
break;
case bfd_mach_v850e:
target_processor = PROCESSOR_V850E;
break;
case bfd_mach_v850ea:
target_processor = PROCESSOR_V850EA;
break;
}
/* Find the opcode. */
while (op->name)
{
if ((op->mask & insn) == op->opcode
&& (op->processors & target_processor))
{
const unsigned char * opindex_ptr;
unsigned int opnum;
unsigned int memop;
match = 1;
(*info->fprintf_func) (info->stream, "%s\t", op->name);
/*fprintf (stderr, "match: mask: %x insn: %x, opcode: %x, name: %s\n", op->mask, insn, op->opcode, op->name );*/
memop = op->memop;
/* Now print the operands.
MEMOP is the operand number at which a memory
address specification starts, or zero if this
instruction has no memory addresses.
A memory address is always two arguments.
This information allows us to determine when to
insert commas into the output stream as well as
when to insert disp[reg] expressions onto the
output stream. */
for (opindex_ptr = op->operands, opnum = 1;
*opindex_ptr != 0;
opindex_ptr++, opnum++)
{
long value;
int flag;
int status;
bfd_byte buffer[ 4 ];
operand = &v850_operands[*opindex_ptr];
if (operand->extract)
value = (operand->extract) (insn, 0);
else
{
if (operand->bits == -1)
value = (insn & operand->shift);
else
value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
if (operand->flags & V850_OPERAND_SIGNED)
value = ((long)(value << (32 - operand->bits))
>> (32 - operand->bits));
}
/* The first operand is always output without any
special handling.
For the following arguments:
If memop && opnum == memop + 1, then we need '[' since
we're about to output the register used in a memory
reference.
If memop && opnum == memop + 2, then we need ']' since
we just finished the register in a memory reference. We
also need a ',' before this operand.
Else we just need a comma.
We may need to output a trailing ']' if the last operand
in an instruction is the register for a memory address.
The exception (and there's always an exception) is the
"jmp" insn which needs square brackets around it's only
register argument. */
if (memop && opnum == memop + 1) info->fprintf_func (info->stream, "[");
else if (memop && opnum == memop + 2) info->fprintf_func (info->stream, "],");
else if (memop == 1 && opnum == 1
&& (operand->flags & V850_OPERAND_REG))
info->fprintf_func (info->stream, "[");
else if (opnum > 1) info->fprintf_func (info->stream, ", ");
/* extract the flags, ignorng ones which do not effect disassembly output. */
flag = operand->flags;
flag &= ~ V850_OPERAND_SIGNED;
flag &= ~ V850_OPERAND_RELAX;
flag &= - flag;
switch (flag)
{
case V850_OPERAND_REG: info->fprintf_func (info->stream, "%s", v850_reg_names[value]); break;
case V850_OPERAND_SRG: info->fprintf_func (info->stream, "%s", v850_sreg_names[value]); break;
case V850_OPERAND_CC: info->fprintf_func (info->stream, "%s", v850_cc_names[value]); break;
case V850_OPERAND_EP: info->fprintf_func (info->stream, "ep"); break;
default: info->fprintf_func (info->stream, "%d", value); break;
case V850_OPERAND_DISP:
{
bfd_vma addr = value + memaddr;
/* On the v850 the top 8 bits of an address are used by an overlay manager.
Thus it may happen that when we are looking for a symbol to match
against an address with some of its top bits set, the search fails to
turn up an exact match. In this case we try to find an exact match
against a symbol in the lower address space, and if we find one, we
use that address. We only do this for JARL instructions however, as
we do not want to misinterpret branch instructions. */
if (operand->bits == 22)
{
if ( ! info->symbol_at_address_func (addr, info)
&& ((addr & 0xFF000000) != 0)
&& info->symbol_at_address_func (addr & 0x00FFFFFF, info))
{
addr &= 0x00FFFFFF;
}
}
info->print_address_func (addr, info);
break;
}
case V850E_PUSH_POP:
{
static int list12_regs[32] = { 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 29, 28, 23, 22, 21, 20, 27, 26, 25, 24 };
static int list18_h_regs[32] = { 19, 18, 17, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 30, 31, 29, 28, 23, 22, 21, 20, 27, 26, 25, 24 };
static int list18_l_regs[32] = { 3, 2, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 14, 15, 13, 12, 7, 6, 5, 4, 11, 10, 9, 8 };
int * regs;
int i;
unsigned long int mask = 0;
int pc = false;
int sr = false;
switch (operand->shift)
{
case 0xffe00001: regs = list12_regs; break;
case 0xfff8000f: regs = list18_h_regs; break;
case 0xfff8001f: regs = list18_l_regs; value &= ~0x10; break; /* Do not include magic bit */
default:
/* xgettext:c-format */
fprintf (stderr, _("unknown operand shift: %x\n"), operand->shift );
abort();
}
for (i = 0; i < 32; i++)
{
if (value & (1 << i))
{
switch (regs[ i ])
{
default: mask |= (1 << regs[ i ]); break;
/* xgettext:c-format */
case 0: fprintf (stderr, _("unknown pop reg: %d\n"), i ); abort();
case -1: pc = true; break;
case -2: sr = true; break;
}
}
}
info->fprintf_func (info->stream, "{");
if (mask || pc || sr)
{
if (mask)
{
unsigned int bit;
int shown_one = false;
for (bit = 0; bit < 32; bit++)
if (mask & (1 << bit))
{
unsigned long int first = bit;
unsigned long int last;
if (shown_one)
info->fprintf_func (info->stream, ", ");
else
shown_one = true;
info->fprintf_func (info->stream, v850_reg_names[first]);
for (bit++; bit < 32; bit++)
if ((mask & (1 << bit)) == 0)
break;
last = bit;
if (last > first + 1)
{
info->fprintf_func (info->stream, " - %s", v850_reg_names[ last - 1 ]);
}
}
}
if (pc)
info->fprintf_func (info->stream, "%sPC", mask ? ", " : "");
if (sr)
info->fprintf_func (info->stream, "%sSR", (mask || pc) ? ", " : "");
}
info->fprintf_func (info->stream, "}");
}
break;
case V850E_IMMEDIATE16:
status = info->read_memory_func (memaddr + bytes_read, buffer, 2, info);
if (status == 0)
{
bytes_read += 2;
value = bfd_getl16 (buffer);
/* If this is a DISPOSE instruction with ff set to 0x10, then shift value up by 16. */
if ((insn & 0x001fffc0) == 0x00130780)
value <<= 16;
info->fprintf_func (info->stream, "0x%x", value);
}
else
{
info->memory_error_func (status, memaddr + bytes_read, info);
}
break;
case V850E_IMMEDIATE32:
status = info->read_memory_func (memaddr + bytes_read, buffer, 4, info);
if (status == 0)
{
bytes_read += 4;
value = bfd_getl32 (buffer);
info->fprintf_func (info->stream, "0x%lx", value);
}
else
{
info->memory_error_func (status, memaddr + bytes_read, info);
}
break;
}
/* Handle jmp correctly. */
if (memop == 1 && opnum == 1
&& ((operand->flags & V850_OPERAND_REG) != 0))
(*info->fprintf_func) (info->stream, "]");
}
/* Close any square bracket we left open. */
if (memop && opnum == memop + 2)
(*info->fprintf_func) (info->stream, "]");
/* All done. */
break;
}
op++;
}
if (!match)
{
if (short_op)
info->fprintf_func (info->stream, ".short\t0x%04x", insn);
else
info->fprintf_func (info->stream, ".long\t0x%08x", insn);
}
return bytes_read;
}
int
print_insn_v850 (memaddr, info)
bfd_vma memaddr;
struct disassemble_info * info;
{
int status;
bfd_byte buffer[ 4 ];
unsigned long insn = 0;
/* First figure out how big the opcode is. */
status = info->read_memory_func (memaddr, buffer, 2, info);
if (status == 0)
{
insn = bfd_getl16 (buffer);
if ( (insn & 0x0600) == 0x0600
&& (insn & 0xffe0) != 0x0620)
{
/* If this is a 4 byte insn, read 4 bytes of stuff. */
status = info->read_memory_func (memaddr, buffer, 4, info);
if (status == 0)
insn = bfd_getl32 (buffer);
}
}
if (status != 0)
{
info->memory_error_func (status, memaddr, info);
return -1;
}
/* Make sure we tell our caller how many bytes we consumed. */
return disassemble (memaddr, info, insn);
}

View File

@ -1,813 +0,0 @@
/* Assemble V850 instructions.
