Merge LinuxKPI changes from DragonflyBSD:

- Reimplement ktime header file to distinguish more from Linux.
- Add new time header file to handle time related Linux functions.

Sponsored by:	Mellanox Technologies
This commit is contained in:
Hans Petter Selasky 2015-10-19 11:46:48 +00:00
parent ecfc226c7d
commit 64bda586e1
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=289572
3 changed files with 242 additions and 239 deletions

View File

@ -31,9 +31,11 @@
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/time.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/limits.h>
static inline int
msecs_to_jiffies(int msec)
@ -46,13 +48,49 @@ msecs_to_jiffies(int msec)
}
#define jiffies ticks
#define jiffies_64 ticks
#define jiffies_to_msecs(x) (((int64_t)(x)) * 1000 / hz)
#define MAX_JIFFY_OFFSET ((INT_MAX >> 1) - 1)
#define time_after(a, b) ((int)((b) - (a)) < 0)
#define time_before(a, b) time_after(b,a)
#define time_after_eq(a, b) ((int)((a) - (b)) >= 0)
#define time_before_eq(a, b) time_after_eq(b, a)
#define time_in_range(a,b,c) \
(time_after_eq(a,b) && time_before_eq(a,c))
#define HZ hz
static inline int
timespec_to_jiffies(const struct timespec *ts)
{
u64 result;
result = ((u64)hz * ts->tv_sec) +
(((u64)hz * ts->tv_nsec + NSEC_PER_SEC - 1) / NSEC_PER_SEC);
if (result > MAX_JIFFY_OFFSET)
result = MAX_JIFFY_OFFSET;
return ((int)result);
}
static inline int
usecs_to_jiffies(const unsigned int u)
{
u64 result;
result = ((u64)u * hz + 1000000 - 1) / 1000000;
if (result > MAX_JIFFY_OFFSET)
result = MAX_JIFFY_OFFSET;
return ((int)result);
}
static inline u64
get_jiffies_64(void)
{
return ((u64)(unsigned)ticks);
}
#endif /* _LINUX_JIFFIES_H_ */

View File

@ -1,5 +1,6 @@
/*-
* Copyright (c) 2014 Mellanox Technologies, Ltd.
* Copyright (c) 2014-2015 Mellanox Technologies, Ltd.
* Copyright (c) 2015 François Tigeot
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@ -27,274 +28,107 @@
#ifndef _LINUX_KTIME_H
#define _LINUX_KTIME_H
#include <sys/time.h>
#include <linux/types.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#define ktime_get_ts(x) getnanouptime(x)
/* Get the monotonic time in timespec format: */
#define ktime_get_ts getnanouptime
#define NSEC_PER_USEC 1000L
#define NSEC_PER_SEC 1000000000L
/*
* ktime_t:
*
* On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
* internal representation of time values in scalar nanoseconds. The
* design plays out best on 64-bit CPUs, where most conversions are
* NOPs and most arithmetic ktime_t operations are plain arithmetic
* operations.
*
* On 32-bit CPUs an optimized representation of the timespec structure
* is used to avoid expensive conversions from and to timespecs. The
* endian-aware order of the tv struct members is chosen to allow
* mathematical operations on the tv64 member of the union too, which
* for certain operations produces better code.
*
* For architectures with efficient support for 64/32-bit conversions the
* plain scalar nanosecond based representation can be selected by the
* config switch CONFIG_KTIME_SCALAR.
*/
/* time values in nanoseconds */
union ktime {
s64 tv64;
#if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
struct {
# ifdef __BIG_ENDIAN
s32 sec, nsec;
# else
s32 nsec, sec;
# endif
} tv;
#endif
int64_t tv64;
};
typedef union ktime ktime_t; /* Kill this */
typedef union ktime ktime_t;
#define KTIME_MAX ((s64)~((u64)1 << 63))
#define KTIME_SEC_MAX (KTIME_MAX / NSEC_PER_SEC)
/*
* ktime_t definitions when using the 64-bit scalar representation:
*/
#if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
/**
* ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
* @secs: seconds to set
* @nsecs: nanoseconds to set
*
* Return the ktime_t representation of the value
*/
static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
static inline int64_t
ktime_to_ns(ktime_t kt)
{
#if (BITS_PER_LONG == 64)
if (unlikely(secs >= KTIME_SEC_MAX))
return (ktime_t){ .tv64 = KTIME_MAX };
#endif
return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
return kt.tv64;
}
/* Subtract two ktime_t variables. rem = lhs -rhs: */
#define ktime_sub(lhs, rhs) \
({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
/* Add two ktime_t variables. res = lhs + rhs: */
#define ktime_add(lhs, rhs) \
({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
/*
* Add a ktime_t variable and a scalar nanosecond value.
* res = kt + nsval:
*/
#define ktime_add_ns(kt, nsval) \
({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
/*
* Subtract a scalar nanosecod from a ktime_t variable
* res = kt - nsval:
*/
#define ktime_sub_ns(kt, nsval) \
({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
/* convert a timespec to ktime_t format: */
static inline ktime_t timespec_to_ktime(struct timespec ts)
static inline struct timeval
ktime_to_timeval(ktime_t kt)
{
return ktime_set(ts.tv_sec, ts.tv_nsec);
return ns_to_timeval(kt.tv64);
}
/* convert a timeval to ktime_t format: */
static inline ktime_t timeval_to_ktime(struct timeval tv)
static inline ktime_t
ktime_add_ns(ktime_t kt, int64_t ns)
{
return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
ktime_t res;
res.tv64 = kt.tv64 + ns;
return kt;
}
static inline ktime_t
ktime_sub_ns(ktime_t kt, int64_t ns)
{
ktime_t res;
res.tv64 = kt.tv64 - ns;
return kt;
}
static inline ktime_t
ktime_set(const long secs, const unsigned long nsecs)
{
ktime_t retval = { (s64)secs * NSEC_PER_SEC + (s64)nsecs };
return (retval);
}
static inline ktime_t
ktime_sub(ktime_t lhs, ktime_t rhs)
{
lhs.tv64 -= rhs.tv64;
return (lhs);
}
static inline ktime_t
ktime_add(ktime_t lhs, ktime_t rhs)
{
lhs.tv64 += rhs.tv64;
return (lhs);
}
static inline ktime_t
timespec_to_ktime(struct timespec ts)
{
return (ktime_set(ts.tv_sec, ts.tv_nsec));
}
static inline ktime_t
timeval_to_ktime(struct timeval tv)
{
return (ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC));
}
/* Map the ktime_t to timespec conversion to ns_to_timespec function */
#define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
/* Map the ktime_t to timeval conversion to ns_to_timeval function */
#define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
#define ktime_to_ns(kt) ((kt).tv64)
#else /* !((BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)) */
/*
* Helper macros/inlines to get the ktime_t math right in the timespec
* representation. The macros are sometimes ugly - their actual use is
* pretty okay-ish, given the circumstances. We do all this for
* performance reasons. The pure scalar nsec_t based code was nice and
* simple, but created too many 64-bit / 32-bit conversions and divisions.
*
* Be especially aware that negative values are represented in a way
* that the tv.sec field is negative and the tv.nsec field is greater
* or equal to zero but less than nanoseconds per second. This is the
* same representation which is used by timespecs.
*
* tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
*/
/* Set a ktime_t variable to a value in sec/nsec representation: */
static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
{
return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
}
/**
* ktime_sub - subtract two ktime_t variables
* @lhs: minuend
* @rhs: subtrahend
*
* Returns the remainder of the subtraction
*/
static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
{
ktime_t res;
res.tv64 = lhs.tv64 - rhs.tv64;
if (res.tv.nsec < 0)
res.tv.nsec += NSEC_PER_SEC;
return res;
}
/**
* ktime_add - add two ktime_t variables
* @add1: addend1
* @add2: addend2
*
* Returns the sum of @add1 and @add2.
*/
static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
{
ktime_t res;
res.tv64 = add1.tv64 + add2.tv64;
/*
* performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
* so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
*
* it's equivalent to:
* tv.nsec -= NSEC_PER_SEC
* tv.sec ++;
*/
if (res.tv.nsec >= NSEC_PER_SEC)
res.tv64 += (u32)-NSEC_PER_SEC;
return res;
}
/**
* ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
* @kt: addend
* @nsec: the scalar nsec value to add
*
* Returns the sum of @kt and @nsec in ktime_t format
*/
extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
/**
* ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
* @kt: minuend
* @nsec: the scalar nsec value to subtract
*
* Returns the subtraction of @nsec from @kt in ktime_t format
*/
extern ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec);
/**
* timespec_to_ktime - convert a timespec to ktime_t format
* @ts: the timespec variable to convert
*
* Returns a ktime_t variable with the converted timespec value
*/
static inline ktime_t timespec_to_ktime(const struct timespec ts)
{
return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
.nsec = (s32)ts.tv_nsec } };
}
/**
* timeval_to_ktime - convert a timeval to ktime_t format
* @tv: the timeval variable to convert
*
* Returns a ktime_t variable with the converted timeval value
*/
static inline ktime_t timeval_to_ktime(const struct timeval tv)
{
return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
.nsec = (s32)(tv.tv_usec *
NSEC_PER_USEC) } };
}
/**
* ktime_to_timespec - convert a ktime_t variable to timespec format
* @kt: the ktime_t variable to convert
*
* Returns the timespec representation of the ktime value
*/
static inline struct timespec ktime_to_timespec(const ktime_t kt)
{
return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
.tv_nsec = (long) kt.tv.nsec };
}
/**
* ktime_to_timeval - convert a ktime_t variable to timeval format
* @kt: the ktime_t variable to convert
*
* Returns the timeval representation of the ktime value
*/
static inline struct timeval ktime_to_timeval(const ktime_t kt)
{
return (struct timeval) {
.tv_sec = (time_t) kt.tv.sec,
.tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
}
/**
* ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
* @kt: the ktime_t variable to convert
*
* Returns the scalar nanoseconds representation of @kt
*/
static inline s64 ktime_to_ns(const ktime_t kt)
{
return (s64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
}
#endif /* !((BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)) */
static inline s64 ktime_get_ns(void)
static inline s64
ktime_get_ns(void)
{
struct timespec ts;
ktime_t kt;
ktime_get_ts(&ts);
kt = timespec_to_ktime(ts);
return (ktime_to_ns(kt));
}
static inline ktime_t
ktime_get(void)
{
struct timespec ts;
ktime_get_ts(&ts);
return (timespec_to_ktime(ts));
}
#endif /* _LINUX_KTIME_H */