Copyright 1996, 1997, 1998, 2000, 2001 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "sysdep.h"
#include "opcode/v850.h"
#include <stdio.h>
#include "opintl.h"
/* regular opcode */
#define OP(x) ((x & 0x3f) << 5)
#define OP_MASK OP (0x3f)
/* conditional branch opcode */
#define BOP(x) ((0x0b << 7) | (x & 0x0f))
#define BOP_MASK ((0x0f << 7) | 0x0f)
/* one-word opcodes */
#define one(x) ((unsigned int) (x))
/* two-word opcodes */
#define two(x,y) ((unsigned int) (x) | ((unsigned int) (y) << 16))
static long unsigned insert_d9 PARAMS ((long unsigned, long, const char **));
static long unsigned extract_d9 PARAMS ((long unsigned, int *));
static long unsigned insert_d22 PARAMS ((long unsigned, long, const char **));
static long unsigned extract_d22 PARAMS ((long unsigned, int *));
static long unsigned insert_d16_15 PARAMS ((long unsigned, long, const char **));
static long unsigned extract_d16_15 PARAMS ((long unsigned, int *));
static long unsigned insert_d8_7 PARAMS ((long unsigned, long, const char **));
static long unsigned extract_d8_7 PARAMS ((long unsigned, int *));
static long unsigned insert_d8_6 PARAMS ((long unsigned, long, const char **));
static long unsigned extract_d8_6 PARAMS ((long unsigned, int *));
static long unsigned insert_d5_4 PARAMS ((long unsigned, long, const char **));
static long unsigned extract_d5_4 PARAMS ((long unsigned, int *));
static long unsigned insert_d16_16 PARAMS ((long unsigned, long, const char **));
static long unsigned extract_d16_16 PARAMS ((long unsigned, int *));
static long unsigned insert_i9 PARAMS ((long unsigned, long, const char **));
static long unsigned extract_i9 PARAMS ((long unsigned, int *));
static long unsigned insert_u9 PARAMS ((long unsigned, long, const char **));
static long unsigned extract_u9 PARAMS ((long unsigned, int *));
static long unsigned insert_spe PARAMS ((long unsigned, long, const char **));
static long unsigned extract_spe PARAMS ((long unsigned, int *));
static long unsigned insert_i5div PARAMS ((long unsigned, long, const char **));
static long unsigned extract_i5div PARAMS ((long unsigned, int *));
/* The functions used to insert and extract complicated operands. */
/* Note: There is a conspiracy between these functions and
v850_insert_operand() in gas/config/tc-v850.c. Error messages
containing the string 'out of range' will be ignored unless a
specific command line option is given to GAS. */
static const char * not_valid = N_ ("displacement value is not in range and is not aligned");
static const char * out_of_range = N_ ("displacement value is out of range");
static const char * not_aligned = N_ ("displacement value is not aligned");
static const char * immediate_out_of_range = N_ ("immediate value is out of range");
static unsigned long
insert_d9 (insn, value, errmsg)
unsigned long insn;
long value;
const char ** errmsg;
{
if (value > 0xff || value < -0x100)
{
if ((value % 2) != 0)
* errmsg = _("branch value not in range and to odd offset");
else
* errmsg = _("branch value out of range");
}
else if ((value % 2) != 0)
* errmsg = _("branch to odd offset");
return (insn | ((value & 0x1f0) << 7) | ((value & 0x0e) << 3));
}
static unsigned long
extract_d9 (insn, invalid)
unsigned long insn;
int * invalid ATTRIBUTE_UNUSED;
{
unsigned long ret = ((insn & 0xf800) >> 7) | ((insn & 0x0070) >> 3);
if ((insn & 0x8000) != 0)
ret -= 0x0200;
return ret;
}
static unsigned long
insert_d22 (insn, value, errmsg)
unsigned long insn;
long value;
const char ** errmsg;
{
if (value > 0x1fffff || value < -0x200000)
{
if ((value % 2) != 0)
* errmsg = _("branch value not in range and to an odd offset");
else
* errmsg = _("branch value out of range");
}
else if ((value % 2) != 0)
* errmsg = _("branch to odd offset");
return (insn | ((value & 0xfffe) << 16) | ((value & 0x3f0000) >> 16));
}
static unsigned long
extract_d22 (insn, invalid)
unsigned long insn;
int * invalid ATTRIBUTE_UNUSED;
{
signed long ret = ((insn & 0xfffe0000) >> 16) | ((insn & 0x3f) << 16);
return (unsigned long) ((ret << 10) >> 10);
}
static unsigned long
insert_d16_15 (insn, value, errmsg)
unsigned long insn;
long value;
const char ** errmsg;
{
if (value > 0x7fff || value < -0x8000)
{
if ((value % 2) != 0)
* errmsg = _(not_valid);
else
* errmsg = _(out_of_range);
}
else if ((value % 2) != 0)
* errmsg = _(not_aligned);
return insn | ((value & 0xfffe) << 16);
}
static unsigned long
extract_d16_15 (insn, invalid)
unsigned long insn;
int * invalid ATTRIBUTE_UNUSED;
{
signed long ret = (insn & 0xfffe0000);
return ret >> 16;
}
static unsigned long
insert_d8_7 (insn, value, errmsg)
unsigned long insn;
long value;
const char ** errmsg;
{
if (value > 0xff || value < 0)
{
if ((value % 2) != 0)
* errmsg = _(not_valid);
else
* errmsg = _(out_of_range);
}
else if ((value % 2) != 0)
* errmsg = _(not_aligned);
value >>= 1;
return (insn | (value & 0x7f));
}
static unsigned long
extract_d8_7 (insn, invalid)
unsigned long insn;
int * invalid ATTRIBUTE_UNUSED;
{
unsigned long ret = (insn & 0x7f);
return ret << 1;
}
static unsigned long
insert_d8_6 (insn, value, errmsg)
unsigned long insn;
long value;
const char ** errmsg;
{
if (value > 0xff || value < 0)
{
if ((value % 4) != 0)
*errmsg = _(not_valid);
else
* errmsg = _(out_of_range);
}
else if ((value % 4) != 0)
* errmsg = _(not_aligned);
value >>= 1;
return (insn | (value & 0x7e));
}
static unsigned long
extract_d8_6 (insn, invalid)
unsigned long insn;
int * invalid ATTRIBUTE_UNUSED;
{
unsigned long ret = (insn & 0x7e);
return ret << 1;
}
static unsigned long
insert_d5_4 (insn, value, errmsg)
unsigned long insn;
long value;
const char ** errmsg;
{
if (value > 0x1f || value < 0)
{
if (value & 1)
* errmsg = _(not_valid);
else
*errmsg = _(out_of_range);
}
else if (value & 1)
* errmsg = _(not_aligned);
value >>= 1;
return (insn | (value & 0x0f));
}
static unsigned long
extract_d5_4 (insn, invalid)
unsigned long insn;
int * invalid ATTRIBUTE_UNUSED;
{
unsigned long ret = (insn & 0x0f);
return ret << 1;
}
static unsigned long
insert_d16_16 (insn, value, errmsg)
unsigned long insn;
signed long value;
const char ** errmsg;
{
if (value > 0x7fff || value < -0x8000)
* errmsg = _(out_of_range);
return (insn | ((value & 0xfffe) << 16) | ((value & 1) << 5));
}
static unsigned long
extract_d16_16 (insn, invalid)
unsigned long insn;
int * invalid ATTRIBUTE_UNUSED;
{
signed long ret = insn & 0xfffe0000;
ret >>= 16;
ret |= ((insn & 0x20) >> 5);
return ret;
}
static unsigned long
insert_i9 (insn, value, errmsg)
unsigned long insn;
signed long value;
const char ** errmsg;
{
if (value > 0xff || value < -0x100)
* errmsg = _(immediate_out_of_range);
return insn | ((value & 0x1e0) << 13) | (value & 0x1f);
}
static unsigned long
extract_i9 (insn, invalid)
unsigned long insn;
int * invalid ATTRIBUTE_UNUSED;
{
signed long ret = insn & 0x003c0000;
ret <<= 10;
ret >>= 23;
ret |= (insn & 0x1f);
return ret;
}
static unsigned long
insert_u9 (insn, v, errmsg)
unsigned long insn;
long v;
const char ** errmsg;
{
unsigned long value = (unsigned long) v;
if (value > 0x1ff)
* errmsg = _(immediate_out_of_range);
return insn | ((value & 0x1e0) << 13) | (value & 0x1f);
}
static unsigned long
extract_u9 (insn, invalid)
unsigned long insn;
int * invalid ATTRIBUTE_UNUSED;
{
unsigned long ret = insn & 0x003c0000;
ret >>= 13;
ret |= (insn & 0x1f);
return ret;
}
static unsigned long
insert_spe (insn, v, errmsg)
unsigned long insn;
long v;
const char ** errmsg;
{
unsigned long value = (unsigned long) v;
if (value != 3)
* errmsg = _("invalid register for stack adjustment");
return insn & (~ 0x180000);
}
static unsigned long
extract_spe (insn, invalid)
unsigned long insn ATTRIBUTE_UNUSED;
int * invalid ATTRIBUTE_UNUSED;
{
return 3;
}
static unsigned long
insert_i5div (insn, v, errmsg)
unsigned long insn;
long v;
const char ** errmsg;
{
unsigned long value = (unsigned long) v;
if (value > 0x1ff)
{
if (value & 1)
* errmsg = _("immediate value not in range and not even");
else
* errmsg = _(immediate_out_of_range);
}
else if (value & 1)
* errmsg = _("immediate value must be even");
value = 32 - value;
return insn | ((value & 0x1e) << 17);
}
static unsigned long
extract_i5div (insn, invalid)
unsigned long insn;
int * invalid ATTRIBUTE_UNUSED;
{
unsigned long ret = insn & 0x3c0000;
ret >>= 17;
ret = 32 - ret;
return ret;
}
/* Warning: code in gas/config/tc-v850.c examines the contents of this array.
If you change any of the values here, be sure to look for side effects in
that code. */
const struct v850_operand v850_operands[] =
{
#define UNUSED 0
{ 0, 0, NULL, NULL, 0 },
/* The R1 field in a format 1, 6, 7, or 9 insn. */
#define R1 (UNUSED + 1)
{ 5, 0, NULL, NULL, V850_OPERAND_REG },
/* As above, but register 0 is not allowed. */
#define R1_NOTR0 (R1 + 1)
{ 5, 0, NULL, NULL, V850_OPERAND_REG | V850_NOT_R0 },
/* The R2 field in a format 1, 2, 4, 5, 6, 7, 9 insn. */
#define R2 (R1_NOTR0 + 1)
{ 5, 11, NULL, NULL, V850_OPERAND_REG },
/* As above, but register 0 is not allowed. */
#define R2_NOTR0 (R2 + 1)
{ 5, 11, NULL, NULL, V850_OPERAND_REG | V850_NOT_R0 },
/* The imm5 field in a format 2 insn. */
#define I5 (R2_NOTR0 + 1)
{ 5, 0, NULL, NULL, V850_OPERAND_SIGNED },
/* The unsigned imm5 field in a format 2 insn. */
#define I5U (I5 + 1)
{ 5, 0, NULL, NULL, 0 },
/* The imm16 field in a format 6 insn. */
#define I16 (I5U + 1)
{ 16, 16, NULL, NULL, V850_OPERAND_SIGNED },
/* The signed disp7 field in a format 4 insn. */
#define D7 (I16 + 1)
{ 7, 0, NULL, NULL, 0},
/* The disp16 field in a format 6 insn. */
#define D16_15 (D7 + 1)
{ 15, 17, insert_d16_15, extract_d16_15, V850_OPERAND_SIGNED },
/* The 3 bit immediate field in format 8 insn. */
#define B3 (D16_15 + 1)
{ 3, 11, NULL, NULL, 0 },
/* The 4 bit condition code in a setf instruction */
#define CCCC (B3 + 1)
{ 4, 0, NULL, NULL, V850_OPERAND_CC },
/* The unsigned DISP8 field in a format 4 insn. */
#define D8_7 (CCCC + 1)
{ 7, 0, insert_d8_7, extract_d8_7, 0 },
/* The unsigned DISP8 field in a format 4 insn. */
#define D8_6 (D8_7 + 1)
{ 6, 1, insert_d8_6, extract_d8_6, 0 },
/* System register operands. */
#define SR1 (D8_6 + 1)
{ 5, 0, NULL, NULL, V850_OPERAND_SRG },
/* EP Register. */
#define EP (SR1 + 1)
{ 0, 0, NULL, NULL, V850_OPERAND_EP },
/* The imm16 field (unsigned) in a format 6 insn. */
#define I16U (EP + 1)
{ 16, 16, NULL, NULL, 0},
/* The R2 field as a system register. */
#define SR2 (I16U + 1)
{ 5, 11, NULL, NULL, V850_OPERAND_SRG },
/* The disp16 field in a format 8 insn. */
#define D16 (SR2 + 1)
{ 16, 16, NULL, NULL, V850_OPERAND_SIGNED },
/* The DISP9 field in a format 3 insn, relaxable. */
#define D9_RELAX (D16 + 1)
{ 9, 0, insert_d9, extract_d9, V850_OPERAND_RELAX | V850_OPERAND_SIGNED | V850_OPERAND_DISP },
/* The DISP22 field in a format 4 insn, relaxable.