View File

@ -0,0 +1,131 @@
/* $FreeBSD$ */
/*
* Copyright (c) 2014-2015 François Tigeot
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _LINUX_TIME_H_
#define _LINUX_TIME_H_
#define NSEC_PER_USEC 1000L
#define NSEC_PER_SEC 1000000000L
#include <sys/time.h>
#include <sys/stdint.h>
static inline struct timeval
ns_to_timeval(const int64_t nsec)
{
struct timeval tv;
long rem;
if (nsec == 0) {
tv.tv_sec = 0;
tv.tv_usec = 0;
return (tv);
}
tv.tv_sec = nsec / NSEC_PER_SEC;
rem = nsec % NSEC_PER_SEC;
if (rem < 0) {
tv.tv_sec--;
rem += NSEC_PER_SEC;
}
tv.tv_usec = rem / 1000;
return (tv);
}
static inline int64_t
timeval_to_ns(const struct timeval *tv)
{
return ((int64_t)tv->tv_sec * NSEC_PER_SEC) +
tv->tv_usec * NSEC_PER_USEC;
}
#define getrawmonotonic(ts) nanouptime(ts)
static inline struct timespec
timespec_sub(struct timespec lhs, struct timespec rhs)
{
struct timespec ts;
ts.tv_sec = lhs.tv_sec;
ts.tv_nsec = lhs.tv_nsec;
timespecsub(&ts, &rhs);
return ts;
}
static inline void
set_normalized_timespec(struct timespec *ts, time_t sec, int64_t nsec)
{
/* XXX: this doesn't actually normalize anything */
ts->tv_sec = sec;
ts->tv_nsec = nsec;
}
static inline int64_t
timespec_to_ns(const struct timespec *ts)
{
return ((ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec);
}
static inline struct timespec
ns_to_timespec(const int64_t nsec)
{
struct timespec ts;
int32_t rem;
if (nsec == 0) {
ts.tv_sec = 0;
ts.tv_nsec = 0;
return (ts);
}
ts.tv_sec = nsec / NSEC_PER_SEC;
rem = nsec % NSEC_PER_SEC;
if (rem < 0) {
ts.tv_sec--;
rem += NSEC_PER_SEC;
}
ts.tv_nsec = rem;
return (ts);
}
static inline int
timespec_valid(const struct timespec *ts)
{
if (ts->tv_sec < 0 || ts->tv_sec > 100000000 ||
ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
return (0);
return (1);
}
static inline unsigned long
get_seconds(void)
{
return time_uptime;
}
#endif /* _LINUX_TIME_H_ */