This _must_ follow D9_RELAX; the assembler assumes that the longer
version immediately follows the shorter version for relaxing. */
#define D22 (D9_RELAX + 1)
{ 22, 0, insert_d22, extract_d22, V850_OPERAND_SIGNED | V850_OPERAND_DISP },
/* The signed disp4 field in a format 4 insn. */
#define D4 (D22 + 1)
{ 4, 0, NULL, NULL, 0},
/* The unsigned disp5 field in a format 4 insn. */
#define D5_4 (D4 + 1)
{ 4, 0, insert_d5_4, extract_d5_4, 0 },
/* The disp16 field in an format 7 unsigned byte load insn. */
#define D16_16 (D5_4 + 1)
{ -1, 0xfffe0020, insert_d16_16, extract_d16_16, 0 },
/* Third register in conditional moves. */
#define R3 (D16_16 + 1)
{ 5, 27, NULL, NULL, V850_OPERAND_REG },
/* Condition code in conditional moves. */
#define MOVCC (R3 + 1)
{ 4, 17, NULL, NULL, V850_OPERAND_CC },
/* The imm9 field in a multiply word. */
#define I9 (MOVCC + 1)
{ 9, 0, insert_i9, extract_i9, V850_OPERAND_SIGNED },
/* The unsigned imm9 field in a multiply word. */
#define U9 (I9 + 1)
{ 9, 0, insert_u9, extract_u9, 0 },
/* A list of registers in a prepare/dispose instruction. */
#define LIST12 (U9 + 1)
{ -1, 0xffe00001, NULL, NULL, V850E_PUSH_POP },
/* The IMM6 field in a call instruction. */
#define I6 (LIST12 + 1)
{ 6, 0, NULL, NULL, 0 },
/* The 16 bit immediate following a 32 bit instruction. */
#define IMM16 (I6 + 1)
{ 16, 16, NULL, NULL, V850_OPERAND_SIGNED | V850E_IMMEDIATE16 },
/* The 32 bit immediate following a 32 bit instruction. */
#define IMM32 (IMM16 + 1)
{ 0, 0, NULL, NULL, V850E_IMMEDIATE32 },
/* The imm5 field in a push/pop instruction. */
#define IMM5 (IMM32 + 1)
{ 5, 1, NULL, NULL, 0 },
/* Reg2 in dispose instruction. */
#define R2DISPOSE (IMM5 + 1)
{ 5, 16, NULL, NULL, V850_OPERAND_REG | V850_NOT_R0 },
/* Stack pointer in prepare instruction. */
#define SP (R2DISPOSE + 1)
{ 2, 19, insert_spe, extract_spe, V850_OPERAND_REG },
/* The IMM5 field in a divide N step instruction. */
#define I5DIV (SP + 1)
{ 9, 0, insert_i5div, extract_i5div, V850_OPERAND_SIGNED },
/* The list of registers in a PUSHMH/POPMH instruction. */
#define LIST18_H (I5DIV + 1)
{ -1, 0xfff8000f, NULL, NULL, V850E_PUSH_POP },
/* The list of registers in a PUSHML/POPML instruction. */
#define LIST18_L (LIST18_H + 1)
{ -1, 0xfff8001f, NULL, NULL, V850E_PUSH_POP }, /* The setting of the 4th bit is a flag to disassmble() in v850-dis.c */
} ;
/* reg-reg instruction format (Format I) */
#define IF1 {R1, R2}
/* imm-reg instruction format (Format II) */
#define IF2 {I5, R2}
/* conditional branch instruction format (Format III) */
#define IF3 {D9_RELAX}
/* 3 operand instruction (Format VI) */
#define IF6 {I16, R1, R2}
/* 3 operand instruction (Format VI) */
#define IF6U {I16U, R1, R2}
/* The opcode table.
The format of the opcode table is:
NAME OPCODE MASK { OPERANDS } MEMOP PROCESSOR
NAME is the name of the instruction.
OPCODE is the instruction opcode.
MASK is the opcode mask; this is used to tell the disassembler
which bits in the actual opcode must match OPCODE.
OPERANDS is the list of operands.
MEMOP specifies which operand (if any) is a memory operand.
PROCESSORS specifies which CPU(s) support the opcode.
The disassembler reads the table in order and prints the first
instruction which matches, so this table is sorted to put more
specific instructions before more general instructions. It is also
sorted by major opcode.
The table is also sorted by name. This is used by the assembler.
When parsing an instruction the assembler finds the first occurance
of the name of the instruciton in this table and then attempts to
match the instruction's arguments with description of the operands
associated with the entry it has just found in this table. If the
match fails the assembler looks at the next entry in this table.
If that entry has the same name as the previous entry, then it
tries to match the instruction against that entry and so on. This
is how the assembler copes with multiple, different formats of the
same instruction. */
const struct v850_opcode v850_opcodes[] =
{
{ "breakpoint", 0xffff, 0xffff, {UNUSED}, 0, PROCESSOR_ALL },
{ "jmp", one (0x0060), one (0xffe0), {R1}, 1, PROCESSOR_ALL },
/* load/store instructions */
{ "sld.bu", one (0x0300), one (0x0780), {D7, EP, R2_NOTR0}, 1, PROCESSOR_V850EA },
{ "sld.bu", one (0x0060), one (0x07f0), {D4, EP, R2_NOTR0}, 1, PROCESSOR_V850E },
{ "sld.hu", one (0x0400), one (0x0780), {D8_7, EP, R2_NOTR0}, 1, PROCESSOR_V850EA },
{ "sld.hu", one (0x0070), one (0x07f0), {D5_4, EP, R2_NOTR0}, 1, PROCESSOR_V850E },
{ "sld.b", one (0x0060), one (0x07f0), {D4, EP, R2}, 1, PROCESSOR_V850EA },
{ "sld.b", one (0x0300), one (0x0780), {D7, EP, R2}, 1, PROCESSOR_V850E },
{ "sld.b", one (0x0300), one (0x0780), {D7, EP, R2}, 1, PROCESSOR_V850 },
{ "sld.h", one (0x0070), one (0x07f0), {D5_4, EP, R2}, 1, PROCESSOR_V850EA },
{ "sld.h", one (0x0400), one (0x0780), {D8_7, EP, R2}, 1, PROCESSOR_V850E },
{ "sld.h", one (0x0400), one (0x0780), {D8_7, EP, R2}, 1, PROCESSOR_V850 },
{ "sld.w", one (0x0500), one (0x0781), {D8_6, EP, R2}, 1, PROCESSOR_ALL },
{ "sst.b", one (0x0380), one (0x0780), {R2, D7, EP}, 2, PROCESSOR_ALL },
{ "sst.h", one (0x0480), one (0x0780), {R2, D8_7, EP}, 2, PROCESSOR_ALL },
{ "sst.w", one (0x0501), one (0x0781), {R2, D8_6, EP}, 2, PROCESSOR_ALL },
{ "pushml", two (0x07e0, 0x0001), two (0xfff0, 0x0007), {LIST18_L}, 0, PROCESSOR_V850EA },
{ "pushmh", two (0x07e0, 0x0003), two (0xfff0, 0x0007), {LIST18_H}, 0, PROCESSOR_V850EA },
{ "popml", two (0x07f0, 0x0001), two (0xfff0, 0x0007), {LIST18_L}, 0, PROCESSOR_V850EA },
{ "popmh", two (0x07f0, 0x0003), two (0xfff0, 0x0007), {LIST18_H}, 0, PROCESSOR_V850EA },
{ "prepare", two (0x0780, 0x0003), two (0xffc0, 0x001f), {LIST12, IMM5, SP}, 0, PROCESSOR_NOT_V850 },
{ "prepare", two (0x0780, 0x000b), two (0xffc0, 0x001f), {LIST12, IMM5, IMM16}, 0, PROCESSOR_NOT_V850 },
{ "prepare", two (0x0780, 0x0013), two (0xffc0, 0x001f), {LIST12, IMM5, IMM16}, 0, PROCESSOR_NOT_V850 },
{ "prepare", two (0x0780, 0x001b), two (0xffc0, 0x001f), {LIST12, IMM5, IMM32}, 0, PROCESSOR_NOT_V850 },
{ "prepare", two (0x0780, 0x0001), two (0xffc0, 0x001f), {LIST12, IMM5}, 0, PROCESSOR_NOT_V850 },
{ "dispose", one (0x0640), one (0xffc0), {IMM5, LIST12, R2DISPOSE},0, PROCESSOR_NOT_V850 },
{ "dispose", two (0x0640, 0x0000), two (0xffc0, 0x001f), {IMM5, LIST12}, 0, PROCESSOR_NOT_V850 },
{ "ld.b", two (0x0700, 0x0000), two (0x07e0, 0x0000), {D16, R1, R2}, 1, PROCESSOR_ALL },
{ "ld.h", two (0x0720, 0x0000), two (0x07e0, 0x0001), {D16_15, R1, R2}, 1, PROCESSOR_ALL },
{ "ld.w", two (0x0720, 0x0001), two (0x07e0, 0x0001), {D16_15, R1, R2}, 1, PROCESSOR_ALL },
{ "ld.bu", two (0x0780, 0x0001), two (0x07c0, 0x0001), {D16_16, R1, R2_NOTR0}, 1, PROCESSOR_NOT_V850 },
{ "ld.hu", two (0x07e0, 0x0001), two (0x07e0, 0x0001), {D16_15, R1, R2_NOTR0}, 1, PROCESSOR_NOT_V850 },
{ "st.b", two (0x0740, 0x0000), two (0x07e0, 0x0000), {R2, D16, R1}, 2, PROCESSOR_ALL },
{ "st.h", two (0x0760, 0x0000), two (0x07e0, 0x0001), {R2, D16_15, R1}, 2, PROCESSOR_ALL },
{ "st.w", two (0x0760, 0x0001), two (0x07e0, 0x0001), {R2, D16_15, R1}, 2, PROCESSOR_ALL },
/* byte swap/extend instructions */
{ "zxb", one (0x0080), one (0xffe0), {R1_NOTR0}, 0, PROCESSOR_NOT_V850 },
{ "zxh", one (0x00c0), one (0xffe0), {R1_NOTR0}, 0, PROCESSOR_NOT_V850 },
{ "sxb", one (0x00a0), one (0xffe0), {R1_NOTR0}, 0, PROCESSOR_NOT_V850 },
{ "sxh", one (0x00e0), one (0xffe0), {R1_NOTR0}, 0, PROCESSOR_NOT_V850 },
{ "bsh", two (0x07e0, 0x0342), two (0x07ff, 0x07ff), {R2, R3}, 0, PROCESSOR_NOT_V850 },
{ "bsw", two (0x07e0, 0x0340), two (0x07ff, 0x07ff), {R2, R3}, 0, PROCESSOR_NOT_V850 },
{ "hsw", two (0x07e0, 0x0344), two (0x07ff, 0x07ff), {R2, R3}, 0, PROCESSOR_NOT_V850 },
/* jump table instructions */
{ "switch", one (0x0040), one (0xffe0), {R1}, 1, PROCESSOR_NOT_V850 },
{ "callt", one (0x0200), one (0xffc0), {I6}, 0, PROCESSOR_NOT_V850 },
{ "ctret", two (0x07e0, 0x0144), two (0xffff, 0xffff), {0}, 0, PROCESSOR_NOT_V850 },
/* arithmetic operation instructions */
{ "setf", two (0x07e0, 0x0000), two (0x07f0, 0xffff), {CCCC, R2}, 0, PROCESSOR_ALL },
{ "cmov", two (0x07e0, 0x0320), two (0x07e0, 0x07e1), {MOVCC, R1, R2, R3}, 0, PROCESSOR_NOT_V850 },
{ "cmov", two (0x07e0, 0x0300), two (0x07e0, 0x07e1), {MOVCC, I5, R2, R3}, 0, PROCESSOR_NOT_V850 },
{ "mul", two (0x07e0, 0x0220), two (0x07e0, 0x07ff), {R1, R2, R3}, 0, PROCESSOR_NOT_V850 },
{ "mul", two (0x07e0, 0x0240), two (0x07e0, 0x07c3), {I9, R2, R3}, 0, PROCESSOR_NOT_V850 },
{ "mulu", two (0x07e0, 0x0222), two (0x07e0, 0x07ff), {R1, R2, R3}, 0, PROCESSOR_NOT_V850 },
{ "mulu", two (0x07e0, 0x0242), two (0x07e0, 0x07c3), {U9, R2, R3}, 0, PROCESSOR_NOT_V850 },
{ "div", two (0x07e0, 0x02c0), two (0x07e0, 0x07ff), {R1, R2, R3}, 0, PROCESSOR_NOT_V850 },
{ "divu", two (0x07e0, 0x02c2), two (0x07e0, 0x07ff), {R1, R2, R3}, 0, PROCESSOR_NOT_V850 },
{ "divhu", two (0x07e0, 0x0282), two (0x07e0, 0x07ff), {R1, R2, R3}, 0, PROCESSOR_NOT_V850 },
{ "divh", two (0x07e0, 0x0280), two (0x07e0, 0x07ff), {R1, R2, R3}, 0, PROCESSOR_NOT_V850 },
{ "divh", OP (0x02), OP_MASK, {R1, R2_NOTR0}, 0, PROCESSOR_ALL },
{ "divhn", two (0x07e0, 0x0280), two (0x07e0, 0x07c3), {I5DIV, R1, R2, R3}, 0, PROCESSOR_V850EA },
{ "divhun", two (0x07e0, 0x0282), two (0x07e0, 0x07c3), {I5DIV, R1, R2, R3}, 0, PROCESSOR_V850EA },
{ "divn", two (0x07e0, 0x02c0), two (0x07e0, 0x07c3), {I5DIV, R1, R2, R3}, 0, PROCESSOR_V850EA },
{ "divun", two (0x07e0, 0x02c2), two (0x07e0, 0x07c3), {I5DIV, R1, R2, R3}, 0, PROCESSOR_V850EA },
{ "sdivhn", two (0x07e0, 0x0180), two (0x07e0, 0x07c3), {I5DIV, R1, R2, R3}, 0, PROCESSOR_V850EA },
{ "sdivhun", two (0x07e0, 0x0182), two (0x07e0, 0x07c3), {I5DIV, R1, R2, R3}, 0, PROCESSOR_V850EA },
{ "sdivn", two (0x07e0, 0x01c0), two (0x07e0, 0x07c3), {I5DIV, R1, R2, R3}, 0, PROCESSOR_V850EA },
{ "sdivun", two (0x07e0, 0x01c2), two (0x07e0, 0x07c3), {I5DIV, R1, R2, R3}, 0, PROCESSOR_V850EA },
{ "nop", one (0x00), one (0xffff), {0}, 0, PROCESSOR_ALL },
{ "mov", OP (0x10), OP_MASK, {I5, R2_NOTR0}, 0, PROCESSOR_ALL },
{ "mov", one (0x0620), one (0xffe0), {IMM32, R1_NOTR0}, 0, PROCESSOR_NOT_V850 },
{ "mov", OP (0x00), OP_MASK, {R1, R2_NOTR0}, 0, PROCESSOR_ALL },
{ "movea", OP (0x31), OP_MASK, {I16, R1, R2_NOTR0}, 0, PROCESSOR_ALL },
{ "movhi", OP (0x32), OP_MASK, {I16U, R1, R2_NOTR0}, 0, PROCESSOR_ALL },
{ "add", OP (0x0e), OP_MASK, IF1, 0, PROCESSOR_ALL },
{ "add", OP (0x12), OP_MASK, IF2, 0, PROCESSOR_ALL },
{ "addi", OP (0x30), OP_MASK, IF6, 0, PROCESSOR_ALL },
{ "sub", OP (0x0d), OP_MASK, IF1, 0, PROCESSOR_ALL },
{ "subr", OP (0x0c), OP_MASK, IF1, 0, PROCESSOR_ALL },
{ "mulh", OP (0x17), OP_MASK, {I5, R2_NOTR0}, 0, PROCESSOR_ALL },
{ "mulh", OP (0x07), OP_MASK, {R1, R2_NOTR0}, 0, PROCESSOR_ALL },
{ "mulhi", OP (0x37), OP_MASK, {I16, R1, R2_NOTR0}, 0, PROCESSOR_ALL },
{ "cmp", OP (0x0f), OP_MASK, IF1, 0, PROCESSOR_ALL },
{ "cmp", OP (0x13), OP_MASK, IF2, 0, PROCESSOR_ALL },
/* saturated operation instructions */
{ "satadd", OP (0x11), OP_MASK, {I5, R2_NOTR0}, 0, PROCESSOR_ALL },
{ "satadd", OP (0x06), OP_MASK, {R1, R2_NOTR0}, 0, PROCESSOR_ALL },
{ "satsub", OP (0x05), OP_MASK, {R1, R2_NOTR0}, 0, PROCESSOR_ALL },
{ "satsubi", OP (0x33), OP_MASK, {I16, R1, R2_NOTR0}, 0, PROCESSOR_ALL },
{ "satsubr", OP (0x04), OP_MASK, {R1, R2_NOTR0}, 0, PROCESSOR_ALL },
/* logical operation instructions */
{ "tst", OP (0x0b), OP_MASK, IF1, 0, PROCESSOR_ALL },
{ "or", OP (0x08), OP_MASK, IF1, 0, PROCESSOR_ALL },
{ "ori", OP (0x34), OP_MASK, IF6U, 0, PROCESSOR_ALL },
{ "and", OP (0x0a), OP_MASK, IF1, 0, PROCESSOR_ALL },
{ "andi", OP (0x36), OP_MASK, IF6U, 0, PROCESSOR_ALL },
{ "xor", OP (0x09), OP_MASK, IF1, 0, PROCESSOR_ALL },
{ "xori", OP (0x35), OP_MASK, IF6U, 0, PROCESSOR_ALL },
{ "not", OP (0x01), OP_MASK, IF1, 0, PROCESSOR_ALL },
{ "sar", OP (0x15), OP_MASK, {I5U, R2}, 0, PROCESSOR_ALL },
{ "sar", two (0x07e0, 0x00a0), two (0x07e0, 0xffff), {R1, R2}, 0, PROCESSOR_ALL },
{ "shl", OP (0x16), OP_MASK, {I5U, R2}, 0, PROCESSOR_ALL },
{ "shl", two (0x07e0, 0x00c0), two (0x07e0, 0xffff), {R1, R2}, 0, PROCESSOR_ALL },
{ "shr", OP (0x14), OP_MASK, {I5U, R2}, 0, PROCESSOR_ALL },
{ "shr", two (0x07e0, 0x0080), two (0x07e0, 0xffff), {R1, R2}, 0, PROCESSOR_ALL },
{ "sasf", two (0x07e0, 0x0200), two (0x07f0, 0xffff), {CCCC, R2}, 0, PROCESSOR_NOT_V850 },
/* branch instructions */
/* signed integer */
{ "bgt", BOP (0xf), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "bge", BOP (0xe), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "blt", BOP (0x6), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "ble", BOP (0x7), BOP_MASK, IF3, 0, PROCESSOR_ALL },
/* unsigned integer */
{ "bh", BOP (0xb), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "bnh", BOP (0x3), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "bl", BOP (0x1), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "bnl", BOP (0x9), BOP_MASK, IF3, 0, PROCESSOR_ALL },
/* common */
{ "be", BOP (0x2), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "bne", BOP (0xa), BOP_MASK, IF3, 0, PROCESSOR_ALL },
/* others */
{ "bv", BOP (0x0), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "bnv", BOP (0x8), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "bn", BOP (0x4), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "bp", BOP (0xc), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "bc", BOP (0x1), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "bnc", BOP (0x9), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "bz", BOP (0x2), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "bnz", BOP (0xa), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "br", BOP (0x5), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "bsa", BOP (0xd), BOP_MASK, IF3, 0, PROCESSOR_ALL },
/* Branch macros.
We use the short form in the opcode/mask fields. The assembler
will twiddle bits as necessary if the long form is needed. */
/* signed integer */
{ "jgt", BOP (0xf), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jge", BOP (0xe), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jlt", BOP (0x6), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jle", BOP (0x7), BOP_MASK, IF3, 0, PROCESSOR_ALL },
/* unsigned integer */
{ "jh", BOP (0xb), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jnh", BOP (0x3), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jl", BOP (0x1), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jnl", BOP (0x9), BOP_MASK, IF3, 0, PROCESSOR_ALL },
/* common */
{ "je", BOP (0x2), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jne", BOP (0xa), BOP_MASK, IF3, 0, PROCESSOR_ALL },
/* others */
{ "jv", BOP (0x0), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jnv", BOP (0x8), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jn", BOP (0x4), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jp", BOP (0xc), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jc", BOP (0x1), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jnc", BOP (0x9), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jz", BOP (0x2), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jnz", BOP (0xa), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jsa", BOP (0xd), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jbr", BOP (0x5), BOP_MASK, IF3, 0, PROCESSOR_ALL },
{ "jr", one (0x0780), two (0xffc0, 0x0001), {D22}, 0, PROCESSOR_ALL },
{ "jarl", one (0x0780), two (0x07c0, 0x0001), {D22, R2}, 0, PROCESSOR_ALL},
/* bit manipulation instructions */
{ "set1", two (0x07c0, 0x0000), two (0xc7e0, 0x0000), {B3, D16, R1}, 2, PROCESSOR_ALL },
{ "set1", two (0x07e0, 0x00e0), two (0x07e0, 0xffff), {R2, R1}, 2, PROCESSOR_NOT_V850 },
{ "not1", two (0x47c0, 0x0000), two (0xc7e0, 0x0000), {B3, D16, R1}, 2, PROCESSOR_ALL },
{ "not1", two (0x07e0, 0x00e2), two (0x07e0, 0xffff), {R2, R1}, 2, PROCESSOR_NOT_V850 },
{ "clr1", two (0x87c0, 0x0000), two (0xc7e0, 0x0000), {B3, D16, R1}, 2, PROCESSOR_ALL },
{ "clr1", two (0x07e0, 0x00e4), two (0x07e0, 0xffff), {R2, R1}, 2, PROCESSOR_NOT_V850 },
{ "tst1", two (0xc7c0, 0x0000), two (0xc7e0, 0x0000), {B3, D16, R1}, 2, PROCESSOR_ALL },
{ "tst1", two (0x07e0, 0x00e6), two (0x07e0, 0xffff), {R2, R1}, 2, PROCESSOR_NOT_V850 },
/* special instructions */
{ "di", two (0x07e0, 0x0160), two (0xffff, 0xffff), {0}, 0, PROCESSOR_ALL },
{ "ei", two (0x87e0, 0x0160), two (0xffff, 0xffff), {0}, 0, PROCESSOR_ALL },
{ "halt", two (0x07e0, 0x0120), two (0xffff, 0xffff), {0}, 0, PROCESSOR_ALL },
{ "reti", two (0x07e0, 0x0140), two (0xffff, 0xffff), {0}, 0, PROCESSOR_ALL },
{ "trap", two (0x07e0, 0x0100), two (0xffe0, 0xffff), {I5U}, 0, PROCESSOR_ALL },
{ "ldsr", two (0x07e0, 0x0020), two (0x07e0, 0xffff), {R1, SR2}, 0, PROCESSOR_ALL },
{ "stsr", two (0x07e0, 0x0040), two (0x07e0, 0xffff), {SR1, R2}, 0, PROCESSOR_ALL },
{ 0, 0, 0, {0}, 0, 0 },
} ;
const int v850_num_opcodes =
sizeof (v850_opcodes) / sizeof (v850_opcodes[0]);

View File

@ -1,587 +0,0 @@
/* Disassemble z8000 code.
Copyright 1992, 1993, 1998, 2000, 2001
Free Software Foundation, Inc.
This file is part of GNU Binutils.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "sysdep.h"
#include "dis-asm.h"
#define DEFINE_TABLE
#include "z8k-opc.h"
#include <setjmp.h>
typedef struct {
/* These are all indexed by nibble number (i.e only every other entry
of bytes is used, and every 4th entry of words). */
unsigned char nibbles[24];
unsigned char bytes[24];
unsigned short words[24];
/* Nibble number of first word not yet fetched. */
int max_fetched;
bfd_vma insn_start;
jmp_buf bailout;
long tabl_index;
char instr_asmsrc[80];
unsigned long arg_reg[0x0f];
unsigned long immediate;
unsigned long displacement;
unsigned long address;
unsigned long cond_code;
unsigned long ctrl_code;
unsigned long flags;
unsigned long interrupts;
} instr_data_s;
static int fetch_data PARAMS ((struct disassemble_info *, int));
/* Make sure that bytes from INFO->PRIVATE_DATA->BUFFER (inclusive)
to ADDR (exclusive) are valid. Returns 1 for success, longjmps
on error. */
#define FETCH_DATA(info, nibble) \
((nibble) < ((instr_data_s *) (info->private_data))->max_fetched \
? 1 : fetch_data ((info), (nibble)))
static int
fetch_data (info, nibble)
struct disassemble_info *info;
int nibble;
{
unsigned char mybuf[20];
int status;
instr_data_s *priv = (instr_data_s *) info->private_data;
if ((nibble % 4) != 0)
abort ();
status = (*info->read_memory_func) (priv->insn_start,
(bfd_byte *) mybuf,
nibble / 2,
info);
if (status != 0)
{
(*info->memory_error_func) (status, priv->insn_start, info);
longjmp (priv->bailout, 1);
}
{
int i;
unsigned char *p = mybuf;
for (i = 0; i < nibble;)
{
priv->words[i] = (p[0] << 8) | p[1];
priv->bytes[i] = *p;
priv->nibbles[i++] = *p >> 4;
priv->nibbles[i++] = *p & 0xf;
++p;
priv->bytes[i] = *p;
priv->nibbles[i++] = *p >> 4;
priv->nibbles[i++] = *p & 0xf;
++p;
}
}
priv->max_fetched = nibble;
return 1;
}
static char *codes[16] = {
"f",
"lt",
"le",
"ule",
"ov/pe",
"mi",
"eq",
"c/ult",
"t",
"ge",
"gt",
"ugt",
"nov/po",
"pl",
"ne",
"nc/uge"
};
static char *ctrl_names[8] = {
"<invld>",
"flags",
"fcw",
"refresh",
"psapseg",
"psapoff",
"nspseg",
"nspoff"
};
static int seg_length;
static int print_insn_z8k PARAMS ((bfd_vma, disassemble_info *, int));
int z8k_lookup_instr PARAMS ((unsigned char *, disassemble_info *));
static void output_instr
PARAMS ((instr_data_s *, unsigned long, disassemble_info *));
static void unpack_instr PARAMS ((instr_data_s *, int, disassemble_info *));
static void unparse_instr PARAMS ((instr_data_s *, int));
static int
print_insn_z8k (addr, info, is_segmented)
bfd_vma addr;
disassemble_info *info;
int is_segmented;
{
instr_data_s instr_data;
info->private_data = (PTR) &instr_data;
instr_data.max_fetched = 0;
instr_data.insn_start = addr;
if (setjmp (instr_data.bailout) != 0)
/* Error return. */
return -1;
instr_data.tabl_index = z8k_lookup_instr (instr_data.nibbles, info);
if (instr_data.tabl_index > 0)
{
unpack_instr (&instr_data, is_segmented, info);
unparse_instr (&instr_data, is_segmented);
output_instr (&instr_data, addr, info);
return z8k_table[instr_data.tabl_index].length + seg_length;
}
else
{
FETCH_DATA (info, 4);
(*info->fprintf_func) (info->stream, ".word %02x%02x",
instr_data.bytes[0], instr_data.bytes[2]);
return 2;
}
}
int
print_insn_z8001 (addr, info)
bfd_vma addr;
disassemble_info *info;
{
return print_insn_z8k (addr, info, 1);
}
int
print_insn_z8002 (addr, info)
bfd_vma addr;
disassemble_info *info;
{
return print_insn_z8k (addr, info, 0);
}
int
z8k_lookup_instr (nibbles, info)
unsigned char *nibbles;
disassemble_info *info;
{
int nibl_index, tabl_index;
int nibl_matched;
unsigned short instr_nibl;
unsigned short tabl_datum, datum_class, datum_value;
nibl_matched = 0;
tabl_index = 0;
while (!nibl_matched && z8k_table[tabl_index].name)
{
nibl_matched = 1;
for (nibl_index = 0;
nibl_index < z8k_table[tabl_index].length * 2 && nibl_matched;
nibl_index++)
{
if ((nibl_index % 4) == 0)
/* Fetch one word at a time. */
FETCH_DATA (info, nibl_index + 4);
instr_nibl = nibbles[nibl_index];
tabl_datum = z8k_table[tabl_index].byte_info[nibl_index];
datum_class = tabl_datum & CLASS_MASK;
datum_value = ~CLASS_MASK & tabl_datum;
switch (datum_class)
{
case CLASS_BIT:
if (datum_value != instr_nibl)
nibl_matched = 0;
break;
case CLASS_00II:
if (!((~instr_nibl) & 0x4))
nibl_matched = 0;
break;
case CLASS_01II:
if (!(instr_nibl & 0x4))
nibl_matched = 0;
break;
case CLASS_0CCC:
if (!((~instr_nibl) & 0x8))
nibl_matched = 0;
break;
case CLASS_1CCC:
if (!(instr_nibl & 0x8))
nibl_matched = 0;
break;
case CLASS_0DISP7:
if (!((~instr_nibl) & 0x8))
nibl_matched = 0;
nibl_index += 1;
break;
case CLASS_1DISP7:
if (!(instr_nibl & 0x8))
nibl_matched = 0;
nibl_index += 1;
break;
case CLASS_REGN0:
if (instr_nibl == 0)
nibl_matched = 0;
break;
case CLASS_BIT_1OR2:
if ((instr_nibl | 0x2) != (datum_value | 0x2))
nibl_matched = 0;
break;
default:
break;
}
}
if (nibl_matched)
{
return tabl_index;
}
tabl_index++;
}
return -1;
}
static void
output_instr (instr_data, addr, info)
instr_data_s *instr_data;
unsigned long addr ATTRIBUTE_UNUSED;
disassemble_info *info;
{
int loop, loop_limit;
char tmp_str[20];
char out_str[100];
strcpy (out_str, "\t");
loop_limit = (z8k_table[instr_data->tabl_index].length + seg_length) * 2;
FETCH_DATA (info, loop_limit);
for (loop = 0; loop < loop_limit; loop++)
{
sprintf (tmp_str, "%x", instr_data->nibbles[loop]);
strcat (out_str, tmp_str);
}
while (loop++ < 8)
{
strcat (out_str, " ");
}
strcat (out_str, instr_data->instr_asmsrc);
(*info->fprintf_func) (info->stream, "%s", out_str);
}
static void
unpack_instr (instr_data, is_segmented, info)
instr_data_s *instr_data;
int is_segmented;
disassemble_info *info;
{
int nibl_count, loop;
unsigned short instr_nibl, instr_byte, instr_word;
long instr_long;
unsigned int tabl_datum, datum_class;
unsigned short datum_value;
nibl_count = 0;
loop = 0;
seg_length = 0;
while (z8k_table[instr_data->tabl_index].byte_info[loop] != 0)
{
FETCH_DATA (info, nibl_count + 4 - (nibl_count % 4));
instr_nibl = instr_data->nibbles[nibl_count];
instr_byte = instr_data->bytes[nibl_count & ~1];
instr_word = instr_data->words[nibl_count & ~3];
tabl_datum = z8k_table[instr_data->tabl_index].byte_info[loop];
datum_class = tabl_datum & CLASS_MASK;
datum_value = tabl_datum & ~CLASS_MASK;
switch (datum_class)
{
case CLASS_DISP:
switch (datum_value)
{
case ARG_DISP16:
instr_data->displacement = instr_data->insn_start + 4
+ (signed short) (instr_word & 0xffff);
nibl_count += 3;
break;
case ARG_DISP12:
if (instr_word & 0x800)
{
/* neg. 12 bit displacement */
instr_data->displacement = instr_data->insn_start + 2
- (signed short) ((instr_word & 0xfff) | 0xf000) * 2;
}
else
{
instr_data->displacement = instr_data->insn_start + 2
- (instr_word & 0x0fff) * 2;
}
nibl_count += 2;
break;
default:
break;
}
break;
case CLASS_IMM:
switch (datum_value)
{
case ARG_IMM4:
instr_data->immediate = instr_nibl;
break;
case ARG_NIM8:
instr_data->immediate = (-instr_byte);
nibl_count += 1;
break;
case ARG_IMM8:
instr_data->immediate = instr_byte;
nibl_count += 1;
break;
case ARG_IMM16:
instr_data->immediate = instr_word;
nibl_count += 3;
break;
case ARG_IMM32:
FETCH_DATA (info, nibl_count + 8);
instr_long = (instr_data->words[nibl_count] << 16)
| (instr_data->words[nibl_count + 4]);
instr_data->immediate = instr_long;
nibl_count += 7;
break;
case ARG_IMMN:
instr_data->immediate = instr_nibl - 1;
break;
case ARG_IMM4M1:
instr_data->immediate = instr_nibl + 1;
break;
case ARG_IMM_1:
instr_data->immediate = 1;
break;
case ARG_IMM_2:
instr_data->immediate = 2;
break;
case ARG_IMM2:
instr_data->immediate = instr_nibl & 0x3;
break;
default:
break;
}
break;
case CLASS_CC:
instr_data->cond_code = instr_nibl;
break;
case CLASS_ADDRESS:
if (is_segmented)
{
if (instr_nibl & 0x8)
{
FETCH_DATA (info, nibl_count + 8);
instr_long = (instr_data->words[nibl_count] << 16)
| (instr_data->words[nibl_count + 4]);
instr_data->address = ((instr_word & 0x7f00) << 8)
+ (instr_long & 0xffff);
nibl_count += 7;
seg_length = 2;
}
else
{
instr_data->address = ((instr_word & 0x7f00) << 8)
+ (instr_word & 0x00ff);
nibl_count += 3;
}
}
else
{
instr_data->address = instr_word;
nibl_count += 3;
}
break;
case CLASS_0CCC:
case CLASS_1CCC:
instr_data->ctrl_code = instr_nibl & 0x7;
break;
case CLASS_0DISP7:
instr_data->displacement =
instr_data->insn_start + 2 - (instr_byte & 0x7f) * 2;
nibl_count += 1;
break;
case CLASS_1DISP7:
instr_data->displacement =
instr_data->insn_start + 2 - (instr_byte & 0x7f) * 2;
nibl_count += 1;
break;
case CLASS_01II:
instr_data->interrupts = instr_nibl & 0x3;
break;
case CLASS_00II:
instr_data->interrupts = instr_nibl & 0x3;
break;
case CLASS_BIT:
instr_data->ctrl_code = instr_nibl & 0x7;
break;
case CLASS_FLAGS:
instr_data->flags = instr_nibl;
break;
case CLASS_REG:
instr_data->arg_reg[datum_value] = instr_nibl;
break;
case CLASS_REGN0:
instr_data->arg_reg[datum_value] = instr_nibl;
break;
case CLASS_DISP8:
instr_data->displacement =
instr_data->insn_start + 2 + (signed char) instr_byte * 2;
nibl_count += 1;
break;
default:
abort ();
break;
}
loop += 1;
nibl_count += 1;
}
}
static void
unparse_instr (instr_data, is_segmented)
instr_data_s *instr_data;
int is_segmented;
{
unsigned short datum_value;
unsigned int tabl_datum, datum_class;
int loop, loop_limit;
char out_str[80], tmp_str[25];
sprintf (out_str, "\t%s\t", z8k_table[instr_data->tabl_index].name);
loop_limit = z8k_table[instr_data->tabl_index].noperands;
for (loop = 0; loop < loop_limit; loop++)
{
if (loop)
strcat (out_str, ",");
tabl_datum = z8k_table[instr_data->tabl_index].arg_info[loop];
datum_class = tabl_datum & CLASS_MASK;
datum_value = tabl_datum & ~CLASS_MASK;
switch (datum_class)
{
case CLASS_X:
sprintf (tmp_str, "0x%0lx(R%ld)", instr_data->address,
instr_data->arg_reg[datum_value]);
strcat (out_str, tmp_str);
break;
case CLASS_BA:
sprintf (tmp_str, "r%ld(#%lx)", instr_data->arg_reg[datum_value],
instr_data->immediate);
strcat (out_str, tmp_str);
break;
case CLASS_BX:
sprintf (tmp_str, "r%ld(R%ld)", instr_data->arg_reg[datum_value],
instr_data->arg_reg[ARG_RX]);
strcat (out_str, tmp_str);
break;
case CLASS_DISP:
sprintf (tmp_str, "0x%0lx", instr_data->displacement);
strcat (out_str, tmp_str);
break;
case CLASS_IMM:
sprintf (tmp_str, "#0x%0lx", instr_data->immediate);
strcat (out_str, tmp_str);
break;
case CLASS_CC:
sprintf (tmp_str, "%s", codes[instr_data->cond_code]);
strcat (out_str, tmp_str);
break;
case CLASS_CTRL:
sprintf (tmp_str, "%s", ctrl_names[instr_data->ctrl_code]);
strcat (out_str, tmp_str);
break;
case CLASS_DA:
case CLASS_ADDRESS:
sprintf (tmp_str, "0x%0lx", instr_data->address);
strcat (out_str, tmp_str);
break;
case CLASS_IR:
if (is_segmented)
sprintf (tmp_str, "@rr%ld", instr_data->arg_reg[datum_value]);
else
sprintf (tmp_str, "@r%ld", instr_data->arg_reg[datum_value]);
strcat (out_str, tmp_str);
break;
case CLASS_FLAGS:
sprintf (tmp_str, "0x%0lx", instr_data->flags);
strcat (out_str, tmp_str);
break;
case CLASS_REG_BYTE:
if (instr_data->arg_reg[datum_value] >= 0x8)
sprintf (tmp_str, "rl%ld",
instr_data->arg_reg[datum_value] - 0x8);
else
sprintf (tmp_str, "rh%ld", instr_data->arg_reg[datum_value]);
strcat (out_str, tmp_str);
break;
case CLASS_REG_WORD:
sprintf (tmp_str, "r%ld", instr_data->arg_reg[datum_value]);
strcat (out_str, tmp_str);
break;
case CLASS_REG_QUAD:
sprintf (tmp_str, "rq%ld", instr_data->arg_reg[datum_value]);
strcat (out_str, tmp_str);
break;
case CLASS_REG_LONG:
sprintf (tmp_str, "rr%ld", instr_data->arg_reg[datum_value]);
strcat (out_str, tmp_str);
break;
case CLASS_PR:
if (is_segmented)
sprintf (tmp_str, "rr%ld", instr_data->arg_reg[datum_value]);
else
sprintf (tmp_str, "r%ld", instr_data->arg_reg[datum_value]);
strcat (out_str, tmp_str);
break;
default:
abort ();
break;
}
}
strcpy (instr_data->instr_asmsrc, out_str);
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff