mt76: import mediatek/mt76 driver

Import ISC-licensed driver parts of mediatek/mt76
assumed to be based on Linux wireless-testing at
a02411a5b98612c12be99349836d99f07db12a77 (tag: wt-2022-11-23).

Complement the driver and LinuxKPI with our own (dummy)
implementations of missing parts (util.h and soc/mediatek/)
as well as changes to make compile on FreeBSD with changes
covered by #ifdef (__FreeBSD__) conditions.
Further select updates were applied since the initial import
in order to keep compiling along with other LinuxKPI based
drivers.

For the moment we only target the mt7915 and mt7921 PCI parts.
More may follow in the future.

Firmware is provided by port net/wifi-firmware-mt76-kmod.

Given the lack of full license texts on non-local files this is
imported under the draft policy for handling SPDX files (D29226). [1]

Approved by:	core (emaste, 2022-04-08) [1]
MFC after:	2 months
This commit is contained in:
Bjoern A. Zeeb 2023-04-18 14:26:38 +00:00
parent baf2dc6476
commit 6c92544d7c
159 changed files with 71155 additions and 0 deletions

View File

@ -0,0 +1,48 @@
/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2022 Bjoern A. Zeeb
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _LINUXKPI_LINUX_SOC_MEDIATEK_MTK_WED_H
#define _LINUXKPI_LINUX_SOC_MEDIATEK_MTK_WED_H
struct mtk_wed_device {
};
#define mtk_wed_device_start(_dev, _mask) do { } while(0)
#define mtk_wed_device_detach(_dev) do { } while(0)
#define mtk_wed_device_irq_get(_dev, _mask) 0
#define mtk_wed_device_irq_set_mask(_dev, _mask) do { } while(0)
static inline bool
mtk_wed_device_active(struct mtk_wed_device *dev __unused)
{
return (false);
}
#endif /* _LINUXKPI_LINUX_SOC_MEDIATEK_MTK_WED_H */

View File

@ -0,0 +1,301 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2018 Felix Fietkau <nbd@nbd.name>
*/
#include "mt76.h"
static unsigned long mt76_aggr_tid_to_timeo(u8 tidno)
{
/* Currently voice traffic (AC_VO) always runs without aggregation,
* no special handling is needed. AC_BE/AC_BK use tids 0-3. Just check
* for non AC_BK/AC_BE and set smaller timeout for it. */
return HZ / (tidno >= 4 ? 25 : 10);
}
static void
mt76_aggr_release(struct mt76_rx_tid *tid, struct sk_buff_head *frames, int idx)
{
struct sk_buff *skb;
tid->head = ieee80211_sn_inc(tid->head);
skb = tid->reorder_buf[idx];
if (!skb)
return;
tid->reorder_buf[idx] = NULL;
tid->nframes--;
__skb_queue_tail(frames, skb);
}
static void
mt76_rx_aggr_release_frames(struct mt76_rx_tid *tid,
struct sk_buff_head *frames,
u16 head)
{
int idx;
while (ieee80211_sn_less(tid->head, head)) {
idx = tid->head % tid->size;
mt76_aggr_release(tid, frames, idx);
}
}
static void
mt76_rx_aggr_release_head(struct mt76_rx_tid *tid, struct sk_buff_head *frames)
{
int idx = tid->head % tid->size;
while (tid->reorder_buf[idx]) {
mt76_aggr_release(tid, frames, idx);
idx = tid->head % tid->size;
}
}
static void
mt76_rx_aggr_check_release(struct mt76_rx_tid *tid, struct sk_buff_head *frames)
{
struct mt76_rx_status *status;
struct sk_buff *skb;
int start, idx, nframes;
if (!tid->nframes)
return;
mt76_rx_aggr_release_head(tid, frames);
start = tid->head % tid->size;
nframes = tid->nframes;
for (idx = (tid->head + 1) % tid->size;
idx != start && nframes;
idx = (idx + 1) % tid->size) {
skb = tid->reorder_buf[idx];
if (!skb)
continue;
nframes--;
status = (struct mt76_rx_status *)skb->cb;
if (!time_after32(jiffies,
status->reorder_time +
mt76_aggr_tid_to_timeo(tid->num)))
continue;
mt76_rx_aggr_release_frames(tid, frames, status->seqno);
}
mt76_rx_aggr_release_head(tid, frames);
}
static void
mt76_rx_aggr_reorder_work(struct work_struct *work)
{
struct mt76_rx_tid *tid = container_of(work, struct mt76_rx_tid,
reorder_work.work);
struct mt76_dev *dev = tid->dev;
struct sk_buff_head frames;
int nframes;
__skb_queue_head_init(&frames);
local_bh_disable();
rcu_read_lock();
spin_lock(&tid->lock);
mt76_rx_aggr_check_release(tid, &frames);
nframes = tid->nframes;
spin_unlock(&tid->lock);
if (nframes)
ieee80211_queue_delayed_work(tid->dev->hw, &tid->reorder_work,
mt76_aggr_tid_to_timeo(tid->num));
mt76_rx_complete(dev, &frames, NULL);
rcu_read_unlock();
local_bh_enable();
}
static void
mt76_rx_aggr_check_ctl(struct sk_buff *skb, struct sk_buff_head *frames)
{
struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb;
struct ieee80211_bar *bar = mt76_skb_get_hdr(skb);
struct mt76_wcid *wcid = status->wcid;
struct mt76_rx_tid *tid;
u8 tidno = status->qos_ctl & IEEE80211_QOS_CTL_TID_MASK;
u16 seqno;
if (!ieee80211_is_ctl(bar->frame_control))
return;
if (!ieee80211_is_back_req(bar->frame_control))
return;
status->qos_ctl = tidno = le16_to_cpu(bar->control) >> 12;
seqno = IEEE80211_SEQ_TO_SN(le16_to_cpu(bar->start_seq_num));
tid = rcu_dereference(wcid->aggr[tidno]);
if (!tid)
return;
spin_lock_bh(&tid->lock);
if (!tid->stopped) {
mt76_rx_aggr_release_frames(tid, frames, seqno);
mt76_rx_aggr_release_head(tid, frames);
}
spin_unlock_bh(&tid->lock);
}
void mt76_rx_aggr_reorder(struct sk_buff *skb, struct sk_buff_head *frames)
{
struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb;
struct mt76_wcid *wcid = status->wcid;
struct ieee80211_sta *sta;
struct mt76_rx_tid *tid;
bool sn_less;
u16 seqno, head, size, idx;
u8 tidno = status->qos_ctl & IEEE80211_QOS_CTL_TID_MASK;
u8 ackp;
__skb_queue_tail(frames, skb);
sta = wcid_to_sta(wcid);
if (!sta)
return;
if (!status->aggr) {
if (!(status->flag & RX_FLAG_8023))
mt76_rx_aggr_check_ctl(skb, frames);
return;
}
/* not part of a BA session */
ackp = status->qos_ctl & IEEE80211_QOS_CTL_ACK_POLICY_MASK;
if (ackp == IEEE80211_QOS_CTL_ACK_POLICY_NOACK)
return;
tid = rcu_dereference(wcid->aggr[tidno]);
if (!tid)
return;
status->flag |= RX_FLAG_DUP_VALIDATED;
spin_lock_bh(&tid->lock);
if (tid->stopped)
goto out;
head = tid->head;
seqno = status->seqno;
size = tid->size;
sn_less = ieee80211_sn_less(seqno, head);
if (!tid->started) {
if (sn_less)
goto out;
tid->started = true;
}
if (sn_less) {
__skb_unlink(skb, frames);
dev_kfree_skb(skb);
goto out;
}
if (seqno == head) {
tid->head = ieee80211_sn_inc(head);
if (tid->nframes)
mt76_rx_aggr_release_head(tid, frames);
goto out;
}
__skb_unlink(skb, frames);
/*
* Frame sequence number exceeds buffering window, free up some space
* by releasing previous frames
*/
if (!ieee80211_sn_less(seqno, head + size)) {
head = ieee80211_sn_inc(ieee80211_sn_sub(seqno, size));
mt76_rx_aggr_release_frames(tid, frames, head);
}
idx = seqno % size;
/* Discard if the current slot is already in use */
if (tid->reorder_buf[idx]) {
dev_kfree_skb(skb);
goto out;
}
status->reorder_time = jiffies;
tid->reorder_buf[idx] = skb;
tid->nframes++;
mt76_rx_aggr_release_head(tid, frames);
ieee80211_queue_delayed_work(tid->dev->hw, &tid->reorder_work,
mt76_aggr_tid_to_timeo(tid->num));
out:
spin_unlock_bh(&tid->lock);
}
int mt76_rx_aggr_start(struct mt76_dev *dev, struct mt76_wcid *wcid, u8 tidno,
u16 ssn, u16 size)
{
struct mt76_rx_tid *tid;
mt76_rx_aggr_stop(dev, wcid, tidno);
tid = kzalloc(struct_size(tid, reorder_buf, size), GFP_KERNEL);
if (!tid)
return -ENOMEM;
tid->dev = dev;
tid->head = ssn;
tid->size = size;
tid->num = tidno;
INIT_DELAYED_WORK(&tid->reorder_work, mt76_rx_aggr_reorder_work);
spin_lock_init(&tid->lock);
rcu_assign_pointer(wcid->aggr[tidno], tid);
return 0;
}
EXPORT_SYMBOL_GPL(mt76_rx_aggr_start);
static void mt76_rx_aggr_shutdown(struct mt76_dev *dev, struct mt76_rx_tid *tid)
{
u16 size = tid->size;
int i;
spin_lock_bh(&tid->lock);
tid->stopped = true;
for (i = 0; tid->nframes && i < size; i++) {
struct sk_buff *skb = tid->reorder_buf[i];
if (!skb)
continue;
tid->reorder_buf[i] = NULL;
tid->nframes--;
dev_kfree_skb(skb);
}
spin_unlock_bh(&tid->lock);
cancel_delayed_work_sync(&tid->reorder_work);
}
void mt76_rx_aggr_stop(struct mt76_dev *dev, struct mt76_wcid *wcid, u8 tidno)
{
struct mt76_rx_tid *tid = NULL;
tid = rcu_replace_pointer(wcid->aggr[tidno], tid,
lockdep_is_held(&dev->mutex));
if (tid) {
mt76_rx_aggr_shutdown(dev, tid);
kfree_rcu(tid, rcu_head);
}
}
EXPORT_SYMBOL_GPL(mt76_rx_aggr_stop);

View File

@ -0,0 +1,147 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#include "mt76.h"
static int
mt76_reg_set(void *data, u64 val)
{
struct mt76_dev *dev = data;
__mt76_wr(dev, dev->debugfs_reg, val);
return 0;
}
static int
mt76_reg_get(void *data, u64 *val)
{
struct mt76_dev *dev = data;
*val = __mt76_rr(dev, dev->debugfs_reg);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_regval, mt76_reg_get, mt76_reg_set,
"0x%08llx\n");
static int
mt76_napi_threaded_set(void *data, u64 val)
{
struct mt76_dev *dev = data;
if (!mt76_is_mmio(dev))
return -EOPNOTSUPP;
if (dev->napi_dev.threaded != val)
return dev_set_threaded(&dev->napi_dev, val);
return 0;
}
static int
mt76_napi_threaded_get(void *data, u64 *val)
{
struct mt76_dev *dev = data;
*val = dev->napi_dev.threaded;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_napi_threaded, mt76_napi_threaded_get,
mt76_napi_threaded_set, "%llu\n");
int mt76_queues_read(struct seq_file *s, void *data)
{
struct mt76_dev *dev = dev_get_drvdata(s->private);
int i;
seq_puts(s, " queue | hw-queued | head | tail |\n");
for (i = 0; i < ARRAY_SIZE(dev->phy.q_tx); i++) {
struct mt76_queue *q = dev->phy.q_tx[i];
if (!q)
continue;
seq_printf(s, " %9d | %9d | %9d | %9d |\n",
i, q->queued, q->head, q->tail);
}
return 0;
}
EXPORT_SYMBOL_GPL(mt76_queues_read);
static int mt76_rx_queues_read(struct seq_file *s, void *data)
{
struct mt76_dev *dev = dev_get_drvdata(s->private);
int i, queued;
seq_puts(s, " queue | hw-queued | head | tail |\n");
mt76_for_each_q_rx(dev, i) {
struct mt76_queue *q = &dev->q_rx[i];
queued = mt76_is_usb(dev) ? q->ndesc - q->queued : q->queued;
seq_printf(s, " %9d | %9d | %9d | %9d |\n",
i, queued, q->head, q->tail);
}
return 0;
}
void mt76_seq_puts_array(struct seq_file *file, const char *str,
s8 *val, int len)
{
int i;
seq_printf(file, "%10s:", str);
for (i = 0; i < len; i++)
seq_printf(file, " %2d", val[i]);
seq_puts(file, "\n");
}
EXPORT_SYMBOL_GPL(mt76_seq_puts_array);
static int mt76_read_rate_txpower(struct seq_file *s, void *data)
{
struct mt76_dev *dev = dev_get_drvdata(s->private);
mt76_seq_puts_array(s, "CCK", dev->rate_power.cck,
ARRAY_SIZE(dev->rate_power.cck));
mt76_seq_puts_array(s, "OFDM", dev->rate_power.ofdm,
ARRAY_SIZE(dev->rate_power.ofdm));
mt76_seq_puts_array(s, "STBC", dev->rate_power.stbc,
ARRAY_SIZE(dev->rate_power.stbc));
mt76_seq_puts_array(s, "HT", dev->rate_power.ht,
ARRAY_SIZE(dev->rate_power.ht));
mt76_seq_puts_array(s, "VHT", dev->rate_power.vht,
ARRAY_SIZE(dev->rate_power.vht));
return 0;
}
struct dentry *
mt76_register_debugfs_fops(struct mt76_phy *phy,
const struct file_operations *ops)
{
const struct file_operations *fops = ops ? ops : &fops_regval;
struct mt76_dev *dev = phy->dev;
struct dentry *dir;
dir = debugfs_create_dir("mt76", phy->hw->wiphy->debugfsdir);
if (!dir)
return NULL;
debugfs_create_u8("led_pin", 0600, dir, &dev->led_pin);
debugfs_create_u32("regidx", 0600, dir, &dev->debugfs_reg);
debugfs_create_file_unsafe("regval", 0600, dir, dev, fops);
debugfs_create_file_unsafe("napi_threaded", 0600, dir, dev,
&fops_napi_threaded);
debugfs_create_blob("eeprom", 0400, dir, &dev->eeprom);
if (dev->otp.data)
debugfs_create_blob("otp", 0400, dir, &dev->otp);
debugfs_create_devm_seqfile(dev->dev, "rate_txpower", dir,
mt76_read_rate_txpower);
debugfs_create_devm_seqfile(dev->dev, "rx-queues", dir,
mt76_rx_queues_read);
return dir;
}
EXPORT_SYMBOL_GPL(mt76_register_debugfs_fops);

View File

@ -0,0 +1,826 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#include <linux/dma-mapping.h>
#if defined(__FreeBSD__)
#include <linux/cache.h>
#endif
#include "mt76.h"
#include "dma.h"
#if IS_ENABLED(CONFIG_NET_MEDIATEK_SOC_WED)
#define Q_READ(_dev, _q, _field) ({ \
u32 _offset = offsetof(struct mt76_queue_regs, _field); \
u32 _val; \
if ((_q)->flags & MT_QFLAG_WED) \
_val = mtk_wed_device_reg_read(&(_dev)->mmio.wed, \
((_q)->wed_regs + \
_offset)); \
else \
_val = readl(&(_q)->regs->_field); \
_val; \
})
#define Q_WRITE(_dev, _q, _field, _val) do { \
u32 _offset = offsetof(struct mt76_queue_regs, _field); \
if ((_q)->flags & MT_QFLAG_WED) \
mtk_wed_device_reg_write(&(_dev)->mmio.wed, \
((_q)->wed_regs + _offset), \
_val); \
else \
writel(_val, &(_q)->regs->_field); \
} while (0)
#else
#define Q_READ(_dev, _q, _field) readl(&(_q)->regs->_field)
#define Q_WRITE(_dev, _q, _field, _val) writel(_val, &(_q)->regs->_field)
#endif
static struct mt76_txwi_cache *
mt76_alloc_txwi(struct mt76_dev *dev)
{
struct mt76_txwi_cache *t;
dma_addr_t addr;
u8 *txwi;
int size;
size = L1_CACHE_ALIGN(dev->drv->txwi_size + sizeof(*t));
txwi = kzalloc(size, GFP_ATOMIC);
if (!txwi)
return NULL;
addr = dma_map_single(dev->dma_dev, txwi, dev->drv->txwi_size,
DMA_TO_DEVICE);
t = (struct mt76_txwi_cache *)(txwi + dev->drv->txwi_size);
t->dma_addr = addr;
return t;
}
static struct mt76_txwi_cache *
__mt76_get_txwi(struct mt76_dev *dev)
{
struct mt76_txwi_cache *t = NULL;
spin_lock(&dev->lock);
if (!list_empty(&dev->txwi_cache)) {
t = list_first_entry(&dev->txwi_cache, struct mt76_txwi_cache,
list);
list_del(&t->list);
}
spin_unlock(&dev->lock);
return t;
}
static struct mt76_txwi_cache *
mt76_get_txwi(struct mt76_dev *dev)
{
struct mt76_txwi_cache *t = __mt76_get_txwi(dev);
if (t)
return t;
return mt76_alloc_txwi(dev);
}
void
mt76_put_txwi(struct mt76_dev *dev, struct mt76_txwi_cache *t)
{
if (!t)
return;
spin_lock(&dev->lock);
list_add(&t->list, &dev->txwi_cache);
spin_unlock(&dev->lock);
}
EXPORT_SYMBOL_GPL(mt76_put_txwi);
static void
mt76_free_pending_txwi(struct mt76_dev *dev)
{
struct mt76_txwi_cache *t;
local_bh_disable();
while ((t = __mt76_get_txwi(dev)) != NULL) {
dma_unmap_single(dev->dma_dev, t->dma_addr, dev->drv->txwi_size,
DMA_TO_DEVICE);
kfree(mt76_get_txwi_ptr(dev, t));
}
local_bh_enable();
}
static void
mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
{
Q_WRITE(dev, q, desc_base, q->desc_dma);
Q_WRITE(dev, q, ring_size, q->ndesc);
q->head = Q_READ(dev, q, dma_idx);
q->tail = q->head;
}
static void
mt76_dma_queue_reset(struct mt76_dev *dev, struct mt76_queue *q)
{
int i;
if (!q || !q->ndesc)
return;
/* clear descriptors */
for (i = 0; i < q->ndesc; i++)
q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
Q_WRITE(dev, q, cpu_idx, 0);
Q_WRITE(dev, q, dma_idx, 0);
mt76_dma_sync_idx(dev, q);
}
static int
mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
struct mt76_queue_buf *buf, int nbufs, u32 info,
struct sk_buff *skb, void *txwi)
{
struct mt76_queue_entry *entry;
struct mt76_desc *desc;
u32 ctrl;
int i, idx = -1;
if (txwi) {
q->entry[q->head].txwi = DMA_DUMMY_DATA;
q->entry[q->head].skip_buf0 = true;
}
for (i = 0; i < nbufs; i += 2, buf += 2) {
u32 buf0 = buf[0].addr, buf1 = 0;
idx = q->head;
q->head = (q->head + 1) % q->ndesc;
desc = &q->desc[idx];
entry = &q->entry[idx];
if (buf[0].skip_unmap)
entry->skip_buf0 = true;
entry->skip_buf1 = i == nbufs - 1;
entry->dma_addr[0] = buf[0].addr;
entry->dma_len[0] = buf[0].len;
ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
if (i < nbufs - 1) {
entry->dma_addr[1] = buf[1].addr;
entry->dma_len[1] = buf[1].len;
buf1 = buf[1].addr;
ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
if (buf[1].skip_unmap)
entry->skip_buf1 = true;
}
if (i == nbufs - 1)
ctrl |= MT_DMA_CTL_LAST_SEC0;
else if (i == nbufs - 2)
ctrl |= MT_DMA_CTL_LAST_SEC1;
WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
WRITE_ONCE(desc->info, cpu_to_le32(info));
WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
q->queued++;
}
q->entry[idx].txwi = txwi;
q->entry[idx].skb = skb;
q->entry[idx].wcid = 0xffff;
return idx;
}
static void
mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
struct mt76_queue_entry *prev_e)
{
struct mt76_queue_entry *e = &q->entry[idx];
if (!e->skip_buf0)
dma_unmap_single(dev->dma_dev, e->dma_addr[0], e->dma_len[0],
DMA_TO_DEVICE);
if (!e->skip_buf1)
dma_unmap_single(dev->dma_dev, e->dma_addr[1], e->dma_len[1],
DMA_TO_DEVICE);
if (e->txwi == DMA_DUMMY_DATA)
e->txwi = NULL;
if (e->skb == DMA_DUMMY_DATA)
e->skb = NULL;
*prev_e = *e;
memset(e, 0, sizeof(*e));
}
static void
mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
{
wmb();
Q_WRITE(dev, q, cpu_idx, q->head);
}
static void
mt76_dma_tx_cleanup(struct mt76_dev *dev, struct mt76_queue *q, bool flush)
{
struct mt76_queue_entry entry;
int last;
if (!q || !q->ndesc)
return;
spin_lock_bh(&q->cleanup_lock);
if (flush)
last = -1;
else
last = Q_READ(dev, q, dma_idx);
while (q->queued > 0 && q->tail != last) {
mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
mt76_queue_tx_complete(dev, q, &entry);
if (entry.txwi) {
if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE))
mt76_put_txwi(dev, entry.txwi);
}
if (!flush && q->tail == last)
last = Q_READ(dev, q, dma_idx);
}
spin_unlock_bh(&q->cleanup_lock);
if (flush) {
spin_lock_bh(&q->lock);
mt76_dma_sync_idx(dev, q);
mt76_dma_kick_queue(dev, q);
spin_unlock_bh(&q->lock);
}
if (!q->queued)
wake_up(&dev->tx_wait);
}
static void *
mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
int *len, u32 *info, bool *more)
{
struct mt76_queue_entry *e = &q->entry[idx];
struct mt76_desc *desc = &q->desc[idx];
dma_addr_t buf_addr;
void *buf = e->buf;
int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
buf_addr = e->dma_addr[0];
if (len) {
u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
}
if (info)
*info = le32_to_cpu(desc->info);
dma_unmap_single(dev->dma_dev, buf_addr, buf_len, DMA_FROM_DEVICE);
e->buf = NULL;
return buf;
}
static void *
mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
int *len, u32 *info, bool *more)
{
int idx = q->tail;
*more = false;
if (!q->queued)
return NULL;
if (flush)
q->desc[idx].ctrl |= cpu_to_le32(MT_DMA_CTL_DMA_DONE);
else if (!(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
return NULL;
q->tail = (q->tail + 1) % q->ndesc;
q->queued--;
return mt76_dma_get_buf(dev, q, idx, len, info, more);
}
static int
mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, struct mt76_queue *q,
struct sk_buff *skb, u32 tx_info)
{
struct mt76_queue_buf buf = {};
dma_addr_t addr;
if (q->queued + 1 >= q->ndesc - 1)
goto error;
addr = dma_map_single(dev->dma_dev, skb->data, skb->len,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev->dma_dev, addr)))
goto error;
buf.addr = addr;
buf.len = skb->len;
spin_lock_bh(&q->lock);
mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
mt76_dma_kick_queue(dev, q);
spin_unlock_bh(&q->lock);
return 0;
error:
dev_kfree_skb(skb);
return -ENOMEM;
}
static int
mt76_dma_tx_queue_skb(struct mt76_dev *dev, struct mt76_queue *q,
enum mt76_txq_id qid, struct sk_buff *skb,
struct mt76_wcid *wcid, struct ieee80211_sta *sta)
{
struct ieee80211_tx_status status = {
.sta = sta,
};
struct mt76_tx_info tx_info = {
.skb = skb,
};
struct ieee80211_hw *hw;
int len, n = 0, ret = -ENOMEM;
struct mt76_txwi_cache *t;
struct sk_buff *iter;
dma_addr_t addr;
u8 *txwi;
t = mt76_get_txwi(dev);
if (!t)
goto free_skb;
txwi = mt76_get_txwi_ptr(dev, t);
skb->prev = skb->next = NULL;
if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS)
mt76_insert_hdr_pad(skb);
len = skb_headlen(skb);
addr = dma_map_single(dev->dma_dev, skb->data, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev->dma_dev, addr)))
goto free;
tx_info.buf[n].addr = t->dma_addr;
tx_info.buf[n++].len = dev->drv->txwi_size;
tx_info.buf[n].addr = addr;
tx_info.buf[n++].len = len;
skb_walk_frags(skb, iter) {
if (n == ARRAY_SIZE(tx_info.buf))
goto unmap;
addr = dma_map_single(dev->dma_dev, iter->data, iter->len,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev->dma_dev, addr)))
goto unmap;
tx_info.buf[n].addr = addr;
tx_info.buf[n++].len = iter->len;
}
tx_info.nbuf = n;
if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
ret = -ENOMEM;
goto unmap;
}
dma_sync_single_for_cpu(dev->dma_dev, t->dma_addr, dev->drv->txwi_size,
DMA_TO_DEVICE);
ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
dma_sync_single_for_device(dev->dma_dev, t->dma_addr, dev->drv->txwi_size,
DMA_TO_DEVICE);
if (ret < 0)
goto unmap;
return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
tx_info.info, tx_info.skb, t);
unmap:
for (n--; n > 0; n--)
dma_unmap_single(dev->dma_dev, tx_info.buf[n].addr,
tx_info.buf[n].len, DMA_TO_DEVICE);
free:
#ifdef CONFIG_NL80211_TESTMODE
/* fix tx_done accounting on queue overflow */
if (mt76_is_testmode_skb(dev, skb, &hw)) {
struct mt76_phy *phy = hw->priv;
if (tx_info.skb == phy->test.tx_skb)
phy->test.tx_done--;
}
#endif
mt76_put_txwi(dev, t);
free_skb:
status.skb = tx_info.skb;
hw = mt76_tx_status_get_hw(dev, tx_info.skb);
ieee80211_tx_status_ext(hw, &status);
return ret;
}
static int
mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
{
dma_addr_t addr;
void *buf;
int frames = 0;
int len = SKB_WITH_OVERHEAD(q->buf_size);
int offset = q->buf_offset;
if (!q->ndesc)
return 0;
spin_lock_bh(&q->lock);
while (q->queued < q->ndesc - 1) {
struct mt76_queue_buf qbuf;
buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
if (!buf)
break;
addr = dma_map_single(dev->dma_dev, buf, len, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(dev->dma_dev, addr))) {
skb_free_frag(buf);
break;
}
qbuf.addr = addr + offset;
qbuf.len = len - offset;
qbuf.skip_unmap = false;
mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
frames++;
}
if (frames)
mt76_dma_kick_queue(dev, q);
spin_unlock_bh(&q->lock);
return frames;
}
static int
mt76_dma_wed_setup(struct mt76_dev *dev, struct mt76_queue *q)
{
#ifdef CONFIG_NET_MEDIATEK_SOC_WED
struct mtk_wed_device *wed = &dev->mmio.wed;
int ret, type, ring;
u8 flags = q->flags;
if (!mtk_wed_device_active(wed))
q->flags &= ~MT_QFLAG_WED;
if (!(q->flags & MT_QFLAG_WED))
return 0;
type = FIELD_GET(MT_QFLAG_WED_TYPE, q->flags);
ring = FIELD_GET(MT_QFLAG_WED_RING, q->flags);
switch (type) {
case MT76_WED_Q_TX:
ret = mtk_wed_device_tx_ring_setup(wed, ring, q->regs);
if (!ret)
q->wed_regs = wed->tx_ring[ring].reg_base;
break;
case MT76_WED_Q_TXFREE:
/* WED txfree queue needs ring to be initialized before setup */
q->flags = 0;
mt76_dma_queue_reset(dev, q);
mt76_dma_rx_fill(dev, q);
q->flags = flags;
ret = mtk_wed_device_txfree_ring_setup(wed, q->regs);
if (!ret)
q->wed_regs = wed->txfree_ring.reg_base;
break;
default:
ret = -EINVAL;
}
return ret;
#else
return 0;
#endif
}
static int
mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
int idx, int n_desc, int bufsize,
u32 ring_base)
{
int ret, size;
spin_lock_init(&q->lock);
spin_lock_init(&q->cleanup_lock);
#if defined(__linux__)
q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
#elif defined(__FreeBSD__)
q->regs = (void *)((u8 *)dev->mmio.regs + ring_base + idx * MT_RING_SIZE);
#endif
q->ndesc = n_desc;
q->buf_size = bufsize;
q->hw_idx = idx;
size = q->ndesc * sizeof(struct mt76_desc);
q->desc = dmam_alloc_coherent(dev->dma_dev, size, &q->desc_dma, GFP_KERNEL);
if (!q->desc)
return -ENOMEM;
size = q->ndesc * sizeof(*q->entry);
q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
if (!q->entry)
return -ENOMEM;
ret = mt76_dma_wed_setup(dev, q);
if (ret)
return ret;
if (q->flags != MT_WED_Q_TXFREE)
mt76_dma_queue_reset(dev, q);
return 0;
}
static void
mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
{
struct page *page;
void *buf;
bool more;
if (!q->ndesc)
return;
spin_lock_bh(&q->lock);
do {
buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
if (!buf)
break;
skb_free_frag(buf);
} while (1);
spin_unlock_bh(&q->lock);
if (!q->rx_page.va)
return;
page = virt_to_page(q->rx_page.va);
__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
memset(&q->rx_page, 0, sizeof(q->rx_page));
}
static void
mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
{
struct mt76_queue *q = &dev->q_rx[qid];
int i;
if (!q->ndesc)
return;
for (i = 0; i < q->ndesc; i++)
q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
mt76_dma_rx_cleanup(dev, q);
mt76_dma_sync_idx(dev, q);
mt76_dma_rx_fill(dev, q);
if (!q->rx_head)
return;
dev_kfree_skb(q->rx_head);
q->rx_head = NULL;
}
static void
mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
int len, bool more)
{
struct sk_buff *skb = q->rx_head;
struct skb_shared_info *shinfo = skb_shinfo(skb);
int nr_frags = shinfo->nr_frags;
if (nr_frags < ARRAY_SIZE(shinfo->frags)) {
struct page *page = virt_to_head_page(data);
#if defined(__linux__)
int offset = data - page_address(page) + q->buf_offset;
#elif defined(__FreeBSD__)
int offset = (u8 *)data - (u8 *)page_address(page) + q->buf_offset;
#endif
skb_add_rx_frag(skb, nr_frags, page, offset, len, q->buf_size);
} else {
skb_free_frag(data);
}
if (more)
return;
q->rx_head = NULL;
if (nr_frags < ARRAY_SIZE(shinfo->frags))
dev->drv->rx_skb(dev, q - dev->q_rx, skb);
else
dev_kfree_skb(skb);
}
static int
mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
{
int len, data_len, done = 0, dma_idx;
struct sk_buff *skb;
unsigned char *data;
bool check_ddone = false;
bool more;
if (IS_ENABLED(CONFIG_NET_MEDIATEK_SOC_WED) &&
q->flags == MT_WED_Q_TXFREE) {
dma_idx = Q_READ(dev, q, dma_idx);
check_ddone = true;
}
while (done < budget) {
u32 info;
if (check_ddone) {
if (q->tail == dma_idx)
dma_idx = Q_READ(dev, q, dma_idx);
if (q->tail == dma_idx)
break;
}
data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
if (!data)
break;
if (q->rx_head)
data_len = q->buf_size;
else
data_len = SKB_WITH_OVERHEAD(q->buf_size);
if (data_len < len + q->buf_offset) {
dev_kfree_skb(q->rx_head);
q->rx_head = NULL;
goto free_frag;
}
if (q->rx_head) {
mt76_add_fragment(dev, q, data, len, more);
continue;
}
if (!more && dev->drv->rx_check &&
!(dev->drv->rx_check(dev, data, len)))
goto free_frag;
skb = build_skb(data, q->buf_size);
if (!skb)
goto free_frag;
skb_reserve(skb, q->buf_offset);
*(u32 *)skb->cb = info;
__skb_put(skb, len);
done++;
if (more) {
q->rx_head = skb;
continue;
}
dev->drv->rx_skb(dev, q - dev->q_rx, skb);
continue;
free_frag:
skb_free_frag(data);
}
mt76_dma_rx_fill(dev, q);
return done;
}
int mt76_dma_rx_poll(struct napi_struct *napi, int budget)
{
struct mt76_dev *dev;
int qid, done = 0, cur;
dev = container_of(napi->dev, struct mt76_dev, napi_dev);
qid = napi - dev->napi;
rcu_read_lock();
do {
cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
mt76_rx_poll_complete(dev, qid, napi);
done += cur;
} while (cur && done < budget);
rcu_read_unlock();
if (done < budget && napi_complete(napi))
dev->drv->rx_poll_complete(dev, qid);
return done;
}
EXPORT_SYMBOL_GPL(mt76_dma_rx_poll);
static int
mt76_dma_init(struct mt76_dev *dev,
int (*poll)(struct napi_struct *napi, int budget))
{
int i;
init_dummy_netdev(&dev->napi_dev);
init_dummy_netdev(&dev->tx_napi_dev);
snprintf(dev->napi_dev.name, sizeof(dev->napi_dev.name), "%s",
wiphy_name(dev->hw->wiphy));
dev->napi_dev.threaded = 1;
mt76_for_each_q_rx(dev, i) {
netif_napi_add(&dev->napi_dev, &dev->napi[i], poll);
mt76_dma_rx_fill(dev, &dev->q_rx[i]);
napi_enable(&dev->napi[i]);
}
return 0;
}
static const struct mt76_queue_ops mt76_dma_ops = {
.init = mt76_dma_init,
.alloc = mt76_dma_alloc_queue,
.reset_q = mt76_dma_queue_reset,
.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
.tx_queue_skb = mt76_dma_tx_queue_skb,
.tx_cleanup = mt76_dma_tx_cleanup,
.rx_cleanup = mt76_dma_rx_cleanup,
.rx_reset = mt76_dma_rx_reset,
.kick = mt76_dma_kick_queue,
};
void mt76_dma_attach(struct mt76_dev *dev)
{
dev->queue_ops = &mt76_dma_ops;
}
EXPORT_SYMBOL_GPL(mt76_dma_attach);
void mt76_dma_cleanup(struct mt76_dev *dev)
{
int i;
mt76_worker_disable(&dev->tx_worker);
netif_napi_del(&dev->tx_napi);
for (i = 0; i < ARRAY_SIZE(dev->phys); i++) {
struct mt76_phy *phy = dev->phys[i];
int j;
if (!phy)
continue;
for (j = 0; j < ARRAY_SIZE(phy->q_tx); j++)
mt76_dma_tx_cleanup(dev, phy->q_tx[j], true);
}
for (i = 0; i < ARRAY_SIZE(dev->q_mcu); i++)
mt76_dma_tx_cleanup(dev, dev->q_mcu[i], true);
mt76_for_each_q_rx(dev, i) {
netif_napi_del(&dev->napi[i]);
mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
}
mt76_free_pending_txwi(dev);
if (mtk_wed_device_active(&dev->mmio.wed))
mtk_wed_device_detach(&dev->mmio.wed);
}
EXPORT_SYMBOL_GPL(mt76_dma_cleanup);

View File

@ -0,0 +1,52 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#ifndef __MT76_DMA_H
#define __MT76_DMA_H
#define DMA_DUMMY_DATA ((void *)~0)
#define MT_RING_SIZE 0x10
#define MT_DMA_CTL_SD_LEN1 GENMASK(13, 0)
#define MT_DMA_CTL_LAST_SEC1 BIT(14)
#define MT_DMA_CTL_BURST BIT(15)
#define MT_DMA_CTL_SD_LEN0 GENMASK(29, 16)
#define MT_DMA_CTL_LAST_SEC0 BIT(30)
#define MT_DMA_CTL_DMA_DONE BIT(31)
#define MT_DMA_HDR_LEN 4
#define MT_RX_INFO_LEN 4
#define MT_FCE_INFO_LEN 4
#define MT_RX_RXWI_LEN 32
struct mt76_desc {
__le32 buf0;
__le32 ctrl;
__le32 buf1;
__le32 info;
} __packed __aligned(4);
enum mt76_qsel {
MT_QSEL_MGMT,
MT_QSEL_HCCA,
MT_QSEL_EDCA,
MT_QSEL_EDCA_2,
};
enum mt76_mcu_evt_type {
EVT_CMD_DONE,
EVT_CMD_ERROR,
EVT_CMD_RETRY,
EVT_EVENT_PWR_RSP,
EVT_EVENT_WOW_RSP,
EVT_EVENT_CARRIER_DETECT_RSP,
EVT_EVENT_DFS_DETECT_RSP,
};
int mt76_dma_rx_poll(struct napi_struct *napi, int budget);
void mt76_dma_attach(struct mt76_dev *dev);
void mt76_dma_cleanup(struct mt76_dev *dev);
#endif

View File

@ -0,0 +1,373 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#if defined(CONFIG_OF) && defined(CONFIG_MTD)
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#endif
#include <linux/etherdevice.h>
#include "mt76.h"
int mt76_get_of_eeprom(struct mt76_dev *dev, void *eep, int offset, int len)
{
#if defined(CONFIG_OF) && defined(CONFIG_MTD)
struct device_node *np = dev->dev->of_node;
struct mtd_info *mtd;
const __be32 *list;
const void *data;
const char *part;
phandle phandle;
int size;
size_t retlen;
int ret;
if (!np)
return -ENOENT;
data = of_get_property(np, "mediatek,eeprom-data", &size);
if (data) {
if (size > len)
return -EINVAL;
memcpy(eep, data, size);
return 0;
}
list = of_get_property(np, "mediatek,mtd-eeprom", &size);
if (!list)
return -ENOENT;
phandle = be32_to_cpup(list++);
if (!phandle)
return -ENOENT;
np = of_find_node_by_phandle(phandle);
if (!np)
return -EINVAL;
part = of_get_property(np, "label", NULL);
if (!part)
part = np->name;
mtd = get_mtd_device_nm(part);
if (IS_ERR(mtd)) {
ret = PTR_ERR(mtd);
goto out_put_node;
}
if (size <= sizeof(*list)) {
ret = -EINVAL;
goto out_put_node;
}
offset = be32_to_cpup(list);
ret = mtd_read(mtd, offset, len, &retlen, eep);
put_mtd_device(mtd);
if (mtd_is_bitflip(ret))
ret = 0;
if (ret) {
dev_err(dev->dev, "reading EEPROM from mtd %s failed: %i\n",
part, ret);
goto out_put_node;
}
if (retlen < len) {
ret = -EINVAL;
goto out_put_node;
}
if (of_property_read_bool(dev->dev->of_node, "big-endian")) {
u8 *data = (u8 *)eep;
int i;
/* convert eeprom data in Little Endian */
for (i = 0; i < round_down(len, 2); i += 2)
put_unaligned_le16(get_unaligned_be16(&data[i]),
&data[i]);
}
#ifdef CONFIG_NL80211_TESTMODE
dev->test_mtd.name = devm_kstrdup(dev->dev, part, GFP_KERNEL);
dev->test_mtd.offset = offset;
#endif
out_put_node:
of_node_put(np);
return ret;
#else
return -ENOENT;
#endif
}
EXPORT_SYMBOL_GPL(mt76_get_of_eeprom);
void
mt76_eeprom_override(struct mt76_phy *phy)
{
struct mt76_dev *dev = phy->dev;
#if defined(CONFIG_OF)
struct device_node *np = dev->dev->of_node;
of_get_mac_address(np, phy->macaddr);
if (!is_valid_ether_addr(phy->macaddr)) {
#endif
eth_random_addr(phy->macaddr);
dev_info(dev->dev,
"Invalid MAC address, using random address %pM\n",
phy->macaddr);
#if defined(CONFIG_OF)
}
#endif
}
EXPORT_SYMBOL_GPL(mt76_eeprom_override);
#if defined(CONFIG_OF)
static bool mt76_string_prop_find(struct property *prop, const char *str)
{
const char *cp = NULL;
if (!prop || !str || !str[0])
return false;
while ((cp = of_prop_next_string(prop, cp)) != NULL)
if (!strcasecmp(cp, str))
return true;
return false;
}
static struct device_node *
mt76_find_power_limits_node(struct mt76_dev *dev)
{
struct device_node *np = dev->dev->of_node;
const char *const region_names[] = {
[NL80211_DFS_ETSI] = "etsi",
[NL80211_DFS_FCC] = "fcc",
[NL80211_DFS_JP] = "jp",
};
struct device_node *cur, *fallback = NULL;
const char *region_name = NULL;
if (dev->region < ARRAY_SIZE(region_names))
region_name = region_names[dev->region];
np = of_get_child_by_name(np, "power-limits");
if (!np)
return NULL;
for_each_child_of_node(np, cur) {
struct property *country = of_find_property(cur, "country", NULL);
struct property *regd = of_find_property(cur, "regdomain", NULL);
if (!country && !regd) {
fallback = cur;
continue;
}
if (mt76_string_prop_find(country, dev->alpha2) ||
mt76_string_prop_find(regd, region_name)) {
of_node_put(np);
return cur;
}
}
of_node_put(np);
return fallback;
}
static const __be32 *
mt76_get_of_array(struct device_node *np, char *name, size_t *len, int min)
{
struct property *prop = of_find_property(np, name, NULL);
if (!prop || !prop->value || prop->length < min * 4)
return NULL;
*len = prop->length;
return prop->value;
}
static struct device_node *
mt76_find_channel_node(struct device_node *np, struct ieee80211_channel *chan)
{
struct device_node *cur;
const __be32 *val;
size_t len;
for_each_child_of_node(np, cur) {
val = mt76_get_of_array(cur, "channels", &len, 2);
if (!val)
continue;
while (len >= 2 * sizeof(*val)) {
if (chan->hw_value >= be32_to_cpu(val[0]) &&
chan->hw_value <= be32_to_cpu(val[1]))
return cur;
val += 2;
len -= 2 * sizeof(*val);
}
}
return NULL;
}
static s8
mt76_get_txs_delta(struct device_node *np, u8 nss)
{
const __be32 *val;
size_t len;
val = mt76_get_of_array(np, "txs-delta", &len, nss);
if (!val)
return 0;
return be32_to_cpu(val[nss - 1]);
}
static void
mt76_apply_array_limit(s8 *pwr, size_t pwr_len, const __be32 *data,
s8 target_power, s8 nss_delta, s8 *max_power)
{
int i;
if (!data)
return;
for (i = 0; i < pwr_len; i++) {
pwr[i] = min_t(s8, target_power,
be32_to_cpu(data[i]) + nss_delta);
*max_power = max(*max_power, pwr[i]);
}
}
static void
mt76_apply_multi_array_limit(s8 *pwr, size_t pwr_len, s8 pwr_num,
const __be32 *data, size_t len, s8 target_power,
s8 nss_delta, s8 *max_power)
{
int i, cur;
if (!data)
return;
len /= 4;
cur = be32_to_cpu(data[0]);
for (i = 0; i < pwr_num; i++) {
if (len < pwr_len + 1)
break;
mt76_apply_array_limit(pwr + pwr_len * i, pwr_len, data + 1,
target_power, nss_delta, max_power);
if (--cur > 0)
continue;
data += pwr_len + 1;
len -= pwr_len + 1;
if (!len)
break;
cur = be32_to_cpu(data[0]);
}
}
#endif
s8 mt76_get_rate_power_limits(struct mt76_phy *phy,
struct ieee80211_channel *chan,
struct mt76_power_limits *dest,
s8 target_power)
{
struct mt76_dev *dev = phy->dev;
#if defined(CONFIG_OF)
struct device_node *np;
const __be32 *val;
char name[16];
#endif
u32 mcs_rates = dev->drv->mcs_rates;
#if defined(CONFIG_OF)
u32 ru_rates = ARRAY_SIZE(dest->ru[0]);
char band;
size_t len;
#endif
s8 max_power = 0;
#if defined(CONFIG_OF)
s8 txs_delta;
#endif
if (!mcs_rates)
mcs_rates = 10;
memset(dest, target_power, sizeof(*dest));
if (!IS_ENABLED(CONFIG_OF))
return target_power;
#if defined(CONFIG_OF)
np = mt76_find_power_limits_node(dev);
if (!np)
return target_power;
switch (chan->band) {
case NL80211_BAND_2GHZ:
band = '2';
break;
case NL80211_BAND_5GHZ:
band = '5';
break;
case NL80211_BAND_6GHZ:
band = '6';
break;
default:
return target_power;
}
snprintf(name, sizeof(name), "txpower-%cg", band);
np = of_get_child_by_name(np, name);
if (!np)
return target_power;
np = mt76_find_channel_node(np, chan);
if (!np)
return target_power;
txs_delta = mt76_get_txs_delta(np, hweight8(phy->antenna_mask));
val = mt76_get_of_array(np, "rates-cck", &len, ARRAY_SIZE(dest->cck));
mt76_apply_array_limit(dest->cck, ARRAY_SIZE(dest->cck), val,
target_power, txs_delta, &max_power);
val = mt76_get_of_array(np, "rates-ofdm",
&len, ARRAY_SIZE(dest->ofdm));
mt76_apply_array_limit(dest->ofdm, ARRAY_SIZE(dest->ofdm), val,
target_power, txs_delta, &max_power);
val = mt76_get_of_array(np, "rates-mcs", &len, mcs_rates + 1);
mt76_apply_multi_array_limit(dest->mcs[0], ARRAY_SIZE(dest->mcs[0]),
ARRAY_SIZE(dest->mcs), val, len,
target_power, txs_delta, &max_power);
val = mt76_get_of_array(np, "rates-ru", &len, ru_rates + 1);
mt76_apply_multi_array_limit(dest->ru[0], ARRAY_SIZE(dest->ru[0]),
ARRAY_SIZE(dest->ru), val, len,
target_power, txs_delta, &max_power);
#endif
return max_power;
}
EXPORT_SYMBOL_GPL(mt76_get_rate_power_limits);
int
mt76_eeprom_init(struct mt76_dev *dev, int len)
{
dev->eeprom.size = len;
dev->eeprom.data = devm_kzalloc(dev->dev, len, GFP_KERNEL);
if (!dev->eeprom.data)
return -ENOMEM;
return !mt76_get_of_eeprom(dev, dev->eeprom.data, 0, len);
}
EXPORT_SYMBOL_GPL(mt76_eeprom_init);

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,138 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2019 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include "mt76.h"
struct sk_buff *
__mt76_mcu_msg_alloc(struct mt76_dev *dev, const void *data,
int len, int data_len, gfp_t gfp)
{
const struct mt76_mcu_ops *ops = dev->mcu_ops;
struct sk_buff *skb;
len = max_t(int, len, data_len);
len = ops->headroom + len + ops->tailroom;
skb = alloc_skb(len, gfp);
if (!skb)
return NULL;
memset(skb->head, 0, len);
skb_reserve(skb, ops->headroom);
if (data && data_len)
skb_put_data(skb, data, data_len);
return skb;
}
EXPORT_SYMBOL_GPL(__mt76_mcu_msg_alloc);
struct sk_buff *mt76_mcu_get_response(struct mt76_dev *dev,
unsigned long expires)
{
unsigned long timeout;
if (!time_is_after_jiffies(expires))
return NULL;
timeout = expires - jiffies;
wait_event_timeout(dev->mcu.wait,
(!skb_queue_empty(&dev->mcu.res_q) ||
test_bit(MT76_MCU_RESET, &dev->phy.state)),
timeout);
return skb_dequeue(&dev->mcu.res_q);
}
EXPORT_SYMBOL_GPL(mt76_mcu_get_response);
void mt76_mcu_rx_event(struct mt76_dev *dev, struct sk_buff *skb)
{
skb_queue_tail(&dev->mcu.res_q, skb);
wake_up(&dev->mcu.wait);
}
EXPORT_SYMBOL_GPL(mt76_mcu_rx_event);
int mt76_mcu_send_and_get_msg(struct mt76_dev *dev, int cmd, const void *data,
int len, bool wait_resp, struct sk_buff **ret_skb)
{
struct sk_buff *skb;
if (dev->mcu_ops->mcu_send_msg)
return dev->mcu_ops->mcu_send_msg(dev, cmd, data, len, wait_resp);
skb = mt76_mcu_msg_alloc(dev, data, len);
if (!skb)
return -ENOMEM;
return mt76_mcu_skb_send_and_get_msg(dev, skb, cmd, wait_resp, ret_skb);
}
EXPORT_SYMBOL_GPL(mt76_mcu_send_and_get_msg);
int mt76_mcu_skb_send_and_get_msg(struct mt76_dev *dev, struct sk_buff *skb,
int cmd, bool wait_resp,
struct sk_buff **ret_skb)
{
unsigned long expires;
int ret, seq;
if (ret_skb)
*ret_skb = NULL;
mutex_lock(&dev->mcu.mutex);
ret = dev->mcu_ops->mcu_skb_send_msg(dev, skb, cmd, &seq);
if (ret < 0)
goto out;
if (!wait_resp) {
ret = 0;
goto out;
}
expires = jiffies + dev->mcu.timeout;
do {
skb = mt76_mcu_get_response(dev, expires);
ret = dev->mcu_ops->mcu_parse_response(dev, cmd, skb, seq);
if (!ret && ret_skb)
*ret_skb = skb;
else
dev_kfree_skb(skb);
} while (ret == -EAGAIN);
out:
mutex_unlock(&dev->mcu.mutex);
return ret;
}
EXPORT_SYMBOL_GPL(mt76_mcu_skb_send_and_get_msg);
#if defined(__linux__)
int __mt76_mcu_send_firmware(struct mt76_dev *dev, int cmd, const void *data,
#elif defined(__FreeBSD__)
int __mt76_mcu_send_firmware(struct mt76_dev *dev, int cmd, const u8 *data,
#endif
int len, int max_len)
{
int err, cur_len;
while (len > 0) {
cur_len = min_t(int, max_len, len);
err = mt76_mcu_send_msg(dev, cmd, data, cur_len, false);
if (err)
return err;
data += cur_len;
len -= cur_len;
if (dev->queue_ops->tx_cleanup)
dev->queue_ops->tx_cleanup(dev,
dev->q_mcu[MT_MCUQ_FWDL],
false);
}
return 0;
}
EXPORT_SYMBOL_GPL(__mt76_mcu_send_firmware);

View File

@ -0,0 +1,121 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#include "mt76.h"
#include "trace.h"
static u32 mt76_mmio_rr(struct mt76_dev *dev, u32 offset)
{
u32 val;
#if defined(__linux__)
val = readl(dev->mmio.regs + offset);
#elif defined(__FreeBSD__)
val = readl((u8 *)dev->mmio.regs + offset);
#endif
trace_reg_rr(dev, offset, val);
return val;
}
static void mt76_mmio_wr(struct mt76_dev *dev, u32 offset, u32 val)
{
trace_reg_wr(dev, offset, val);
#if defined(__linux__)
writel(val, dev->mmio.regs + offset);
#elif defined(__FreeBSD__)
writel(val, (u8 *)dev->mmio.regs + offset);
#endif
}
static u32 mt76_mmio_rmw(struct mt76_dev *dev, u32 offset, u32 mask, u32 val)
{
val |= mt76_mmio_rr(dev, offset) & ~mask;
mt76_mmio_wr(dev, offset, val);
return val;
}
static void mt76_mmio_write_copy(struct mt76_dev *dev, u32 offset,
const void *data, int len)
{
#if defined(__linux__)
__iowrite32_copy(dev->mmio.regs + offset, data, DIV_ROUND_UP(len, 4));
#elif defined(__FreeBSD__)
__iowrite32_copy((u8 *)dev->mmio.regs + offset, data, DIV_ROUND_UP(len, 4));
#endif
}
static void mt76_mmio_read_copy(struct mt76_dev *dev, u32 offset,
void *data, int len)
{
#if defined(__linux__)
__ioread32_copy(data, dev->mmio.regs + offset, DIV_ROUND_UP(len, 4));
#elif defined(__FreeBSD__)
__ioread32_copy(data, (u8 *)dev->mmio.regs + offset, DIV_ROUND_UP(len, 4));
#endif
}
static int mt76_mmio_wr_rp(struct mt76_dev *dev, u32 base,
const struct mt76_reg_pair *data, int len)
{
while (len > 0) {
mt76_mmio_wr(dev, data->reg, data->value);
data++;
len--;
}
return 0;
}
static int mt76_mmio_rd_rp(struct mt76_dev *dev, u32 base,
struct mt76_reg_pair *data, int len)
{
while (len > 0) {
data->value = mt76_mmio_rr(dev, data->reg);
data++;
len--;
}
return 0;
}
void mt76_set_irq_mask(struct mt76_dev *dev, u32 addr,
u32 clear, u32 set)
{
unsigned long flags;
spin_lock_irqsave(&dev->mmio.irq_lock, flags);
dev->mmio.irqmask &= ~clear;
dev->mmio.irqmask |= set;
if (addr) {
if (mtk_wed_device_active(&dev->mmio.wed))
mtk_wed_device_irq_set_mask(&dev->mmio.wed,
dev->mmio.irqmask);
else
mt76_mmio_wr(dev, addr, dev->mmio.irqmask);
}
spin_unlock_irqrestore(&dev->mmio.irq_lock, flags);
}
EXPORT_SYMBOL_GPL(mt76_set_irq_mask);
void mt76_mmio_init(struct mt76_dev *dev, void __iomem *regs)
{
static const struct mt76_bus_ops mt76_mmio_ops = {
.rr = mt76_mmio_rr,
.rmw = mt76_mmio_rmw,
.wr = mt76_mmio_wr,
.write_copy = mt76_mmio_write_copy,
.read_copy = mt76_mmio_read_copy,
.wr_rp = mt76_mmio_wr_rp,
.rd_rp = mt76_mmio_rd_rp,
.type = MT76_BUS_MMIO,
};
dev->bus = &mt76_mmio_ops;
dev->mmio.regs = regs;
spin_lock_init(&dev->mmio.irq_lock);
}
EXPORT_SYMBOL_GPL(mt76_mmio_init);

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,190 @@
// SPDX-License-Identifier: ISC
#include "mt7603.h"
struct beacon_bc_data {
struct mt7603_dev *dev;
struct sk_buff_head q;
struct sk_buff *tail[MT7603_MAX_INTERFACES];
int count[MT7603_MAX_INTERFACES];
};
static void
mt7603_update_beacon_iter(void *priv, u8 *mac, struct ieee80211_vif *vif)
{
struct mt7603_dev *dev = (struct mt7603_dev *)priv;
struct mt76_dev *mdev = &dev->mt76;
struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv;
struct sk_buff *skb = NULL;
if (!(mdev->beacon_mask & BIT(mvif->idx)))
return;
skb = ieee80211_beacon_get(mt76_hw(dev), vif, 0);
if (!skb)
return;
mt76_tx_queue_skb(dev, dev->mphy.q_tx[MT_TXQ_BEACON],
MT_TXQ_BEACON, skb, &mvif->sta.wcid, NULL);
spin_lock_bh(&dev->ps_lock);
mt76_wr(dev, MT_DMA_FQCR0, MT_DMA_FQCR0_BUSY |
FIELD_PREP(MT_DMA_FQCR0_TARGET_WCID, mvif->sta.wcid.idx) |
FIELD_PREP(MT_DMA_FQCR0_TARGET_QID,
dev->mphy.q_tx[MT_TXQ_CAB]->hw_idx) |
FIELD_PREP(MT_DMA_FQCR0_DEST_PORT_ID, 3) |
FIELD_PREP(MT_DMA_FQCR0_DEST_QUEUE_ID, 8));
if (!mt76_poll(dev, MT_DMA_FQCR0, MT_DMA_FQCR0_BUSY, 0, 5000))
dev->beacon_check = MT7603_WATCHDOG_TIMEOUT;
spin_unlock_bh(&dev->ps_lock);
}
static void
mt7603_add_buffered_bc(void *priv, u8 *mac, struct ieee80211_vif *vif)
{
struct beacon_bc_data *data = priv;
struct mt7603_dev *dev = data->dev;
struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv;
struct ieee80211_tx_info *info;
struct sk_buff *skb;
if (!(dev->mt76.beacon_mask & BIT(mvif->idx)))
return;
skb = ieee80211_get_buffered_bc(mt76_hw(dev), vif);
if (!skb)
return;
info = IEEE80211_SKB_CB(skb);
info->control.vif = vif;
info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
mt76_skb_set_moredata(skb, true);
__skb_queue_tail(&data->q, skb);
data->tail[mvif->idx] = skb;
data->count[mvif->idx]++;
}
void mt7603_pre_tbtt_tasklet(struct tasklet_struct *t)
{
struct mt7603_dev *dev = from_tasklet(dev, t, mt76.pre_tbtt_tasklet);
struct mt76_dev *mdev = &dev->mt76;
struct mt76_queue *q;
struct beacon_bc_data data = {};
struct sk_buff *skb;
int i, nframes;
if (mt76_hw(dev)->conf.flags & IEEE80211_CONF_OFFCHANNEL)
return;
data.dev = dev;
__skb_queue_head_init(&data.q);
q = dev->mphy.q_tx[MT_TXQ_BEACON];
spin_lock(&q->lock);
ieee80211_iterate_active_interfaces_atomic(mt76_hw(dev),
IEEE80211_IFACE_ITER_RESUME_ALL,
mt7603_update_beacon_iter, dev);
mt76_queue_kick(dev, q);
spin_unlock(&q->lock);
/* Flush all previous CAB queue packets */
mt76_wr(dev, MT_WF_ARB_CAB_FLUSH, GENMASK(30, 16) | BIT(0));
mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_CAB], false);
mt76_csa_check(mdev);
if (mdev->csa_complete)
goto out;
q = dev->mphy.q_tx[MT_TXQ_CAB];
do {
nframes = skb_queue_len(&data.q);
ieee80211_iterate_active_interfaces_atomic(mt76_hw(dev),
IEEE80211_IFACE_ITER_RESUME_ALL,
mt7603_add_buffered_bc, &data);
} while (nframes != skb_queue_len(&data.q) &&
skb_queue_len(&data.q) < 8);
if (skb_queue_empty(&data.q))
goto out;
for (i = 0; i < ARRAY_SIZE(data.tail); i++) {
if (!data.tail[i])
continue;
mt76_skb_set_moredata(data.tail[i], false);
}
spin_lock(&q->lock);
while ((skb = __skb_dequeue(&data.q)) != NULL) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_vif *vif = info->control.vif;
struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv;
mt76_tx_queue_skb(dev, q, MT_TXQ_CAB, skb, &mvif->sta.wcid, NULL);
}
mt76_queue_kick(dev, q);
spin_unlock(&q->lock);
for (i = 0; i < ARRAY_SIZE(data.count); i++)
mt76_wr(dev, MT_WF_ARB_CAB_COUNT_B0_REG(i),
data.count[i] << MT_WF_ARB_CAB_COUNT_B0_SHIFT(i));
mt76_wr(dev, MT_WF_ARB_CAB_START,
MT_WF_ARB_CAB_START_BSSn(0) |
(MT_WF_ARB_CAB_START_BSS0n(1) *
((1 << (MT7603_MAX_INTERFACES - 1)) - 1)));
out:
mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_BEACON], false);
if (dev->mphy.q_tx[MT_TXQ_BEACON]->queued > hweight8(mdev->beacon_mask))
dev->beacon_check++;
}
void mt7603_beacon_set_timer(struct mt7603_dev *dev, int idx, int intval)
{
u32 pre_tbtt = MT7603_PRE_TBTT_TIME / 64;
if (idx >= 0) {
if (intval)
dev->mt76.beacon_mask |= BIT(idx);
else
dev->mt76.beacon_mask &= ~BIT(idx);
}
if (!dev->mt76.beacon_mask || (!intval && idx < 0)) {
mt7603_irq_disable(dev, MT_INT_MAC_IRQ3);
mt76_clear(dev, MT_ARB_SCR, MT_ARB_SCR_BCNQ_OPMODE_MASK);
mt76_wr(dev, MT_HW_INT_MASK(3), 0);
return;
}
dev->mt76.beacon_int = intval;
mt76_wr(dev, MT_TBTT,
FIELD_PREP(MT_TBTT_PERIOD, intval) | MT_TBTT_CAL_ENABLE);
mt76_wr(dev, MT_TBTT_TIMER_CFG, 0x99); /* start timer */
mt76_rmw_field(dev, MT_ARB_SCR, MT_ARB_SCR_BCNQ_OPMODE_MASK,
MT_BCNQ_OPMODE_AP);
mt76_clear(dev, MT_ARB_SCR, MT_ARB_SCR_TBTT_BCN_PRIO);
mt76_set(dev, MT_ARB_SCR, MT_ARB_SCR_TBTT_BCAST_PRIO);
mt76_wr(dev, MT_PRE_TBTT, pre_tbtt);
mt76_set(dev, MT_HW_INT_MASK(3),
MT_HW_INT3_PRE_TBTT0 | MT_HW_INT3_TBTT0);
mt76_set(dev, MT_WF_ARB_BCN_START,
MT_WF_ARB_BCN_START_BSSn(0) |
((dev->mt76.beacon_mask >> 1) *
MT_WF_ARB_BCN_START_BSS0n(1)));
mt7603_irq_enable(dev, MT_INT_MAC_IRQ3);
if (dev->mt76.beacon_mask & ~BIT(0))
mt76_set(dev, MT_LPON_SBTOR(0), MT_LPON_SBTOR_SUB_BSS_EN);
else
mt76_clear(dev, MT_LPON_SBTOR(0), MT_LPON_SBTOR_SUB_BSS_EN);
}

View File

@ -0,0 +1,65 @@
// SPDX-License-Identifier: ISC
#include "mt7603.h"
#include "../trace.h"
void mt7603_rx_poll_complete(struct mt76_dev *mdev, enum mt76_rxq_id q)
{
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
mt7603_irq_enable(dev, MT_INT_RX_DONE(q));
}
irqreturn_t mt7603_irq_handler(int irq, void *dev_instance)
{
struct mt7603_dev *dev = dev_instance;
u32 intr;
intr = mt76_rr(dev, MT_INT_SOURCE_CSR);
mt76_wr(dev, MT_INT_SOURCE_CSR, intr);
if (!test_bit(MT76_STATE_INITIALIZED, &dev->mphy.state))
return IRQ_NONE;
trace_dev_irq(&dev->mt76, intr, dev->mt76.mmio.irqmask);
intr &= dev->mt76.mmio.irqmask;
if (intr & MT_INT_MAC_IRQ3) {
u32 hwintr = mt76_rr(dev, MT_HW_INT_STATUS(3));
mt76_wr(dev, MT_HW_INT_STATUS(3), hwintr);
if (hwintr & MT_HW_INT3_PRE_TBTT0)
tasklet_schedule(&dev->mt76.pre_tbtt_tasklet);
if ((hwintr & MT_HW_INT3_TBTT0) && dev->mt76.csa_complete)
mt76_csa_finish(&dev->mt76);
}
if (intr & MT_INT_TX_DONE_ALL) {
mt7603_irq_disable(dev, MT_INT_TX_DONE_ALL);
napi_schedule(&dev->mt76.tx_napi);
}
if (intr & MT_INT_RX_DONE(0)) {
mt7603_irq_disable(dev, MT_INT_RX_DONE(0));
napi_schedule(&dev->mt76.napi[0]);
}
if (intr & MT_INT_RX_DONE(1)) {
mt7603_irq_disable(dev, MT_INT_RX_DONE(1));
napi_schedule(&dev->mt76.napi[1]);
}
return IRQ_HANDLED;
}
u32 mt7603_reg_map(struct mt7603_dev *dev, u32 addr)
{
u32 base = addr & MT_MCU_PCIE_REMAP_2_BASE;
u32 offset = addr & MT_MCU_PCIE_REMAP_2_OFFSET;
dev->bus_ops->wr(&dev->mt76, MT_MCU_PCIE_REMAP_2, base);
return MT_PCIE_REMAP_BASE_2 + offset;
}

View File

@ -0,0 +1,118 @@
// SPDX-License-Identifier: ISC
#include "mt7603.h"
static int
mt7603_reset_read(struct seq_file *s, void *data)
{
struct mt7603_dev *dev = dev_get_drvdata(s->private);
static const char * const reset_cause_str[] = {
[RESET_CAUSE_TX_HANG] = "TX hang",
[RESET_CAUSE_TX_BUSY] = "TX DMA busy stuck",
[RESET_CAUSE_RX_BUSY] = "RX DMA busy stuck",
[RESET_CAUSE_RX_PSE_BUSY] = "RX PSE busy stuck",
[RESET_CAUSE_BEACON_STUCK] = "Beacon stuck",
[RESET_CAUSE_MCU_HANG] = "MCU hang",
[RESET_CAUSE_RESET_FAILED] = "PSE reset failed",
};
int i;
for (i = 0; i < ARRAY_SIZE(reset_cause_str); i++) {
if (!reset_cause_str[i])
continue;
seq_printf(s, "%20s: %u\n", reset_cause_str[i],
dev->reset_cause[i]);
}
return 0;
}
static int
mt7603_radio_read(struct seq_file *s, void *data)
{
struct mt7603_dev *dev = dev_get_drvdata(s->private);
seq_printf(s, "Sensitivity: %d\n", dev->sensitivity);
seq_printf(s, "False CCA: ofdm=%d cck=%d\n",
dev->false_cca_ofdm, dev->false_cca_cck);
return 0;
}
static int
mt7603_edcca_set(void *data, u64 val)
{
struct mt7603_dev *dev = data;
mutex_lock(&dev->mt76.mutex);
dev->ed_monitor_enabled = !!val;
dev->ed_monitor = dev->ed_monitor_enabled &&
dev->mt76.region == NL80211_DFS_ETSI;
mt7603_init_edcca(dev);
mutex_unlock(&dev->mt76.mutex);
return 0;
}
static int
mt7603_edcca_get(void *data, u64 *val)
{
struct mt7603_dev *dev = data;
*val = dev->ed_monitor_enabled;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_edcca, mt7603_edcca_get,
mt7603_edcca_set, "%lld\n");
static int
mt7603_ampdu_stat_show(struct seq_file *file, void *data)
{
struct mt7603_dev *dev = file->private;
int bound[3], i, range;
range = mt76_rr(dev, MT_AGG_ASRCR);
for (i = 0; i < ARRAY_SIZE(bound); i++)
bound[i] = MT_AGG_ASRCR_RANGE(range, i) + 1;
seq_printf(file, "Length: %8d | ", bound[0]);
for (i = 0; i < ARRAY_SIZE(bound) - 1; i++)
seq_printf(file, "%3d -%3d | ",
bound[i], bound[i + 1]);
seq_puts(file, "\nCount: ");
for (i = 0; i < ARRAY_SIZE(bound); i++)
seq_printf(file, "%8d | ", dev->mt76.aggr_stats[i]);
seq_puts(file, "\n");
return 0;
}
DEFINE_SHOW_ATTRIBUTE(mt7603_ampdu_stat);
void mt7603_init_debugfs(struct mt7603_dev *dev)
{
struct dentry *dir;
dir = mt76_register_debugfs(&dev->mt76);
if (!dir)
return;
debugfs_create_file("ampdu_stat", 0400, dir, dev,
&mt7603_ampdu_stat_fops);
debugfs_create_devm_seqfile(dev->mt76.dev, "xmit-queues", dir,
mt76_queues_read);
debugfs_create_file("edcca", 0600, dir, dev, &fops_edcca);
debugfs_create_u32("reset_test", 0600, dir, &dev->reset_test);
debugfs_create_devm_seqfile(dev->mt76.dev, "reset", dir,
mt7603_reset_read);
debugfs_create_devm_seqfile(dev->mt76.dev, "radio", dir,
mt7603_radio_read);
debugfs_create_u8("sensitivity_limit", 0600, dir,
&dev->sensitivity_limit);
debugfs_create_bool("dynamic_sensitivity", 0600, dir,
&dev->dynamic_sensitivity);
}

View File

@ -0,0 +1,241 @@
// SPDX-License-Identifier: ISC
#include "mt7603.h"
#include "mac.h"
#include "../dma.h"
static void
mt7603_rx_loopback_skb(struct mt7603_dev *dev, struct sk_buff *skb)
{
static const u8 tid_to_ac[8] = {
IEEE80211_AC_BE,
IEEE80211_AC_BK,
IEEE80211_AC_BK,
IEEE80211_AC_BE,
IEEE80211_AC_VI,
IEEE80211_AC_VI,
IEEE80211_AC_VO,
IEEE80211_AC_VO
};
__le32 *txd = (__le32 *)skb->data;
struct ieee80211_hdr *hdr;
struct ieee80211_sta *sta;
struct mt7603_sta *msta;
struct mt76_wcid *wcid;
void *priv;
int idx;
u32 val;
u8 tid = 0;
if (skb->len < MT_TXD_SIZE + sizeof(struct ieee80211_hdr))
goto free;
val = le32_to_cpu(txd[1]);
idx = FIELD_GET(MT_TXD1_WLAN_IDX, val);
skb->priority = FIELD_GET(MT_TXD1_TID, val);
if (idx >= MT7603_WTBL_STA - 1)
goto free;
wcid = rcu_dereference(dev->mt76.wcid[idx]);
if (!wcid)
goto free;
priv = msta = container_of(wcid, struct mt7603_sta, wcid);
val = le32_to_cpu(txd[0]);
val &= ~(MT_TXD0_P_IDX | MT_TXD0_Q_IDX);
val |= FIELD_PREP(MT_TXD0_Q_IDX, MT_TX_HW_QUEUE_MGMT);
txd[0] = cpu_to_le32(val);
sta = container_of(priv, struct ieee80211_sta, drv_priv);
hdr = (struct ieee80211_hdr *)&skb->data[MT_TXD_SIZE];
if (ieee80211_is_data_qos(hdr->frame_control))
tid = *ieee80211_get_qos_ctl(hdr) &
IEEE80211_QOS_CTL_TAG1D_MASK;
skb_set_queue_mapping(skb, tid_to_ac[tid]);
ieee80211_sta_set_buffered(sta, tid, true);
spin_lock_bh(&dev->ps_lock);
__skb_queue_tail(&msta->psq, skb);
if (skb_queue_len(&msta->psq) >= 64) {
skb = __skb_dequeue(&msta->psq);
dev_kfree_skb(skb);
}
spin_unlock_bh(&dev->ps_lock);
return;
free:
dev_kfree_skb(skb);
}
void mt7603_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q,
struct sk_buff *skb)
{
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
__le32 *rxd = (__le32 *)skb->data;
__le32 *end = (__le32 *)&skb->data[skb->len];
enum rx_pkt_type type;
type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE);
if (q == MT_RXQ_MCU) {
if (type == PKT_TYPE_RX_EVENT)
mt76_mcu_rx_event(&dev->mt76, skb);
else
mt7603_rx_loopback_skb(dev, skb);
return;
}
switch (type) {
case PKT_TYPE_TXS:
for (rxd++; rxd + 5 <= end; rxd += 5)
mt7603_mac_add_txs(dev, rxd);
dev_kfree_skb(skb);
break;
case PKT_TYPE_RX_EVENT:
mt76_mcu_rx_event(&dev->mt76, skb);
return;
case PKT_TYPE_NORMAL:
if (mt7603_mac_fill_rx(dev, skb) == 0) {
mt76_rx(&dev->mt76, q, skb);
return;
}
fallthrough;
default:
dev_kfree_skb(skb);
break;
}
}
static int
mt7603_init_rx_queue(struct mt7603_dev *dev, struct mt76_queue *q,
int idx, int n_desc, int bufsize)
{
int err;
err = mt76_queue_alloc(dev, q, idx, n_desc, bufsize,
MT_RX_RING_BASE);
if (err < 0)
return err;
mt7603_irq_enable(dev, MT_INT_RX_DONE(idx));
return 0;
}
static int mt7603_poll_tx(struct napi_struct *napi, int budget)
{
struct mt7603_dev *dev;
int i;
dev = container_of(napi, struct mt7603_dev, mt76.tx_napi);
dev->tx_dma_check = 0;
mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_WM], false);
for (i = MT_TXQ_PSD; i >= 0; i--)
mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], false);
if (napi_complete_done(napi, 0))
mt7603_irq_enable(dev, MT_INT_TX_DONE_ALL);
mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_WM], false);
for (i = MT_TXQ_PSD; i >= 0; i--)
mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], false);
mt7603_mac_sta_poll(dev);
mt76_worker_schedule(&dev->mt76.tx_worker);
return 0;
}
int mt7603_dma_init(struct mt7603_dev *dev)
{
static const u8 wmm_queue_map[] = {
[IEEE80211_AC_BK] = 0,
[IEEE80211_AC_BE] = 1,
[IEEE80211_AC_VI] = 2,
[IEEE80211_AC_VO] = 3,
};
int ret;
int i;
mt76_dma_attach(&dev->mt76);
mt76_clear(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_TX_DMA_EN |
MT_WPDMA_GLO_CFG_RX_DMA_EN |
MT_WPDMA_GLO_CFG_DMA_BURST_SIZE |
MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE);
mt76_wr(dev, MT_WPDMA_RST_IDX, ~0);
mt7603_pse_client_reset(dev);
for (i = 0; i < ARRAY_SIZE(wmm_queue_map); i++) {
ret = mt76_init_tx_queue(&dev->mphy, i, wmm_queue_map[i],
MT7603_TX_RING_SIZE, MT_TX_RING_BASE, 0);
if (ret)
return ret;
}
ret = mt76_init_tx_queue(&dev->mphy, MT_TXQ_PSD, MT_TX_HW_QUEUE_MGMT,
MT7603_PSD_RING_SIZE, MT_TX_RING_BASE, 0);
if (ret)
return ret;
ret = mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_WM, MT_TX_HW_QUEUE_MCU,
MT_MCU_RING_SIZE, MT_TX_RING_BASE);
if (ret)
return ret;
ret = mt76_init_tx_queue(&dev->mphy, MT_TXQ_BEACON, MT_TX_HW_QUEUE_BCN,
MT_MCU_RING_SIZE, MT_TX_RING_BASE, 0);
if (ret)
return ret;
ret = mt76_init_tx_queue(&dev->mphy, MT_TXQ_CAB, MT_TX_HW_QUEUE_BMC,
MT_MCU_RING_SIZE, MT_TX_RING_BASE, 0);
if (ret)
return ret;
mt7603_irq_enable(dev,
MT_INT_TX_DONE(IEEE80211_AC_VO) |
MT_INT_TX_DONE(IEEE80211_AC_VI) |
MT_INT_TX_DONE(IEEE80211_AC_BE) |
MT_INT_TX_DONE(IEEE80211_AC_BK) |
MT_INT_TX_DONE(MT_TX_HW_QUEUE_MGMT) |
MT_INT_TX_DONE(MT_TX_HW_QUEUE_MCU) |
MT_INT_TX_DONE(MT_TX_HW_QUEUE_BCN) |
MT_INT_TX_DONE(MT_TX_HW_QUEUE_BMC));
ret = mt7603_init_rx_queue(dev, &dev->mt76.q_rx[MT_RXQ_MCU], 1,
MT7603_MCU_RX_RING_SIZE, MT_RX_BUF_SIZE);
if (ret)
return ret;
ret = mt7603_init_rx_queue(dev, &dev->mt76.q_rx[MT_RXQ_MAIN], 0,
MT7603_RX_RING_SIZE, MT_RX_BUF_SIZE);
if (ret)
return ret;
mt76_wr(dev, MT_DELAY_INT_CFG, 0);
ret = mt76_init_queues(dev, mt76_dma_rx_poll);
if (ret)
return ret;
netif_napi_add_tx(&dev->mt76.tx_napi_dev, &dev->mt76.tx_napi,
mt7603_poll_tx);
napi_enable(&dev->mt76.tx_napi);
return 0;
}
void mt7603_dma_cleanup(struct mt7603_dev *dev)
{
mt76_clear(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_TX_DMA_EN |
MT_WPDMA_GLO_CFG_RX_DMA_EN |
MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE);
mt76_dma_cleanup(&dev->mt76);
}

View File

@ -0,0 +1,187 @@
// SPDX-License-Identifier: ISC
#include <linux/of.h>
#include "mt7603.h"
#include "eeprom.h"
static int
mt7603_efuse_read(struct mt7603_dev *dev, u32 base, u16 addr, u8 *data)
{
u32 val;
int i;
val = mt76_rr(dev, base + MT_EFUSE_CTRL);
val &= ~(MT_EFUSE_CTRL_AIN |
MT_EFUSE_CTRL_MODE);
val |= FIELD_PREP(MT_EFUSE_CTRL_AIN, addr & ~0xf);
val |= MT_EFUSE_CTRL_KICK;
mt76_wr(dev, base + MT_EFUSE_CTRL, val);
if (!mt76_poll(dev, base + MT_EFUSE_CTRL, MT_EFUSE_CTRL_KICK, 0, 1000))
return -ETIMEDOUT;
udelay(2);
val = mt76_rr(dev, base + MT_EFUSE_CTRL);
if ((val & MT_EFUSE_CTRL_AOUT) == MT_EFUSE_CTRL_AOUT ||
WARN_ON_ONCE(!(val & MT_EFUSE_CTRL_VALID))) {
memset(data, 0xff, 16);
return 0;
}
for (i = 0; i < 4; i++) {
val = mt76_rr(dev, base + MT_EFUSE_RDATA(i));
put_unaligned_le32(val, data + 4 * i);
}
return 0;
}
static int
mt7603_efuse_init(struct mt7603_dev *dev)
{
u32 base = mt7603_reg_map(dev, MT_EFUSE_BASE);
int len = MT7603_EEPROM_SIZE;
void *buf;
int ret, i;
if (mt76_rr(dev, base + MT_EFUSE_BASE_CTRL) & MT_EFUSE_BASE_CTRL_EMPTY)
return 0;
dev->mt76.otp.data = devm_kzalloc(dev->mt76.dev, len, GFP_KERNEL);
dev->mt76.otp.size = len;
if (!dev->mt76.otp.data)
return -ENOMEM;
buf = dev->mt76.otp.data;
for (i = 0; i + 16 <= len; i += 16) {
ret = mt7603_efuse_read(dev, base, i, buf + i);
if (ret)
return ret;
}
return 0;
}
static bool
mt7603_has_cal_free_data(struct mt7603_dev *dev, u8 *efuse)
{
if (!efuse[MT_EE_TEMP_SENSOR_CAL])
return false;
if (get_unaligned_le16(efuse + MT_EE_TX_POWER_0_START_2G) == 0)
return false;
if (get_unaligned_le16(efuse + MT_EE_TX_POWER_1_START_2G) == 0)
return false;
if (!efuse[MT_EE_CP_FT_VERSION])
return false;
if (!efuse[MT_EE_XTAL_FREQ_OFFSET])
return false;
if (!efuse[MT_EE_XTAL_WF_RFCAL])
return false;
return true;
}
static void
mt7603_apply_cal_free_data(struct mt7603_dev *dev, u8 *efuse)
{
static const u8 cal_free_bytes[] = {
MT_EE_TEMP_SENSOR_CAL,
MT_EE_CP_FT_VERSION,
MT_EE_XTAL_FREQ_OFFSET,
MT_EE_XTAL_WF_RFCAL,
/* Skip for MT7628 */
MT_EE_TX_POWER_0_START_2G,
MT_EE_TX_POWER_0_START_2G + 1,
MT_EE_TX_POWER_1_START_2G,
MT_EE_TX_POWER_1_START_2G + 1,
};
struct device_node *np = dev->mt76.dev->of_node;
u8 *eeprom = dev->mt76.eeprom.data;
int n = ARRAY_SIZE(cal_free_bytes);
int i;
if (!np || !of_property_read_bool(np, "mediatek,eeprom-merge-otp"))
return;
if (!mt7603_has_cal_free_data(dev, efuse))
return;
if (is_mt7628(dev))
n -= 4;
for (i = 0; i < n; i++) {
int offset = cal_free_bytes[i];
eeprom[offset] = efuse[offset];
}
}
static int
mt7603_eeprom_load(struct mt7603_dev *dev)
{
int ret;
ret = mt76_eeprom_init(&dev->mt76, MT7603_EEPROM_SIZE);
if (ret < 0)
return ret;
return mt7603_efuse_init(dev);
}
static int mt7603_check_eeprom(struct mt76_dev *dev)
{
u16 val = get_unaligned_le16(dev->eeprom.data);
switch (val) {
case 0x7628:
case 0x7603:
case 0x7600:
return 0;
default:
return -EINVAL;
}
}
static inline bool is_mt7688(struct mt7603_dev *dev)
{
return mt76_rr(dev, MT_EFUSE_BASE + 0x64) & BIT(4);
}
int mt7603_eeprom_init(struct mt7603_dev *dev)
{
u8 *eeprom;
int ret;
ret = mt7603_eeprom_load(dev);
if (ret < 0)
return ret;
if (dev->mt76.otp.data) {
if (mt7603_check_eeprom(&dev->mt76) == 0)
mt7603_apply_cal_free_data(dev, dev->mt76.otp.data);
else
memcpy(dev->mt76.eeprom.data, dev->mt76.otp.data,
MT7603_EEPROM_SIZE);
}
eeprom = (u8 *)dev->mt76.eeprom.data;
dev->mphy.cap.has_2ghz = true;
memcpy(dev->mphy.macaddr, eeprom + MT_EE_MAC_ADDR, ETH_ALEN);
/* Check for 1SS devices */
dev->mphy.antenna_mask = 3;
if (FIELD_GET(MT_EE_NIC_CONF_0_RX_PATH, eeprom[MT_EE_NIC_CONF_0]) == 1 ||
FIELD_GET(MT_EE_NIC_CONF_0_TX_PATH, eeprom[MT_EE_NIC_CONF_0]) == 1 ||
is_mt7688(dev))
dev->mphy.antenna_mask = 1;
mt76_eeprom_override(&dev->mphy);
return 0;
}

View File

@ -0,0 +1,91 @@
/* SPDX-License-Identifier: ISC */
#ifndef __MT7603_EEPROM_H
#define __MT7603_EEPROM_H
#include "mt7603.h"
enum mt7603_eeprom_field {
MT_EE_CHIP_ID = 0x000,
MT_EE_VERSION = 0x002,
MT_EE_MAC_ADDR = 0x004,
MT_EE_NIC_CONF_0 = 0x034,
MT_EE_NIC_CONF_1 = 0x036,
MT_EE_NIC_CONF_2 = 0x042,
MT_EE_XTAL_TRIM_1 = 0x03a,
MT_EE_RSSI_OFFSET_2G = 0x046,
MT_EE_WIFI_RF_SETTING = 0x048,
MT_EE_RSSI_OFFSET_5G = 0x04a,
MT_EE_TX_POWER_DELTA_BW40 = 0x050,
MT_EE_TX_POWER_DELTA_BW80 = 0x052,
MT_EE_TX_POWER_EXT_PA_5G = 0x054,
MT_EE_TEMP_SENSOR_CAL = 0x055,
MT_EE_TX_POWER_0_START_2G = 0x056,
MT_EE_TX_POWER_1_START_2G = 0x05c,
/* used as byte arrays */
#define MT_TX_POWER_GROUP_SIZE_5G 5
#define MT_TX_POWER_GROUPS_5G 6
MT_EE_TX_POWER_0_START_5G = 0x062,
MT_EE_TX_POWER_0_GRP3_TX_POWER_DELTA = 0x074,
MT_EE_TX_POWER_0_GRP4_TSSI_SLOPE = 0x076,
MT_EE_TX_POWER_1_START_5G = 0x080,
MT_EE_TX_POWER_CCK = 0x0a0,
MT_EE_TX_POWER_OFDM_2G_6M = 0x0a2,
MT_EE_TX_POWER_OFDM_2G_24M = 0x0a4,
MT_EE_TX_POWER_OFDM_2G_54M = 0x0a6,
MT_EE_TX_POWER_HT_BPSK_QPSK = 0x0a8,
MT_EE_TX_POWER_HT_16_64_QAM = 0x0aa,
MT_EE_TX_POWER_HT_64_QAM = 0x0ac,
MT_EE_ELAN_RX_MODE_GAIN = 0x0c0,
MT_EE_ELAN_RX_MODE_NF = 0x0c1,
MT_EE_ELAN_RX_MODE_P1DB = 0x0c2,
MT_EE_ELAN_BYPASS_MODE_GAIN = 0x0c3,
MT_EE_ELAN_BYPASS_MODE_NF = 0x0c4,
MT_EE_ELAN_BYPASS_MODE_P1DB = 0x0c5,
MT_EE_STEP_NUM_NEG_6_7 = 0x0c6,
MT_EE_STEP_NUM_NEG_4_5 = 0x0c8,
MT_EE_STEP_NUM_NEG_2_3 = 0x0ca,
MT_EE_STEP_NUM_NEG_0_1 = 0x0cc,
MT_EE_REF_STEP_24G = 0x0ce,
MT_EE_STEP_NUM_PLUS_1_2 = 0x0d0,
MT_EE_STEP_NUM_PLUS_3_4 = 0x0d2,
MT_EE_STEP_NUM_PLUS_5_6 = 0x0d4,
MT_EE_STEP_NUM_PLUS_7 = 0x0d6,
MT_EE_CP_FT_VERSION = 0x0f0,
MT_EE_TX_POWER_TSSI_OFF = 0x0f2,
MT_EE_XTAL_FREQ_OFFSET = 0x0f4,
MT_EE_XTAL_TRIM_2_COMP = 0x0f5,
MT_EE_XTAL_TRIM_3_COMP = 0x0f6,
MT_EE_XTAL_WF_RFCAL = 0x0f7,
__MT_EE_MAX
};
enum mt7603_eeprom_source {
MT_EE_SRC_PROM,
MT_EE_SRC_EFUSE,
MT_EE_SRC_FLASH,
};
#define MT_EE_NIC_CONF_0_RX_PATH GENMASK(3, 0)
#define MT_EE_NIC_CONF_0_TX_PATH GENMASK(7, 4)
#endif

View File

@ -0,0 +1,562 @@
// SPDX-License-Identifier: ISC
#include <linux/etherdevice.h>
#include "mt7603.h"
#include "mac.h"
#include "eeprom.h"
const struct mt76_driver_ops mt7603_drv_ops = {
.txwi_size = MT_TXD_SIZE,
.drv_flags = MT_DRV_SW_RX_AIRTIME,
.survey_flags = SURVEY_INFO_TIME_TX,
.tx_prepare_skb = mt7603_tx_prepare_skb,
.tx_complete_skb = mt7603_tx_complete_skb,
.rx_skb = mt7603_queue_rx_skb,
.rx_poll_complete = mt7603_rx_poll_complete,
.sta_ps = mt7603_sta_ps,
.sta_add = mt7603_sta_add,
.sta_assoc = mt7603_sta_assoc,
.sta_remove = mt7603_sta_remove,
.update_survey = mt7603_update_channel,
};
static void
mt7603_set_tmac_template(struct mt7603_dev *dev)
{
u32 desc[5] = {
[1] = FIELD_PREP(MT_TXD3_REM_TX_COUNT, 0xf),
[3] = MT_TXD5_SW_POWER_MGMT
};
u32 addr;
int i;
addr = mt7603_reg_map(dev, MT_CLIENT_BASE_PHYS_ADDR);
addr += MT_CLIENT_TMAC_INFO_TEMPLATE;
for (i = 0; i < ARRAY_SIZE(desc); i++)
mt76_wr(dev, addr + 4 * i, desc[i]);
}
static void
mt7603_dma_sched_init(struct mt7603_dev *dev)
{
int page_size = 128;
int page_count;
int max_len = 1792;
int max_amsdu_pages = 4096 / page_size;
int max_mcu_len = 4096;
int max_beacon_len = 512 * 4 + max_len;
int max_mcast_pages = 4 * max_len / page_size;
int reserved_count = 0;
int beacon_pages;
int mcu_pages;
int i;
page_count = mt76_get_field(dev, MT_PSE_FC_P0,
MT_PSE_FC_P0_MAX_QUOTA);
beacon_pages = 4 * (max_beacon_len / page_size);
mcu_pages = max_mcu_len / page_size;
mt76_wr(dev, MT_PSE_FRP,
FIELD_PREP(MT_PSE_FRP_P0, 7) |
FIELD_PREP(MT_PSE_FRP_P1, 6) |
FIELD_PREP(MT_PSE_FRP_P2_RQ2, 4));
mt76_wr(dev, MT_HIGH_PRIORITY_1, 0x55555553);
mt76_wr(dev, MT_HIGH_PRIORITY_2, 0x78555555);
mt76_wr(dev, MT_QUEUE_PRIORITY_1, 0x2b1a096e);
mt76_wr(dev, MT_QUEUE_PRIORITY_2, 0x785f4d3c);
mt76_wr(dev, MT_PRIORITY_MASK, 0xffffffff);
mt76_wr(dev, MT_SCH_1, page_count | (2 << 28));
mt76_wr(dev, MT_SCH_2, max_amsdu_pages);
for (i = 0; i <= 4; i++)
mt76_wr(dev, MT_PAGE_COUNT(i), max_amsdu_pages);
reserved_count += 5 * max_amsdu_pages;
mt76_wr(dev, MT_PAGE_COUNT(5), mcu_pages);
reserved_count += mcu_pages;
mt76_wr(dev, MT_PAGE_COUNT(7), beacon_pages);
reserved_count += beacon_pages;
mt76_wr(dev, MT_PAGE_COUNT(8), max_mcast_pages);
reserved_count += max_mcast_pages;
if (is_mt7603(dev))
reserved_count = 0;
mt76_wr(dev, MT_RSV_MAX_THRESH, page_count - reserved_count);
if (is_mt7603(dev) && mt76xx_rev(dev) >= MT7603_REV_E2) {
mt76_wr(dev, MT_GROUP_THRESH(0),
page_count - beacon_pages - mcu_pages);
mt76_wr(dev, MT_GROUP_THRESH(1), beacon_pages);
mt76_wr(dev, MT_BMAP_0, 0x0080ff5f);
mt76_wr(dev, MT_GROUP_THRESH(2), mcu_pages);
mt76_wr(dev, MT_BMAP_1, 0x00000020);
} else {
mt76_wr(dev, MT_GROUP_THRESH(0), page_count);
mt76_wr(dev, MT_BMAP_0, 0xffff);
}
mt76_wr(dev, MT_SCH_4, 0);
for (i = 0; i <= 15; i++)
mt76_wr(dev, MT_TXTIME_THRESH(i), 0xfffff);
mt76_set(dev, MT_SCH_4, BIT(6));
}
static void
mt7603_phy_init(struct mt7603_dev *dev)
{
int rx_chains = dev->mphy.antenna_mask;
int tx_chains = hweight8(rx_chains) - 1;
mt76_rmw(dev, MT_WF_RMAC_RMCR,
(MT_WF_RMAC_RMCR_SMPS_MODE |
MT_WF_RMAC_RMCR_RX_STREAMS),
(FIELD_PREP(MT_WF_RMAC_RMCR_SMPS_MODE, 3) |
FIELD_PREP(MT_WF_RMAC_RMCR_RX_STREAMS, rx_chains)));
mt76_rmw_field(dev, MT_TMAC_TCR, MT_TMAC_TCR_TX_STREAMS,
tx_chains);
dev->agc0 = mt76_rr(dev, MT_AGC(0));
dev->agc3 = mt76_rr(dev, MT_AGC(3));
}
static void
mt7603_mac_init(struct mt7603_dev *dev)
{
u8 bc_addr[ETH_ALEN];
u32 addr;
int i;
mt76_wr(dev, MT_AGG_BA_SIZE_LIMIT_0,
(MT_AGG_SIZE_LIMIT(0) << 0 * MT_AGG_BA_SIZE_LIMIT_SHIFT) |
(MT_AGG_SIZE_LIMIT(1) << 1 * MT_AGG_BA_SIZE_LIMIT_SHIFT) |
(MT_AGG_SIZE_LIMIT(2) << 2 * MT_AGG_BA_SIZE_LIMIT_SHIFT) |
(MT_AGG_SIZE_LIMIT(3) << 3 * MT_AGG_BA_SIZE_LIMIT_SHIFT));
mt76_wr(dev, MT_AGG_BA_SIZE_LIMIT_1,
(MT_AGG_SIZE_LIMIT(4) << 0 * MT_AGG_BA_SIZE_LIMIT_SHIFT) |
(MT_AGG_SIZE_LIMIT(5) << 1 * MT_AGG_BA_SIZE_LIMIT_SHIFT) |
(MT_AGG_SIZE_LIMIT(6) << 2 * MT_AGG_BA_SIZE_LIMIT_SHIFT) |
(MT_AGG_SIZE_LIMIT(7) << 3 * MT_AGG_BA_SIZE_LIMIT_SHIFT));
mt76_wr(dev, MT_AGG_LIMIT,
FIELD_PREP(MT_AGG_LIMIT_AC(0), 24) |
FIELD_PREP(MT_AGG_LIMIT_AC(1), 24) |
FIELD_PREP(MT_AGG_LIMIT_AC(2), 24) |
FIELD_PREP(MT_AGG_LIMIT_AC(3), 24));
mt76_wr(dev, MT_AGG_LIMIT_1,
FIELD_PREP(MT_AGG_LIMIT_AC(0), 24) |
FIELD_PREP(MT_AGG_LIMIT_AC(1), 24) |
FIELD_PREP(MT_AGG_LIMIT_AC(2), 24) |
FIELD_PREP(MT_AGG_LIMIT_AC(3), 24));
mt76_wr(dev, MT_AGG_CONTROL,
FIELD_PREP(MT_AGG_CONTROL_BAR_RATE, 0x4b) |
FIELD_PREP(MT_AGG_CONTROL_CFEND_RATE, 0x69) |
MT_AGG_CONTROL_NO_BA_AR_RULE);
mt76_wr(dev, MT_AGG_RETRY_CONTROL,
FIELD_PREP(MT_AGG_RETRY_CONTROL_BAR_LIMIT, 1) |
FIELD_PREP(MT_AGG_RETRY_CONTROL_RTS_LIMIT, 15));
mt76_wr(dev, MT_DMA_DCR0, MT_DMA_DCR0_RX_VEC_DROP |
FIELD_PREP(MT_DMA_DCR0_MAX_RX_LEN, 4096));
mt76_rmw(dev, MT_DMA_VCFR0, BIT(0), BIT(13));
mt76_rmw(dev, MT_DMA_TMCFR0, BIT(0) | BIT(1), BIT(13));
mt76_clear(dev, MT_WF_RMAC_TMR_PA, BIT(31));
mt76_set(dev, MT_WF_RMACDR, MT_WF_RMACDR_MAXLEN_20BIT);
mt76_rmw(dev, MT_WF_RMAC_MAXMINLEN, 0xffffff, 0x19000);
mt76_wr(dev, MT_WF_RFCR1, 0);
mt76_set(dev, MT_TMAC_TCR, MT_TMAC_TCR_RX_RIFS_MODE);
mt7603_set_tmac_template(dev);
/* Enable RX group to HIF */
addr = mt7603_reg_map(dev, MT_CLIENT_BASE_PHYS_ADDR);
mt76_set(dev, addr + MT_CLIENT_RXINF, MT_CLIENT_RXINF_RXSH_GROUPS);
/* Enable RX group to MCU */
mt76_set(dev, MT_DMA_DCR1, GENMASK(13, 11));
mt76_rmw_field(dev, MT_AGG_PCR_RTS, MT_AGG_PCR_RTS_PKT_THR, 3);
mt76_set(dev, MT_TMAC_PCR, MT_TMAC_PCR_SPE_EN);
/* include preamble detection in CCA trigger signal */
mt76_rmw_field(dev, MT_TXREQ, MT_TXREQ_CCA_SRC_SEL, 2);
mt76_wr(dev, MT_RXREQ, 4);
/* Configure all rx packets to HIF */
mt76_wr(dev, MT_DMA_RCFR0, 0xc0000000);
/* Configure MCU txs selection with aggregation */
mt76_wr(dev, MT_DMA_TCFR0,
FIELD_PREP(MT_DMA_TCFR_TXS_AGGR_TIMEOUT, 1) | /* 32 us */
MT_DMA_TCFR_TXS_AGGR_COUNT);
/* Configure HIF txs selection with aggregation */
mt76_wr(dev, MT_DMA_TCFR1,
FIELD_PREP(MT_DMA_TCFR_TXS_AGGR_TIMEOUT, 1) | /* 32 us */
MT_DMA_TCFR_TXS_AGGR_COUNT | /* Maximum count */
MT_DMA_TCFR_TXS_BIT_MAP);
mt76_wr(dev, MT_MCU_PCIE_REMAP_1, MT_PSE_WTBL_2_PHYS_ADDR);
for (i = 0; i < MT7603_WTBL_SIZE; i++)
mt7603_wtbl_clear(dev, i);
eth_broadcast_addr(bc_addr);
mt7603_wtbl_init(dev, MT7603_WTBL_RESERVED, -1, bc_addr);
dev->global_sta.wcid.idx = MT7603_WTBL_RESERVED;
rcu_assign_pointer(dev->mt76.wcid[MT7603_WTBL_RESERVED],
&dev->global_sta.wcid);
mt76_rmw_field(dev, MT_LPON_BTEIR, MT_LPON_BTEIR_MBSS_MODE, 2);
mt76_rmw_field(dev, MT_WF_RMACDR, MT_WF_RMACDR_MBSSID_MASK, 2);
mt76_wr(dev, MT_AGG_ARUCR,
FIELD_PREP(MT_AGG_ARxCR_LIMIT(0), 7) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(1), 2) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(2), 2) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(3), 2) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(4), 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(5), 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(6), 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(7), 1));
mt76_wr(dev, MT_AGG_ARDCR,
FIELD_PREP(MT_AGG_ARxCR_LIMIT(0), MT7603_RATE_RETRY - 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(1), MT7603_RATE_RETRY - 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(2), MT7603_RATE_RETRY - 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(3), MT7603_RATE_RETRY - 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(4), MT7603_RATE_RETRY - 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(5), MT7603_RATE_RETRY - 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(6), MT7603_RATE_RETRY - 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(7), MT7603_RATE_RETRY - 1));
mt76_wr(dev, MT_AGG_ARCR,
(FIELD_PREP(MT_AGG_ARCR_RTS_RATE_THR, 2) |
MT_AGG_ARCR_RATE_DOWN_RATIO_EN |
FIELD_PREP(MT_AGG_ARCR_RATE_DOWN_RATIO, 1) |
FIELD_PREP(MT_AGG_ARCR_RATE_UP_EXTRA_TH, 4)));
mt76_set(dev, MT_WTBL_RMVTCR, MT_WTBL_RMVTCR_RX_MV_MODE);
mt76_clear(dev, MT_SEC_SCR, MT_SEC_SCR_MASK_ORDER);
mt76_clear(dev, MT_SEC_SCR, BIT(18));
/* Set secondary beacon time offsets */
for (i = 0; i <= 4; i++)
mt76_rmw_field(dev, MT_LPON_SBTOR(i), MT_LPON_SBTOR_TIME_OFFSET,
(i + 1) * (20 + 4096));
}
static int
mt7603_init_hardware(struct mt7603_dev *dev)
{
int i, ret;
mt76_wr(dev, MT_INT_SOURCE_CSR, ~0);
ret = mt7603_eeprom_init(dev);
if (ret < 0)
return ret;
ret = mt7603_dma_init(dev);
if (ret)
return ret;
mt76_wr(dev, MT_WPDMA_GLO_CFG, 0x52000850);
mt7603_mac_dma_start(dev);
dev->rxfilter = mt76_rr(dev, MT_WF_RFCR);
set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state);
for (i = 0; i < MT7603_WTBL_SIZE; i++) {
mt76_wr(dev, MT_PSE_RTA, MT_PSE_RTA_BUSY | MT_PSE_RTA_WRITE |
FIELD_PREP(MT_PSE_RTA_TAG_ID, i));
mt76_poll(dev, MT_PSE_RTA, MT_PSE_RTA_BUSY, 0, 5000);
}
ret = mt7603_mcu_init(dev);
if (ret)
return ret;
mt7603_dma_sched_init(dev);
mt7603_mcu_set_eeprom(dev);
mt7603_phy_init(dev);
mt7603_mac_init(dev);
return 0;
}
static const struct ieee80211_iface_limit if_limits[] = {
{
.max = 1,
.types = BIT(NL80211_IFTYPE_ADHOC)
}, {
.max = MT7603_MAX_INTERFACES,
.types = BIT(NL80211_IFTYPE_STATION) |
#ifdef CONFIG_MAC80211_MESH
BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO) |
BIT(NL80211_IFTYPE_AP)
},
};
static const struct ieee80211_iface_combination if_comb[] = {
{
.limits = if_limits,
.n_limits = ARRAY_SIZE(if_limits),
.max_interfaces = 4,
.num_different_channels = 1,
.beacon_int_infra_match = true,
}
};
static void mt7603_led_set_config(struct mt76_dev *mt76, u8 delay_on,
u8 delay_off)
{
struct mt7603_dev *dev = container_of(mt76, struct mt7603_dev,
mt76);
u32 val, addr;
val = FIELD_PREP(MT_LED_STATUS_DURATION, 0xffff) |
FIELD_PREP(MT_LED_STATUS_OFF, delay_off) |
FIELD_PREP(MT_LED_STATUS_ON, delay_on);
addr = mt7603_reg_map(dev, MT_LED_STATUS_0(mt76->led_pin));
mt76_wr(dev, addr, val);
addr = mt7603_reg_map(dev, MT_LED_STATUS_1(mt76->led_pin));
mt76_wr(dev, addr, val);
val = MT_LED_CTRL_REPLAY(mt76->led_pin) |
MT_LED_CTRL_KICK(mt76->led_pin);
if (mt76->led_al)
val |= MT_LED_CTRL_POLARITY(mt76->led_pin);
addr = mt7603_reg_map(dev, MT_LED_CTRL);
mt76_wr(dev, addr, val);
}
static int mt7603_led_set_blink(struct led_classdev *led_cdev,
unsigned long *delay_on,
unsigned long *delay_off)
{
struct mt76_dev *mt76 = container_of(led_cdev, struct mt76_dev,
led_cdev);
u8 delta_on, delta_off;
delta_off = max_t(u8, *delay_off / 10, 1);
delta_on = max_t(u8, *delay_on / 10, 1);
mt7603_led_set_config(mt76, delta_on, delta_off);
return 0;
}
static void mt7603_led_set_brightness(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct mt76_dev *mt76 = container_of(led_cdev, struct mt76_dev,
led_cdev);
if (!brightness)
mt7603_led_set_config(mt76, 0, 0xff);
else
mt7603_led_set_config(mt76, 0xff, 0);
}
static u32 __mt7603_reg_addr(struct mt7603_dev *dev, u32 addr)
{
if (addr < 0x100000)
return addr;
return mt7603_reg_map(dev, addr);
}
static u32 mt7603_rr(struct mt76_dev *mdev, u32 offset)
{
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
u32 addr = __mt7603_reg_addr(dev, offset);
return dev->bus_ops->rr(mdev, addr);
}
static void mt7603_wr(struct mt76_dev *mdev, u32 offset, u32 val)
{
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
u32 addr = __mt7603_reg_addr(dev, offset);
dev->bus_ops->wr(mdev, addr, val);
}
static u32 mt7603_rmw(struct mt76_dev *mdev, u32 offset, u32 mask, u32 val)
{
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
u32 addr = __mt7603_reg_addr(dev, offset);
return dev->bus_ops->rmw(mdev, addr, mask, val);
}
static void
mt7603_regd_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct mt7603_dev *dev = hw->priv;
dev->mt76.region = request->dfs_region;
dev->ed_monitor = dev->ed_monitor_enabled &&
dev->mt76.region == NL80211_DFS_ETSI;
}
static int
mt7603_txpower_signed(int val)
{
bool sign = val & BIT(6);
if (!(val & BIT(7)))
return 0;
val &= GENMASK(5, 0);
if (!sign)
val = -val;
return val;
}
static void
mt7603_init_txpower(struct mt7603_dev *dev,
struct ieee80211_supported_band *sband)
{
struct ieee80211_channel *chan;
u8 *eeprom = (u8 *)dev->mt76.eeprom.data;
int target_power = eeprom[MT_EE_TX_POWER_0_START_2G + 2] & ~BIT(7);
u8 *rate_power = &eeprom[MT_EE_TX_POWER_CCK];
bool ext_pa = eeprom[MT_EE_NIC_CONF_0 + 1] & BIT(1);
int max_offset, cur_offset;
int i;
if (ext_pa && is_mt7603(dev))
target_power = eeprom[MT_EE_TX_POWER_TSSI_OFF] & ~BIT(7);
if (target_power & BIT(6))
target_power = -(target_power & GENMASK(5, 0));
max_offset = 0;
for (i = 0; i < 14; i++) {
cur_offset = mt7603_txpower_signed(rate_power[i]);
max_offset = max(max_offset, cur_offset);
}
target_power += max_offset;
dev->tx_power_limit = target_power;
dev->mphy.txpower_cur = target_power;
target_power = DIV_ROUND_UP(target_power, 2);
/* add 3 dBm for 2SS devices (combined output) */
if (dev->mphy.antenna_mask & BIT(1))
target_power += 3;
for (i = 0; i < sband->n_channels; i++) {
chan = &sband->channels[i];
chan->max_power = min_t(int, chan->max_reg_power, target_power);
chan->orig_mpwr = target_power;
}
}
int mt7603_register_device(struct mt7603_dev *dev)
{
struct mt76_bus_ops *bus_ops;
struct ieee80211_hw *hw = mt76_hw(dev);
struct wiphy *wiphy = hw->wiphy;
int ret;
dev->bus_ops = dev->mt76.bus;
bus_ops = devm_kmemdup(dev->mt76.dev, dev->bus_ops, sizeof(*bus_ops),
GFP_KERNEL);
if (!bus_ops)
return -ENOMEM;
bus_ops->rr = mt7603_rr;
bus_ops->wr = mt7603_wr;
bus_ops->rmw = mt7603_rmw;
dev->mt76.bus = bus_ops;
INIT_LIST_HEAD(&dev->sta_poll_list);
spin_lock_init(&dev->sta_poll_lock);
spin_lock_init(&dev->ps_lock);
INIT_DELAYED_WORK(&dev->mphy.mac_work, mt7603_mac_work);
tasklet_setup(&dev->mt76.pre_tbtt_tasklet, mt7603_pre_tbtt_tasklet);
dev->slottime = 9;
dev->sensitivity_limit = 28;
dev->dynamic_sensitivity = true;
ret = mt7603_init_hardware(dev);
if (ret)
return ret;
hw->queues = 4;
hw->max_rates = 3;
hw->max_report_rates = 7;
hw->max_rate_tries = 11;
hw->radiotap_timestamp.units_pos =
IEEE80211_RADIOTAP_TIMESTAMP_UNIT_US;
hw->sta_data_size = sizeof(struct mt7603_sta);
hw->vif_data_size = sizeof(struct mt7603_vif);
wiphy->iface_combinations = if_comb;
wiphy->n_iface_combinations = ARRAY_SIZE(if_comb);
ieee80211_hw_set(hw, TX_STATUS_NO_AMPDU_LEN);
ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
ieee80211_hw_set(hw, NEEDS_UNIQUE_STA_ADDR);
/* init led callbacks */
if (IS_ENABLED(CONFIG_MT76_LEDS)) {
dev->mt76.led_cdev.brightness_set = mt7603_led_set_brightness;
dev->mt76.led_cdev.blink_set = mt7603_led_set_blink;
}
wiphy->reg_notifier = mt7603_regd_notifier;
ret = mt76_register_device(&dev->mt76, true, mt76_rates,
ARRAY_SIZE(mt76_rates));
if (ret)
return ret;
mt7603_init_debugfs(dev);
mt7603_init_txpower(dev, &dev->mphy.sband_2g.sband);
return 0;
}
void mt7603_unregister_device(struct mt7603_dev *dev)
{
tasklet_disable(&dev->mt76.pre_tbtt_tasklet);
mt76_unregister_device(&dev->mt76);
mt7603_mcu_exit(dev);
mt7603_dma_cleanup(dev);
mt76_free_device(&dev->mt76);
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,242 @@
/* SPDX-License-Identifier: ISC */
#ifndef __MT7603_MAC_H
#define __MT7603_MAC_H
#define MT_RXD0_LENGTH GENMASK(15, 0)
#define MT_RXD0_PKT_TYPE GENMASK(31, 29)
#define MT_RXD0_NORMAL_ETH_TYPE_OFS GENMASK(22, 16)
#define MT_RXD0_NORMAL_IP_SUM BIT(23)
#define MT_RXD0_NORMAL_UDP_TCP_SUM BIT(24)
#define MT_RXD0_NORMAL_GROUP_1 BIT(25)
#define MT_RXD0_NORMAL_GROUP_2 BIT(26)
#define MT_RXD0_NORMAL_GROUP_3 BIT(27)
#define MT_RXD0_NORMAL_GROUP_4 BIT(28)
enum rx_pkt_type {
PKT_TYPE_TXS = 0,
PKT_TYPE_TXRXV = 1,
PKT_TYPE_NORMAL = 2,
PKT_TYPE_RX_DUP_RFB = 3,
PKT_TYPE_RX_TMR = 4,
PKT_TYPE_RETRIEVE = 5,
PKT_TYPE_RX_EVENT = 7,
};
#define MT_RXD1_NORMAL_BSSID GENMASK(31, 26)
#define MT_RXD1_NORMAL_PAYLOAD_FORMAT GENMASK(25, 24)
#define MT_RXD1_NORMAL_HDR_TRANS BIT(23)
#define MT_RXD1_NORMAL_HDR_OFFSET BIT(22)
#define MT_RXD1_NORMAL_MAC_HDR_LEN GENMASK(21, 16)
#define MT_RXD1_NORMAL_CH_FREQ GENMASK(15, 8)
#define MT_RXD1_NORMAL_KEY_ID GENMASK(7, 6)
#define MT_RXD1_NORMAL_BEACON_UC BIT(5)
#define MT_RXD1_NORMAL_BEACON_MC BIT(4)
#define MT_RXD1_NORMAL_BCAST BIT(3)
#define MT_RXD1_NORMAL_MCAST BIT(2)
#define MT_RXD1_NORMAL_U2M BIT(1)
#define MT_RXD1_NORMAL_HTC_VLD BIT(0)
#define MT_RXD2_NORMAL_NON_AMPDU BIT(31)
#define MT_RXD2_NORMAL_NON_AMPDU_SUB BIT(30)
#define MT_RXD2_NORMAL_NDATA BIT(29)
#define MT_RXD2_NORMAL_NULL_FRAME BIT(28)
#define MT_RXD2_NORMAL_FRAG BIT(27)
#define MT_RXD2_NORMAL_UDF_VALID BIT(26)
#define MT_RXD2_NORMAL_LLC_MIS BIT(25)
#define MT_RXD2_NORMAL_MAX_LEN_ERROR BIT(24)
#define MT_RXD2_NORMAL_AMSDU_ERR BIT(23)
#define MT_RXD2_NORMAL_LEN_MISMATCH BIT(22)
#define MT_RXD2_NORMAL_TKIP_MIC_ERR BIT(21)
#define MT_RXD2_NORMAL_ICV_ERR BIT(20)
#define MT_RXD2_NORMAL_CLM BIT(19)
#define MT_RXD2_NORMAL_CM BIT(18)
#define MT_RXD2_NORMAL_FCS_ERR BIT(17)
#define MT_RXD2_NORMAL_SW_BIT BIT(16)
#define MT_RXD2_NORMAL_SEC_MODE GENMASK(15, 12)
#define MT_RXD2_NORMAL_TID GENMASK(11, 8)
#define MT_RXD2_NORMAL_WLAN_IDX GENMASK(7, 0)
#define MT_RXD3_NORMAL_PF_STS GENMASK(31, 30)
#define MT_RXD3_NORMAL_PF_MODE BIT(29)
#define MT_RXD3_NORMAL_CLS_BITMAP GENMASK(28, 19)
#define MT_RXD3_NORMAL_WOL GENMASK(18, 14)
#define MT_RXD3_NORMAL_MAGIC_PKT BIT(13)
#define MT_RXD3_NORMAL_OFLD GENMASK(12, 11)
#define MT_RXD3_NORMAL_CLS BIT(10)
#define MT_RXD3_NORMAL_PATTERN_DROP BIT(9)
#define MT_RXD3_NORMAL_TSF_COMPARE_LOSS BIT(8)
#define MT_RXD3_NORMAL_RXV_SEQ GENMASK(7, 0)
#define MT_RXV1_VHTA1_B5_B4 GENMASK(31, 30)
#define MT_RXV1_VHTA2_B8_B1 GENMASK(29, 22)
#define MT_RXV1_HT_NO_SOUND BIT(21)
#define MT_RXV1_HT_SMOOTH BIT(20)
#define MT_RXV1_HT_SHORT_GI BIT(19)
#define MT_RXV1_HT_AGGR BIT(18)
#define MT_RXV1_VHTA1_B22 BIT(17)
#define MT_RXV1_FRAME_MODE GENMASK(16, 15)
#define MT_RXV1_TX_MODE GENMASK(14, 12)
#define MT_RXV1_HT_EXT_LTF GENMASK(11, 10)
#define MT_RXV1_HT_AD_CODE BIT(9)
#define MT_RXV1_HT_STBC GENMASK(8, 7)
#define MT_RXV1_TX_RATE GENMASK(6, 0)
#define MT_RXV2_VHTA1_B16_B6 GENMASK(31, 21)
#define MT_RXV2_LENGTH GENMASK(20, 0)
#define MT_RXV3_F_AGC1_CAL_GAIN GENMASK(31, 29)
#define MT_RXV3_F_AGC1_EQ_CAL BIT(28)
#define MT_RXV3_RCPI1 GENMASK(27, 20)
#define MT_RXV3_F_AGC0_CAL_GAIN GENMASK(19, 17)
#define MT_RXV3_F_AGC0_EQ_CAL BIT(16)
#define MT_RXV3_RCPI0 GENMASK(15, 8)
#define MT_RXV3_SEL_ANT BIT(7)
#define MT_RXV3_ACI_DET_X BIT(6)
#define MT_RXV3_OFDM_FREQ_TRANS_DETECT BIT(5)
#define MT_RXV3_VHTA1_B21_B17 GENMASK(4, 0)
#define MT_RXV4_F_AGC_CAL_GAIN GENMASK(31, 29)
#define MT_RXV4_F_AGC2_EQ_CAL BIT(28)
#define MT_RXV4_IB_RSSI1 GENMASK(27, 20)
#define MT_RXV4_F_AGC_LPF_GAIN_X GENMASK(19, 16)
#define MT_RXV4_WB_RSSI_X GENMASK(15, 8)
#define MT_RXV4_IB_RSSI0 GENMASK(7, 0)
#define MT_RXV5_LTF_SNR0 GENMASK(31, 26)
#define MT_RXV5_LTF_PROC_TIME GENMASK(25, 19)
#define MT_RXV5_FOE GENMASK(18, 7)
#define MT_RXV5_C_AGC_SATE GENMASK(6, 4)
#define MT_RXV5_F_AGC_LNA_GAIN_0 GENMASK(3, 2)
#define MT_RXV5_F_AGC_LNA_GAIN_1 GENMASK(1, 0)
#define MT_RXV6_C_AGC_STATE GENMASK(30, 28)
#define MT_RXV6_NS_TS_FIELD GENMASK(27, 25)
#define MT_RXV6_RX_VALID BIT(24)
#define MT_RXV6_NF2 GENMASK(23, 16)
#define MT_RXV6_NF1 GENMASK(15, 8)
#define MT_RXV6_NF0 GENMASK(7, 0)
enum mt7603_tx_header_format {
MT_HDR_FORMAT_802_3,
MT_HDR_FORMAT_CMD,
MT_HDR_FORMAT_802_11,
MT_HDR_FORMAT_802_11_EXT,
};
#define MT_TXD_SIZE (8 * 4)
#define MT_TXD0_P_IDX BIT(31)
#define MT_TXD0_Q_IDX GENMASK(30, 27)
#define MT_TXD0_UTXB BIT(26)
#define MT_TXD0_UNXV BIT(25)
#define MT_TXD0_UDP_TCP_SUM BIT(24)
#define MT_TXD0_IP_SUM BIT(23)
#define MT_TXD0_ETH_TYPE_OFFSET GENMASK(22, 16)
#define MT_TXD0_TX_BYTES GENMASK(15, 0)
#define MT_TXD1_OWN_MAC GENMASK(31, 26)
#define MT_TXD1_PROTECTED BIT(23)
#define MT_TXD1_TID GENMASK(22, 20)
#define MT_TXD1_NO_ACK BIT(19)
#define MT_TXD1_HDR_PAD GENMASK(18, 16)
#define MT_TXD1_LONG_FORMAT BIT(15)
#define MT_TXD1_HDR_FORMAT GENMASK(14, 13)
#define MT_TXD1_HDR_INFO GENMASK(12, 8)
#define MT_TXD1_WLAN_IDX GENMASK(7, 0)
#define MT_TXD2_FIX_RATE BIT(31)
#define MT_TXD2_TIMING_MEASURE BIT(30)
#define MT_TXD2_BA_DISABLE BIT(29)
#define MT_TXD2_POWER_OFFSET GENMASK(28, 24)
#define MT_TXD2_MAX_TX_TIME GENMASK(23, 16)
#define MT_TXD2_FRAG GENMASK(15, 14)
#define MT_TXD2_HTC_VLD BIT(13)
#define MT_TXD2_DURATION BIT(12)
#define MT_TXD2_BIP BIT(11)
#define MT_TXD2_MULTICAST BIT(10)
#define MT_TXD2_RTS BIT(9)
#define MT_TXD2_SOUNDING BIT(8)
#define MT_TXD2_NDPA BIT(7)
#define MT_TXD2_NDP BIT(6)
#define MT_TXD2_FRAME_TYPE GENMASK(5, 4)
#define MT_TXD2_SUB_TYPE GENMASK(3, 0)
#define MT_TXD3_SN_VALID BIT(31)
#define MT_TXD3_PN_VALID BIT(30)
#define MT_TXD3_SEQ GENMASK(27, 16)
#define MT_TXD3_REM_TX_COUNT GENMASK(15, 11)
#define MT_TXD3_TX_COUNT GENMASK(10, 6)
#define MT_TXD4_PN_LOW GENMASK(31, 0)
#define MT_TXD5_PN_HIGH GENMASK(31, 16)
#define MT_TXD5_SW_POWER_MGMT BIT(13)
#define MT_TXD5_BA_SEQ_CTRL BIT(12)
#define MT_TXD5_DA_SELECT BIT(11)
#define MT_TXD5_TX_STATUS_HOST BIT(10)
#define MT_TXD5_TX_STATUS_MCU BIT(9)
#define MT_TXD5_TX_STATUS_FMT BIT(8)
#define MT_TXD5_PID GENMASK(7, 0)
#define MT_TXD6_SGI BIT(31)
#define MT_TXD6_LDPC BIT(30)
#define MT_TXD6_TX_RATE GENMASK(29, 18)
#define MT_TXD6_I_TXBF BIT(17)
#define MT_TXD6_E_TXBF BIT(16)
#define MT_TXD6_DYN_BW BIT(15)
#define MT_TXD6_ANT_PRI GENMASK(14, 12)
#define MT_TXD6_SPE_EN BIT(11)
#define MT_TXD6_FIXED_BW BIT(10)
#define MT_TXD6_BW GENMASK(9, 8)
#define MT_TXD6_ANT_ID GENMASK(7, 2)
#define MT_TXD6_FIXED_RATE BIT(0)
#define MT_TX_RATE_STBC BIT(11)
#define MT_TX_RATE_NSS GENMASK(10, 9)
#define MT_TX_RATE_MODE GENMASK(8, 6)
#define MT_TX_RATE_IDX GENMASK(5, 0)
#define MT_TXS0_ANTENNA GENMASK(31, 26)
#define MT_TXS0_TID GENMASK(25, 22)
#define MT_TXS0_BA_ERROR BIT(22)
#define MT_TXS0_PS_FLAG BIT(21)
#define MT_TXS0_TXOP_TIMEOUT BIT(20)
#define MT_TXS0_BIP_ERROR BIT(19)
#define MT_TXS0_QUEUE_TIMEOUT BIT(18)
#define MT_TXS0_RTS_TIMEOUT BIT(17)
#define MT_TXS0_ACK_TIMEOUT BIT(16)
#define MT_TXS0_ACK_ERROR_MASK GENMASK(18, 16)
#define MT_TXS0_TX_STATUS_HOST BIT(15)
#define MT_TXS0_TX_STATUS_MCU BIT(14)
#define MT_TXS0_TXS_FORMAT BIT(13)
#define MT_TXS0_FIXED_RATE BIT(12)
#define MT_TXS0_TX_RATE GENMASK(11, 0)
#define MT_TXS1_F0_TIMESTAMP GENMASK(31, 0)
#define MT_TXS1_F1_NOISE_2 GENMASK(23, 16)
#define MT_TXS1_F1_NOISE_1 GENMASK(15, 8)
#define MT_TXS1_F1_NOISE_0 GENMASK(7, 0)
#define MT_TXS2_F0_FRONT_TIME GENMASK(24, 0)
#define MT_TXS2_F1_RCPI_2 GENMASK(23, 16)
#define MT_TXS2_F1_RCPI_1 GENMASK(15, 8)
#define MT_TXS2_F1_RCPI_0 GENMASK(7, 0)
#define MT_TXS3_WCID GENMASK(31, 24)
#define MT_TXS3_RXV_SEQNO GENMASK(23, 16)
#define MT_TXS3_TX_DELAY GENMASK(15, 0)
#define MT_TXS4_LAST_TX_RATE GENMASK(31, 29)
#define MT_TXS4_TX_COUNT GENMASK(28, 24)
#define MT_TXS4_AMPDU BIT(23)
#define MT_TXS4_ACKED_MPDU BIT(22)
#define MT_TXS4_PID GENMASK(21, 14)
#define MT_TXS4_BW GENMASK(13, 12)
#define MT_TXS4_F0_SEQNO GENMASK(11, 0)
#define MT_TXS4_F1_TSSI GENMASK(11, 0)
#endif

View File

@ -0,0 +1,755 @@
// SPDX-License-Identifier: ISC
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/pci.h>
#include <linux/module.h>
#include "mt7603.h"
#include "mac.h"
#include "eeprom.h"
static int
mt7603_start(struct ieee80211_hw *hw)
{
struct mt7603_dev *dev = hw->priv;
mt7603_mac_reset_counters(dev);
mt7603_mac_start(dev);
dev->mphy.survey_time = ktime_get_boottime();
set_bit(MT76_STATE_RUNNING, &dev->mphy.state);
mt7603_mac_work(&dev->mphy.mac_work.work);
return 0;
}
static void
mt7603_stop(struct ieee80211_hw *hw)
{
struct mt7603_dev *dev = hw->priv;
clear_bit(MT76_STATE_RUNNING, &dev->mphy.state);
cancel_delayed_work_sync(&dev->mphy.mac_work);
mt7603_mac_stop(dev);
}
static int
mt7603_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv;
struct mt7603_dev *dev = hw->priv;
struct mt76_txq *mtxq;
u8 bc_addr[ETH_ALEN];
int idx;
int ret = 0;
mutex_lock(&dev->mt76.mutex);
mvif->idx = __ffs64(~dev->mt76.vif_mask);
if (mvif->idx >= MT7603_MAX_INTERFACES) {
ret = -ENOSPC;
goto out;
}
mt76_wr(dev, MT_MAC_ADDR0(mvif->idx),
get_unaligned_le32(vif->addr));
mt76_wr(dev, MT_MAC_ADDR1(mvif->idx),
(get_unaligned_le16(vif->addr + 4) |
MT_MAC_ADDR1_VALID));
if (vif->type == NL80211_IFTYPE_AP) {
mt76_wr(dev, MT_BSSID0(mvif->idx),
get_unaligned_le32(vif->addr));
mt76_wr(dev, MT_BSSID1(mvif->idx),
(get_unaligned_le16(vif->addr + 4) |
MT_BSSID1_VALID));
}
idx = MT7603_WTBL_RESERVED - 1 - mvif->idx;
dev->mt76.vif_mask |= BIT_ULL(mvif->idx);
INIT_LIST_HEAD(&mvif->sta.poll_list);
mvif->sta.wcid.idx = idx;
mvif->sta.wcid.hw_key_idx = -1;
mt76_packet_id_init(&mvif->sta.wcid);
eth_broadcast_addr(bc_addr);
mt7603_wtbl_init(dev, idx, mvif->idx, bc_addr);
mtxq = (struct mt76_txq *)vif->txq->drv_priv;
mtxq->wcid = idx;
rcu_assign_pointer(dev->mt76.wcid[idx], &mvif->sta.wcid);
out:
mutex_unlock(&dev->mt76.mutex);
return ret;
}
static void
mt7603_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv;
struct mt7603_sta *msta = &mvif->sta;
struct mt7603_dev *dev = hw->priv;
int idx = msta->wcid.idx;
mt76_wr(dev, MT_MAC_ADDR0(mvif->idx), 0);
mt76_wr(dev, MT_MAC_ADDR1(mvif->idx), 0);
mt76_wr(dev, MT_BSSID0(mvif->idx), 0);
mt76_wr(dev, MT_BSSID1(mvif->idx), 0);
mt7603_beacon_set_timer(dev, mvif->idx, 0);
rcu_assign_pointer(dev->mt76.wcid[idx], NULL);
spin_lock_bh(&dev->sta_poll_lock);
if (!list_empty(&msta->poll_list))
list_del_init(&msta->poll_list);
spin_unlock_bh(&dev->sta_poll_lock);
mutex_lock(&dev->mt76.mutex);
dev->mt76.vif_mask &= ~BIT_ULL(mvif->idx);
mutex_unlock(&dev->mt76.mutex);
mt76_packet_id_flush(&dev->mt76, &mvif->sta.wcid);
}
void mt7603_init_edcca(struct mt7603_dev *dev)
{
/* Set lower signal level to -65dBm */
mt76_rmw_field(dev, MT_RXTD(8), MT_RXTD_8_LOWER_SIGNAL, 0x23);
/* clear previous energy detect monitor results */
mt76_rr(dev, MT_MIB_STAT_ED);
if (dev->ed_monitor)
mt76_set(dev, MT_MIB_CTL, MT_MIB_CTL_ED_TIME);
else
mt76_clear(dev, MT_MIB_CTL, MT_MIB_CTL_ED_TIME);
dev->ed_strict_mode = 0xff;
dev->ed_strong_signal = 0;
dev->ed_time = ktime_get_boottime();
mt7603_edcca_set_strict(dev, false);
}
static int
mt7603_set_channel(struct ieee80211_hw *hw, struct cfg80211_chan_def *def)
{
struct mt7603_dev *dev = hw->priv;
u8 *rssi_data = (u8 *)dev->mt76.eeprom.data;
int idx, ret;
u8 bw = MT_BW_20;
bool failed = false;
ieee80211_stop_queues(hw);
cancel_delayed_work_sync(&dev->mphy.mac_work);
tasklet_disable(&dev->mt76.pre_tbtt_tasklet);
mutex_lock(&dev->mt76.mutex);
set_bit(MT76_RESET, &dev->mphy.state);
mt7603_beacon_set_timer(dev, -1, 0);
mt76_set_channel(&dev->mphy);
mt7603_mac_stop(dev);
if (def->width == NL80211_CHAN_WIDTH_40)
bw = MT_BW_40;
dev->mphy.chandef = *def;
mt76_rmw_field(dev, MT_AGG_BWCR, MT_AGG_BWCR_BW, bw);
ret = mt7603_mcu_set_channel(dev);
if (ret) {
failed = true;
goto out;
}
if (def->chan->band == NL80211_BAND_5GHZ) {
idx = 1;
rssi_data += MT_EE_RSSI_OFFSET_5G;
} else {
idx = 0;
rssi_data += MT_EE_RSSI_OFFSET_2G;
}
memcpy(dev->rssi_offset, rssi_data, sizeof(dev->rssi_offset));
idx |= (def->chan -
mt76_hw(dev)->wiphy->bands[def->chan->band]->channels) << 1;
mt76_wr(dev, MT_WF_RMAC_CH_FREQ, idx);
mt7603_mac_set_timing(dev);
mt7603_mac_start(dev);
clear_bit(MT76_RESET, &dev->mphy.state);
mt76_txq_schedule_all(&dev->mphy);
ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work,
msecs_to_jiffies(MT7603_WATCHDOG_TIME));
/* reset channel stats */
mt76_clear(dev, MT_MIB_CTL, MT_MIB_CTL_READ_CLR_DIS);
mt76_set(dev, MT_MIB_CTL,
MT_MIB_CTL_CCA_NAV_TX | MT_MIB_CTL_PSCCA_TIME);
mt76_rr(dev, MT_MIB_STAT_CCA);
mt7603_cca_stats_reset(dev);
dev->mphy.survey_time = ktime_get_boottime();
mt7603_init_edcca(dev);
out:
if (!(mt76_hw(dev)->conf.flags & IEEE80211_CONF_OFFCHANNEL))
mt7603_beacon_set_timer(dev, -1, dev->mt76.beacon_int);
mutex_unlock(&dev->mt76.mutex);
tasklet_enable(&dev->mt76.pre_tbtt_tasklet);
if (failed)
mt7603_mac_work(&dev->mphy.mac_work.work);
ieee80211_wake_queues(hw);
return ret;
}
static int mt7603_set_sar_specs(struct ieee80211_hw *hw,
const struct cfg80211_sar_specs *sar)
{
struct mt7603_dev *dev = hw->priv;
struct mt76_phy *mphy = &dev->mphy;
int err;
if (!cfg80211_chandef_valid(&mphy->chandef))
return -EINVAL;
err = mt76_init_sar_power(hw, sar);
if (err)
return err;
return mt7603_set_channel(hw, &mphy->chandef);
}
static int
mt7603_config(struct ieee80211_hw *hw, u32 changed)
{
struct mt7603_dev *dev = hw->priv;
int ret = 0;
if (changed & (IEEE80211_CONF_CHANGE_CHANNEL |
IEEE80211_CONF_CHANGE_POWER))
ret = mt7603_set_channel(hw, &hw->conf.chandef);
if (changed & IEEE80211_CONF_CHANGE_MONITOR) {
mutex_lock(&dev->mt76.mutex);
if (!(hw->conf.flags & IEEE80211_CONF_MONITOR))
dev->rxfilter |= MT_WF_RFCR_DROP_OTHER_UC;
else
dev->rxfilter &= ~MT_WF_RFCR_DROP_OTHER_UC;
mt76_wr(dev, MT_WF_RFCR, dev->rxfilter);
mutex_unlock(&dev->mt76.mutex);
}
return ret;
}
static void
mt7603_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags,
unsigned int *total_flags, u64 multicast)
{
struct mt7603_dev *dev = hw->priv;
u32 flags = 0;
#define MT76_FILTER(_flag, _hw) do { \
flags |= *total_flags & FIF_##_flag; \
dev->rxfilter &= ~(_hw); \
dev->rxfilter |= !(flags & FIF_##_flag) * (_hw); \
} while (0)
dev->rxfilter &= ~(MT_WF_RFCR_DROP_OTHER_BSS |
MT_WF_RFCR_DROP_OTHER_BEACON |
MT_WF_RFCR_DROP_FRAME_REPORT |
MT_WF_RFCR_DROP_PROBEREQ |
MT_WF_RFCR_DROP_MCAST_FILTERED |
MT_WF_RFCR_DROP_MCAST |
MT_WF_RFCR_DROP_BCAST |
MT_WF_RFCR_DROP_DUPLICATE |
MT_WF_RFCR_DROP_A2_BSSID |
MT_WF_RFCR_DROP_UNWANTED_CTL |
MT_WF_RFCR_DROP_STBC_MULTI);
MT76_FILTER(OTHER_BSS, MT_WF_RFCR_DROP_OTHER_TIM |
MT_WF_RFCR_DROP_A3_MAC |
MT_WF_RFCR_DROP_A3_BSSID);
MT76_FILTER(FCSFAIL, MT_WF_RFCR_DROP_FCSFAIL);
MT76_FILTER(CONTROL, MT_WF_RFCR_DROP_CTS |
MT_WF_RFCR_DROP_RTS |
MT_WF_RFCR_DROP_CTL_RSV |
MT_WF_RFCR_DROP_NDPA);
*total_flags = flags;
mt76_wr(dev, MT_WF_RFCR, dev->rxfilter);
}
static void
mt7603_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info, u64 changed)
{
struct mt7603_dev *dev = hw->priv;
struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv;
mutex_lock(&dev->mt76.mutex);
if (changed & (BSS_CHANGED_ASSOC | BSS_CHANGED_BSSID)) {
if (vif->cfg.assoc || vif->cfg.ibss_joined) {
mt76_wr(dev, MT_BSSID0(mvif->idx),
get_unaligned_le32(info->bssid));
mt76_wr(dev, MT_BSSID1(mvif->idx),
(get_unaligned_le16(info->bssid + 4) |
MT_BSSID1_VALID));
} else {
mt76_wr(dev, MT_BSSID0(mvif->idx), 0);
mt76_wr(dev, MT_BSSID1(mvif->idx), 0);
}
}
if (changed & BSS_CHANGED_ERP_SLOT) {
int slottime = info->use_short_slot ? 9 : 20;
if (slottime != dev->slottime) {
dev->slottime = slottime;
mt7603_mac_set_timing(dev);
}
}
if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON_INT)) {
int beacon_int = !!info->enable_beacon * info->beacon_int;
tasklet_disable(&dev->mt76.pre_tbtt_tasklet);
mt7603_beacon_set_timer(dev, mvif->idx, beacon_int);
tasklet_enable(&dev->mt76.pre_tbtt_tasklet);
}
mutex_unlock(&dev->mt76.mutex);
}
int
mt7603_sta_add(struct mt76_dev *mdev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv;
struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv;
int idx;
int ret = 0;
idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7603_WTBL_STA - 1);
if (idx < 0)
return -ENOSPC;
INIT_LIST_HEAD(&msta->poll_list);
__skb_queue_head_init(&msta->psq);
msta->ps = ~0;
msta->smps = ~0;
msta->wcid.sta = 1;
msta->wcid.idx = idx;
mt7603_wtbl_init(dev, idx, mvif->idx, sta->addr);
mt7603_wtbl_set_ps(dev, msta, false);
if (vif->type == NL80211_IFTYPE_AP)
set_bit(MT_WCID_FLAG_CHECK_PS, &msta->wcid.flags);
return ret;
}
void
mt7603_sta_assoc(struct mt76_dev *mdev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
mt7603_wtbl_update_cap(dev, sta);
}
void
mt7603_sta_remove(struct mt76_dev *mdev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv;
struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv;
spin_lock_bh(&dev->ps_lock);
__skb_queue_purge(&msta->psq);
mt7603_filter_tx(dev, wcid->idx, true);
spin_unlock_bh(&dev->ps_lock);
spin_lock_bh(&dev->sta_poll_lock);
if (!list_empty(&msta->poll_list))
list_del_init(&msta->poll_list);
spin_unlock_bh(&dev->sta_poll_lock);
mt7603_wtbl_clear(dev, wcid->idx);
}
static void
mt7603_ps_tx_list(struct mt7603_dev *dev, struct sk_buff_head *list)
{
struct sk_buff *skb;
while ((skb = __skb_dequeue(list)) != NULL) {
int qid = skb_get_queue_mapping(skb);
mt76_tx_queue_skb_raw(dev, dev->mphy.q_tx[qid], skb, 0);
}
}
void
mt7603_sta_ps(struct mt76_dev *mdev, struct ieee80211_sta *sta, bool ps)
{
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv;
struct sk_buff_head list;
mt76_stop_tx_queues(&dev->mphy, sta, true);
mt7603_wtbl_set_ps(dev, msta, ps);
if (ps)
return;
__skb_queue_head_init(&list);
spin_lock_bh(&dev->ps_lock);
skb_queue_splice_tail_init(&msta->psq, &list);
spin_unlock_bh(&dev->ps_lock);
mt7603_ps_tx_list(dev, &list);
}
static void
mt7603_ps_set_more_data(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr;
hdr = (struct ieee80211_hdr *)&skb->data[MT_TXD_SIZE];
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
}
static void
mt7603_release_buffered_frames(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
u16 tids, int nframes,
enum ieee80211_frame_release_type reason,
bool more_data)
{
struct mt7603_dev *dev = hw->priv;
struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv;
struct sk_buff_head list;
struct sk_buff *skb, *tmp;
__skb_queue_head_init(&list);
mt7603_wtbl_set_ps(dev, msta, false);
spin_lock_bh(&dev->ps_lock);
skb_queue_walk_safe(&msta->psq, skb, tmp) {
if (!nframes)
break;
if (!(tids & BIT(skb->priority)))
continue;
skb_set_queue_mapping(skb, MT_TXQ_PSD);
__skb_unlink(skb, &msta->psq);
mt7603_ps_set_more_data(skb);
__skb_queue_tail(&list, skb);
nframes--;
}
spin_unlock_bh(&dev->ps_lock);
if (!skb_queue_empty(&list))
ieee80211_sta_eosp(sta);
mt7603_ps_tx_list(dev, &list);
if (nframes)
mt76_release_buffered_frames(hw, sta, tids, nframes, reason,
more_data);
}
static int
mt7603_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct mt7603_dev *dev = hw->priv;
struct mt7603_vif *mvif = (struct mt7603_vif *)vif->drv_priv;
struct mt7603_sta *msta = sta ? (struct mt7603_sta *)sta->drv_priv :
&mvif->sta;
struct mt76_wcid *wcid = &msta->wcid;
int idx = key->keyidx;
/* fall back to sw encryption for unsupported ciphers */
switch (key->cipher) {
case WLAN_CIPHER_SUITE_TKIP:
case WLAN_CIPHER_SUITE_CCMP:
break;
default:
return -EOPNOTSUPP;
}
/*
* The hardware does not support per-STA RX GTK, fall back
* to software mode for these.
*/
if ((vif->type == NL80211_IFTYPE_ADHOC ||
vif->type == NL80211_IFTYPE_MESH_POINT) &&
(key->cipher == WLAN_CIPHER_SUITE_TKIP ||
key->cipher == WLAN_CIPHER_SUITE_CCMP) &&
!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
return -EOPNOTSUPP;
if (cmd == SET_KEY) {
key->hw_key_idx = wcid->idx;
wcid->hw_key_idx = idx;
} else {
if (idx == wcid->hw_key_idx)
wcid->hw_key_idx = -1;
key = NULL;
}
mt76_wcid_key_setup(&dev->mt76, wcid, key);
return mt7603_wtbl_set_key(dev, wcid->idx, key);
}
static int
mt7603_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
unsigned int link_id, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct mt7603_dev *dev = hw->priv;
u16 cw_min = (1 << 5) - 1;
u16 cw_max = (1 << 10) - 1;
u32 val;
queue = dev->mphy.q_tx[queue]->hw_idx;
if (params->cw_min)
cw_min = params->cw_min;
if (params->cw_max)
cw_max = params->cw_max;
mutex_lock(&dev->mt76.mutex);
mt7603_mac_stop(dev);
val = mt76_rr(dev, MT_WMM_TXOP(queue));
val &= ~(MT_WMM_TXOP_MASK << MT_WMM_TXOP_SHIFT(queue));
val |= params->txop << MT_WMM_TXOP_SHIFT(queue);
mt76_wr(dev, MT_WMM_TXOP(queue), val);
val = mt76_rr(dev, MT_WMM_AIFSN);
val &= ~(MT_WMM_AIFSN_MASK << MT_WMM_AIFSN_SHIFT(queue));
val |= params->aifs << MT_WMM_AIFSN_SHIFT(queue);
mt76_wr(dev, MT_WMM_AIFSN, val);
val = mt76_rr(dev, MT_WMM_CWMIN);
val &= ~(MT_WMM_CWMIN_MASK << MT_WMM_CWMIN_SHIFT(queue));
val |= cw_min << MT_WMM_CWMIN_SHIFT(queue);
mt76_wr(dev, MT_WMM_CWMIN, val);
val = mt76_rr(dev, MT_WMM_CWMAX(queue));
val &= ~(MT_WMM_CWMAX_MASK << MT_WMM_CWMAX_SHIFT(queue));
val |= cw_max << MT_WMM_CWMAX_SHIFT(queue);
mt76_wr(dev, MT_WMM_CWMAX(queue), val);
mt7603_mac_start(dev);
mutex_unlock(&dev->mt76.mutex);
return 0;
}
static void
mt7603_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
u32 queues, bool drop)
{
}
static int
mt7603_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_ampdu_params *params)
{
enum ieee80211_ampdu_mlme_action action = params->action;
struct mt7603_dev *dev = hw->priv;
struct ieee80211_sta *sta = params->sta;
struct ieee80211_txq *txq = sta->txq[params->tid];
struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv;
u16 tid = params->tid;
u16 ssn = params->ssn;
u8 ba_size = params->buf_size;
struct mt76_txq *mtxq;
int ret = 0;
if (!txq)
return -EINVAL;
mtxq = (struct mt76_txq *)txq->drv_priv;
mutex_lock(&dev->mt76.mutex);
switch (action) {
case IEEE80211_AMPDU_RX_START:
mt76_rx_aggr_start(&dev->mt76, &msta->wcid, tid, ssn,
params->buf_size);
mt7603_mac_rx_ba_reset(dev, sta->addr, tid);
break;
case IEEE80211_AMPDU_RX_STOP:
mt76_rx_aggr_stop(&dev->mt76, &msta->wcid, tid);
break;
case IEEE80211_AMPDU_TX_OPERATIONAL:
mtxq->aggr = true;
mtxq->send_bar = false;
mt7603_mac_tx_ba_reset(dev, msta->wcid.idx, tid, ba_size);
break;
case IEEE80211_AMPDU_TX_STOP_FLUSH:
case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
mtxq->aggr = false;
mt7603_mac_tx_ba_reset(dev, msta->wcid.idx, tid, -1);
break;
case IEEE80211_AMPDU_TX_START:
mtxq->agg_ssn = IEEE80211_SN_TO_SEQ(ssn);
ret = IEEE80211_AMPDU_TX_START_IMMEDIATE;
break;
case IEEE80211_AMPDU_TX_STOP_CONT:
mtxq->aggr = false;
mt7603_mac_tx_ba_reset(dev, msta->wcid.idx, tid, -1);
ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
}
mutex_unlock(&dev->mt76.mutex);
return ret;
}
static void
mt7603_sta_rate_tbl_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct mt7603_dev *dev = hw->priv;
struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv;
struct ieee80211_sta_rates *sta_rates = rcu_dereference(sta->rates);
int i;
if (!sta_rates)
return;
spin_lock_bh(&dev->mt76.lock);
for (i = 0; i < ARRAY_SIZE(msta->rates); i++) {
msta->rates[i].idx = sta_rates->rate[i].idx;
msta->rates[i].count = sta_rates->rate[i].count;
msta->rates[i].flags = sta_rates->rate[i].flags;
if (msta->rates[i].idx < 0 || !msta->rates[i].count)
break;
}
msta->n_rates = i;
mt7603_wtbl_set_rates(dev, msta, NULL, msta->rates);
msta->rate_probe = false;
mt7603_wtbl_set_smps(dev, msta,
sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC);
spin_unlock_bh(&dev->mt76.lock);
}
static void
mt7603_set_coverage_class(struct ieee80211_hw *hw, s16 coverage_class)
{
struct mt7603_dev *dev = hw->priv;
mutex_lock(&dev->mt76.mutex);
dev->coverage_class = max_t(s16, coverage_class, 0);
mt7603_mac_set_timing(dev);
mutex_unlock(&dev->mt76.mutex);
}
static void mt7603_tx(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_vif *vif = info->control.vif;
struct mt7603_dev *dev = hw->priv;
struct mt76_wcid *wcid = &dev->global_sta.wcid;
if (control->sta) {
struct mt7603_sta *msta;
msta = (struct mt7603_sta *)control->sta->drv_priv;
wcid = &msta->wcid;
} else if (vif) {
struct mt7603_vif *mvif;
mvif = (struct mt7603_vif *)vif->drv_priv;
wcid = &mvif->sta.wcid;
}
mt76_tx(&dev->mphy, control->sta, wcid, skb);
}
const struct ieee80211_ops mt7603_ops = {
.tx = mt7603_tx,
.start = mt7603_start,
.stop = mt7603_stop,
.add_interface = mt7603_add_interface,
.remove_interface = mt7603_remove_interface,
.config = mt7603_config,
.configure_filter = mt7603_configure_filter,
.bss_info_changed = mt7603_bss_info_changed,
.sta_state = mt76_sta_state,
.sta_pre_rcu_remove = mt76_sta_pre_rcu_remove,
.set_key = mt7603_set_key,
.conf_tx = mt7603_conf_tx,
.sw_scan_start = mt76_sw_scan,
.sw_scan_complete = mt76_sw_scan_complete,
.flush = mt7603_flush,
.ampdu_action = mt7603_ampdu_action,
.get_txpower = mt76_get_txpower,
.wake_tx_queue = mt76_wake_tx_queue,
.sta_rate_tbl_update = mt7603_sta_rate_tbl_update,
.release_buffered_frames = mt7603_release_buffered_frames,
.set_coverage_class = mt7603_set_coverage_class,
.set_tim = mt76_set_tim,
.get_survey = mt76_get_survey,
.get_antenna = mt76_get_antenna,
.set_sar_specs = mt7603_set_sar_specs,
};
MODULE_LICENSE("Dual BSD/GPL");
static int __init mt7603_init(void)
{
int ret;
ret = platform_driver_register(&mt76_wmac_driver);
if (ret)
return ret;
#ifdef CONFIG_PCI
ret = pci_register_driver(&mt7603_pci_driver);
if (ret)
platform_driver_unregister(&mt76_wmac_driver);
#endif
return ret;
}
static void __exit mt7603_exit(void)
{
#ifdef CONFIG_PCI
pci_unregister_driver(&mt7603_pci_driver);
#endif
platform_driver_unregister(&mt76_wmac_driver);
}
module_init(mt7603_init);
module_exit(mt7603_exit);

View File

@ -0,0 +1,433 @@
// SPDX-License-Identifier: ISC
#include <linux/firmware.h>
#include "mt7603.h"
#include "mcu.h"
#include "eeprom.h"
#define MCU_SKB_RESERVE 8
struct mt7603_fw_trailer {
char fw_ver[10];
char build_date[15];
__le32 dl_len;
} __packed;
static int
mt7603_mcu_parse_response(struct mt76_dev *mdev, int cmd,
struct sk_buff *skb, int seq)
{
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
struct mt7603_mcu_rxd *rxd;
if (!skb) {
dev_err(mdev->dev, "MCU message %02x (seq %d) timed out\n",
abs(cmd), seq);
dev->mcu_hang = MT7603_WATCHDOG_TIMEOUT;
return -ETIMEDOUT;
}
rxd = (struct mt7603_mcu_rxd *)skb->data;
if (seq != rxd->seq)
return -EAGAIN;
return 0;
}
static int
mt7603_mcu_skb_send_msg(struct mt76_dev *mdev, struct sk_buff *skb,
int cmd, int *wait_seq)
{
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
int hdrlen = dev->mcu_running ? sizeof(struct mt7603_mcu_txd) : 12;
struct mt7603_mcu_txd *txd;
u8 seq;
mdev->mcu.timeout = 3 * HZ;
seq = ++mdev->mcu.msg_seq & 0xf;
if (!seq)
seq = ++mdev->mcu.msg_seq & 0xf;
txd = (struct mt7603_mcu_txd *)skb_push(skb, hdrlen);
txd->len = cpu_to_le16(skb->len);
if (cmd == -MCU_CMD_FW_SCATTER)
txd->pq_id = cpu_to_le16(MCU_PORT_QUEUE_FW);
else
txd->pq_id = cpu_to_le16(MCU_PORT_QUEUE);
txd->pkt_type = MCU_PKT_ID;
txd->seq = seq;
if (cmd < 0) {
txd->cid = -cmd;
txd->set_query = MCU_Q_NA;
} else {
txd->cid = MCU_CMD_EXT_CID;
txd->ext_cid = cmd;
txd->set_query = MCU_Q_SET;
txd->ext_cid_ack = 1;
}
if (wait_seq)
*wait_seq = seq;
return mt76_tx_queue_skb_raw(dev, mdev->q_mcu[MT_MCUQ_WM], skb, 0);
}
static int
mt7603_mcu_init_download(struct mt7603_dev *dev, u32 addr, u32 len)
{
struct {
__le32 addr;
__le32 len;
__le32 mode;
} req = {
.addr = cpu_to_le32(addr),
.len = cpu_to_le32(len),
.mode = cpu_to_le32(BIT(31)),
};
return mt76_mcu_send_msg(&dev->mt76, -MCU_CMD_TARGET_ADDRESS_LEN_REQ,
&req, sizeof(req), true);
}
static int
mt7603_mcu_start_firmware(struct mt7603_dev *dev, u32 addr)
{
struct {
__le32 override;
__le32 addr;
} req = {
.override = cpu_to_le32(addr ? 1 : 0),
.addr = cpu_to_le32(addr),
};
return mt76_mcu_send_msg(&dev->mt76, -MCU_CMD_FW_START_REQ, &req,
sizeof(req), true);
}
static int
mt7603_mcu_restart(struct mt76_dev *dev)
{
return mt76_mcu_send_msg(dev, -MCU_CMD_RESTART_DL_REQ, NULL, 0, true);
}
static int mt7603_load_firmware(struct mt7603_dev *dev)
{
const struct firmware *fw;
const struct mt7603_fw_trailer *hdr;
const char *firmware;
int dl_len;
u32 addr, val;
int ret;
if (is_mt7628(dev)) {
if (mt76xx_rev(dev) == MT7628_REV_E1)
firmware = MT7628_FIRMWARE_E1;
else
firmware = MT7628_FIRMWARE_E2;
} else {
if (mt76xx_rev(dev) < MT7603_REV_E2)
firmware = MT7603_FIRMWARE_E1;
else
firmware = MT7603_FIRMWARE_E2;
}
ret = request_firmware(&fw, firmware, dev->mt76.dev);
if (ret)
return ret;
if (!fw || !fw->data || fw->size < sizeof(*hdr)) {
dev_err(dev->mt76.dev, "Invalid firmware\n");
ret = -EINVAL;
goto out;
}
hdr = (const struct mt7603_fw_trailer *)(fw->data + fw->size -
sizeof(*hdr));
dev_info(dev->mt76.dev, "Firmware Version: %.10s\n", hdr->fw_ver);
dev_info(dev->mt76.dev, "Build Time: %.15s\n", hdr->build_date);
addr = mt7603_reg_map(dev, 0x50012498);
mt76_wr(dev, addr, 0x5);
mt76_wr(dev, addr, 0x5);
udelay(1);
/* switch to bypass mode */
mt76_rmw(dev, MT_SCH_4, MT_SCH_4_FORCE_QID,
MT_SCH_4_BYPASS | FIELD_PREP(MT_SCH_4_FORCE_QID, 5));
val = mt76_rr(dev, MT_TOP_MISC2);
if (val & BIT(1)) {
dev_info(dev->mt76.dev, "Firmware already running...\n");
goto running;
}
if (!mt76_poll_msec(dev, MT_TOP_MISC2, BIT(0) | BIT(1), BIT(0), 500)) {
dev_err(dev->mt76.dev, "Timeout waiting for ROM code to become ready\n");
ret = -EIO;
goto out;
}
dl_len = le32_to_cpu(hdr->dl_len) + 4;
ret = mt7603_mcu_init_download(dev, MCU_FIRMWARE_ADDRESS, dl_len);
if (ret) {
dev_err(dev->mt76.dev, "Download request failed\n");
goto out;
}
ret = mt76_mcu_send_firmware(&dev->mt76, -MCU_CMD_FW_SCATTER,
fw->data, dl_len);
if (ret) {
dev_err(dev->mt76.dev, "Failed to send firmware to device\n");
goto out;
}
ret = mt7603_mcu_start_firmware(dev, MCU_FIRMWARE_ADDRESS);
if (ret) {
dev_err(dev->mt76.dev, "Failed to start firmware\n");
goto out;
}
if (!mt76_poll_msec(dev, MT_TOP_MISC2, BIT(1), BIT(1), 500)) {
dev_err(dev->mt76.dev, "Timeout waiting for firmware to initialize\n");
ret = -EIO;
goto out;
}
running:
mt76_clear(dev, MT_SCH_4, MT_SCH_4_FORCE_QID | MT_SCH_4_BYPASS);
mt76_set(dev, MT_SCH_4, BIT(8));
mt76_clear(dev, MT_SCH_4, BIT(8));
dev->mcu_running = true;
snprintf(dev->mt76.hw->wiphy->fw_version,
sizeof(dev->mt76.hw->wiphy->fw_version),
"%.10s-%.15s", hdr->fw_ver, hdr->build_date);
dev_info(dev->mt76.dev, "firmware init done\n");
out:
release_firmware(fw);
return ret;
}
int mt7603_mcu_init(struct mt7603_dev *dev)
{
static const struct mt76_mcu_ops mt7603_mcu_ops = {
.headroom = sizeof(struct mt7603_mcu_txd),
.mcu_skb_send_msg = mt7603_mcu_skb_send_msg,
.mcu_parse_response = mt7603_mcu_parse_response,
.mcu_restart = mt7603_mcu_restart,
};
dev->mt76.mcu_ops = &mt7603_mcu_ops;
return mt7603_load_firmware(dev);
}
void mt7603_mcu_exit(struct mt7603_dev *dev)
{
__mt76_mcu_restart(&dev->mt76);
skb_queue_purge(&dev->mt76.mcu.res_q);
}
int mt7603_mcu_set_eeprom(struct mt7603_dev *dev)
{
static const u16 req_fields[] = {
#define WORD(_start) \
_start, \
_start + 1
#define GROUP_2G(_start) \
WORD(_start), \
WORD(_start + 2), \
WORD(_start + 4)
MT_EE_NIC_CONF_0 + 1,
WORD(MT_EE_NIC_CONF_1),
MT_EE_WIFI_RF_SETTING,
MT_EE_TX_POWER_DELTA_BW40,
MT_EE_TX_POWER_DELTA_BW80 + 1,
MT_EE_TX_POWER_EXT_PA_5G,
MT_EE_TEMP_SENSOR_CAL,
GROUP_2G(MT_EE_TX_POWER_0_START_2G),
GROUP_2G(MT_EE_TX_POWER_1_START_2G),
WORD(MT_EE_TX_POWER_CCK),
WORD(MT_EE_TX_POWER_OFDM_2G_6M),
WORD(MT_EE_TX_POWER_OFDM_2G_24M),
WORD(MT_EE_TX_POWER_OFDM_2G_54M),
WORD(MT_EE_TX_POWER_HT_BPSK_QPSK),
WORD(MT_EE_TX_POWER_HT_16_64_QAM),
WORD(MT_EE_TX_POWER_HT_64_QAM),
MT_EE_ELAN_RX_MODE_GAIN,
MT_EE_ELAN_RX_MODE_NF,
MT_EE_ELAN_RX_MODE_P1DB,
MT_EE_ELAN_BYPASS_MODE_GAIN,
MT_EE_ELAN_BYPASS_MODE_NF,
MT_EE_ELAN_BYPASS_MODE_P1DB,
WORD(MT_EE_STEP_NUM_NEG_6_7),
WORD(MT_EE_STEP_NUM_NEG_4_5),
WORD(MT_EE_STEP_NUM_NEG_2_3),
WORD(MT_EE_STEP_NUM_NEG_0_1),
WORD(MT_EE_REF_STEP_24G),
WORD(MT_EE_STEP_NUM_PLUS_1_2),
WORD(MT_EE_STEP_NUM_PLUS_3_4),
WORD(MT_EE_STEP_NUM_PLUS_5_6),
MT_EE_STEP_NUM_PLUS_7,
MT_EE_XTAL_FREQ_OFFSET,
MT_EE_XTAL_TRIM_2_COMP,
MT_EE_XTAL_TRIM_3_COMP,
MT_EE_XTAL_WF_RFCAL,
/* unknown fields below */
WORD(0x24),
0x34,
0x39,
0x3b,
WORD(0x42),
WORD(0x9e),
0xf2,
WORD(0xf8),
0xfa,
0x12e,
WORD(0x130), WORD(0x132), WORD(0x134), WORD(0x136),
WORD(0x138), WORD(0x13a), WORD(0x13c), WORD(0x13e),
#undef GROUP_2G
#undef WORD
};
struct req_data {
__le16 addr;
u8 val;
u8 pad;
} __packed;
struct {
u8 buffer_mode;
u8 len;
u8 pad[2];
} req_hdr = {
.buffer_mode = 1,
.len = ARRAY_SIZE(req_fields) - 1,
};
const int size = 0xff * sizeof(struct req_data);
u8 *req, *eep = (u8 *)dev->mt76.eeprom.data;
int i, ret, len = sizeof(req_hdr) + size;
struct req_data *data;
BUILD_BUG_ON(ARRAY_SIZE(req_fields) * sizeof(*data) > size);
req = kmalloc(len, GFP_KERNEL);
if (!req)
return -ENOMEM;
memcpy(req, &req_hdr, sizeof(req_hdr));
data = (struct req_data *)(req + sizeof(req_hdr));
memset(data, 0, size);
for (i = 0; i < ARRAY_SIZE(req_fields); i++) {
data[i].addr = cpu_to_le16(req_fields[i]);
data[i].val = eep[req_fields[i]];
}
ret = mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD_EFUSE_BUFFER_MODE,
req, len, true);
kfree(req);
return ret;
}
static int mt7603_mcu_set_tx_power(struct mt7603_dev *dev)
{
struct {
u8 center_channel;
u8 tssi;
u8 temp_comp;
u8 target_power[2];
u8 rate_power_delta[14];
u8 bw_power_delta;
u8 ch_power_delta[6];
u8 temp_comp_power[17];
u8 reserved;
} req = {
.center_channel = dev->mphy.chandef.chan->hw_value,
#define EEP_VAL(n) ((u8 *)dev->mt76.eeprom.data)[n]
.tssi = EEP_VAL(MT_EE_NIC_CONF_1 + 1),
.temp_comp = EEP_VAL(MT_EE_NIC_CONF_1),
.target_power = {
EEP_VAL(MT_EE_TX_POWER_0_START_2G + 2),
EEP_VAL(MT_EE_TX_POWER_1_START_2G + 2)
},
.bw_power_delta = EEP_VAL(MT_EE_TX_POWER_DELTA_BW40),
.ch_power_delta = {
EEP_VAL(MT_EE_TX_POWER_0_START_2G + 3),
EEP_VAL(MT_EE_TX_POWER_0_START_2G + 4),
EEP_VAL(MT_EE_TX_POWER_0_START_2G + 5),
EEP_VAL(MT_EE_TX_POWER_1_START_2G + 3),
EEP_VAL(MT_EE_TX_POWER_1_START_2G + 4),
EEP_VAL(MT_EE_TX_POWER_1_START_2G + 5)
},
#undef EEP_VAL
};
u8 *eep = (u8 *)dev->mt76.eeprom.data;
memcpy(req.rate_power_delta, eep + MT_EE_TX_POWER_CCK,
sizeof(req.rate_power_delta));
memcpy(req.temp_comp_power, eep + MT_EE_STEP_NUM_NEG_6_7,
sizeof(req.temp_comp_power));
return mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD_SET_TX_POWER_CTRL,
&req, sizeof(req), true);
}
int mt7603_mcu_set_channel(struct mt7603_dev *dev)
{
struct cfg80211_chan_def *chandef = &dev->mphy.chandef;
struct ieee80211_hw *hw = mt76_hw(dev);
int n_chains = hweight8(dev->mphy.antenna_mask);
struct {
u8 control_chan;
u8 center_chan;
u8 bw;
u8 tx_streams;
u8 rx_streams;
u8 _res0[7];
u8 txpower[21];
u8 _res1[3];
} req = {
.control_chan = chandef->chan->hw_value,
.center_chan = chandef->chan->hw_value,
.bw = MT_BW_20,
.tx_streams = n_chains,
.rx_streams = n_chains,
};
s8 tx_power = hw->conf.power_level * 2;
int i, ret;
if (dev->mphy.chandef.width == NL80211_CHAN_WIDTH_40) {
req.bw = MT_BW_40;
if (chandef->center_freq1 > chandef->chan->center_freq)
req.center_chan += 2;
else
req.center_chan -= 2;
}
tx_power = mt76_get_sar_power(&dev->mphy, chandef->chan, tx_power);
if (dev->mphy.antenna_mask == 3)
tx_power -= 6;
tx_power = min(tx_power, dev->tx_power_limit);
dev->mphy.txpower_cur = tx_power;
for (i = 0; i < ARRAY_SIZE(req.txpower); i++)
req.txpower[i] = tx_power;
ret = mt76_mcu_send_msg(&dev->mt76, MCU_EXT_CMD_CHANNEL_SWITCH, &req,
sizeof(req), true);
if (ret)
return ret;
return mt7603_mcu_set_tx_power(dev);
}

View File

@ -0,0 +1,103 @@
/* SPDX-License-Identifier: ISC */
#ifndef __MT7603_MCU_H
#define __MT7603_MCU_H
struct mt7603_mcu_txd {
__le16 len;
__le16 pq_id;
u8 cid;
u8 pkt_type;
u8 set_query;
u8 seq;
u8 uc_d2b0_rev;
u8 ext_cid;
u8 uc_d2b2_rev;
u8 ext_cid_ack;
u32 au4_d3_to_d7_rev[5];
} __packed __aligned(4);
struct mt7603_mcu_rxd {
__le16 len;
__le16 pkt_type_id;
u8 eid;
u8 seq;
__le16 __rsv;
u8 ext_eid;
u8 __rsv1[3];
};
#define MCU_PKT_ID 0xa0
#define MCU_PORT_QUEUE 0x8000
#define MCU_PORT_QUEUE_FW 0xc000
#define MCU_FIRMWARE_ADDRESS 0x100000
enum {
MCU_Q_QUERY,
MCU_Q_SET,
MCU_Q_RESERVED,
MCU_Q_NA
};
enum {
MCU_CMD_TARGET_ADDRESS_LEN_REQ = 0x01,
MCU_CMD_FW_START_REQ = 0x02,
MCU_CMD_INIT_ACCESS_REG = 0x3,
MCU_CMD_PATCH_START_REQ = 0x05,
MCU_CMD_PATCH_FINISH_REQ = 0x07,
MCU_CMD_PATCH_SEM_CONTROL = 0x10,
MCU_CMD_HIF_LOOPBACK = 0x20,
MCU_CMD_CH_PRIVILEGE = 0x20,
MCU_CMD_ACCESS_REG = 0xC2,
MCU_CMD_EXT_CID = 0xED,
MCU_CMD_FW_SCATTER = 0xEE,
MCU_CMD_RESTART_DL_REQ = 0xEF,
};
enum {
MCU_EXT_CMD_RF_REG_ACCESS = 0x02,
MCU_EXT_CMD_RF_TEST = 0x04,
MCU_EXT_CMD_RADIO_ON_OFF_CTRL = 0x05,
MCU_EXT_CMD_WIFI_RX_DISABLE = 0x06,
MCU_EXT_CMD_PM_STATE_CTRL = 0x07,
MCU_EXT_CMD_CHANNEL_SWITCH = 0x08,
MCU_EXT_CMD_NIC_CAPABILITY = 0x09,
MCU_EXT_CMD_PWR_SAVING = 0x0A,
MCU_EXT_CMD_MULTIPLE_REG_ACCESS = 0x0E,
MCU_EXT_CMD_AP_PWR_SAVING_CAPABILITY = 0xF,
MCU_EXT_CMD_SEC_ADDREMOVE_KEY = 0x10,
MCU_EXT_CMD_SET_TX_POWER_CTRL = 0x11,
MCU_EXT_CMD_FW_LOG_2_HOST = 0x13,
MCU_EXT_CMD_PS_RETRIEVE_START = 0x14,
MCU_EXT_CMD_LED_CTRL = 0x17,
MCU_EXT_CMD_PACKET_FILTER = 0x18,
MCU_EXT_CMD_PWR_MGT_BIT_WIFI = 0x1B,
MCU_EXT_CMD_EFUSE_BUFFER_MODE = 0x21,
MCU_EXT_CMD_THERMAL_PROTECT = 0x23,
MCU_EXT_CMD_EDCA_SET = 0x27,
MCU_EXT_CMD_SLOT_TIME_SET = 0x28,
MCU_EXT_CMD_CONFIG_INTERNAL_SETTING = 0x29,
MCU_EXT_CMD_NOA_OFFLOAD_CTRL = 0x2B,
MCU_EXT_CMD_GET_THEMAL_SENSOR = 0x2C,
MCU_EXT_CMD_WAKEUP_OPTION = 0x2E,
MCU_EXT_CMD_AC_QUEUE_CONTROL = 0x31,
MCU_EXT_CMD_BCN_UPDATE = 0x33
};
enum {
MCU_EXT_EVENT_CMD_RESULT = 0x0,
MCU_EXT_EVENT_RF_REG_ACCESS = 0x2,
MCU_EXT_EVENT_MULTI_CR_ACCESS = 0x0E,
MCU_EXT_EVENT_FW_LOG_2_HOST = 0x13,
MCU_EXT_EVENT_BEACON_LOSS = 0x1A,
MCU_EXT_EVENT_THERMAL_PROTECT = 0x22,
MCU_EXT_EVENT_BCN_UPDATE = 0x31,
};
#endif

View File

@ -0,0 +1,265 @@
/* SPDX-License-Identifier: ISC */
#ifndef __MT7603_H
#define __MT7603_H
#include <linux/interrupt.h>
#include <linux/ktime.h>
#include "../mt76.h"
#include "regs.h"
#define MT7603_MAX_INTERFACES 4
#define MT7603_WTBL_SIZE 128
#define MT7603_WTBL_RESERVED (MT7603_WTBL_SIZE - 1)
#define MT7603_WTBL_STA (MT7603_WTBL_RESERVED - MT7603_MAX_INTERFACES)
#define MT7603_RATE_RETRY 2
#define MT7603_MCU_RX_RING_SIZE 64
#define MT7603_RX_RING_SIZE 128
#define MT7603_TX_RING_SIZE 256
#define MT7603_PSD_RING_SIZE 128
#define MT7603_FIRMWARE_E1 "mt7603_e1.bin"
#define MT7603_FIRMWARE_E2 "mt7603_e2.bin"
#define MT7628_FIRMWARE_E1 "mt7628_e1.bin"
#define MT7628_FIRMWARE_E2 "mt7628_e2.bin"
#define MT7603_EEPROM_SIZE 1024
#define MT_AGG_SIZE_LIMIT(_n) (((_n) + 1) * 4)
#define MT7603_PRE_TBTT_TIME 5000 /* ms */
#define MT7603_WATCHDOG_TIME 100 /* ms */
#define MT7603_WATCHDOG_TIMEOUT 10 /* number of checks */
#define MT7603_EDCCA_BLOCK_TH 10
#define MT7603_CFEND_RATE_DEFAULT 0x69 /* chip default (24M) */
#define MT7603_CFEND_RATE_11B 0x03 /* 11B LP, 11M */
struct mt7603_vif;
struct mt7603_sta;
enum {
MT7603_REV_E1 = 0x00,
MT7603_REV_E2 = 0x10,
MT7628_REV_E1 = 0x8a00,
};
enum mt7603_bw {
MT_BW_20,
MT_BW_40,
MT_BW_80,
};
struct mt7603_rate_set {
struct ieee80211_tx_rate probe_rate;
struct ieee80211_tx_rate rates[4];
};
struct mt7603_sta {
struct mt76_wcid wcid; /* must be first */
struct mt7603_vif *vif;
struct list_head poll_list;
u32 tx_airtime_ac[4];
struct sk_buff_head psq;
struct ieee80211_tx_rate rates[4];
struct mt7603_rate_set rateset[2];
u32 rate_set_tsf;
u8 rate_count;
u8 n_rates;
u8 rate_probe;
u8 smps;
u8 ps;
};
struct mt7603_vif {
struct mt7603_sta sta; /* must be first */
u8 idx;
};
enum mt7603_reset_cause {
RESET_CAUSE_TX_HANG,
RESET_CAUSE_TX_BUSY,
RESET_CAUSE_RX_BUSY,
RESET_CAUSE_BEACON_STUCK,
RESET_CAUSE_RX_PSE_BUSY,
RESET_CAUSE_MCU_HANG,
RESET_CAUSE_RESET_FAILED,
__RESET_CAUSE_MAX
};
struct mt7603_dev {
union { /* must be first */
struct mt76_dev mt76;
struct mt76_phy mphy;
};
const struct mt76_bus_ops *bus_ops;
u32 rxfilter;
struct list_head sta_poll_list;
spinlock_t sta_poll_lock;
struct mt7603_sta global_sta;
u32 agc0, agc3;
u32 false_cca_ofdm, false_cca_cck;
unsigned long last_cca_adj;
u32 ampdu_ref;
u32 rx_ampdu_ts;
u8 rssi_offset[3];
u8 slottime;
s16 coverage_class;
s8 tx_power_limit;
ktime_t ed_time;
spinlock_t ps_lock;
u8 mcu_running;
u8 ed_monitor_enabled;
u8 ed_monitor;
s8 ed_trigger;
u8 ed_strict_mode;
u8 ed_strong_signal;
bool dynamic_sensitivity;
s8 sensitivity;
u8 sensitivity_limit;
u8 beacon_check;
u8 tx_hang_check;
u8 tx_dma_check;
u8 rx_dma_check;
u8 rx_pse_check;
u8 mcu_hang;
enum mt7603_reset_cause cur_reset_cause;
u16 tx_dma_idx[4];
u16 rx_dma_idx;
u32 reset_test;
unsigned int reset_cause[__RESET_CAUSE_MAX];
};
extern const struct mt76_driver_ops mt7603_drv_ops;
extern const struct ieee80211_ops mt7603_ops;
extern struct pci_driver mt7603_pci_driver;
extern struct platform_driver mt76_wmac_driver;
static inline bool is_mt7603(struct mt7603_dev *dev)
{
return mt76xx_chip(dev) == 0x7603;
}
static inline bool is_mt7628(struct mt7603_dev *dev)
{
return mt76xx_chip(dev) == 0x7628;
}
/* need offset to prevent conflict with ampdu_ack_len */
#define MT_RATE_DRIVER_DATA_OFFSET 4
u32 mt7603_reg_map(struct mt7603_dev *dev, u32 addr);
irqreturn_t mt7603_irq_handler(int irq, void *dev_instance);
int mt7603_register_device(struct mt7603_dev *dev);
void mt7603_unregister_device(struct mt7603_dev *dev);
int mt7603_eeprom_init(struct mt7603_dev *dev);
int mt7603_dma_init(struct mt7603_dev *dev);
void mt7603_dma_cleanup(struct mt7603_dev *dev);
int mt7603_mcu_init(struct mt7603_dev *dev);
void mt7603_init_debugfs(struct mt7603_dev *dev);
static inline void mt7603_irq_enable(struct mt7603_dev *dev, u32 mask)
{
mt76_set_irq_mask(&dev->mt76, MT_INT_MASK_CSR, 0, mask);
}
static inline void mt7603_irq_disable(struct mt7603_dev *dev, u32 mask)
{
mt76_set_irq_mask(&dev->mt76, MT_INT_MASK_CSR, mask, 0);
}
void mt7603_mac_reset_counters(struct mt7603_dev *dev);
void mt7603_mac_dma_start(struct mt7603_dev *dev);
void mt7603_mac_start(struct mt7603_dev *dev);
void mt7603_mac_stop(struct mt7603_dev *dev);
void mt7603_mac_work(struct work_struct *work);
void mt7603_mac_set_timing(struct mt7603_dev *dev);
void mt7603_beacon_set_timer(struct mt7603_dev *dev, int idx, int intval);
int mt7603_mac_fill_rx(struct mt7603_dev *dev, struct sk_buff *skb);
void mt7603_mac_add_txs(struct mt7603_dev *dev, void *data);
void mt7603_mac_rx_ba_reset(struct mt7603_dev *dev, void *addr, u8 tid);
void mt7603_mac_tx_ba_reset(struct mt7603_dev *dev, int wcid, int tid,
int ba_size);
void mt7603_mac_sta_poll(struct mt7603_dev *dev);
void mt7603_pse_client_reset(struct mt7603_dev *dev);
int mt7603_mcu_set_channel(struct mt7603_dev *dev);
int mt7603_mcu_set_eeprom(struct mt7603_dev *dev);
void mt7603_mcu_exit(struct mt7603_dev *dev);
void mt7603_wtbl_init(struct mt7603_dev *dev, int idx, int vif,
const u8 *mac_addr);
void mt7603_wtbl_clear(struct mt7603_dev *dev, int idx);
void mt7603_wtbl_update_cap(struct mt7603_dev *dev, struct ieee80211_sta *sta);
void mt7603_wtbl_set_rates(struct mt7603_dev *dev, struct mt7603_sta *sta,
struct ieee80211_tx_rate *probe_rate,
struct ieee80211_tx_rate *rates);
int mt7603_wtbl_set_key(struct mt7603_dev *dev, int wcid,
struct ieee80211_key_conf *key);
void mt7603_wtbl_set_ps(struct mt7603_dev *dev, struct mt7603_sta *sta,
bool enabled);
void mt7603_wtbl_set_smps(struct mt7603_dev *dev, struct mt7603_sta *sta,
bool enabled);
void mt7603_filter_tx(struct mt7603_dev *dev, int idx, bool abort);
int mt7603_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr,
enum mt76_txq_id qid, struct mt76_wcid *wcid,
struct ieee80211_sta *sta,
struct mt76_tx_info *tx_info);
void mt7603_tx_complete_skb(struct mt76_dev *mdev, struct mt76_queue_entry *e);
void mt7603_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q,
struct sk_buff *skb);
void mt7603_rx_poll_complete(struct mt76_dev *mdev, enum mt76_rxq_id q);
void mt7603_sta_ps(struct mt76_dev *mdev, struct ieee80211_sta *sta, bool ps);
int mt7603_sta_add(struct mt76_dev *mdev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
void mt7603_sta_assoc(struct mt76_dev *mdev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
void mt7603_sta_remove(struct mt76_dev *mdev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
void mt7603_pre_tbtt_tasklet(struct tasklet_struct *t);
void mt7603_update_channel(struct mt76_phy *mphy);
void mt7603_edcca_set_strict(struct mt7603_dev *dev, bool val);
void mt7603_cca_stats_reset(struct mt7603_dev *dev);
void mt7603_init_edcca(struct mt7603_dev *dev);
#endif

View File

@ -0,0 +1,83 @@
// SPDX-License-Identifier: ISC
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include "mt7603.h"
static const struct pci_device_id mt76pci_device_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7603) },
{ },
};
static int
mt76pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct mt7603_dev *dev;
struct mt76_dev *mdev;
int ret;
ret = pcim_enable_device(pdev);
if (ret)
return ret;
ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
if (ret)
return ret;
pci_set_master(pdev);
ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
if (ret)
return ret;
mdev = mt76_alloc_device(&pdev->dev, sizeof(*dev), &mt7603_ops,
&mt7603_drv_ops);
if (!mdev)
return -ENOMEM;
dev = container_of(mdev, struct mt7603_dev, mt76);
mt76_mmio_init(mdev, pcim_iomap_table(pdev)[0]);
mdev->rev = (mt76_rr(dev, MT_HW_CHIPID) << 16) |
(mt76_rr(dev, MT_HW_REV) & 0xff);
dev_info(mdev->dev, "ASIC revision: %04x\n", mdev->rev);
mt76_wr(dev, MT_INT_MASK_CSR, 0);
ret = devm_request_irq(mdev->dev, pdev->irq, mt7603_irq_handler,
IRQF_SHARED, KBUILD_MODNAME, dev);
if (ret)
goto error;
ret = mt7603_register_device(dev);
if (ret)
goto error;
return 0;
error:
mt76_free_device(&dev->mt76);
return ret;
}
static void
mt76pci_remove(struct pci_dev *pdev)
{
struct mt76_dev *mdev = pci_get_drvdata(pdev);
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
mt7603_unregister_device(dev);
}
MODULE_DEVICE_TABLE(pci, mt76pci_device_table);
MODULE_FIRMWARE(MT7603_FIRMWARE_E1);
MODULE_FIRMWARE(MT7603_FIRMWARE_E2);
struct pci_driver mt7603_pci_driver = {
.name = KBUILD_MODNAME,
.id_table = mt76pci_device_table,
.probe = mt76pci_probe,
.remove = mt76pci_remove,
};

View File

@ -0,0 +1,768 @@
/* SPDX-License-Identifier: ISC */
#ifndef __MT7603_REGS_H
#define __MT7603_REGS_H
#define MT_HW_REV 0x1000
#define MT_HW_CHIPID 0x1008
#define MT_TOP_MISC2 0x1134
#define MT_MCU_BASE 0x2000
#define MT_MCU(ofs) (MT_MCU_BASE + (ofs))
#define MT_MCU_PCIE_REMAP_1 MT_MCU(0x500)
#define MT_MCU_PCIE_REMAP_1_OFFSET GENMASK(17, 0)
#define MT_MCU_PCIE_REMAP_1_BASE GENMASK(31, 18)
#define MT_MCU_PCIE_REMAP_2 MT_MCU(0x504)
#define MT_MCU_PCIE_REMAP_2_OFFSET GENMASK(18, 0)
#define MT_MCU_PCIE_REMAP_2_BASE GENMASK(31, 19)
#define MT_HIF_BASE 0x4000
#define MT_HIF(ofs) (MT_HIF_BASE + (ofs))
#define MT_INT_SOURCE_CSR MT_HIF(0x200)
#define MT_INT_MASK_CSR MT_HIF(0x204)
#define MT_DELAY_INT_CFG MT_HIF(0x210)
#define MT_INT_RX_DONE(_n) BIT(_n)
#define MT_INT_RX_DONE_ALL GENMASK(1, 0)
#define MT_INT_TX_DONE_ALL GENMASK(19, 4)
#define MT_INT_TX_DONE(_n) BIT((_n) + 4)
#define MT_INT_RX_COHERENT BIT(20)
#define MT_INT_TX_COHERENT BIT(21)
#define MT_INT_MAC_IRQ3 BIT(27)
#define MT_INT_MCU_CMD BIT(30)
#define MT_WPDMA_GLO_CFG MT_HIF(0x208)
#define MT_WPDMA_GLO_CFG_TX_DMA_EN BIT(0)
#define MT_WPDMA_GLO_CFG_TX_DMA_BUSY BIT(1)
#define MT_WPDMA_GLO_CFG_RX_DMA_EN BIT(2)
#define MT_WPDMA_GLO_CFG_RX_DMA_BUSY BIT(3)
#define MT_WPDMA_GLO_CFG_DMA_BURST_SIZE GENMASK(5, 4)
#define MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE BIT(6)
#define MT_WPDMA_GLO_CFG_BIG_ENDIAN BIT(7)
#define MT_WPDMA_GLO_CFG_HDR_SEG_LEN GENMASK(15, 8)
#define MT_WPDMA_GLO_CFG_SW_RESET BIT(24)
#define MT_WPDMA_GLO_CFG_FORCE_TX_EOF BIT(25)
#define MT_WPDMA_GLO_CFG_CLK_GATE_DIS BIT(30)
#define MT_WPDMA_GLO_CFG_RX_2B_OFFSET BIT(31)
#define MT_WPDMA_RST_IDX MT_HIF(0x20c)
#define MT_WPDMA_DEBUG MT_HIF(0x244)
#define MT_WPDMA_DEBUG_VALUE GENMASK(17, 0)
#define MT_WPDMA_DEBUG_SEL BIT(27)
#define MT_WPDMA_DEBUG_IDX GENMASK(31, 28)
#define MT_TX_RING_BASE MT_HIF(0x300)
#define MT_RX_RING_BASE MT_HIF(0x400)
#define MT_TXTIME_THRESH_BASE MT_HIF(0x500)
#define MT_TXTIME_THRESH(n) (MT_TXTIME_THRESH_BASE + ((n) * 4))
#define MT_PAGE_COUNT_BASE MT_HIF(0x540)
#define MT_PAGE_COUNT(n) (MT_PAGE_COUNT_BASE + ((n) * 4))
#define MT_SCH_1 MT_HIF(0x588)
#define MT_SCH_2 MT_HIF(0x58c)
#define MT_SCH_3 MT_HIF(0x590)
#define MT_SCH_4 MT_HIF(0x594)
#define MT_SCH_4_FORCE_QID GENMASK(4, 0)
#define MT_SCH_4_BYPASS BIT(5)
#define MT_SCH_4_RESET BIT(8)
#define MT_GROUP_THRESH_BASE MT_HIF(0x598)
#define MT_GROUP_THRESH(n) (MT_GROUP_THRESH_BASE + ((n) * 4))
#define MT_QUEUE_PRIORITY_1 MT_HIF(0x580)
#define MT_QUEUE_PRIORITY_2 MT_HIF(0x584)
#define MT_BMAP_0 MT_HIF(0x5b0)
#define MT_BMAP_1 MT_HIF(0x5b4)
#define MT_BMAP_2 MT_HIF(0x5b8)
#define MT_HIGH_PRIORITY_1 MT_HIF(0x5bc)
#define MT_HIGH_PRIORITY_2 MT_HIF(0x5c0)
#define MT_PRIORITY_MASK MT_HIF(0x5c4)
#define MT_RSV_MAX_THRESH MT_HIF(0x5c8)
#define MT_PSE_BASE 0x8000
#define MT_PSE(ofs) (MT_PSE_BASE + (ofs))
#define MT_MCU_DEBUG_RESET MT_PSE(0x16c)
#define MT_MCU_DEBUG_RESET_PSE BIT(0)
#define MT_MCU_DEBUG_RESET_PSE_S BIT(1)
#define MT_MCU_DEBUG_RESET_QUEUES GENMASK(6, 2)
#define MT_PSE_FC_P0 MT_PSE(0x120)
#define MT_PSE_FC_P0_MIN_RESERVE GENMASK(11, 0)
#define MT_PSE_FC_P0_MAX_QUOTA GENMASK(27, 16)
#define MT_PSE_FRP MT_PSE(0x138)
#define MT_PSE_FRP_P0 GENMASK(2, 0)
#define MT_PSE_FRP_P1 GENMASK(5, 3)
#define MT_PSE_FRP_P2_RQ0 GENMASK(8, 6)
#define MT_PSE_FRP_P2_RQ1 GENMASK(11, 9)
#define MT_PSE_FRP_P2_RQ2 GENMASK(14, 12)
#define MT_FC_RSV_COUNT_0 MT_PSE(0x13c)
#define MT_FC_RSV_COUNT_0_P0 GENMASK(11, 0)
#define MT_FC_RSV_COUNT_0_P1 GENMASK(27, 16)
#define MT_FC_SP2_Q0Q1 MT_PSE(0x14c)
#define MT_FC_SP2_Q0Q1_SRC_COUNT_Q0 GENMASK(11, 0)
#define MT_FC_SP2_Q0Q1_SRC_COUNT_Q1 GENMASK(27, 16)
#define MT_PSE_FW_SHARED MT_PSE(0x17c)
#define MT_PSE_RTA MT_PSE(0x194)
#define MT_PSE_RTA_QUEUE_ID GENMASK(4, 0)
#define MT_PSE_RTA_PORT_ID GENMASK(6, 5)
#define MT_PSE_RTA_REDIRECT_EN BIT(7)
#define MT_PSE_RTA_TAG_ID GENMASK(15, 8)
#define MT_PSE_RTA_WRITE BIT(16)
#define MT_PSE_RTA_BUSY BIT(31)
#define MT_WF_PHY_BASE 0x10000
#define MT_WF_PHY_OFFSET 0x1000
#define MT_WF_PHY(ofs) (MT_WF_PHY_BASE + (ofs))
#define MT_AGC_BASE MT_WF_PHY(0x500)
#define MT_AGC(n) (MT_AGC_BASE + ((n) * 4))
#define MT_AGC1_BASE MT_WF_PHY(0x1500)
#define MT_AGC1(n) (MT_AGC1_BASE + ((n) * 4))
#define MT_AGC_41_RSSI_0 GENMASK(23, 16)
#define MT_AGC_41_RSSI_1 GENMASK(7, 0)
#define MT_RXTD_BASE MT_WF_PHY(0x600)
#define MT_RXTD(n) (MT_RXTD_BASE + ((n) * 4))
#define MT_RXTD_6_ACI_TH GENMASK(4, 0)
#define MT_RXTD_6_CCAED_TH GENMASK(14, 8)
#define MT_RXTD_8_LOWER_SIGNAL GENMASK(5, 0)
#define MT_RXTD_13_ACI_TH_EN BIT(0)
#define MT_WF_PHY_CR_TSSI_BASE MT_WF_PHY(0xd00)
#define MT_WF_PHY_CR_TSSI(phy, n) (MT_WF_PHY_CR_TSSI_BASE + \
((phy) * MT_WF_PHY_OFFSET) + \
((n) * 4))
#define MT_PHYCTRL_BASE MT_WF_PHY(0x4100)
#define MT_PHYCTRL(n) (MT_PHYCTRL_BASE + ((n) * 4))
#define MT_PHYCTRL_2_STATUS_RESET BIT(6)
#define MT_PHYCTRL_2_STATUS_EN BIT(7)
#define MT_PHYCTRL_STAT_PD MT_PHYCTRL(3)
#define MT_PHYCTRL_STAT_PD_OFDM GENMASK(31, 16)
#define MT_PHYCTRL_STAT_PD_CCK GENMASK(15, 0)
#define MT_PHYCTRL_STAT_MDRDY MT_PHYCTRL(8)
#define MT_PHYCTRL_STAT_MDRDY_OFDM GENMASK(31, 16)
#define MT_PHYCTRL_STAT_MDRDY_CCK GENMASK(15, 0)
#define MT_WF_AGG_BASE 0x21200
#define MT_WF_AGG(ofs) (MT_WF_AGG_BASE + (ofs))
#define MT_AGG_ARCR MT_WF_AGG(0x010)
#define MT_AGG_ARCR_INIT_RATE1 BIT(0)
#define MT_AGG_ARCR_FB_SGI_DISABLE BIT(1)
#define MT_AGG_ARCR_RATE8_DOWN_WRAP BIT(2)
#define MT_AGG_ARCR_RTS_RATE_THR GENMASK(12, 8)
#define MT_AGG_ARCR_RATE_DOWN_RATIO GENMASK(17, 16)
#define MT_AGG_ARCR_RATE_DOWN_RATIO_EN BIT(19)
#define MT_AGG_ARCR_RATE_UP_EXTRA_TH GENMASK(22, 20)
#define MT_AGG_ARCR_SPE_DIS_TH GENMASK(27, 24)
#define MT_AGG_ARUCR MT_WF_AGG(0x014)
#define MT_AGG_ARDCR MT_WF_AGG(0x018)
#define MT_AGG_ARxCR_LIMIT_SHIFT(_n) (4 * (_n))
#define MT_AGG_ARxCR_LIMIT(_n) GENMASK(2 + \
MT_AGG_ARxCR_LIMIT_SHIFT(_n), \
MT_AGG_ARxCR_LIMIT_SHIFT(_n))
#define MT_AGG_LIMIT MT_WF_AGG(0x040)
#define MT_AGG_LIMIT_1 MT_WF_AGG(0x044)
#define MT_AGG_LIMIT_AC(_n) GENMASK(((_n) + 1) * 8 - 1, (_n) * 8)
#define MT_AGG_BA_SIZE_LIMIT_0 MT_WF_AGG(0x048)
#define MT_AGG_BA_SIZE_LIMIT_1 MT_WF_AGG(0x04c)
#define MT_AGG_BA_SIZE_LIMIT_SHIFT 8
#define MT_AGG_PCR MT_WF_AGG(0x050)
#define MT_AGG_PCR_MM BIT(16)
#define MT_AGG_PCR_GF BIT(17)
#define MT_AGG_PCR_BW40 BIT(18)
#define MT_AGG_PCR_RIFS BIT(19)
#define MT_AGG_PCR_BW80 BIT(20)
#define MT_AGG_PCR_BW160 BIT(21)
#define MT_AGG_PCR_ERP BIT(22)
#define MT_AGG_PCR_RTS MT_WF_AGG(0x054)
#define MT_AGG_PCR_RTS_THR GENMASK(19, 0)
#define MT_AGG_PCR_RTS_PKT_THR GENMASK(31, 25)
#define MT_AGG_ASRCR MT_WF_AGG(0x060)
#define MT_AGG_ASRCR_RANGE(val, n) (((val) >> ((n) << 3)) & GENMASK(5, 0))
#define MT_AGG_CONTROL MT_WF_AGG(0x070)
#define MT_AGG_CONTROL_NO_BA_RULE BIT(0)
#define MT_AGG_CONTROL_NO_BA_AR_RULE BIT(1)
#define MT_AGG_CONTROL_CFEND_SPE_EN BIT(3)
#define MT_AGG_CONTROL_CFEND_RATE GENMASK(15, 4)
#define MT_AGG_CONTROL_BAR_SPE_EN BIT(19)
#define MT_AGG_CONTROL_BAR_RATE GENMASK(31, 20)
#define MT_AGG_TMP MT_WF_AGG(0x0d8)
#define MT_AGG_BWCR MT_WF_AGG(0x0ec)
#define MT_AGG_BWCR_BW GENMASK(3, 2)
#define MT_AGG_RETRY_CONTROL MT_WF_AGG(0x0f4)
#define MT_AGG_RETRY_CONTROL_RTS_LIMIT GENMASK(11, 7)
#define MT_AGG_RETRY_CONTROL_BAR_LIMIT GENMASK(15, 12)
#define MT_WF_DMA_BASE 0x21c00
#define MT_WF_DMA(ofs) (MT_WF_DMA_BASE + (ofs))
#define MT_DMA_DCR0 MT_WF_DMA(0x000)
#define MT_DMA_DCR0_MAX_RX_LEN GENMASK(15, 0)
#define MT_DMA_DCR0_DAMSDU BIT(16)
#define MT_DMA_DCR0_RX_VEC_DROP BIT(17)
#define MT_DMA_DCR1 MT_WF_DMA(0x004)
#define MT_DMA_FQCR0 MT_WF_DMA(0x008)
#define MT_DMA_FQCR0_TARGET_WCID GENMASK(7, 0)
#define MT_DMA_FQCR0_TARGET_BSS GENMASK(13, 8)
#define MT_DMA_FQCR0_TARGET_QID GENMASK(20, 16)
#define MT_DMA_FQCR0_DEST_PORT_ID GENMASK(23, 22)
#define MT_DMA_FQCR0_DEST_QUEUE_ID GENMASK(28, 24)
#define MT_DMA_FQCR0_MODE BIT(29)
#define MT_DMA_FQCR0_STATUS BIT(30)
#define MT_DMA_FQCR0_BUSY BIT(31)
#define MT_DMA_RCFR0 MT_WF_DMA(0x070)
#define MT_DMA_VCFR0 MT_WF_DMA(0x07c)
#define MT_DMA_TCFR0 MT_WF_DMA(0x080)
#define MT_DMA_TCFR1 MT_WF_DMA(0x084)
#define MT_DMA_TCFR_TXS_AGGR_TIMEOUT GENMASK(27, 16)
#define MT_DMA_TCFR_TXS_QUEUE BIT(14)
#define MT_DMA_TCFR_TXS_AGGR_COUNT GENMASK(12, 8)
#define MT_DMA_TCFR_TXS_BIT_MAP GENMASK(6, 0)
#define MT_DMA_TMCFR0 MT_WF_DMA(0x088)
#define MT_WF_ARB_BASE 0x21400
#define MT_WF_ARB(ofs) (MT_WF_ARB_BASE + (ofs))
#define MT_WMM_AIFSN MT_WF_ARB(0x020)
#define MT_WMM_AIFSN_MASK GENMASK(3, 0)
#define MT_WMM_AIFSN_SHIFT(_n) ((_n) * 4)
#define MT_WMM_CWMAX_BASE MT_WF_ARB(0x028)
#define MT_WMM_CWMAX(_n) (MT_WMM_CWMAX_BASE + (((_n) / 2) << 2))
#define MT_WMM_CWMAX_SHIFT(_n) (((_n) & 1) * 16)
#define MT_WMM_CWMAX_MASK GENMASK(15, 0)
#define MT_WMM_CWMIN MT_WF_ARB(0x040)
#define MT_WMM_CWMIN_MASK GENMASK(7, 0)
#define MT_WMM_CWMIN_SHIFT(_n) ((_n) * 8)
#define MT_WF_ARB_RQCR MT_WF_ARB(0x070)
#define MT_WF_ARB_RQCR_RX_START BIT(0)
#define MT_WF_ARB_RQCR_RXV_START BIT(4)
#define MT_WF_ARB_RQCR_RXV_R_EN BIT(7)
#define MT_WF_ARB_RQCR_RXV_T_EN BIT(8)
#define MT_ARB_SCR MT_WF_ARB(0x080)
#define MT_ARB_SCR_BCNQ_OPMODE_MASK GENMASK(1, 0)
#define MT_ARB_SCR_BCNQ_OPMODE_SHIFT(n) ((n) * 2)
#define MT_ARB_SCR_TX_DISABLE BIT(8)
#define MT_ARB_SCR_RX_DISABLE BIT(9)
#define MT_ARB_SCR_BCNQ_EMPTY_SKIP BIT(28)
#define MT_ARB_SCR_TTTT_BTIM_PRIO BIT(29)
#define MT_ARB_SCR_TBTT_BCN_PRIO BIT(30)
#define MT_ARB_SCR_TBTT_BCAST_PRIO BIT(31)
enum {
MT_BCNQ_OPMODE_STA = 0,
MT_BCNQ_OPMODE_AP = 1,
MT_BCNQ_OPMODE_ADHOC = 2,
};
#define MT_WF_ARB_TX_START_0 MT_WF_ARB(0x100)
#define MT_WF_ARB_TX_START_1 MT_WF_ARB(0x104)
#define MT_WF_ARB_TX_FLUSH_0 MT_WF_ARB(0x108)
#define MT_WF_ARB_TX_FLUSH_1 MT_WF_ARB(0x10c)
#define MT_WF_ARB_TX_STOP_0 MT_WF_ARB(0x110)
#define MT_WF_ARB_TX_STOP_1 MT_WF_ARB(0x114)
#define MT_WF_ARB_BCN_START MT_WF_ARB(0x118)
#define MT_WF_ARB_BCN_START_BSSn(n) BIT(0 + (n))
#define MT_WF_ARB_BCN_START_T_PRE_TTTT BIT(10)
#define MT_WF_ARB_BCN_START_T_TTTT BIT(11)
#define MT_WF_ARB_BCN_START_T_PRE_TBTT BIT(12)
#define MT_WF_ARB_BCN_START_T_TBTT BIT(13)
#define MT_WF_ARB_BCN_START_T_SLOT_IDLE BIT(14)
#define MT_WF_ARB_BCN_START_T_TX_START BIT(15)
#define MT_WF_ARB_BCN_START_BSS0n(n) BIT((n) ? 16 + ((n) - 1) : 0)
#define MT_WF_ARB_BCN_FLUSH MT_WF_ARB(0x11c)
#define MT_WF_ARB_BCN_FLUSH_BSSn(n) BIT(0 + (n))
#define MT_WF_ARB_BCN_FLUSH_BSS0n(n) BIT((n) ? 16 + ((n) - 1) : 0)
#define MT_WF_ARB_CAB_START MT_WF_ARB(0x120)
#define MT_WF_ARB_CAB_START_BSSn(n) BIT(0 + (n))
#define MT_WF_ARB_CAB_START_BSS0n(n) BIT((n) ? 16 + ((n) - 1) : 0)
#define MT_WF_ARB_CAB_FLUSH MT_WF_ARB(0x124)
#define MT_WF_ARB_CAB_FLUSH_BSSn(n) BIT(0 + (n))
#define MT_WF_ARB_CAB_FLUSH_BSS0n(n) BIT((n) ? 16 + ((n) - 1) : 0)
#define MT_WF_ARB_CAB_COUNT(n) MT_WF_ARB(0x128 + (n) * 4)
#define MT_WF_ARB_CAB_COUNT_SHIFT 4
#define MT_WF_ARB_CAB_COUNT_MASK GENMASK(3, 0)
#define MT_WF_ARB_CAB_COUNT_B0_REG(n) MT_WF_ARB_CAB_COUNT(((n) > 12 ? 2 : \
((n) > 4 ? 1 : 0)))
#define MT_WF_ARB_CAB_COUNT_B0_SHIFT(n) (((n) > 12 ? (n) - 12 : \
((n) > 4 ? (n) - 4 : \
(n) ? (n) + 3 : 0)) * 4)
#define MT_TX_ABORT MT_WF_ARB(0x134)
#define MT_TX_ABORT_EN BIT(0)
#define MT_TX_ABORT_WCID GENMASK(15, 8)
#define MT_WF_TMAC_BASE 0x21600
#define MT_WF_TMAC(ofs) (MT_WF_TMAC_BASE + (ofs))
#define MT_TMAC_TCR MT_WF_TMAC(0x000)
#define MT_TMAC_TCR_BLINK_SEL GENMASK(7, 6)
#define MT_TMAC_TCR_PRE_RTS_GUARD GENMASK(11, 8)
#define MT_TMAC_TCR_PRE_RTS_SEC_IDLE GENMASK(13, 12)
#define MT_TMAC_TCR_RTS_SIGTA BIT(14)
#define MT_TMAC_TCR_LDPC_OFS BIT(15)
#define MT_TMAC_TCR_TX_STREAMS GENMASK(17, 16)
#define MT_TMAC_TCR_SCH_IDLE_SEL GENMASK(19, 18)
#define MT_TMAC_TCR_SCH_DET_PER_IOD BIT(20)
#define MT_TMAC_TCR_DCH_DET_DISABLE BIT(21)
#define MT_TMAC_TCR_TX_RIFS BIT(22)
#define MT_TMAC_TCR_RX_RIFS_MODE BIT(23)
#define MT_TMAC_TCR_TXOP_TBTT_CTL BIT(24)
#define MT_TMAC_TCR_TBTT_TX_STOP_CTL BIT(25)
#define MT_TMAC_TCR_TXOP_BURST_STOP BIT(26)
#define MT_TMAC_TCR_RDG_RA_MODE BIT(27)
#define MT_TMAC_TCR_RDG_RESP BIT(29)
#define MT_TMAC_TCR_RDG_NO_PENDING BIT(30)
#define MT_TMAC_TCR_SMOOTHING BIT(31)
#define MT_WMM_TXOP_BASE MT_WF_TMAC(0x010)
#define MT_WMM_TXOP(_n) (MT_WMM_TXOP_BASE + \
((((_n) / 2) ^ 0x1) << 2))
#define MT_WMM_TXOP_SHIFT(_n) (((_n) & 1) * 16)
#define MT_WMM_TXOP_MASK GENMASK(15, 0)
#define MT_TIMEOUT_CCK MT_WF_TMAC(0x090)
#define MT_TIMEOUT_OFDM MT_WF_TMAC(0x094)
#define MT_TIMEOUT_VAL_PLCP GENMASK(15, 0)
#define MT_TIMEOUT_VAL_CCA GENMASK(31, 16)
#define MT_TXREQ MT_WF_TMAC(0x09c)
#define MT_TXREQ_CCA_SRC_SEL GENMASK(31, 30)
#define MT_RXREQ MT_WF_TMAC(0x0a0)
#define MT_RXREQ_DELAY GENMASK(8, 0)
#define MT_IFS MT_WF_TMAC(0x0a4)
#define MT_IFS_EIFS GENMASK(8, 0)
#define MT_IFS_RIFS GENMASK(14, 10)
#define MT_IFS_SIFS GENMASK(22, 16)
#define MT_IFS_SLOT GENMASK(30, 24)
#define MT_TMAC_PCR MT_WF_TMAC(0x0b4)
#define MT_TMAC_PCR_RATE GENMASK(8, 0)
#define MT_TMAC_PCR_RATE_FIXED BIT(15)
#define MT_TMAC_PCR_ANT_ID GENMASK(21, 16)
#define MT_TMAC_PCR_ANT_ID_SEL BIT(22)
#define MT_TMAC_PCR_SPE_EN BIT(23)
#define MT_TMAC_PCR_ANT_PRI GENMASK(26, 24)
#define MT_TMAC_PCR_ANT_PRI_SEL GENMASK(27)
#define MT_WF_RMAC_BASE 0x21800
#define MT_WF_RMAC(ofs) (MT_WF_RMAC_BASE + (ofs))
#define MT_WF_RFCR MT_WF_RMAC(0x000)
#define MT_WF_RFCR_DROP_STBC_MULTI BIT(0)
#define MT_WF_RFCR_DROP_FCSFAIL BIT(1)
#define MT_WF_RFCR_DROP_VERSION BIT(3)
#define MT_WF_RFCR_DROP_PROBEREQ BIT(4)
#define MT_WF_RFCR_DROP_MCAST BIT(5)
#define MT_WF_RFCR_DROP_BCAST BIT(6)
#define MT_WF_RFCR_DROP_MCAST_FILTERED BIT(7)
#define MT_WF_RFCR_DROP_A3_MAC BIT(8)
#define MT_WF_RFCR_DROP_A3_BSSID BIT(9)
#define MT_WF_RFCR_DROP_A2_BSSID BIT(10)
#define MT_WF_RFCR_DROP_OTHER_BEACON BIT(11)
#define MT_WF_RFCR_DROP_FRAME_REPORT BIT(12)
#define MT_WF_RFCR_DROP_CTL_RSV BIT(13)
#define MT_WF_RFCR_DROP_CTS BIT(14)
#define MT_WF_RFCR_DROP_RTS BIT(15)
#define MT_WF_RFCR_DROP_DUPLICATE BIT(16)
#define MT_WF_RFCR_DROP_OTHER_BSS BIT(17)
#define MT_WF_RFCR_DROP_OTHER_UC BIT(18)
#define MT_WF_RFCR_DROP_OTHER_TIM BIT(19)
#define MT_WF_RFCR_DROP_NDPA BIT(20)
#define MT_WF_RFCR_DROP_UNWANTED_CTL BIT(21)
#define MT_BSSID0(idx) MT_WF_RMAC(0x004 + (idx) * 8)
#define MT_BSSID1(idx) MT_WF_RMAC(0x008 + (idx) * 8)
#define MT_BSSID1_VALID BIT(16)
#define MT_MAC_ADDR0(idx) MT_WF_RMAC(0x024 + (idx) * 8)
#define MT_MAC_ADDR1(idx) MT_WF_RMAC(0x028 + (idx) * 8)
#define MT_MAC_ADDR1_ADDR GENMASK(15, 0)
#define MT_MAC_ADDR1_VALID BIT(16)
#define MT_BA_CONTROL_0 MT_WF_RMAC(0x068)
#define MT_BA_CONTROL_1 MT_WF_RMAC(0x06c)
#define MT_BA_CONTROL_1_ADDR GENMASK(15, 0)
#define MT_BA_CONTROL_1_TID GENMASK(19, 16)
#define MT_BA_CONTROL_1_IGNORE_TID BIT(20)
#define MT_BA_CONTROL_1_IGNORE_ALL BIT(21)
#define MT_BA_CONTROL_1_RESET BIT(22)
#define MT_WF_RMACDR MT_WF_RMAC(0x078)
#define MT_WF_RMACDR_TSF_PROBERSP_DIS BIT(0)
#define MT_WF_RMACDR_TSF_TIM BIT(4)
#define MT_WF_RMACDR_MBSSID_MASK GENMASK(25, 24)
#define MT_WF_RMACDR_CHECK_HTC_BY_RATE BIT(26)
#define MT_WF_RMACDR_MAXLEN_20BIT BIT(30)
#define MT_WF_RMAC_RMCR MT_WF_RMAC(0x080)
#define MT_WF_RMAC_RMCR_SMPS_MODE GENMASK(21, 20)
#define MT_WF_RMAC_RMCR_RX_STREAMS GENMASK(24, 22)
#define MT_WF_RMAC_RMCR_SMPS_RTS BIT(25)
#define MT_WF_RMAC_CH_FREQ MT_WF_RMAC(0x090)
#define MT_WF_RMAC_MAXMINLEN MT_WF_RMAC(0x098)
#define MT_WF_RFCR1 MT_WF_RMAC(0x0a4)
#define MT_WF_RMAC_TMR_PA MT_WF_RMAC(0x0e0)
#define MT_WF_SEC_BASE 0x21a00
#define MT_WF_SEC(ofs) (MT_WF_SEC_BASE + (ofs))
#define MT_SEC_SCR MT_WF_SEC(0x004)
#define MT_SEC_SCR_MASK_ORDER GENMASK(1, 0)
#define MT_WTBL_OFF_BASE 0x23000
#define MT_WTBL_OFF(n) (MT_WTBL_OFF_BASE + (n))
#define MT_WTBL_UPDATE MT_WTBL_OFF(0x000)
#define MT_WTBL_UPDATE_WLAN_IDX GENMASK(7, 0)
#define MT_WTBL_UPDATE_WTBL2 BIT(11)
#define MT_WTBL_UPDATE_ADM_COUNT_CLEAR BIT(12)
#define MT_WTBL_UPDATE_RATE_UPDATE BIT(13)
#define MT_WTBL_UPDATE_TX_COUNT_CLEAR BIT(14)
#define MT_WTBL_UPDATE_RX_COUNT_CLEAR BIT(15)
#define MT_WTBL_UPDATE_BUSY BIT(16)
#define MT_WTBL_RMVTCR MT_WTBL_OFF(0x008)
#define MT_WTBL_RMVTCR_RX_MV_MODE BIT(23)
#define MT_LPON_BASE 0x24000
#define MT_LPON(n) (MT_LPON_BASE + (n))
#define MT_LPON_T0CR MT_LPON(0x010)
#define MT_LPON_T0CR_MODE GENMASK(1, 0)
#define MT_LPON_UTTR0 MT_LPON(0x018)
#define MT_LPON_UTTR1 MT_LPON(0x01c)
#define MT_LPON_BTEIR MT_LPON(0x020)
#define MT_LPON_BTEIR_MBSS_MODE GENMASK(31, 29)
#define MT_PRE_TBTT MT_LPON(0x030)
#define MT_PRE_TBTT_MASK GENMASK(7, 0)
#define MT_PRE_TBTT_SHIFT 8
#define MT_TBTT MT_LPON(0x034)
#define MT_TBTT_PERIOD GENMASK(15, 0)
#define MT_TBTT_DTIM_PERIOD GENMASK(23, 16)
#define MT_TBTT_TBTT_WAKE_PERIOD GENMASK(27, 24)
#define MT_TBTT_DTIM_WAKE_PERIOD GENMASK(30, 28)
#define MT_TBTT_CAL_ENABLE BIT(31)
#define MT_TBTT_TIMER_CFG MT_LPON(0x05c)
#define MT_LPON_SBTOR(n) MT_LPON(0x0a0)
#define MT_LPON_SBTOR_SUB_BSS_EN BIT(29)
#define MT_LPON_SBTOR_TIME_OFFSET GENMASK(19, 0)
#define MT_INT_WAKEUP_BASE 0x24400
#define MT_INT_WAKEUP(n) (MT_INT_WAKEUP_BASE + (n))
#define MT_HW_INT_STATUS(n) MT_INT_WAKEUP(0x3c + (n) * 8)
#define MT_HW_INT_MASK(n) MT_INT_WAKEUP(0x40 + (n) * 8)
#define MT_HW_INT3_TBTT0 BIT(15)
#define MT_HW_INT3_PRE_TBTT0 BIT(31)
#define MT_WTBL1_BASE 0x28000
#define MT_WTBL_ON_BASE (MT_WTBL1_BASE + 0x2000)
#define MT_WTBL_ON(_n) (MT_WTBL_ON_BASE + (_n))
#define MT_WTBL_RIUCR0 MT_WTBL_ON(0x200)
#define MT_WTBL_RIUCR1 MT_WTBL_ON(0x204)
#define MT_WTBL_RIUCR1_RATE0 GENMASK(11, 0)
#define MT_WTBL_RIUCR1_RATE1 GENMASK(23, 12)
#define MT_WTBL_RIUCR1_RATE2_LO GENMASK(31, 24)
#define MT_WTBL_RIUCR2 MT_WTBL_ON(0x208)
#define MT_WTBL_RIUCR2_RATE2_HI GENMASK(3, 0)
#define MT_WTBL_RIUCR2_RATE3 GENMASK(15, 4)
#define MT_WTBL_RIUCR2_RATE4 GENMASK(27, 16)
#define MT_WTBL_RIUCR2_RATE5_LO GENMASK(31, 28)
#define MT_WTBL_RIUCR3 MT_WTBL_ON(0x20c)
#define MT_WTBL_RIUCR3_RATE5_HI GENMASK(7, 0)
#define MT_WTBL_RIUCR3_RATE6 GENMASK(19, 8)
#define MT_WTBL_RIUCR3_RATE7 GENMASK(31, 20)
#define MT_MIB_BASE 0x2c000
#define MT_MIB(_n) (MT_MIB_BASE + (_n))
#define MT_MIB_CTL MT_MIB(0x00)
#define MT_MIB_CTL_PSCCA_TIME GENMASK(13, 11)
#define MT_MIB_CTL_CCA_NAV_TX GENMASK(16, 14)
#define MT_MIB_CTL_ED_TIME GENMASK(30, 28)
#define MT_MIB_CTL_READ_CLR_DIS BIT(31)
#define MT_MIB_STAT(_n) MT_MIB(0x08 + (_n) * 4)
#define MT_MIB_STAT_CCA MT_MIB_STAT(9)
#define MT_MIB_STAT_CCA_MASK GENMASK(23, 0)
#define MT_MIB_STAT_PSCCA MT_MIB_STAT(16)
#define MT_MIB_STAT_PSCCA_MASK GENMASK(23, 0)
#define MT_TX_AGG_CNT(n) MT_MIB(0xa8 + ((n) << 2))
#define MT_MIB_STAT_ED MT_MIB_STAT(18)
#define MT_MIB_STAT_ED_MASK GENMASK(23, 0)
#define MT_PCIE_REMAP_BASE_1 0x40000
#define MT_PCIE_REMAP_BASE_2 0x80000
#define MT_TX_HW_QUEUE_MGMT 4
#define MT_TX_HW_QUEUE_MCU 5
#define MT_TX_HW_QUEUE_BCN 7
#define MT_TX_HW_QUEUE_BMC 8
#define MT_LED_BASE_PHYS 0x80024000
#define MT_LED_PHYS(_n) (MT_LED_BASE_PHYS + (_n))
#define MT_LED_CTRL MT_LED_PHYS(0x00)
#define MT_LED_CTRL_REPLAY(_n) BIT(0 + (8 * (_n)))
#define MT_LED_CTRL_POLARITY(_n) BIT(1 + (8 * (_n)))
#define MT_LED_CTRL_TX_BLINK_MODE(_n) BIT(2 + (8 * (_n)))
#define MT_LED_CTRL_TX_MANUAL_BLINK(_n) BIT(3 + (8 * (_n)))
#define MT_LED_CTRL_TX_OVER_BLINK(_n) BIT(5 + (8 * (_n)))
#define MT_LED_CTRL_KICK(_n) BIT(7 + (8 * (_n)))
#define MT_LED_STATUS_0(_n) MT_LED_PHYS(0x10 + ((_n) * 8))
#define MT_LED_STATUS_1(_n) MT_LED_PHYS(0x14 + ((_n) * 8))
#define MT_LED_STATUS_OFF GENMASK(31, 24)
#define MT_LED_STATUS_ON GENMASK(23, 16)
#define MT_LED_STATUS_DURATION GENMASK(15, 0)
#define MT_CLIENT_BASE_PHYS_ADDR 0x800c0000
#define MT_CLIENT_TMAC_INFO_TEMPLATE 0x040
#define MT_CLIENT_STATUS 0x06c
#define MT_CLIENT_RESET_TX 0x070
#define MT_CLIENT_RESET_TX_R_E_1 BIT(16)
#define MT_CLIENT_RESET_TX_R_E_2 BIT(17)
#define MT_CLIENT_RESET_TX_R_E_1_S BIT(20)
#define MT_CLIENT_RESET_TX_R_E_2_S BIT(21)
#define MT_EFUSE_BASE 0x81070000
#define MT_EFUSE_BASE_CTRL 0x000
#define MT_EFUSE_BASE_CTRL_EMPTY BIT(30)
#define MT_EFUSE_CTRL 0x008
#define MT_EFUSE_CTRL_AOUT GENMASK(5, 0)
#define MT_EFUSE_CTRL_MODE GENMASK(7, 6)
#define MT_EFUSE_CTRL_LDO_OFF_TIME GENMASK(13, 8)
#define MT_EFUSE_CTRL_LDO_ON_TIME GENMASK(15, 14)
#define MT_EFUSE_CTRL_AIN GENMASK(25, 16)
#define MT_EFUSE_CTRL_VALID BIT(29)
#define MT_EFUSE_CTRL_KICK BIT(30)
#define MT_EFUSE_CTRL_SEL BIT(31)
#define MT_EFUSE_WDATA(_i) (0x010 + ((_i) * 4))
#define MT_EFUSE_RDATA(_i) (0x030 + ((_i) * 4))
#define MT_CLIENT_RXINF 0x068
#define MT_CLIENT_RXINF_RXSH_GROUPS GENMASK(2, 0)
#define MT_PSE_BASE_PHYS_ADDR 0xa0000000
#define MT_PSE_WTBL_2_PHYS_ADDR 0xa5000000
#define MT_WTBL1_SIZE (8 * 4)
#define MT_WTBL2_SIZE (16 * 4)
#define MT_WTBL3_OFFSET (MT7603_WTBL_SIZE * MT_WTBL2_SIZE)
#define MT_WTBL3_SIZE (16 * 4)
#define MT_WTBL4_OFFSET (MT7603_WTBL_SIZE * MT_WTBL3_SIZE + \
MT_WTBL3_OFFSET)
#define MT_WTBL4_SIZE (8 * 4)
#define MT_WTBL1_W0_ADDR_HI GENMASK(15, 0)
#define MT_WTBL1_W0_MUAR_IDX GENMASK(21, 16)
#define MT_WTBL1_W0_RX_CHECK_A1 BIT(22)
#define MT_WTBL1_W0_KEY_IDX GENMASK(24, 23)
#define MT_WTBL1_W0_RX_CHECK_KEY_IDX BIT(25)
#define MT_WTBL1_W0_RX_KEY_VALID BIT(26)
#define MT_WTBL1_W0_RX_IK_VALID BIT(27)
#define MT_WTBL1_W0_RX_VALID BIT(28)
#define MT_WTBL1_W0_RX_CHECK_A2 BIT(29)
#define MT_WTBL1_W0_RX_DATA_VALID BIT(30)
#define MT_WTBL1_W0_WRITE_BURST BIT(31)
#define MT_WTBL1_W1_ADDR_LO GENMASK(31, 0)
#define MT_WTBL1_W2_MPDU_DENSITY GENMASK(2, 0)
#define MT_WTBL1_W2_KEY_TYPE GENMASK(6, 3)
#define MT_WTBL1_W2_EVEN_PN BIT(7)
#define MT_WTBL1_W2_TO_DS BIT(8)
#define MT_WTBL1_W2_FROM_DS BIT(9)
#define MT_WTBL1_W2_HEADER_TRANS BIT(10)
#define MT_WTBL1_W2_AMPDU_FACTOR GENMASK(13, 11)
#define MT_WTBL1_W2_PWR_MGMT BIT(14)
#define MT_WTBL1_W2_RDG BIT(15)
#define MT_WTBL1_W2_RTS BIT(16)
#define MT_WTBL1_W2_CFACK BIT(17)
#define MT_WTBL1_W2_RDG_BA BIT(18)
#define MT_WTBL1_W2_SMPS BIT(19)
#define MT_WTBL1_W2_TXS_BAF_REPORT BIT(20)
#define MT_WTBL1_W2_DYN_BW BIT(21)
#define MT_WTBL1_W2_LDPC BIT(22)
#define MT_WTBL1_W2_ITXBF BIT(23)
#define MT_WTBL1_W2_ETXBF BIT(24)
#define MT_WTBL1_W2_TXOP_PS BIT(25)
#define MT_WTBL1_W2_MESH BIT(26)
#define MT_WTBL1_W2_QOS BIT(27)
#define MT_WTBL1_W2_HT BIT(28)
#define MT_WTBL1_W2_VHT BIT(29)
#define MT_WTBL1_W2_ADMISSION_CONTROL BIT(30)
#define MT_WTBL1_W2_GROUP_ID BIT(31)
#define MT_WTBL1_W3_WTBL2_FRAME_ID GENMASK(10, 0)
#define MT_WTBL1_W3_WTBL2_ENTRY_ID GENMASK(15, 11)
#define MT_WTBL1_W3_WTBL4_FRAME_ID GENMASK(26, 16)
#define MT_WTBL1_W3_CHECK_PER BIT(27)
#define MT_WTBL1_W3_KEEP_I_PSM BIT(28)
#define MT_WTBL1_W3_I_PSM BIT(29)
#define MT_WTBL1_W3_POWER_SAVE BIT(30)
#define MT_WTBL1_W3_SKIP_TX BIT(31)
#define MT_WTBL1_W4_WTBL3_FRAME_ID GENMASK(10, 0)
#define MT_WTBL1_W4_WTBL3_ENTRY_ID GENMASK(16, 11)
#define MT_WTBL1_W4_WTBL4_ENTRY_ID GENMASK(22, 17)
#define MT_WTBL1_W4_PARTIAL_AID GENMASK(31, 23)
#define MT_WTBL2_W0_PN_LO GENMASK(31, 0)
#define MT_WTBL2_W1_PN_HI GENMASK(15, 0)
#define MT_WTBL2_W1_NON_QOS_SEQNO GENMASK(27, 16)
#define MT_WTBL2_W2_TID0_SN GENMASK(11, 0)
#define MT_WTBL2_W2_TID1_SN GENMASK(23, 12)
#define MT_WTBL2_W2_TID2_SN_LO GENMASK(31, 24)
#define MT_WTBL2_W3_TID2_SN_HI GENMASK(3, 0)
#define MT_WTBL2_W3_TID3_SN GENMASK(15, 4)
#define MT_WTBL2_W3_TID4_SN GENMASK(27, 16)
#define MT_WTBL2_W3_TID5_SN_LO GENMASK(31, 28)
#define MT_WTBL2_W4_TID5_SN_HI GENMASK(7, 0)
#define MT_WTBL2_W4_TID6_SN GENMASK(19, 8)
#define MT_WTBL2_W4_TID7_SN GENMASK(31, 20)
#define MT_WTBL2_W5_TX_COUNT_RATE1 GENMASK(15, 0)
#define MT_WTBL2_W5_FAIL_COUNT_RATE1 GENAMSK(31, 16)
#define MT_WTBL2_W6_TX_COUNT_RATE2 GENMASK(7, 0)
#define MT_WTBL2_W6_TX_COUNT_RATE3 GENMASK(15, 8)
#define MT_WTBL2_W6_TX_COUNT_RATE4 GENMASK(23, 16)
#define MT_WTBL2_W6_TX_COUNT_RATE5 GENMASK(31, 24)
#define MT_WTBL2_W7_TX_COUNT_CUR_BW GENMASK(15, 0)
#define MT_WTBL2_W7_FAIL_COUNT_CUR_BW GENMASK(31, 16)
#define MT_WTBL2_W8_TX_COUNT_OTHER_BW GENMASK(15, 0)
#define MT_WTBL2_W8_FAIL_COUNT_OTHER_BW GENMASK(31, 16)
#define MT_WTBL2_W9_POWER_OFFSET GENMASK(4, 0)
#define MT_WTBL2_W9_SPATIAL_EXT BIT(5)
#define MT_WTBL2_W9_ANT_PRIORITY GENMASK(8, 6)
#define MT_WTBL2_W9_CC_BW_SEL GENMASK(10, 9)
#define MT_WTBL2_W9_CHANGE_BW_RATE GENMASK(13, 11)
#define MT_WTBL2_W9_BW_CAP GENMASK(15, 14)
#define MT_WTBL2_W9_SHORT_GI_20 BIT(16)
#define MT_WTBL2_W9_SHORT_GI_40 BIT(17)
#define MT_WTBL2_W9_SHORT_GI_80 BIT(18)
#define MT_WTBL2_W9_SHORT_GI_160 BIT(19)
#define MT_WTBL2_W9_MPDU_FAIL_COUNT GENMASK(25, 23)
#define MT_WTBL2_W9_MPDU_OK_COUNT GENMASK(28, 26)
#define MT_WTBL2_W9_RATE_IDX GENMASK(31, 29)
#define MT_WTBL2_W10_RATE1 GENMASK(11, 0)
#define MT_WTBL2_W10_RATE2 GENMASK(23, 12)
#define MT_WTBL2_W10_RATE3_LO GENMASK(31, 24)
#define MT_WTBL2_W11_RATE3_HI GENMASK(3, 0)
#define MT_WTBL2_W11_RATE4 GENMASK(15, 4)
#define MT_WTBL2_W11_RATE5 GENMASK(27, 16)
#define MT_WTBL2_W11_RATE6_LO GENMASK(31, 28)
#define MT_WTBL2_W12_RATE6_HI GENMASK(7, 0)
#define MT_WTBL2_W12_RATE7 GENMASK(19, 8)
#define MT_WTBL2_W12_RATE8 GENMASK(31, 20)
#define MT_WTBL2_W13_AVG_RCPI0 GENMASK(7, 0)
#define MT_WTBL2_W13_AVG_RCPI1 GENMASK(15, 8)
#define MT_WTBL2_W13_AVG_RCPI2 GENAMSK(23, 16)
#define MT_WTBL2_W14_CC_NOISE_1S GENMASK(6, 0)
#define MT_WTBL2_W14_CC_NOISE_2S GENMASK(13, 7)
#define MT_WTBL2_W14_CC_NOISE_3S GENMASK(20, 14)
#define MT_WTBL2_W14_CHAN_EST_RMS GENMASK(24, 21)
#define MT_WTBL2_W14_CC_NOISE_SEL BIT(15)
#define MT_WTBL2_W14_ANT_SEL GENMASK(31, 26)
#define MT_WTBL2_W15_BA_WIN_SIZE GENMASK(2, 0)
#define MT_WTBL2_W15_BA_WIN_SIZE_SHIFT 3
#define MT_WTBL2_W15_BA_EN_TIDS GENMASK(31, 24)
#define MT_WTBL1_OR (MT_WTBL1_BASE + 0x2300)
#define MT_WTBL1_OR_PSM_WRITE BIT(31)
#endif

View File

@ -0,0 +1,82 @@
// SPDX-License-Identifier: ISC
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include "mt7603.h"
static int
mt76_wmac_probe(struct platform_device *pdev)
{
struct mt7603_dev *dev;
void __iomem *mem_base;
struct mt76_dev *mdev;
int irq;
int ret;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
mem_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(mem_base))
return PTR_ERR(mem_base);
mdev = mt76_alloc_device(&pdev->dev, sizeof(*dev), &mt7603_ops,
&mt7603_drv_ops);
if (!mdev)
return -ENOMEM;
dev = container_of(mdev, struct mt7603_dev, mt76);
mt76_mmio_init(mdev, mem_base);
mdev->rev = (mt76_rr(dev, MT_HW_CHIPID) << 16) |
(mt76_rr(dev, MT_HW_REV) & 0xff);
dev_info(mdev->dev, "ASIC revision: %04x\n", mdev->rev);
mt76_wr(dev, MT_INT_MASK_CSR, 0);
ret = devm_request_irq(mdev->dev, irq, mt7603_irq_handler,
IRQF_SHARED, KBUILD_MODNAME, dev);
if (ret)
goto error;
ret = mt7603_register_device(dev);
if (ret)
goto error;
return 0;
error:
ieee80211_free_hw(mt76_hw(dev));
return ret;
}
static int
mt76_wmac_remove(struct platform_device *pdev)
{
struct mt76_dev *mdev = platform_get_drvdata(pdev);
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
mt7603_unregister_device(dev);
return 0;
}
static const struct of_device_id of_wmac_match[] = {
{ .compatible = "mediatek,mt7628-wmac" },
{},
};
MODULE_DEVICE_TABLE(of, of_wmac_match);
MODULE_FIRMWARE(MT7628_FIRMWARE_E1);
MODULE_FIRMWARE(MT7628_FIRMWARE_E2);
struct platform_driver mt76_wmac_driver = {
.probe = mt76_wmac_probe,
.remove = mt76_wmac_remove,
.driver = {
.name = "mt76_wmac",
.of_match_table = of_wmac_match,
},
};

View File

@ -0,0 +1,20 @@
# SPDX-License-Identifier: ISC
obj-$(CONFIG_MT7615_COMMON) += mt7615-common.o
obj-$(CONFIG_MT7615E) += mt7615e.o
obj-$(CONFIG_MT7663_USB_SDIO_COMMON) += mt7663-usb-sdio-common.o
obj-$(CONFIG_MT7663U) += mt7663u.o
obj-$(CONFIG_MT7663S) += mt7663s.o
CFLAGS_trace.o := -I$(src)
mt7615-common-y := main.o init.o mcu.o eeprom.o mac.o \
debugfs.o trace.o
mt7615-common-$(CONFIG_NL80211_TESTMODE) += testmode.o
mt7615e-y := pci.o pci_init.o dma.o pci_mac.o mmio.o
mt7615e-$(CONFIG_MT7622_WMAC) += soc.o
mt7663-usb-sdio-common-y := usb_sdio.o
mt7663u-y := usb.o usb_mcu.o
mt7663s-y := sdio.o sdio_mcu.o

View File

@ -0,0 +1,611 @@
// SPDX-License-Identifier: ISC
#include "mt7615.h"
static int
mt7615_reg_set(void *data, u64 val)
{
struct mt7615_dev *dev = data;
mt7615_mutex_acquire(dev);
mt76_wr(dev, dev->mt76.debugfs_reg, val);
mt7615_mutex_release(dev);
return 0;
}
static int
mt7615_reg_get(void *data, u64 *val)
{
struct mt7615_dev *dev = data;
mt7615_mutex_acquire(dev);
*val = mt76_rr(dev, dev->mt76.debugfs_reg);
mt7615_mutex_release(dev);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_regval, mt7615_reg_get, mt7615_reg_set,
"0x%08llx\n");
static int
mt7615_radar_pattern_set(void *data, u64 val)
{
struct mt7615_dev *dev = data;
int err;
if (!mt7615_wait_for_mcu_init(dev))
return 0;
mt7615_mutex_acquire(dev);
err = mt7615_mcu_rdd_send_pattern(dev);
mt7615_mutex_release(dev);
return err;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_radar_pattern, NULL,
mt7615_radar_pattern_set, "%lld\n");
static int mt7615_config(void *data, u64 val)
{
struct mt7615_dev *dev = data;
int ret;
mt7615_mutex_acquire(dev);
ret = mt76_connac_mcu_chip_config(&dev->mt76);
mt7615_mutex_release(dev);
return ret;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_config, NULL, mt7615_config, "%lld\n");
static int
mt7615_scs_set(void *data, u64 val)
{
struct mt7615_dev *dev = data;
struct mt7615_phy *ext_phy;
if (!mt7615_wait_for_mcu_init(dev))
return 0;
mt7615_mac_set_scs(&dev->phy, val);
ext_phy = mt7615_ext_phy(dev);
if (ext_phy)
mt7615_mac_set_scs(ext_phy, val);
return 0;
}
static int
mt7615_scs_get(void *data, u64 *val)
{
struct mt7615_dev *dev = data;
*val = dev->phy.scs_en;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_scs, mt7615_scs_get,
mt7615_scs_set, "%lld\n");
static int
mt7615_pm_set(void *data, u64 val)
{
struct mt7615_dev *dev = data;
struct mt76_connac_pm *pm = &dev->pm;
int ret = 0;
if (!mt7615_wait_for_mcu_init(dev))
return 0;
if (!mt7615_firmware_offload(dev) || mt76_is_usb(&dev->mt76))
return -EOPNOTSUPP;
mutex_lock(&dev->mt76.mutex);
if (val == pm->enable)
goto out;
if (dev->phy.n_beacon_vif) {
ret = -EBUSY;
goto out;
}
if (!pm->enable) {
pm->stats.last_wake_event = jiffies;
pm->stats.last_doze_event = jiffies;
}
/* make sure the chip is awake here and ps_work is scheduled
* just at end of the this routine.
*/
pm->enable = false;
mt76_connac_pm_wake(&dev->mphy, pm);
pm->enable = val;
mt76_connac_power_save_sched(&dev->mphy, pm);
out:
mutex_unlock(&dev->mt76.mutex);
return ret;
}
static int
mt7615_pm_get(void *data, u64 *val)
{
struct mt7615_dev *dev = data;
*val = dev->pm.enable;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_pm, mt7615_pm_get, mt7615_pm_set, "%lld\n");
static int
mt7615_pm_stats(struct seq_file *s, void *data)
{
struct mt7615_dev *dev = dev_get_drvdata(s->private);
struct mt76_connac_pm *pm = &dev->pm;
unsigned long awake_time = pm->stats.awake_time;
unsigned long doze_time = pm->stats.doze_time;
if (!test_bit(MT76_STATE_PM, &dev->mphy.state))
awake_time += jiffies - pm->stats.last_wake_event;
else
doze_time += jiffies - pm->stats.last_doze_event;
seq_printf(s, "awake time: %14u\ndoze time: %15u\n",
jiffies_to_msecs(awake_time),
jiffies_to_msecs(doze_time));
return 0;
}
static int
mt7615_pm_idle_timeout_set(void *data, u64 val)
{
struct mt7615_dev *dev = data;
dev->pm.idle_timeout = msecs_to_jiffies(val);
return 0;
}
static int
mt7615_pm_idle_timeout_get(void *data, u64 *val)
{
struct mt7615_dev *dev = data;
*val = jiffies_to_msecs(dev->pm.idle_timeout);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_pm_idle_timeout, mt7615_pm_idle_timeout_get,
mt7615_pm_idle_timeout_set, "%lld\n");
static int
mt7615_dbdc_set(void *data, u64 val)
{
struct mt7615_dev *dev = data;
if (!mt7615_wait_for_mcu_init(dev))
return 0;
if (val)
mt7615_register_ext_phy(dev);
else
mt7615_unregister_ext_phy(dev);
return 0;
}
static int
mt7615_dbdc_get(void *data, u64 *val)
{
struct mt7615_dev *dev = data;
*val = !!mt7615_ext_phy(dev);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_dbdc, mt7615_dbdc_get,
mt7615_dbdc_set, "%lld\n");
static int
mt7615_fw_debug_set(void *data, u64 val)
{
struct mt7615_dev *dev = data;
if (!mt7615_wait_for_mcu_init(dev))
return 0;
dev->fw_debug = val;
mt7615_mutex_acquire(dev);
mt7615_mcu_fw_log_2_host(dev, dev->fw_debug ? 2 : 0);
mt7615_mutex_release(dev);
return 0;
}
static int
mt7615_fw_debug_get(void *data, u64 *val)
{
struct mt7615_dev *dev = data;
*val = dev->fw_debug;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_fw_debug, mt7615_fw_debug_get,
mt7615_fw_debug_set, "%lld\n");
static int
mt7615_reset_test_set(void *data, u64 val)
{
struct mt7615_dev *dev = data;
struct sk_buff *skb;
if (!mt7615_wait_for_mcu_init(dev))
return 0;
skb = alloc_skb(1, GFP_KERNEL);
if (!skb)
return -ENOMEM;
skb_put(skb, 1);
mt7615_mutex_acquire(dev);
mt76_tx_queue_skb_raw(dev, dev->mphy.q_tx[0], skb, 0);
mt7615_mutex_release(dev);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_reset_test, NULL,
mt7615_reset_test_set, "%lld\n");
static void
mt7615_ampdu_stat_read_phy(struct mt7615_phy *phy,
struct seq_file *file)
{
struct mt7615_dev *dev = file->private;
u32 reg = is_mt7663(&dev->mt76) ? MT_MIB_ARNG(0) : MT_AGG_ASRCR0;
bool ext_phy = phy != &dev->phy;
int bound[7], i, range;
if (!phy)
return;
range = mt76_rr(dev, reg);
for (i = 0; i < 4; i++)
bound[i] = MT_AGG_ASRCR_RANGE(range, i) + 1;
range = mt76_rr(dev, reg + 4);
for (i = 0; i < 3; i++)
bound[i + 4] = MT_AGG_ASRCR_RANGE(range, i) + 1;
seq_printf(file, "\nPhy %d\n", ext_phy);
seq_printf(file, "Length: %8d | ", bound[0]);
for (i = 0; i < ARRAY_SIZE(bound) - 1; i++)
seq_printf(file, "%3d -%3d | ",
bound[i], bound[i + 1]);
seq_puts(file, "\nCount: ");
range = ext_phy ? ARRAY_SIZE(dev->mt76.aggr_stats) / 2 : 0;
for (i = 0; i < ARRAY_SIZE(bound); i++)
seq_printf(file, "%8d | ", dev->mt76.aggr_stats[i + range]);
seq_puts(file, "\n");
seq_printf(file, "BA miss count: %d\n", phy->mib.ba_miss_cnt);
seq_printf(file, "PER: %ld.%1ld%%\n",
phy->mib.aggr_per / 10, phy->mib.aggr_per % 10);
}
static int
mt7615_ampdu_stat_show(struct seq_file *file, void *data)
{
struct mt7615_dev *dev = file->private;
mt7615_mutex_acquire(dev);
mt7615_ampdu_stat_read_phy(&dev->phy, file);
mt7615_ampdu_stat_read_phy(mt7615_ext_phy(dev), file);
mt7615_mutex_release(dev);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(mt7615_ampdu_stat);
static void
mt7615_radio_read_phy(struct mt7615_phy *phy, struct seq_file *s)
{
struct mt7615_dev *dev = dev_get_drvdata(s->private);
bool ext_phy = phy != &dev->phy;
if (!phy)
return;
seq_printf(s, "Radio %d sensitivity: ofdm=%d cck=%d\n", ext_phy,
phy->ofdm_sensitivity, phy->cck_sensitivity);
seq_printf(s, "Radio %d false CCA: ofdm=%d cck=%d\n", ext_phy,
phy->false_cca_ofdm, phy->false_cca_cck);
}
static int
mt7615_radio_read(struct seq_file *s, void *data)
{
struct mt7615_dev *dev = dev_get_drvdata(s->private);
mt7615_radio_read_phy(&dev->phy, s);
mt7615_radio_read_phy(mt7615_ext_phy(dev), s);
return 0;
}
static int
mt7615_queues_acq(struct seq_file *s, void *data)
{
struct mt7615_dev *dev = dev_get_drvdata(s->private);
int i;
mt7615_mutex_acquire(dev);
for (i = 0; i < 16; i++) {
int j, wmm_idx = i % MT7615_MAX_WMM_SETS;
int acs = i / MT7615_MAX_WMM_SETS;
u32 ctrl, val, qlen = 0;
if (wmm_idx == 3 && is_mt7663(&dev->mt76))
continue;
val = mt76_rr(dev, MT_PLE_AC_QEMPTY(acs, wmm_idx));
ctrl = BIT(31) | BIT(15) | (acs << 8);
for (j = 0; j < 32; j++) {
if (val & BIT(j))
continue;
mt76_wr(dev, MT_PLE_FL_Q0_CTRL,
ctrl | (j + (wmm_idx << 5)));
qlen += mt76_get_field(dev, MT_PLE_FL_Q3_CTRL,
GENMASK(11, 0));
}
seq_printf(s, "AC%d%d: queued=%d\n", wmm_idx, acs, qlen);
}
mt7615_mutex_release(dev);
return 0;
}
static int
mt7615_queues_read(struct seq_file *s, void *data)
{
struct mt7615_dev *dev = dev_get_drvdata(s->private);
struct {
struct mt76_queue *q;
char *queue;
} queue_map[] = {
{ dev->mphy.q_tx[MT_TXQ_BE], "PDMA0" },
{ dev->mt76.q_mcu[MT_MCUQ_WM], "MCUQ" },
{ dev->mt76.q_mcu[MT_MCUQ_FWDL], "MCUFWQ" },
};
int i;
for (i = 0; i < ARRAY_SIZE(queue_map); i++) {
struct mt76_queue *q = queue_map[i].q;
seq_printf(s,
"%s: queued=%d head=%d tail=%d\n",
queue_map[i].queue, q->queued, q->head,
q->tail);
}
return 0;
}
static int
mt7615_rf_reg_set(void *data, u64 val)
{
struct mt7615_dev *dev = data;
mt7615_rf_wr(dev, dev->debugfs_rf_wf, dev->debugfs_rf_reg, val);
return 0;
}
static int
mt7615_rf_reg_get(void *data, u64 *val)
{
struct mt7615_dev *dev = data;
*val = mt7615_rf_rr(dev, dev->debugfs_rf_wf, dev->debugfs_rf_reg);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_rf_reg, mt7615_rf_reg_get, mt7615_rf_reg_set,
"0x%08llx\n");
static ssize_t
mt7615_ext_mac_addr_read(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
struct mt7615_dev *dev = file->private_data;
u32 len = 32 * ((ETH_ALEN * 3) + 4) + 1;
u8 addr[ETH_ALEN];
char *buf;
int ofs = 0;
int i;
buf = kzalloc(len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
for (i = 0; i < 32; i++) {
if (!(dev->muar_mask & BIT(i)))
continue;
mt76_wr(dev, MT_WF_RMAC_MAR1,
FIELD_PREP(MT_WF_RMAC_MAR1_IDX, i * 2) |
MT_WF_RMAC_MAR1_START);
put_unaligned_le32(mt76_rr(dev, MT_WF_RMAC_MAR0), addr);
put_unaligned_le16((mt76_rr(dev, MT_WF_RMAC_MAR1) &
MT_WF_RMAC_MAR1_ADDR), addr + 4);
ofs += snprintf(buf + ofs, len - ofs, "%d=%pM\n", i, addr);
}
ofs = simple_read_from_buffer(userbuf, count, ppos, buf, ofs);
kfree(buf);
return ofs;
}
static ssize_t
mt7615_ext_mac_addr_write(struct file *file, const char __user *userbuf,
size_t count, loff_t *ppos)
{
struct mt7615_dev *dev = file->private_data;
unsigned long idx = 0;
u8 addr[ETH_ALEN];
char buf[32];
char *p;
if (count > sizeof(buf))
return -EINVAL;
if (copy_from_user(buf, userbuf, count))
return -EFAULT;
buf[sizeof(buf) - 1] = '\0';
p = strchr(buf, '=');
if (p) {
*p = 0;
p++;
if (kstrtoul(buf, 0, &idx) || idx > 31)
return -EINVAL;
} else {
idx = 0;
p = buf;
}
if (!mac_pton(p, addr))
return -EINVAL;
if (is_valid_ether_addr(addr)) {
dev->muar_mask |= BIT(idx);
} else {
memset(addr, 0, sizeof(addr));
dev->muar_mask &= ~BIT(idx);
}
mt76_rmw_field(dev, MT_WF_RMAC_MORE(0), MT_WF_RMAC_MORE_MUAR_MODE, 1);
mt76_wr(dev, MT_WF_RMAC_MAR0, get_unaligned_le32(addr));
mt76_wr(dev, MT_WF_RMAC_MAR1,
get_unaligned_le16(addr + 4) |
FIELD_PREP(MT_WF_RMAC_MAR1_IDX, idx * 2) |
MT_WF_RMAC_MAR1_START |
MT_WF_RMAC_MAR1_WRITE);
mt76_rmw_field(dev, MT_WF_RMAC_MORE(0), MT_WF_RMAC_MORE_MUAR_MODE, !!dev->muar_mask);
return count;
}
static const struct file_operations fops_ext_mac_addr = {
.open = simple_open,
.llseek = generic_file_llseek,
.read = mt7615_ext_mac_addr_read,
.write = mt7615_ext_mac_addr_write,
.owner = THIS_MODULE,
};
static int
mt7663s_sched_quota_read(struct seq_file *s, void *data)
{
struct mt7615_dev *dev = dev_get_drvdata(s->private);
struct mt76_sdio *sdio = &dev->mt76.sdio;
seq_printf(s, "pse_data_quota\t%d\n", sdio->sched.pse_data_quota);
seq_printf(s, "ple_data_quota\t%d\n", sdio->sched.ple_data_quota);
seq_printf(s, "pse_mcu_quota\t%d\n", sdio->sched.pse_mcu_quota);
seq_printf(s, "sched_deficit\t%d\n", sdio->sched.deficit);
return 0;
}
int mt7615_init_debugfs(struct mt7615_dev *dev)
{
struct dentry *dir;
dir = mt76_register_debugfs_fops(&dev->mphy, &fops_regval);
if (!dir)
return -ENOMEM;
if (is_mt7615(&dev->mt76))
debugfs_create_devm_seqfile(dev->mt76.dev, "xmit-queues", dir,
mt7615_queues_read);
else
debugfs_create_devm_seqfile(dev->mt76.dev, "xmit-queues", dir,
mt76_queues_read);
debugfs_create_devm_seqfile(dev->mt76.dev, "acq", dir,
mt7615_queues_acq);
debugfs_create_file("ampdu_stat", 0400, dir, dev, &mt7615_ampdu_stat_fops);
debugfs_create_file("scs", 0600, dir, dev, &fops_scs);
debugfs_create_file("dbdc", 0600, dir, dev, &fops_dbdc);
debugfs_create_file("fw_debug", 0600, dir, dev, &fops_fw_debug);
debugfs_create_file("runtime-pm", 0600, dir, dev, &fops_pm);
debugfs_create_file("idle-timeout", 0600, dir, dev,
&fops_pm_idle_timeout);
debugfs_create_devm_seqfile(dev->mt76.dev, "runtime_pm_stats", dir,
mt7615_pm_stats);
debugfs_create_devm_seqfile(dev->mt76.dev, "radio", dir,
mt7615_radio_read);
if (is_mt7615(&dev->mt76)) {
debugfs_create_u32("dfs_hw_pattern", 0400, dir,
&dev->hw_pattern);
/* test pattern knobs */
debugfs_create_u8("pattern_len", 0600, dir,
&dev->radar_pattern.n_pulses);
debugfs_create_u32("pulse_period", 0600, dir,
&dev->radar_pattern.period);
debugfs_create_u16("pulse_width", 0600, dir,
&dev->radar_pattern.width);
debugfs_create_u16("pulse_power", 0600, dir,
&dev->radar_pattern.power);
debugfs_create_file("radar_trigger", 0200, dir, dev,
&fops_radar_pattern);
}
debugfs_create_file("reset_test", 0200, dir, dev,
&fops_reset_test);
debugfs_create_file("ext_mac_addr", 0600, dir, dev, &fops_ext_mac_addr);
debugfs_create_u32("rf_wfidx", 0600, dir, &dev->debugfs_rf_wf);
debugfs_create_u32("rf_regidx", 0600, dir, &dev->debugfs_rf_reg);
debugfs_create_file_unsafe("rf_regval", 0600, dir, dev,
&fops_rf_reg);
if (is_mt7663(&dev->mt76))
debugfs_create_file("chip_config", 0600, dir, dev,
&fops_config);
if (mt76_is_sdio(&dev->mt76))
debugfs_create_devm_seqfile(dev->mt76.dev, "sched-quota", dir,
mt7663s_sched_quota_read);
return 0;
}
EXPORT_SYMBOL_GPL(mt7615_init_debugfs);

View File

@ -0,0 +1,315 @@
// SPDX-License-Identifier: ISC
/* Copyright (C) 2019 MediaTek Inc.
*
* Author: Ryder Lee <ryder.lee@mediatek.com>
* Roy Luo <royluo@google.com>
* Lorenzo Bianconi <lorenzo@kernel.org>
* Felix Fietkau <nbd@nbd.name>
*/
#include "mt7615.h"
#include "../dma.h"
#include "mac.h"
static int
mt7622_init_tx_queues_multi(struct mt7615_dev *dev)
{
static const u8 wmm_queue_map[] = {
[IEEE80211_AC_BK] = MT7622_TXQ_AC0,
[IEEE80211_AC_BE] = MT7622_TXQ_AC1,
[IEEE80211_AC_VI] = MT7622_TXQ_AC2,
[IEEE80211_AC_VO] = MT7622_TXQ_AC3,
};
int ret;
int i;
for (i = 0; i < ARRAY_SIZE(wmm_queue_map); i++) {
ret = mt76_init_tx_queue(&dev->mphy, i, wmm_queue_map[i],
MT7615_TX_RING_SIZE / 2,
MT_TX_RING_BASE, 0);
if (ret)
return ret;
}
ret = mt76_init_tx_queue(&dev->mphy, MT_TXQ_PSD, MT7622_TXQ_MGMT,
MT7615_TX_MGMT_RING_SIZE,
MT_TX_RING_BASE, 0);
if (ret)
return ret;
return mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_WM, MT7622_TXQ_MCU,
MT7615_TX_MCU_RING_SIZE, MT_TX_RING_BASE);
}
static int
mt7615_init_tx_queues(struct mt7615_dev *dev)
{
int ret;
ret = mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_FWDL, MT7615_TXQ_FWDL,
MT7615_TX_FWDL_RING_SIZE, MT_TX_RING_BASE);
if (ret)
return ret;
if (!is_mt7615(&dev->mt76))
return mt7622_init_tx_queues_multi(dev);
ret = mt76_connac_init_tx_queues(&dev->mphy, 0, MT7615_TX_RING_SIZE,
MT_TX_RING_BASE, 0);
if (ret)
return ret;
return mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_WM, MT7615_TXQ_MCU,
MT7615_TX_MCU_RING_SIZE, MT_TX_RING_BASE);
}
static int mt7615_poll_tx(struct napi_struct *napi, int budget)
{
struct mt7615_dev *dev;
dev = container_of(napi, struct mt7615_dev, mt76.tx_napi);
if (!mt76_connac_pm_ref(&dev->mphy, &dev->pm)) {
napi_complete(napi);
queue_work(dev->mt76.wq, &dev->pm.wake_work);
return 0;
}
mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_WM], false);
if (napi_complete(napi))
mt7615_irq_enable(dev, mt7615_tx_mcu_int_mask(dev));
mt76_connac_pm_unref(&dev->mphy, &dev->pm);
return 0;
}
static int mt7615_poll_rx(struct napi_struct *napi, int budget)
{
struct mt7615_dev *dev;
int done;
dev = container_of(napi->dev, struct mt7615_dev, mt76.napi_dev);
if (!mt76_connac_pm_ref(&dev->mphy, &dev->pm)) {
napi_complete(napi);
queue_work(dev->mt76.wq, &dev->pm.wake_work);
return 0;
}
done = mt76_dma_rx_poll(napi, budget);
mt76_connac_pm_unref(&dev->mphy, &dev->pm);
return done;
}
int mt7615_wait_pdma_busy(struct mt7615_dev *dev)
{
struct mt76_dev *mdev = &dev->mt76;
if (!is_mt7663(mdev)) {
u32 mask = MT_PDMA_TX_BUSY | MT_PDMA_RX_BUSY;
u32 reg = mt7615_reg_map(dev, MT_PDMA_BUSY);
if (!mt76_poll_msec(dev, reg, mask, 0, 1000)) {
dev_err(mdev->dev, "PDMA engine busy\n");
return -EIO;
}
return 0;
}
if (!mt76_poll_msec(dev, MT_PDMA_BUSY_STATUS,
MT_PDMA_TX_IDX_BUSY, 0, 1000)) {
dev_err(mdev->dev, "PDMA engine tx busy\n");
return -EIO;
}
if (!mt76_poll_msec(dev, MT_PSE_PG_INFO,
MT_PSE_SRC_CNT, 0, 1000)) {
dev_err(mdev->dev, "PSE engine busy\n");
return -EIO;
}
if (!mt76_poll_msec(dev, MT_PDMA_BUSY_STATUS,
MT_PDMA_BUSY_IDX, 0, 1000)) {
dev_err(mdev->dev, "PDMA engine busy\n");
return -EIO;
}
return 0;
}
static void mt7622_dma_sched_init(struct mt7615_dev *dev)
{
u32 reg = mt7615_reg_map(dev, MT_DMASHDL_BASE);
int i;
mt76_rmw(dev, reg + MT_DMASHDL_PKT_MAX_SIZE,
MT_DMASHDL_PKT_MAX_SIZE_PLE | MT_DMASHDL_PKT_MAX_SIZE_PSE,
FIELD_PREP(MT_DMASHDL_PKT_MAX_SIZE_PLE, 1) |
FIELD_PREP(MT_DMASHDL_PKT_MAX_SIZE_PSE, 8));
for (i = 0; i <= 5; i++)
mt76_wr(dev, reg + MT_DMASHDL_GROUP_QUOTA(i),
FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MIN, 0x10) |
FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MAX, 0x800));
mt76_wr(dev, reg + MT_DMASHDL_Q_MAP(0), 0x42104210);
mt76_wr(dev, reg + MT_DMASHDL_Q_MAP(1), 0x42104210);
mt76_wr(dev, reg + MT_DMASHDL_Q_MAP(2), 0x5);
mt76_wr(dev, reg + MT_DMASHDL_Q_MAP(3), 0);
mt76_wr(dev, reg + MT_DMASHDL_SCHED_SET0, 0x6012345f);
mt76_wr(dev, reg + MT_DMASHDL_SCHED_SET1, 0xedcba987);
}
static void mt7663_dma_sched_init(struct mt7615_dev *dev)
{
int i;
mt76_rmw(dev, MT_DMA_SHDL(MT_DMASHDL_PKT_MAX_SIZE),
MT_DMASHDL_PKT_MAX_SIZE_PLE | MT_DMASHDL_PKT_MAX_SIZE_PSE,
FIELD_PREP(MT_DMASHDL_PKT_MAX_SIZE_PLE, 1) |
FIELD_PREP(MT_DMASHDL_PKT_MAX_SIZE_PSE, 8));
/* enable refill control group 0, 1, 2, 4, 5 */
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_REFILL), 0xffc80000);
/* enable group 0, 1, 2, 4, 5, 15 */
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_OPTIONAL), 0x70068037);
/* each group min quota must larger then PLE_PKT_MAX_SIZE_NUM */
for (i = 0; i < 5; i++)
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_GROUP_QUOTA(i)),
FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MIN, 0x40) |
FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MAX, 0x800));
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_GROUP_QUOTA(5)),
FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MIN, 0x40) |
FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MAX, 0x40));
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_GROUP_QUOTA(15)),
FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MIN, 0x20) |
FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MAX, 0x20));
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_Q_MAP(0)), 0x42104210);
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_Q_MAP(1)), 0x42104210);
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_Q_MAP(2)), 0x00050005);
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_Q_MAP(3)), 0);
/* ALTX0 and ALTX1 QID mapping to group 5 */
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_SCHED_SET0), 0x6012345f);
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_SCHED_SET1), 0xedcba987);
}
void mt7615_dma_start(struct mt7615_dev *dev)
{
/* start dma engine */
mt76_set(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_TX_DMA_EN |
MT_WPDMA_GLO_CFG_RX_DMA_EN |
MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE);
if (is_mt7622(&dev->mt76))
mt7622_dma_sched_init(dev);
if (is_mt7663(&dev->mt76)) {
mt7663_dma_sched_init(dev);
mt76_wr(dev, MT_MCU2HOST_INT_ENABLE, MT7663_MCU_CMD_ERROR_MASK);
}
}
int mt7615_dma_init(struct mt7615_dev *dev)
{
int rx_ring_size = MT7615_RX_RING_SIZE;
u32 mask;
int ret;
mt76_dma_attach(&dev->mt76);
mt76_wr(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE |
MT_WPDMA_GLO_CFG_FIFO_LITTLE_ENDIAN |
MT_WPDMA_GLO_CFG_OMIT_TX_INFO);
mt76_rmw_field(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_TX_BT_SIZE_BIT0, 0x1);
mt76_rmw_field(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_TX_BT_SIZE_BIT21, 0x1);
mt76_rmw_field(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_DMA_BURST_SIZE, 0x3);
mt76_rmw_field(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_MULTI_DMA_EN, 0x3);
if (is_mt7615(&dev->mt76)) {
mt76_set(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_FIRST_TOKEN_ONLY);
mt76_wr(dev, MT_WPDMA_GLO_CFG1, 0x1);
mt76_wr(dev, MT_WPDMA_TX_PRE_CFG, 0xf0000);
mt76_wr(dev, MT_WPDMA_RX_PRE_CFG, 0xf7f0000);
mt76_wr(dev, MT_WPDMA_ABT_CFG, 0x4000026);
mt76_wr(dev, MT_WPDMA_ABT_CFG1, 0x18811881);
mt76_set(dev, 0x7158, BIT(16));
mt76_clear(dev, 0x7000, BIT(23));
}
mt76_wr(dev, MT_WPDMA_RST_IDX, ~0);
ret = mt7615_init_tx_queues(dev);
if (ret)
return ret;
/* init rx queues */
ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_MCU], 1,
MT7615_RX_MCU_RING_SIZE, MT_RX_BUF_SIZE,
MT_RX_RING_BASE);
if (ret)
return ret;
if (!is_mt7615(&dev->mt76))
rx_ring_size /= 2;
ret = mt76_queue_alloc(dev, &dev->mt76.q_rx[MT_RXQ_MAIN], 0,
rx_ring_size, MT_RX_BUF_SIZE, MT_RX_RING_BASE);
if (ret)
return ret;
mt76_wr(dev, MT_DELAY_INT_CFG, 0);
ret = mt76_init_queues(dev, mt7615_poll_rx);
if (ret < 0)
return ret;
netif_napi_add_tx(&dev->mt76.tx_napi_dev, &dev->mt76.tx_napi,
mt7615_poll_tx);
napi_enable(&dev->mt76.tx_napi);
mt76_poll(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 1000);
/* enable interrupts for TX/RX rings */
mask = MT_INT_RX_DONE_ALL | mt7615_tx_mcu_int_mask(dev);
if (is_mt7663(&dev->mt76))
mask |= MT7663_INT_MCU_CMD;
else
mask |= MT_INT_MCU_CMD;
mt7615_irq_enable(dev, mask);
mt7615_dma_start(dev);
return 0;
}
void mt7615_dma_cleanup(struct mt7615_dev *dev)
{
mt76_clear(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_TX_DMA_EN |
MT_WPDMA_GLO_CFG_RX_DMA_EN);
mt76_set(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_SW_RESET);
mt76_dma_cleanup(&dev->mt76);
}

View File

@ -0,0 +1,353 @@
// SPDX-License-Identifier: ISC
/* Copyright (C) 2019 MediaTek Inc.
*
* Author: Ryder Lee <ryder.lee@mediatek.com>
* Felix Fietkau <nbd@nbd.name>
*/
#include <linux/of.h>
#include "mt7615.h"
#include "eeprom.h"
static int mt7615_efuse_read(struct mt7615_dev *dev, u32 base,
u16 addr, u8 *data)
{
u32 val;
int i;
val = mt76_rr(dev, base + MT_EFUSE_CTRL);
val &= ~(MT_EFUSE_CTRL_AIN | MT_EFUSE_CTRL_MODE);
val |= FIELD_PREP(MT_EFUSE_CTRL_AIN, addr & ~0xf);
val |= MT_EFUSE_CTRL_KICK;
mt76_wr(dev, base + MT_EFUSE_CTRL, val);
if (!mt76_poll(dev, base + MT_EFUSE_CTRL, MT_EFUSE_CTRL_KICK, 0, 1000))
return -ETIMEDOUT;
udelay(2);
val = mt76_rr(dev, base + MT_EFUSE_CTRL);
if ((val & MT_EFUSE_CTRL_AOUT) == MT_EFUSE_CTRL_AOUT ||
WARN_ON_ONCE(!(val & MT_EFUSE_CTRL_VALID))) {
memset(data, 0x0, 16);
return 0;
}
for (i = 0; i < 4; i++) {
val = mt76_rr(dev, base + MT_EFUSE_RDATA(i));
put_unaligned_le32(val, data + 4 * i);
}
return 0;
}
static int mt7615_efuse_init(struct mt7615_dev *dev, u32 base)
{
int i, len = MT7615_EEPROM_SIZE;
void *buf;
u32 val;
val = mt76_rr(dev, base + MT_EFUSE_BASE_CTRL);
if (val & MT_EFUSE_BASE_CTRL_EMPTY)
return 0;
dev->mt76.otp.data = devm_kzalloc(dev->mt76.dev, len, GFP_KERNEL);
dev->mt76.otp.size = len;
if (!dev->mt76.otp.data)
return -ENOMEM;
buf = dev->mt76.otp.data;
for (i = 0; i + 16 <= len; i += 16) {
int ret;
ret = mt7615_efuse_read(dev, base, i, buf + i);
if (ret)
return ret;
}
return 0;
}
static int mt7615_eeprom_load(struct mt7615_dev *dev, u32 addr)
{
int ret;
ret = mt76_eeprom_init(&dev->mt76, MT7615_EEPROM_FULL_SIZE);
if (ret < 0)
return ret;
return mt7615_efuse_init(dev, addr);
}
static int mt7615_check_eeprom(struct mt76_dev *dev)
{
u16 val = get_unaligned_le16(dev->eeprom.data);
switch (val) {
case 0x7615:
case 0x7622:
case 0x7663:
return 0;
default:
return -EINVAL;
}
}
static void
mt7615_eeprom_parse_hw_band_cap(struct mt7615_dev *dev)
{
u8 val, *eeprom = dev->mt76.eeprom.data;
if (is_mt7663(&dev->mt76)) {
/* dual band */
dev->mphy.cap.has_2ghz = true;
dev->mphy.cap.has_5ghz = true;
return;
}
if (is_mt7622(&dev->mt76)) {
/* 2GHz only */
dev->mphy.cap.has_2ghz = true;
return;
}
if (is_mt7611(&dev->mt76)) {
/* 5GHz only */
dev->mphy.cap.has_5ghz = true;
return;
}
val = FIELD_GET(MT_EE_NIC_WIFI_CONF_BAND_SEL,
eeprom[MT_EE_WIFI_CONF]);
switch (val) {
case MT_EE_5GHZ:
dev->mphy.cap.has_5ghz = true;
break;
case MT_EE_2GHZ:
dev->mphy.cap.has_2ghz = true;
break;
case MT_EE_DBDC:
dev->dbdc_support = true;
fallthrough;
default:
dev->mphy.cap.has_2ghz = true;
dev->mphy.cap.has_5ghz = true;
break;
}
}
static void mt7615_eeprom_parse_hw_cap(struct mt7615_dev *dev)
{
u8 *eeprom = dev->mt76.eeprom.data;
u8 tx_mask, max_nss;
mt7615_eeprom_parse_hw_band_cap(dev);
if (is_mt7663(&dev->mt76)) {
max_nss = 2;
tx_mask = FIELD_GET(MT_EE_HW_CONF1_TX_MASK,
eeprom[MT7663_EE_HW_CONF1]);
} else {
u32 val;
/* read tx-rx mask from eeprom */
val = mt76_rr(dev, MT_TOP_STRAP_STA);
max_nss = val & MT_TOP_3NSS ? 3 : 4;
tx_mask = FIELD_GET(MT_EE_NIC_CONF_TX_MASK,
eeprom[MT_EE_NIC_CONF_0]);
}
if (!tx_mask || tx_mask > max_nss)
tx_mask = max_nss;
dev->chainmask = BIT(tx_mask) - 1;
dev->mphy.antenna_mask = dev->chainmask;
dev->mphy.chainmask = dev->chainmask;
}
static int mt7663_eeprom_get_target_power_index(struct mt7615_dev *dev,
struct ieee80211_channel *chan,
u8 chain_idx)
{
int index, group;
if (chain_idx > 1)
return -EINVAL;
if (chan->band == NL80211_BAND_2GHZ)
return MT7663_EE_TX0_2G_TARGET_POWER + (chain_idx << 4);
group = mt7615_get_channel_group(chan->hw_value);
if (chain_idx == 1)
index = MT7663_EE_TX1_5G_G0_TARGET_POWER;
else
index = MT7663_EE_TX0_5G_G0_TARGET_POWER;
return index + group * 3;
}
int mt7615_eeprom_get_target_power_index(struct mt7615_dev *dev,
struct ieee80211_channel *chan,
u8 chain_idx)
{
int index;
if (is_mt7663(&dev->mt76))
return mt7663_eeprom_get_target_power_index(dev, chan,
chain_idx);
if (chain_idx > 3)
return -EINVAL;
/* TSSI disabled */
if (mt7615_ext_pa_enabled(dev, chan->band)) {
if (chan->band == NL80211_BAND_2GHZ)
return MT_EE_EXT_PA_2G_TARGET_POWER;
else
return MT_EE_EXT_PA_5G_TARGET_POWER;
}
/* TSSI enabled */
if (chan->band == NL80211_BAND_2GHZ) {
index = MT_EE_TX0_2G_TARGET_POWER + chain_idx * 6;
} else {
int group = mt7615_get_channel_group(chan->hw_value);
switch (chain_idx) {
case 1:
index = MT_EE_TX1_5G_G0_TARGET_POWER;
break;
case 2:
index = MT_EE_TX2_5G_G0_TARGET_POWER;
break;
case 3:
index = MT_EE_TX3_5G_G0_TARGET_POWER;
break;
case 0:
default:
index = MT_EE_TX0_5G_G0_TARGET_POWER;
break;
}
index += 5 * group;
}
return index;
}
int mt7615_eeprom_get_power_delta_index(struct mt7615_dev *dev,
enum nl80211_band band)
{
/* assume the first rate has the highest power offset */
if (is_mt7663(&dev->mt76)) {
if (band == NL80211_BAND_2GHZ)
return MT_EE_TX0_5G_G0_TARGET_POWER;
else
return MT7663_EE_5G_RATE_POWER;
}
if (band == NL80211_BAND_2GHZ)
return MT_EE_2G_RATE_POWER;
else
return MT_EE_5G_RATE_POWER;
}
static void mt7615_apply_cal_free_data(struct mt7615_dev *dev)
{
static const u16 ical[] = {
0x53, 0x54, 0x55, 0x56, 0x57, 0x5c, 0x5d, 0x62, 0x63, 0x68,
0x69, 0x6e, 0x6f, 0x73, 0x74, 0x78, 0x79, 0x82, 0x83, 0x87,
0x88, 0x8c, 0x8d, 0x91, 0x92, 0x96, 0x97, 0x9b, 0x9c, 0xa0,
0xa1, 0xaa, 0xab, 0xaf, 0xb0, 0xb4, 0xb5, 0xb9, 0xba, 0xf4,
0xf7, 0xff,
0x140, 0x141, 0x145, 0x146, 0x14a, 0x14b, 0x154, 0x155, 0x159,
0x15a, 0x15e, 0x15f, 0x163, 0x164, 0x168, 0x169, 0x16d, 0x16e,
0x172, 0x173, 0x17c, 0x17d, 0x181, 0x182, 0x186, 0x187, 0x18b,
0x18c
};
static const u16 ical_nocheck[] = {
0x110, 0x111, 0x112, 0x113, 0x114, 0x115, 0x116, 0x117, 0x118,
0x1b5, 0x1b6, 0x1b7, 0x3ac, 0x3ad, 0x3ae, 0x3af, 0x3b0, 0x3b1,
0x3b2
};
u8 *eeprom = dev->mt76.eeprom.data;
u8 *otp = dev->mt76.otp.data;
int i;
if (!otp)
return;
for (i = 0; i < ARRAY_SIZE(ical); i++)
if (!otp[ical[i]])
return;
for (i = 0; i < ARRAY_SIZE(ical); i++)
eeprom[ical[i]] = otp[ical[i]];
for (i = 0; i < ARRAY_SIZE(ical_nocheck); i++)
eeprom[ical_nocheck[i]] = otp[ical_nocheck[i]];
}
static void mt7622_apply_cal_free_data(struct mt7615_dev *dev)
{
static const u16 ical[] = {
0x53, 0x54, 0x55, 0x56, 0xf4, 0xf7, 0x144, 0x156, 0x15b
};
u8 *eeprom = dev->mt76.eeprom.data;
u8 *otp = dev->mt76.otp.data;
int i;
if (!otp)
return;
for (i = 0; i < ARRAY_SIZE(ical); i++) {
if (!otp[ical[i]])
continue;
eeprom[ical[i]] = otp[ical[i]];
}
}
static void mt7615_cal_free_data(struct mt7615_dev *dev)
{
struct device_node *np = dev->mt76.dev->of_node;
if (!np || !of_property_read_bool(np, "mediatek,eeprom-merge-otp"))
return;
switch (mt76_chip(&dev->mt76)) {
case 0x7622:
mt7622_apply_cal_free_data(dev);
break;
case 0x7615:
case 0x7611:
mt7615_apply_cal_free_data(dev);
break;
}
}
int mt7615_eeprom_init(struct mt7615_dev *dev, u32 addr)
{
int ret;
ret = mt7615_eeprom_load(dev, addr);
if (ret < 0)
return ret;
ret = mt7615_check_eeprom(&dev->mt76);
if (ret && dev->mt76.otp.data) {
memcpy(dev->mt76.eeprom.data, dev->mt76.otp.data,
MT7615_EEPROM_SIZE);
} else {
dev->flash_eeprom = true;
mt7615_cal_free_data(dev);
}
mt7615_eeprom_parse_hw_cap(dev);
memcpy(dev->mphy.macaddr, dev->mt76.eeprom.data + MT_EE_MAC_ADDR,
ETH_ALEN);
mt76_eeprom_override(&dev->mphy);
return 0;
}
EXPORT_SYMBOL_GPL(mt7615_eeprom_init);

View File

@ -0,0 +1,116 @@
/* SPDX-License-Identifier: ISC */
/* Copyright (C) 2019 MediaTek Inc. */
#ifndef __MT7615_EEPROM_H
#define __MT7615_EEPROM_H
#include "mt7615.h"
#define MT7615_EEPROM_DCOC_OFFSET MT7615_EEPROM_SIZE
#define MT7615_EEPROM_DCOC_SIZE 256
#define MT7615_EEPROM_DCOC_COUNT 34
#define MT7615_EEPROM_TXDPD_OFFSET (MT7615_EEPROM_SIZE + \
MT7615_EEPROM_DCOC_COUNT * \
MT7615_EEPROM_DCOC_SIZE)
#define MT7615_EEPROM_TXDPD_SIZE 216
#define MT7615_EEPROM_TXDPD_COUNT (44 + 3)
#define MT7615_EEPROM_FULL_SIZE (MT7615_EEPROM_TXDPD_OFFSET + \
MT7615_EEPROM_TXDPD_COUNT * \
MT7615_EEPROM_TXDPD_SIZE)
enum mt7615_eeprom_field {
MT_EE_CHIP_ID = 0x000,
MT_EE_VERSION = 0x002,
MT_EE_MAC_ADDR = 0x004,
MT_EE_NIC_CONF_0 = 0x034,
MT_EE_NIC_CONF_1 = 0x036,
MT_EE_WIFI_CONF = 0x03e,
MT_EE_CALDATA_FLASH = 0x052,
MT_EE_TX0_2G_TARGET_POWER = 0x058,
MT_EE_TX0_5G_G0_TARGET_POWER = 0x070,
MT7663_EE_5G_RATE_POWER = 0x089,
MT_EE_TX1_5G_G0_TARGET_POWER = 0x098,
MT_EE_2G_RATE_POWER = 0x0be,
MT_EE_5G_RATE_POWER = 0x0d5,
MT7663_EE_TX0_2G_TARGET_POWER = 0x0e3,
MT_EE_EXT_PA_2G_TARGET_POWER = 0x0f2,
MT_EE_EXT_PA_5G_TARGET_POWER = 0x0f3,
MT_EE_TX2_5G_G0_TARGET_POWER = 0x142,
MT_EE_TX3_5G_G0_TARGET_POWER = 0x16a,
MT7663_EE_HW_CONF1 = 0x1b0,
MT7663_EE_TX0_5G_G0_TARGET_POWER = 0x245,
MT7663_EE_TX1_5G_G0_TARGET_POWER = 0x2b5,
MT7615_EE_MAX = 0x3bf,
MT7622_EE_MAX = 0x3db,
MT7663_EE_MAX = 0x400,
};
#define MT_EE_RATE_POWER_MASK GENMASK(5, 0)
#define MT_EE_RATE_POWER_SIGN BIT(6)
#define MT_EE_RATE_POWER_EN BIT(7)
#define MT_EE_CALDATA_FLASH_TX_DPD BIT(0)
#define MT_EE_CALDATA_FLASH_RX_CAL BIT(1)
#define MT_EE_NIC_CONF_TX_MASK GENMASK(7, 4)
#define MT_EE_NIC_CONF_RX_MASK GENMASK(3, 0)
#define MT_EE_HW_CONF1_TX_MASK GENMASK(2, 0)
#define MT_EE_NIC_CONF_TSSI_2G BIT(5)
#define MT_EE_NIC_CONF_TSSI_5G BIT(6)
#define MT_EE_NIC_WIFI_CONF_BAND_SEL GENMASK(5, 4)
enum mt7615_eeprom_band {
MT_EE_DUAL_BAND,
MT_EE_5GHZ,
MT_EE_2GHZ,
MT_EE_DBDC,
};
enum mt7615_channel_group {
MT_CH_5G_JAPAN,
MT_CH_5G_UNII_1,
MT_CH_5G_UNII_2A,
MT_CH_5G_UNII_2B,
MT_CH_5G_UNII_2E_1,
MT_CH_5G_UNII_2E_2,
MT_CH_5G_UNII_2E_3,
MT_CH_5G_UNII_3,
__MT_CH_MAX
};
static inline enum mt7615_channel_group
mt7615_get_channel_group(int channel)
{
if (channel >= 184 && channel <= 196)
return MT_CH_5G_JAPAN;
if (channel <= 48)
return MT_CH_5G_UNII_1;
if (channel <= 64)
return MT_CH_5G_UNII_2A;
if (channel <= 114)
return MT_CH_5G_UNII_2E_1;
if (channel <= 144)
return MT_CH_5G_UNII_2E_2;
if (channel <= 161)
return MT_CH_5G_UNII_2E_3;
return MT_CH_5G_UNII_3;
}
static inline bool
mt7615_ext_pa_enabled(struct mt7615_dev *dev, enum nl80211_band band)
{
u8 *eep = dev->mt76.eeprom.data;
if (band == NL80211_BAND_5GHZ)
return !(eep[MT_EE_NIC_CONF_1 + 1] & MT_EE_NIC_CONF_TSSI_5G);
else
return !(eep[MT_EE_NIC_CONF_1 + 1] & MT_EE_NIC_CONF_TSSI_2G);
}
#endif

View File

@ -0,0 +1,561 @@
// SPDX-License-Identifier: ISC
/* Copyright (C) 2019 MediaTek Inc.
*
* Author: Roy Luo <royluo@google.com>
* Ryder Lee <ryder.lee@mediatek.com>
* Felix Fietkau <nbd@nbd.name>
* Lorenzo Bianconi <lorenzo@kernel.org>
*/
#include <linux/etherdevice.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include "mt7615.h"
#include "mac.h"
#include "mcu.h"
#include "eeprom.h"
static ssize_t mt7615_thermal_show_temp(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct mt7615_dev *mdev = dev_get_drvdata(dev);
int temperature;
if (!mt7615_wait_for_mcu_init(mdev))
return 0;
mt7615_mutex_acquire(mdev);
temperature = mt7615_mcu_get_temperature(mdev);
mt7615_mutex_release(mdev);
if (temperature < 0)
return temperature;
/* display in millidegree celcius */
return sprintf(buf, "%u\n", temperature * 1000);
}
static SENSOR_DEVICE_ATTR(temp1_input, 0444, mt7615_thermal_show_temp,
NULL, 0);
static struct attribute *mt7615_hwmon_attrs[] = {
&sensor_dev_attr_temp1_input.dev_attr.attr,
NULL,
};
ATTRIBUTE_GROUPS(mt7615_hwmon);
int mt7615_thermal_init(struct mt7615_dev *dev)
{
struct wiphy *wiphy = mt76_hw(dev)->wiphy;
struct device *hwmon;
const char *name;
if (!IS_REACHABLE(CONFIG_HWMON))
return 0;
name = devm_kasprintf(&wiphy->dev, GFP_KERNEL, "mt7615_%s",
wiphy_name(wiphy));
hwmon = devm_hwmon_device_register_with_groups(&wiphy->dev, name, dev,
mt7615_hwmon_groups);
if (IS_ERR(hwmon))
return PTR_ERR(hwmon);
return 0;
}
EXPORT_SYMBOL_GPL(mt7615_thermal_init);
static void
mt7615_phy_init(struct mt7615_dev *dev)
{
/* disable rf low power beacon mode */
mt76_set(dev, MT_WF_PHY_WF2_RFCTRL0(0), MT_WF_PHY_WF2_RFCTRL0_LPBCN_EN);
mt76_set(dev, MT_WF_PHY_WF2_RFCTRL0(1), MT_WF_PHY_WF2_RFCTRL0_LPBCN_EN);
}
static void
mt7615_init_mac_chain(struct mt7615_dev *dev, int chain)
{
u32 val;
if (!chain)
val = MT_CFG_CCR_MAC_D0_1X_GC_EN | MT_CFG_CCR_MAC_D0_2X_GC_EN;
else
val = MT_CFG_CCR_MAC_D1_1X_GC_EN | MT_CFG_CCR_MAC_D1_2X_GC_EN;
/* enable band 0/1 clk */
mt76_set(dev, MT_CFG_CCR, val);
mt76_rmw(dev, MT_TMAC_TRCR(chain),
MT_TMAC_TRCR_CCA_SEL | MT_TMAC_TRCR_SEC_CCA_SEL,
FIELD_PREP(MT_TMAC_TRCR_CCA_SEL, 2) |
FIELD_PREP(MT_TMAC_TRCR_SEC_CCA_SEL, 0));
mt76_wr(dev, MT_AGG_ACR(chain),
MT_AGG_ACR_PKT_TIME_EN | MT_AGG_ACR_NO_BA_AR_RULE |
FIELD_PREP(MT_AGG_ACR_CFEND_RATE, MT7615_CFEND_RATE_DEFAULT) |
FIELD_PREP(MT_AGG_ACR_BAR_RATE, MT7615_BAR_RATE_DEFAULT));
mt76_wr(dev, MT_AGG_ARUCR(chain),
FIELD_PREP(MT_AGG_ARxCR_LIMIT(0), 7) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(1), 2) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(2), 2) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(3), 2) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(4), 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(5), 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(6), 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(7), 1));
mt76_wr(dev, MT_AGG_ARDCR(chain),
FIELD_PREP(MT_AGG_ARxCR_LIMIT(0), MT7615_RATE_RETRY - 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(1), MT7615_RATE_RETRY - 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(2), MT7615_RATE_RETRY - 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(3), MT7615_RATE_RETRY - 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(4), MT7615_RATE_RETRY - 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(5), MT7615_RATE_RETRY - 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(6), MT7615_RATE_RETRY - 1) |
FIELD_PREP(MT_AGG_ARxCR_LIMIT(7), MT7615_RATE_RETRY - 1));
mt76_clear(dev, MT_DMA_RCFR0(chain), MT_DMA_RCFR0_MCU_RX_TDLS);
if (!mt7615_firmware_offload(dev)) {
u32 mask, set;
mask = MT_DMA_RCFR0_MCU_RX_MGMT |
MT_DMA_RCFR0_MCU_RX_CTL_NON_BAR |
MT_DMA_RCFR0_MCU_RX_CTL_BAR |
MT_DMA_RCFR0_MCU_RX_BYPASS |
MT_DMA_RCFR0_RX_DROPPED_UCAST |
MT_DMA_RCFR0_RX_DROPPED_MCAST;
set = FIELD_PREP(MT_DMA_RCFR0_RX_DROPPED_UCAST, 2) |
FIELD_PREP(MT_DMA_RCFR0_RX_DROPPED_MCAST, 2);
mt76_rmw(dev, MT_DMA_RCFR0(chain), mask, set);
}
}
static void
mt7615_mac_init(struct mt7615_dev *dev)
{
int i;
mt7615_init_mac_chain(dev, 0);
mt76_rmw_field(dev, MT_TMAC_CTCR0,
MT_TMAC_CTCR0_INS_DDLMT_REFTIME, 0x3f);
mt76_rmw_field(dev, MT_TMAC_CTCR0,
MT_TMAC_CTCR0_INS_DDLMT_DENSITY, 0x3);
mt76_rmw(dev, MT_TMAC_CTCR0,
MT_TMAC_CTCR0_INS_DDLMT_VHT_SMPDU_EN |
MT_TMAC_CTCR0_INS_DDLMT_EN,
MT_TMAC_CTCR0_INS_DDLMT_VHT_SMPDU_EN |
MT_TMAC_CTCR0_INS_DDLMT_EN);
mt76_connac_mcu_set_rts_thresh(&dev->mt76, 0x92b, 0);
mt7615_mac_set_scs(&dev->phy, true);
mt76_rmw(dev, MT_AGG_SCR, MT_AGG_SCR_NLNAV_MID_PTEC_DIS,
MT_AGG_SCR_NLNAV_MID_PTEC_DIS);
mt76_wr(dev, MT_AGG_ARCR,
FIELD_PREP(MT_AGG_ARCR_RTS_RATE_THR, 2) |
MT_AGG_ARCR_RATE_DOWN_RATIO_EN |
FIELD_PREP(MT_AGG_ARCR_RATE_DOWN_RATIO, 1) |
FIELD_PREP(MT_AGG_ARCR_RATE_UP_EXTRA_TH, 4));
for (i = 0; i < MT7615_WTBL_SIZE; i++)
mt7615_mac_wtbl_update(dev, i,
MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
mt76_set(dev, MT_WF_RMAC_MIB_TIME0, MT_WF_RMAC_MIB_RXTIME_EN);
mt76_set(dev, MT_WF_RMAC_MIB_AIRTIME0, MT_WF_RMAC_MIB_RXTIME_EN);
mt76_wr(dev, MT_DMA_DCR0,
FIELD_PREP(MT_DMA_DCR0_MAX_RX_LEN, 3072) |
MT_DMA_DCR0_RX_VEC_DROP | MT_DMA_DCR0_DAMSDU_EN |
MT_DMA_DCR0_RX_HDR_TRANS_EN);
/* disable TDLS filtering */
mt76_clear(dev, MT_WF_PFCR, MT_WF_PFCR_TDLS_EN);
mt76_set(dev, MT_WF_MIB_SCR0, MT_MIB_SCR0_AGG_CNT_RANGE_EN);
if (is_mt7663(&dev->mt76)) {
mt76_wr(dev, MT_WF_AGG(0x160), 0x5c341c02);
mt76_wr(dev, MT_WF_AGG(0x164), 0x70708040);
} else {
mt7615_init_mac_chain(dev, 1);
}
mt7615_mcu_set_rx_hdr_trans_blacklist(dev);
}
static void
mt7615_check_offload_capability(struct mt7615_dev *dev)
{
struct ieee80211_hw *hw = mt76_hw(dev);
struct wiphy *wiphy = hw->wiphy;
if (mt7615_firmware_offload(dev)) {
ieee80211_hw_set(hw, SUPPORTS_PS);
ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
wiphy->flags &= ~WIPHY_FLAG_4ADDR_STATION;
wiphy->max_remain_on_channel_duration = 5000;
wiphy->features |= NL80211_FEATURE_SCHED_SCAN_RANDOM_MAC_ADDR |
NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR |
WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL |
NL80211_FEATURE_P2P_GO_CTWIN |
NL80211_FEATURE_P2P_GO_OPPPS;
} else {
dev->ops->hw_scan = NULL;
dev->ops->cancel_hw_scan = NULL;
dev->ops->sched_scan_start = NULL;
dev->ops->sched_scan_stop = NULL;
dev->ops->set_rekey_data = NULL;
dev->ops->remain_on_channel = NULL;
dev->ops->cancel_remain_on_channel = NULL;
wiphy->max_sched_scan_plan_interval = 0;
wiphy->max_sched_scan_ie_len = 0;
wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN;
wiphy->max_sched_scan_ssids = 0;
wiphy->max_match_sets = 0;
wiphy->max_sched_scan_reqs = 0;
}
}
bool mt7615_wait_for_mcu_init(struct mt7615_dev *dev)
{
flush_work(&dev->mcu_work);
return test_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state);
}
EXPORT_SYMBOL_GPL(mt7615_wait_for_mcu_init);
static const struct ieee80211_iface_limit if_limits[] = {
{
.max = 1,
.types = BIT(NL80211_IFTYPE_ADHOC)
}, {
.max = MT7615_MAX_INTERFACES,
.types = BIT(NL80211_IFTYPE_AP) |
#ifdef CONFIG_MAC80211_MESH
BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO) |
BIT(NL80211_IFTYPE_STATION)
}
};
static const struct ieee80211_iface_combination if_comb_radar[] = {
{
.limits = if_limits,
.n_limits = ARRAY_SIZE(if_limits),
.max_interfaces = MT7615_MAX_INTERFACES,
.num_different_channels = 1,
.beacon_int_infra_match = true,
.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
BIT(NL80211_CHAN_WIDTH_20) |
BIT(NL80211_CHAN_WIDTH_40) |
BIT(NL80211_CHAN_WIDTH_80) |
BIT(NL80211_CHAN_WIDTH_160) |
BIT(NL80211_CHAN_WIDTH_80P80),
}
};
static const struct ieee80211_iface_combination if_comb[] = {
{
.limits = if_limits,
.n_limits = ARRAY_SIZE(if_limits),
.max_interfaces = MT7615_MAX_INTERFACES,
.num_different_channels = 1,
.beacon_int_infra_match = true,
}
};
void mt7615_init_txpower(struct mt7615_dev *dev,
struct ieee80211_supported_band *sband)
{
int i, n_chains = hweight8(dev->mphy.antenna_mask), target_chains;
int delta_idx, delta = mt76_tx_power_nss_delta(n_chains);
u8 *eep = (u8 *)dev->mt76.eeprom.data;
enum nl80211_band band = sband->band;
struct mt76_power_limits limits;
u8 rate_val;
delta_idx = mt7615_eeprom_get_power_delta_index(dev, band);
rate_val = eep[delta_idx];
if ((rate_val & ~MT_EE_RATE_POWER_MASK) ==
(MT_EE_RATE_POWER_EN | MT_EE_RATE_POWER_SIGN))
delta += rate_val & MT_EE_RATE_POWER_MASK;
if (!is_mt7663(&dev->mt76) && mt7615_ext_pa_enabled(dev, band))
target_chains = 1;
else
target_chains = n_chains;
for (i = 0; i < sband->n_channels; i++) {
struct ieee80211_channel *chan = &sband->channels[i];
u8 target_power = 0;
int j;
for (j = 0; j < target_chains; j++) {
int index;
index = mt7615_eeprom_get_target_power_index(dev, chan, j);
if (index < 0)
continue;
target_power = max(target_power, eep[index]);
}
target_power = mt76_get_rate_power_limits(&dev->mphy, chan,
&limits,
target_power);
target_power += delta;
target_power = DIV_ROUND_UP(target_power, 2);
chan->max_power = min_t(int, chan->max_reg_power,
target_power);
chan->orig_mpwr = target_power;
}
}
EXPORT_SYMBOL_GPL(mt7615_init_txpower);
void mt7615_init_work(struct mt7615_dev *dev)
{
mt7615_mcu_set_eeprom(dev);
mt7615_mac_init(dev);
mt7615_phy_init(dev);
mt7615_mcu_del_wtbl_all(dev);
mt7615_check_offload_capability(dev);
}
EXPORT_SYMBOL_GPL(mt7615_init_work);
static void
mt7615_regd_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct mt7615_dev *dev = mt7615_hw_dev(hw);
struct mt76_phy *mphy = hw->priv;
struct mt7615_phy *phy = mphy->priv;
struct cfg80211_chan_def *chandef = &mphy->chandef;
memcpy(dev->mt76.alpha2, request->alpha2, sizeof(dev->mt76.alpha2));
dev->mt76.region = request->dfs_region;
mt7615_init_txpower(dev, &mphy->sband_2g.sband);
mt7615_init_txpower(dev, &mphy->sband_5g.sband);
mt7615_mutex_acquire(dev);
if (chandef->chan->flags & IEEE80211_CHAN_RADAR)
mt7615_dfs_init_radar_detector(phy);
if (mt7615_firmware_offload(phy->dev)) {
mt76_connac_mcu_set_channel_domain(mphy);
mt76_connac_mcu_set_rate_txpower(mphy);
}
mt7615_mutex_release(dev);
}
static void
mt7615_init_wiphy(struct ieee80211_hw *hw)
{
struct mt7615_phy *phy = mt7615_hw_phy(hw);
struct wiphy *wiphy = hw->wiphy;
hw->queues = 4;
hw->max_rates = 3;
hw->max_report_rates = 7;
hw->max_rate_tries = 11;
hw->netdev_features = NETIF_F_RXCSUM;
hw->radiotap_timestamp.units_pos =
IEEE80211_RADIOTAP_TIMESTAMP_UNIT_US;
phy->slottime = 9;
hw->sta_data_size = sizeof(struct mt7615_sta);
hw->vif_data_size = sizeof(struct mt7615_vif);
if (is_mt7663(&phy->dev->mt76)) {
wiphy->iface_combinations = if_comb;
wiphy->n_iface_combinations = ARRAY_SIZE(if_comb);
} else {
wiphy->iface_combinations = if_comb_radar;
wiphy->n_iface_combinations = ARRAY_SIZE(if_comb_radar);
}
wiphy->reg_notifier = mt7615_regd_notifier;
wiphy->max_sched_scan_plan_interval =
MT76_CONNAC_MAX_TIME_SCHED_SCAN_INTERVAL;
wiphy->max_sched_scan_ie_len = IEEE80211_MAX_DATA_LEN;
wiphy->max_scan_ie_len = MT76_CONNAC_SCAN_IE_LEN;
wiphy->max_sched_scan_ssids = MT76_CONNAC_MAX_SCHED_SCAN_SSID;
wiphy->max_match_sets = MT76_CONNAC_MAX_SCAN_MATCH;
wiphy->max_sched_scan_reqs = 1;
wiphy->max_scan_ssids = 4;
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
ieee80211_hw_set(hw, TX_STATUS_NO_AMPDU_LEN);
ieee80211_hw_set(hw, WANT_MONITOR_VIF);
ieee80211_hw_set(hw, SUPPORTS_RX_DECAP_OFFLOAD);
ieee80211_hw_set(hw, SUPPORTS_VHT_EXT_NSS_BW);
if (is_mt7615(&phy->dev->mt76))
hw->max_tx_fragments = MT_TXP_MAX_BUF_NUM;
else
hw->max_tx_fragments = MT_HW_TXP_MAX_BUF_NUM;
phy->mt76->sband_2g.sband.ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING;
phy->mt76->sband_5g.sband.ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING;
phy->mt76->sband_5g.sband.vht_cap.cap |=
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK;
}
static void
mt7615_cap_dbdc_enable(struct mt7615_dev *dev)
{
dev->mphy.sband_5g.sband.vht_cap.cap &=
~(IEEE80211_VHT_CAP_SHORT_GI_160 |
IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ);
if (dev->chainmask == 0xf)
dev->mphy.antenna_mask = dev->chainmask >> 2;
else
dev->mphy.antenna_mask = dev->chainmask >> 1;
dev->mphy.chainmask = dev->mphy.antenna_mask;
dev->mphy.hw->wiphy->available_antennas_rx = dev->mphy.chainmask;
dev->mphy.hw->wiphy->available_antennas_tx = dev->mphy.chainmask;
mt76_set_stream_caps(&dev->mphy, true);
}
static void
mt7615_cap_dbdc_disable(struct mt7615_dev *dev)
{
dev->mphy.sband_5g.sband.vht_cap.cap |=
IEEE80211_VHT_CAP_SHORT_GI_160 |
IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ;
dev->mphy.antenna_mask = dev->chainmask;
dev->mphy.chainmask = dev->chainmask;
dev->mphy.hw->wiphy->available_antennas_rx = dev->chainmask;
dev->mphy.hw->wiphy->available_antennas_tx = dev->chainmask;
mt76_set_stream_caps(&dev->mphy, true);
}
int mt7615_register_ext_phy(struct mt7615_dev *dev)
{
struct mt7615_phy *phy = mt7615_ext_phy(dev);
struct mt76_phy *mphy;
int i, ret;
if (!is_mt7615(&dev->mt76))
return -EOPNOTSUPP;
if (test_bit(MT76_STATE_RUNNING, &dev->mphy.state))
return -EINVAL;
if (phy)
return 0;
mt7615_cap_dbdc_enable(dev);
mphy = mt76_alloc_phy(&dev->mt76, sizeof(*phy), &mt7615_ops, MT_BAND1);
if (!mphy)
return -ENOMEM;
phy = mphy->priv;
phy->dev = dev;
phy->mt76 = mphy;
mphy->chainmask = dev->chainmask & ~dev->mphy.chainmask;
mphy->antenna_mask = BIT(hweight8(mphy->chainmask)) - 1;
mt7615_init_wiphy(mphy->hw);
INIT_DELAYED_WORK(&mphy->mac_work, mt7615_mac_work);
INIT_DELAYED_WORK(&phy->scan_work, mt7615_scan_work);
skb_queue_head_init(&phy->scan_event_list);
INIT_WORK(&phy->roc_work, mt7615_roc_work);
timer_setup(&phy->roc_timer, mt7615_roc_timer, 0);
init_waitqueue_head(&phy->roc_wait);
mt7615_mac_set_scs(phy, true);
/*
* Make the secondary PHY MAC address local without overlapping with
* the usual MAC address allocation scheme on multiple virtual interfaces
*/
memcpy(mphy->macaddr, dev->mt76.eeprom.data + MT_EE_MAC_ADDR,
ETH_ALEN);
mphy->macaddr[0] |= 2;
mphy->macaddr[0] ^= BIT(7);
mt76_eeprom_override(mphy);
/* second phy can only handle 5 GHz */
mphy->cap.has_5ghz = true;
/* mt7615 second phy shares the same hw queues with the primary one */
for (i = 0; i <= MT_TXQ_PSD ; i++)
mphy->q_tx[i] = dev->mphy.q_tx[i];
ret = mt76_register_phy(mphy, true, mt76_rates,
ARRAY_SIZE(mt76_rates));
if (ret)
ieee80211_free_hw(mphy->hw);
return ret;
}
EXPORT_SYMBOL_GPL(mt7615_register_ext_phy);
void mt7615_unregister_ext_phy(struct mt7615_dev *dev)
{
struct mt7615_phy *phy = mt7615_ext_phy(dev);
struct mt76_phy *mphy = dev->mt76.phys[MT_BAND1];
if (!phy)
return;
mt7615_cap_dbdc_disable(dev);
mt76_unregister_phy(mphy);
ieee80211_free_hw(mphy->hw);
}
EXPORT_SYMBOL_GPL(mt7615_unregister_ext_phy);
void mt7615_init_device(struct mt7615_dev *dev)
{
struct ieee80211_hw *hw = mt76_hw(dev);
dev->phy.dev = dev;
dev->phy.mt76 = &dev->mt76.phy;
dev->mt76.phy.priv = &dev->phy;
dev->mt76.tx_worker.fn = mt7615_tx_worker;
INIT_DELAYED_WORK(&dev->pm.ps_work, mt7615_pm_power_save_work);
INIT_WORK(&dev->pm.wake_work, mt7615_pm_wake_work);
spin_lock_init(&dev->pm.wake.lock);
mutex_init(&dev->pm.mutex);
init_waitqueue_head(&dev->pm.wait);
spin_lock_init(&dev->pm.txq_lock);
INIT_DELAYED_WORK(&dev->mphy.mac_work, mt7615_mac_work);
INIT_DELAYED_WORK(&dev->phy.scan_work, mt7615_scan_work);
INIT_DELAYED_WORK(&dev->coredump.work, mt7615_coredump_work);
skb_queue_head_init(&dev->phy.scan_event_list);
skb_queue_head_init(&dev->coredump.msg_list);
INIT_LIST_HEAD(&dev->sta_poll_list);
spin_lock_init(&dev->sta_poll_lock);
init_waitqueue_head(&dev->reset_wait);
init_waitqueue_head(&dev->phy.roc_wait);
INIT_WORK(&dev->phy.roc_work, mt7615_roc_work);
timer_setup(&dev->phy.roc_timer, mt7615_roc_timer, 0);
mt7615_init_wiphy(hw);
dev->pm.idle_timeout = MT7615_PM_TIMEOUT;
dev->pm.stats.last_wake_event = jiffies;
dev->pm.stats.last_doze_event = jiffies;
mt7615_cap_dbdc_disable(dev);
#ifdef CONFIG_NL80211_TESTMODE
dev->mt76.test_ops = &mt7615_testmode_ops;
#endif
}
EXPORT_SYMBOL_GPL(mt7615_init_device);

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,337 @@
/* SPDX-License-Identifier: ISC */
/* Copyright (C) 2019 MediaTek Inc. */
#ifndef __MT7615_MAC_H
#define __MT7615_MAC_H
#define MT_CT_PARSE_LEN 72
#define MT_CT_DMA_BUF_NUM 2
#define MT_RXD0_LENGTH GENMASK(15, 0)
#define MT_RXD0_PKT_FLAG GENMASK(19, 16)
#define MT_RXD0_PKT_TYPE GENMASK(31, 29)
#define MT_RXD0_NORMAL_ETH_TYPE_OFS GENMASK(22, 16)
#define MT_RXD0_NORMAL_IP_SUM BIT(23)
#define MT_RXD0_NORMAL_UDP_TCP_SUM BIT(24)
#define MT_RXD0_NORMAL_GROUP_1 BIT(25)
#define MT_RXD0_NORMAL_GROUP_2 BIT(26)
#define MT_RXD0_NORMAL_GROUP_3 BIT(27)
#define MT_RXD0_NORMAL_GROUP_4 BIT(28)
enum rx_pkt_type {
PKT_TYPE_TXS,
PKT_TYPE_TXRXV,
PKT_TYPE_NORMAL,
PKT_TYPE_RX_DUP_RFB,
PKT_TYPE_RX_TMR,
PKT_TYPE_RETRIEVE,
PKT_TYPE_TXRX_NOTIFY,
PKT_TYPE_RX_EVENT,
PKT_TYPE_NORMAL_MCU,
};
#define MT_RXD1_NORMAL_BSSID GENMASK(31, 26)
#define MT_RXD1_NORMAL_PAYLOAD_FORMAT GENMASK(25, 24)
#define MT_RXD1_FIRST_AMSDU_FRAME GENMASK(1, 0)
#define MT_RXD1_MID_AMSDU_FRAME BIT(1)
#define MT_RXD1_LAST_AMSDU_FRAME BIT(0)
#define MT_RXD1_NORMAL_HDR_TRANS BIT(23)
#define MT_RXD1_NORMAL_HDR_OFFSET BIT(22)
#define MT_RXD1_NORMAL_MAC_HDR_LEN GENMASK(21, 16)
#define MT_RXD1_NORMAL_CH_FREQ GENMASK(15, 8)
#define MT_RXD1_NORMAL_KEY_ID GENMASK(7, 6)
#define MT_RXD1_NORMAL_BEACON_UC BIT(5)
#define MT_RXD1_NORMAL_BEACON_MC BIT(4)
#define MT_RXD1_NORMAL_BF_REPORT BIT(3)
#define MT_RXD1_NORMAL_ADDR_TYPE GENMASK(2, 1)
#define MT_RXD1_NORMAL_BCAST GENMASK(2, 1)
#define MT_RXD1_NORMAL_MCAST BIT(2)
#define MT_RXD1_NORMAL_U2M BIT(1)
#define MT_RXD1_NORMAL_HTC_VLD BIT(0)
#define MT_RXD2_NORMAL_NON_AMPDU BIT(31)
#define MT_RXD2_NORMAL_NON_AMPDU_SUB BIT(30)
#define MT_RXD2_NORMAL_NDATA BIT(29)
#define MT_RXD2_NORMAL_NULL_FRAME BIT(28)
#define MT_RXD2_NORMAL_FRAG BIT(27)
#define MT_RXD2_NORMAL_INT_FRAME BIT(26)
#define MT_RXD2_NORMAL_HDR_TRANS_ERROR BIT(25)
#define MT_RXD2_NORMAL_MAX_LEN_ERROR BIT(24)
#define MT_RXD2_NORMAL_AMSDU_ERR BIT(23)
#define MT_RXD2_NORMAL_LEN_MISMATCH BIT(22)
#define MT_RXD2_NORMAL_TKIP_MIC_ERR BIT(21)
#define MT_RXD2_NORMAL_ICV_ERR BIT(20)
#define MT_RXD2_NORMAL_CLM BIT(19)
#define MT_RXD2_NORMAL_CM BIT(18)
#define MT_RXD2_NORMAL_FCS_ERR BIT(17)
#define MT_RXD2_NORMAL_SW_BIT BIT(16)
#define MT_RXD2_NORMAL_SEC_MODE GENMASK(15, 12)
#define MT_RXD2_NORMAL_TID GENMASK(11, 8)
#define MT_RXD2_NORMAL_WLAN_IDX GENMASK(7, 0)
#define MT_RXD3_NORMAL_PF_STS GENMASK(31, 30)
#define MT_RXD3_NORMAL_PF_MODE BIT(29)
#define MT_RXD3_NORMAL_CLS_BITMAP GENMASK(28, 19)
#define MT_RXD3_NORMAL_WOL GENMASK(18, 14)
#define MT_RXD3_NORMAL_MAGIC_PKT BIT(13)
#define MT_RXD3_NORMAL_OFLD GENMASK(12, 11)
#define MT_RXD3_NORMAL_CLS BIT(10)
#define MT_RXD3_NORMAL_PATTERN_DROP BIT(9)
#define MT_RXD3_NORMAL_TSF_COMPARE_LOSS BIT(8)
#define MT_RXD3_NORMAL_RXV_SEQ GENMASK(7, 0)
#define MT_RXD4_FRAME_CONTROL GENMASK(15, 0)
#define MT_RXD6_SEQ_CTRL GENMASK(15, 0)
#define MT_RXD6_QOS_CTL GENMASK(31, 16)
#define MT_RXD7_HT_CONTROL GENMASK(31, 0)
#define MT_RXV1_ACID_DET_H BIT(31)
#define MT_RXV1_ACID_DET_L BIT(30)
#define MT_RXV1_VHTA2_B8_B3 GENMASK(29, 24)
#define MT_RXV1_NUM_RX GENMASK(23, 22)
#define MT_RXV1_HT_NO_SOUND BIT(21)
#define MT_RXV1_HT_SMOOTH BIT(20)
#define MT_RXV1_HT_SHORT_GI BIT(19)
#define MT_RXV1_HT_AGGR BIT(18)
#define MT_RXV1_VHTA1_B22 BIT(17)
#define MT_RXV1_FRAME_MODE GENMASK(16, 15)
#define MT_RXV1_TX_MODE GENMASK(14, 12)
#define MT_RXV1_HT_EXT_LTF GENMASK(11, 10)
#define MT_RXV1_HT_AD_CODE BIT(9)
#define MT_RXV1_HT_STBC GENMASK(8, 7)
#define MT_RXV1_TX_RATE GENMASK(6, 0)
#define MT_RXV2_SEL_ANT BIT(31)
#define MT_RXV2_VALID_BIT BIT(30)
#define MT_RXV2_NSTS GENMASK(29, 27)
#define MT_RXV2_GROUP_ID GENMASK(26, 21)
#define MT_RXV2_LENGTH GENMASK(20, 0)
#define MT_RXV3_WB_RSSI GENMASK(31, 24)
#define MT_RXV3_IB_RSSI GENMASK(23, 16)
#define MT_RXV4_RCPI3 GENMASK(31, 24)
#define MT_RXV4_RCPI2 GENMASK(23, 16)
#define MT_RXV4_RCPI1 GENMASK(15, 8)
#define MT_RXV4_RCPI0 GENMASK(7, 0)
#define MT_RXV5_FOE GENMASK(11, 0)
#define MT_RXV6_NF3 GENMASK(31, 24)
#define MT_RXV6_NF2 GENMASK(23, 16)
#define MT_RXV6_NF1 GENMASK(15, 8)
#define MT_RXV6_NF0 GENMASK(7, 0)
enum tx_header_format {
MT_HDR_FORMAT_802_3,
MT_HDR_FORMAT_CMD,
MT_HDR_FORMAT_802_11,
MT_HDR_FORMAT_802_11_EXT,
};
enum tx_pkt_type {
MT_TX_TYPE_CT,
MT_TX_TYPE_SF,
MT_TX_TYPE_CMD,
MT_TX_TYPE_FW,
};
enum tx_port_idx {
MT_TX_PORT_IDX_LMAC,
MT_TX_PORT_IDX_MCU
};
enum tx_mcu_port_q_idx {
MT_TX_MCU_PORT_RX_Q0 = 0,
MT_TX_MCU_PORT_RX_Q1,
MT_TX_MCU_PORT_RX_Q2,
MT_TX_MCU_PORT_RX_Q3,
MT_TX_MCU_PORT_RX_FWDL = 0x1e
};
enum tx_phy_bandwidth {
MT_PHY_BW_20,
MT_PHY_BW_40,
MT_PHY_BW_80,
MT_PHY_BW_160,
};
#define MT_CT_INFO_APPLY_TXD BIT(0)
#define MT_CT_INFO_COPY_HOST_TXD_ALL BIT(1)
#define MT_CT_INFO_MGMT_FRAME BIT(2)
#define MT_CT_INFO_NONE_CIPHER_FRAME BIT(3)
#define MT_CT_INFO_HSR2_TX BIT(4)
#define MT_TXD0_P_IDX BIT(31)
#define MT_TXD0_Q_IDX GENMASK(30, 26)
#define MT_TXD0_UDP_TCP_SUM BIT(24)
#define MT_TXD0_IP_SUM BIT(23)
#define MT_TXD0_ETH_TYPE_OFFSET GENMASK(22, 16)
#define MT_TXD0_TX_BYTES GENMASK(15, 0)
#define MT_TXD1_OWN_MAC GENMASK(31, 26)
#define MT_TXD1_PKT_FMT GENMASK(25, 24)
#define MT_TXD1_TID GENMASK(23, 21)
#define MT_TXD1_AMSDU BIT(20)
#define MT_TXD1_UNXV BIT(19)
#define MT_TXD1_HDR_PAD GENMASK(18, 17)
#define MT_TXD1_TXD_LEN BIT(16)
#define MT_TXD1_LONG_FORMAT BIT(15)
#define MT_TXD1_HDR_FORMAT GENMASK(14, 13)
#define MT_TXD1_HDR_INFO GENMASK(12, 8)
#define MT_TXD1_WLAN_IDX GENMASK(7, 0)
#define MT_TXD2_FIX_RATE BIT(31)
#define MT_TXD2_TIMING_MEASURE BIT(30)
#define MT_TXD2_BA_DISABLE BIT(29)
#define MT_TXD2_POWER_OFFSET GENMASK(28, 24)
#define MT_TXD2_MAX_TX_TIME GENMASK(23, 16)
#define MT_TXD2_FRAG GENMASK(15, 14)
#define MT_TXD2_HTC_VLD BIT(13)
#define MT_TXD2_DURATION BIT(12)
#define MT_TXD2_BIP BIT(11)
#define MT_TXD2_MULTICAST BIT(10)
#define MT_TXD2_RTS BIT(9)
#define MT_TXD2_SOUNDING BIT(8)
#define MT_TXD2_NDPA BIT(7)
#define MT_TXD2_NDP BIT(6)
#define MT_TXD2_FRAME_TYPE GENMASK(5, 4)
#define MT_TXD2_SUB_TYPE GENMASK(3, 0)
#define MT_TXD3_SN_VALID BIT(31)
#define MT_TXD3_PN_VALID BIT(30)
#define MT_TXD3_SEQ GENMASK(27, 16)
#define MT_TXD3_REM_TX_COUNT GENMASK(15, 11)
#define MT_TXD3_TX_COUNT GENMASK(10, 6)
#define MT_TXD3_PROTECT_FRAME BIT(1)
#define MT_TXD3_NO_ACK BIT(0)
#define MT_TXD4_PN_LOW GENMASK(31, 0)
#define MT_TXD5_PN_HIGH GENMASK(31, 16)
#define MT_TXD5_SW_POWER_MGMT BIT(13)
#define MT_TXD5_DA_SELECT BIT(11)
#define MT_TXD5_TX_STATUS_HOST BIT(10)
#define MT_TXD5_TX_STATUS_MCU BIT(9)
#define MT_TXD5_TX_STATUS_FMT BIT(8)
#define MT_TXD5_PID GENMASK(7, 0)
#define MT_TXD6_FIXED_RATE BIT(31)
#define MT_TXD6_SGI BIT(30)
#define MT_TXD6_LDPC BIT(29)
#define MT_TXD6_TX_BF BIT(28)
#define MT_TXD6_TX_RATE GENMASK(27, 16)
#define MT_TXD6_ANT_ID GENMASK(15, 4)
#define MT_TXD6_DYN_BW BIT(3)
#define MT_TXD6_FIXED_BW BIT(2)
#define MT_TXD6_BW GENMASK(1, 0)
/* MT7663 DW7 HW-AMSDU */
#define MT_TXD7_HW_AMSDU_CAP BIT(30)
#define MT_TXD7_TYPE GENMASK(21, 20)
#define MT_TXD7_SUB_TYPE GENMASK(19, 16)
#define MT_TXD7_SPE_IDX GENMASK(15, 11)
#define MT_TXD7_SPE_IDX_SLE BIT(10)
#define MT_TXD8_L_TYPE GENMASK(5, 4)
#define MT_TXD8_L_SUB_TYPE GENMASK(3, 0)
#define MT_TX_RATE_STBC BIT(11)
#define MT_TX_RATE_NSS GENMASK(10, 9)
#define MT_TX_RATE_MODE GENMASK(8, 6)
#define MT_TX_RATE_IDX GENMASK(5, 0)
#define MT_TX_FREE_MSDU_ID_CNT GENMASK(6, 0)
#define MT_TXS0_PID GENMASK(31, 24)
#define MT_TXS0_BA_ERROR BIT(22)
#define MT_TXS0_PS_FLAG BIT(21)
#define MT_TXS0_TXOP_TIMEOUT BIT(20)
#define MT_TXS0_BIP_ERROR BIT(19)
#define MT_TXS0_QUEUE_TIMEOUT BIT(18)
#define MT_TXS0_RTS_TIMEOUT BIT(17)
#define MT_TXS0_ACK_TIMEOUT BIT(16)
#define MT_TXS0_ACK_ERROR_MASK GENMASK(18, 16)
#define MT_TXS0_TX_STATUS_HOST BIT(15)
#define MT_TXS0_TX_STATUS_MCU BIT(14)
#define MT_TXS0_TXS_FORMAT BIT(13)
#define MT_TXS0_FIXED_RATE BIT(12)
#define MT_TXS0_TX_RATE GENMASK(11, 0)
#define MT_TXS1_ANT_ID GENMASK(31, 20)
#define MT_TXS1_RESP_RATE GENMASK(19, 16)
#define MT_TXS1_BW GENMASK(15, 14)
#define MT_TXS1_I_TXBF BIT(13)
#define MT_TXS1_E_TXBF BIT(12)
#define MT_TXS1_TID GENMASK(11, 9)
#define MT_TXS1_AMPDU BIT(8)
#define MT_TXS1_ACKED_MPDU BIT(7)
#define MT_TXS1_TX_POWER_DBM GENMASK(6, 0)
#define MT_TXS2_WCID GENMASK(31, 24)
#define MT_TXS2_RXV_SEQNO GENMASK(23, 16)
#define MT_TXS2_TX_DELAY GENMASK(15, 0)
#define MT_TXS3_LAST_TX_RATE GENMASK(31, 29)
#define MT_TXS3_TX_COUNT GENMASK(28, 24)
#define MT_TXS3_F1_TSSI1 GENMASK(23, 12)
#define MT_TXS3_F1_TSSI0 GENMASK(11, 0)
#define MT_TXS3_F0_SEQNO GENMASK(11, 0)
#define MT_TXS4_F0_TIMESTAMP GENMASK(31, 0)
#define MT_TXS4_F1_TSSI3 GENMASK(23, 12)
#define MT_TXS4_F1_TSSI2 GENMASK(11, 0)
#define MT_TXS5_F0_FRONT_TIME GENMASK(24, 0)
#define MT_TXS5_F1_NOISE_2 GENMASK(23, 16)
#define MT_TXS5_F1_NOISE_1 GENMASK(15, 8)
#define MT_TXS5_F1_NOISE_0 GENMASK(7, 0)
#define MT_TXS6_F1_RCPI_3 GENMASK(31, 24)
#define MT_TXS6_F1_RCPI_2 GENMASK(23, 16)
#define MT_TXS6_F1_RCPI_1 GENMASK(15, 8)
#define MT_TXS6_F1_RCPI_0 GENMASK(7, 0)
struct mt7615_dfs_pulse {
u32 max_width; /* us */
int max_pwr; /* dbm */
int min_pwr; /* dbm */
u32 min_stgr_pri; /* us */
u32 max_stgr_pri; /* us */
u32 min_cr_pri; /* us */
u32 max_cr_pri; /* us */
};
struct mt7615_dfs_pattern {
u8 enb;
u8 stgr;
u8 min_crpn;
u8 max_crpn;
u8 min_crpr;
u8 min_pw;
u8 max_pw;
u32 min_pri;
u32 max_pri;
u8 min_crbn;
u8 max_crbn;
u8 min_stgpn;
u8 max_stgpn;
u8 min_stgpr;
};
struct mt7615_dfs_radar_spec {
struct mt7615_dfs_pulse pulse_th;
struct mt7615_dfs_pattern radar_pattern[16];
};
static inline u32 mt7615_mac_wtbl_addr(struct mt7615_dev *dev, int wcid)
{
return MT_WTBL_BASE(dev) + wcid * MT_WTBL_ENTRY_SIZE;
}
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,254 @@
/* SPDX-License-Identifier: ISC */
/* Copyright (C) 2019 MediaTek Inc. */
#ifndef __MT7615_MCU_H
#define __MT7615_MCU_H
#include "../mt76_connac_mcu.h"
struct mt7615_mcu_txd {
__le32 txd[8];
__le16 len;
__le16 pq_id;
u8 cid;
u8 pkt_type;
u8 set_query; /* FW don't care */
u8 seq;
u8 uc_d2b0_rev;
u8 ext_cid;
u8 s2d_index;
u8 ext_cid_ack;
u32 reserved[5];
} __packed __aligned(4);
/**
* struct mt7615_uni_txd - mcu command descriptor for firmware v3
* @txd: hardware descriptor
* @len: total length not including txd
* @cid: command identifier
* @pkt_type: must be 0xa0 (cmd packet by long format)
* @frag_n: fragment number
* @seq: sequence number
* @checksum: 0 mean there is no checksum
* @s2d_index: index for command source and destination
* Definition | value | note
* CMD_S2D_IDX_H2N | 0x00 | command from HOST to WM
* CMD_S2D_IDX_C2N | 0x01 | command from WA to WM
* CMD_S2D_IDX_H2C | 0x02 | command from HOST to WA
* CMD_S2D_IDX_H2N_AND_H2C | 0x03 | command from HOST to WA and WM
*
* @option: command option
* BIT[0]: UNI_CMD_OPT_BIT_ACK
* set to 1 to request a fw reply
* if UNI_CMD_OPT_BIT_0_ACK is set and UNI_CMD_OPT_BIT_2_SET_QUERY
* is set, mcu firmware will send response event EID = 0x01
* (UNI_EVENT_ID_CMD_RESULT) to the host.
* BIT[1]: UNI_CMD_OPT_BIT_UNI_CMD
* 0: original command
* 1: unified command
* BIT[2]: UNI_CMD_OPT_BIT_SET_QUERY
* 0: QUERY command
* 1: SET command
*/
struct mt7615_uni_txd {
__le32 txd[8];
/* DW1 */
__le16 len;
__le16 cid;
/* DW2 */
u8 reserved;
u8 pkt_type;
u8 frag_n;
u8 seq;
/* DW3 */
__le16 checksum;
u8 s2d_index;
u8 option;
/* DW4 */
u8 reserved2[4];
} __packed __aligned(4);
enum {
MT_SKU_CCK_1_2 = 0,
MT_SKU_CCK_55_11,
MT_SKU_OFDM_6_9,
MT_SKU_OFDM_12_18,
MT_SKU_OFDM_24_36,
MT_SKU_OFDM_48,
MT_SKU_OFDM_54,
MT_SKU_HT20_0_8,
MT_SKU_HT20_32,
MT_SKU_HT20_1_2_9_10,
MT_SKU_HT20_3_4_11_12,
MT_SKU_HT20_5_13,
MT_SKU_HT20_6_14,
MT_SKU_HT20_7_15,
MT_SKU_HT40_0_8,
MT_SKU_HT40_32,
MT_SKU_HT40_1_2_9_10,
MT_SKU_HT40_3_4_11_12,
MT_SKU_HT40_5_13,
MT_SKU_HT40_6_14,
MT_SKU_HT40_7_15,
MT_SKU_VHT20_0,
MT_SKU_VHT20_1_2,
MT_SKU_VHT20_3_4,
MT_SKU_VHT20_5_6,
MT_SKU_VHT20_7,
MT_SKU_VHT20_8,
MT_SKU_VHT20_9,
MT_SKU_VHT40_0,
MT_SKU_VHT40_1_2,
MT_SKU_VHT40_3_4,
MT_SKU_VHT40_5_6,
MT_SKU_VHT40_7,
MT_SKU_VHT40_8,
MT_SKU_VHT40_9,
MT_SKU_VHT80_0,
MT_SKU_VHT80_1_2,
MT_SKU_VHT80_3_4,
MT_SKU_VHT80_5_6,
MT_SKU_VHT80_7,
MT_SKU_VHT80_8,
MT_SKU_VHT80_9,
MT_SKU_VHT160_0,
MT_SKU_VHT160_1_2,
MT_SKU_VHT160_3_4,
MT_SKU_VHT160_5_6,
MT_SKU_VHT160_7,
MT_SKU_VHT160_8,
MT_SKU_VHT160_9,
MT_SKU_1SS_DELTA,
MT_SKU_2SS_DELTA,
MT_SKU_3SS_DELTA,
MT_SKU_4SS_DELTA,
};
struct mt7615_mcu_rxd {
__le32 rxd[4];
__le16 len;
__le16 pkt_type_id;
u8 eid;
u8 seq;
__le16 __rsv;
u8 ext_eid;
u8 __rsv1[2];
u8 s2d_index;
};
struct mt7615_mcu_csa_notify {
struct mt7615_mcu_rxd rxd;
u8 omac_idx;
u8 csa_count;
u8 rsv[2];
} __packed;
struct mt7615_mcu_rdd_report {
struct mt7615_mcu_rxd rxd;
u8 band_idx;
u8 long_detected;
u8 constant_prf_detected;
u8 staggered_prf_detected;
u8 radar_type_idx;
u8 periodic_pulse_num;
u8 long_pulse_num;
u8 hw_pulse_num;
u8 out_lpn;
u8 out_spn;
u8 out_crpn;
u8 out_crpw;
u8 out_crbn;
u8 out_stgpn;
u8 out_stgpw;
u8 _rsv[2];
__le32 out_pri_const;
__le32 out_pri_stg[3];
struct {
__le32 start;
__le16 pulse_width;
__le16 pulse_power;
} long_pulse[32];
struct {
__le32 start;
__le16 pulse_width;
__le16 pulse_power;
} periodic_pulse[32];
struct {
__le32 start;
__le16 pulse_width;
__le16 pulse_power;
u8 sc_pass;
u8 sw_reset;
} hw_pulse[32];
};
enum {
MCU_ATE_SET_FREQ_OFFSET = 0xa,
MCU_ATE_SET_TX_POWER_CONTROL = 0x15,
};
struct mt7615_mcu_uni_event {
u8 cid;
u8 pad[3];
__le32 status; /* 0: success, others: fail */
} __packed;
struct mt7615_mcu_reg_event {
__le32 reg;
__le32 val;
} __packed;
struct mt7615_roc_tlv {
u8 bss_idx;
u8 token;
u8 active;
u8 primary_chan;
u8 sco;
u8 band;
u8 width; /* To support 80/160MHz bandwidth */
u8 freq_seg1; /* To support 80/160MHz bandwidth */
u8 freq_seg2; /* To support 80/160MHz bandwidth */
u8 req_type;
u8 dbdc_band;
u8 rsv0;
__le32 max_interval; /* ms */
u8 rsv1[8];
} __packed;
enum {
FW_STATE_PWR_ON = 1,
FW_STATE_N9_RDY = 2,
};
enum {
DBDC_TYPE_WMM,
DBDC_TYPE_MGMT,
DBDC_TYPE_BSS,
DBDC_TYPE_MBSS,
DBDC_TYPE_REPEATER,
DBDC_TYPE_MU,
DBDC_TYPE_BF,
DBDC_TYPE_PTA,
__DBDC_TYPE_MAX,
};
#endif

View File

@ -0,0 +1,292 @@
// SPDX-License-Identifier: ISC
/* Copyright (C) 2020 MediaTek Inc. */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pci.h>
#include "mt7615.h"
#include "regs.h"
#include "mac.h"
#include "../trace.h"
const u32 mt7615e_reg_map[] = {
[MT_TOP_CFG_BASE] = 0x01000,
[MT_HW_BASE] = 0x01000,
[MT_PCIE_REMAP_2] = 0x02504,
[MT_ARB_BASE] = 0x20c00,
[MT_HIF_BASE] = 0x04000,
[MT_CSR_BASE] = 0x07000,
[MT_PLE_BASE] = 0x08000,
[MT_PSE_BASE] = 0x0c000,
[MT_CFG_BASE] = 0x20200,
[MT_AGG_BASE] = 0x20a00,
[MT_TMAC_BASE] = 0x21000,
[MT_RMAC_BASE] = 0x21200,
[MT_DMA_BASE] = 0x21800,
[MT_PF_BASE] = 0x22000,
[MT_WTBL_BASE_ON] = 0x23000,
[MT_WTBL_BASE_OFF] = 0x23400,
[MT_LPON_BASE] = 0x24200,
[MT_MIB_BASE] = 0x24800,
[MT_WTBL_BASE_ADDR] = 0x30000,
[MT_PCIE_REMAP_BASE2] = 0x80000,
[MT_TOP_MISC_BASE] = 0xc0000,
[MT_EFUSE_ADDR_BASE] = 0x81070000,
};
const u32 mt7663e_reg_map[] = {
[MT_TOP_CFG_BASE] = 0x01000,
[MT_HW_BASE] = 0x02000,
[MT_DMA_SHDL_BASE] = 0x06000,
[MT_PCIE_REMAP_2] = 0x0700c,
[MT_ARB_BASE] = 0x20c00,
[MT_HIF_BASE] = 0x04000,
[MT_CSR_BASE] = 0x07000,
[MT_PLE_BASE] = 0x08000,
[MT_PSE_BASE] = 0x0c000,
[MT_PP_BASE] = 0x0e000,
[MT_CFG_BASE] = 0x20000,
[MT_AGG_BASE] = 0x22000,
[MT_TMAC_BASE] = 0x24000,
[MT_RMAC_BASE] = 0x25000,
[MT_DMA_BASE] = 0x27000,
[MT_PF_BASE] = 0x28000,
[MT_WTBL_BASE_ON] = 0x29000,
[MT_WTBL_BASE_OFF] = 0x29800,
[MT_LPON_BASE] = 0x2b000,
[MT_MIB_BASE] = 0x2d000,
[MT_WTBL_BASE_ADDR] = 0x30000,
[MT_PCIE_REMAP_BASE2] = 0x90000,
[MT_TOP_MISC_BASE] = 0xc0000,
[MT_EFUSE_ADDR_BASE] = 0x78011000,
};
u32 mt7615_reg_map(struct mt7615_dev *dev, u32 addr)
{
u32 base, offset;
if (is_mt7663(&dev->mt76)) {
base = addr & MT7663_MCU_PCIE_REMAP_2_BASE;
offset = addr & MT7663_MCU_PCIE_REMAP_2_OFFSET;
} else {
base = addr & MT_MCU_PCIE_REMAP_2_BASE;
offset = addr & MT_MCU_PCIE_REMAP_2_OFFSET;
}
mt76_wr(dev, MT_MCU_PCIE_REMAP_2, base);
return MT_PCIE_REMAP_BASE_2 + offset;
}
static void
mt7615_rx_poll_complete(struct mt76_dev *mdev, enum mt76_rxq_id q)
{
struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
mt7615_irq_enable(dev, MT_INT_RX_DONE(q));
}
static irqreturn_t mt7615_irq_handler(int irq, void *dev_instance)
{
struct mt7615_dev *dev = dev_instance;
mt76_wr(dev, MT_INT_MASK_CSR, 0);
if (!test_bit(MT76_STATE_INITIALIZED, &dev->mphy.state))
return IRQ_NONE;
tasklet_schedule(&dev->irq_tasklet);
return IRQ_HANDLED;
}
static void mt7615_irq_tasklet(struct tasklet_struct *t)
{
struct mt7615_dev *dev = from_tasklet(dev, t, irq_tasklet);
u32 intr, mask = 0, tx_mcu_mask = mt7615_tx_mcu_int_mask(dev);
u32 mcu_int;
mt76_wr(dev, MT_INT_MASK_CSR, 0);
intr = mt76_rr(dev, MT_INT_SOURCE_CSR);
intr &= dev->mt76.mmio.irqmask;
mt76_wr(dev, MT_INT_SOURCE_CSR, intr);
trace_dev_irq(&dev->mt76, intr, dev->mt76.mmio.irqmask);
mask |= intr & MT_INT_RX_DONE_ALL;
if (intr & tx_mcu_mask)
mask |= tx_mcu_mask;
mt76_set_irq_mask(&dev->mt76, MT_INT_MASK_CSR, mask, 0);
if (intr & tx_mcu_mask)
napi_schedule(&dev->mt76.tx_napi);
if (intr & MT_INT_RX_DONE(0))
napi_schedule(&dev->mt76.napi[0]);
if (intr & MT_INT_RX_DONE(1))
napi_schedule(&dev->mt76.napi[1]);
if (!(intr & (MT_INT_MCU_CMD | MT7663_INT_MCU_CMD)))
return;
if (is_mt7663(&dev->mt76)) {
mcu_int = mt76_rr(dev, MT_MCU2HOST_INT_STATUS);
mcu_int &= MT7663_MCU_CMD_ERROR_MASK;
mt76_wr(dev, MT_MCU2HOST_INT_STATUS, mcu_int);
} else {
mcu_int = mt76_rr(dev, MT_MCU_CMD);
mcu_int &= MT_MCU_CMD_ERROR_MASK;
}
if (!mcu_int)
return;
dev->reset_state = mcu_int;
queue_work(dev->mt76.wq, &dev->reset_work);
wake_up(&dev->reset_wait);
}
static u32 __mt7615_reg_addr(struct mt7615_dev *dev, u32 addr)
{
if (addr < 0x100000)
return addr;
return mt7615_reg_map(dev, addr);
}
static u32 mt7615_rr(struct mt76_dev *mdev, u32 offset)
{
struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
u32 addr = __mt7615_reg_addr(dev, offset);
return dev->bus_ops->rr(mdev, addr);
}
static void mt7615_wr(struct mt76_dev *mdev, u32 offset, u32 val)
{
struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
u32 addr = __mt7615_reg_addr(dev, offset);
dev->bus_ops->wr(mdev, addr, val);
}
static u32 mt7615_rmw(struct mt76_dev *mdev, u32 offset, u32 mask, u32 val)
{
struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
u32 addr = __mt7615_reg_addr(dev, offset);
return dev->bus_ops->rmw(mdev, addr, mask, val);
}
int mt7615_mmio_probe(struct device *pdev, void __iomem *mem_base,
int irq, const u32 *map)
{
static const struct mt76_driver_ops drv_ops = {
/* txwi_size = txd size + txp size */
.txwi_size = MT_TXD_SIZE + sizeof(struct mt76_connac_txp_common),
.drv_flags = MT_DRV_TXWI_NO_FREE | MT_DRV_HW_MGMT_TXQ,
.survey_flags = SURVEY_INFO_TIME_TX |
SURVEY_INFO_TIME_RX |
SURVEY_INFO_TIME_BSS_RX,
.token_size = MT7615_TOKEN_SIZE,
.tx_prepare_skb = mt7615_tx_prepare_skb,
.tx_complete_skb = mt76_connac_tx_complete_skb,
.rx_check = mt7615_rx_check,
.rx_skb = mt7615_queue_rx_skb,
.rx_poll_complete = mt7615_rx_poll_complete,
.sta_ps = mt7615_sta_ps,
.sta_add = mt7615_mac_sta_add,
.sta_remove = mt7615_mac_sta_remove,
.update_survey = mt7615_update_channel,
};
struct mt76_bus_ops *bus_ops;
struct ieee80211_ops *ops;
struct mt7615_dev *dev;
struct mt76_dev *mdev;
int ret;
ops = devm_kmemdup(pdev, &mt7615_ops, sizeof(mt7615_ops), GFP_KERNEL);
if (!ops)
return -ENOMEM;
mdev = mt76_alloc_device(pdev, sizeof(*dev), ops, &drv_ops);
if (!mdev)
return -ENOMEM;
dev = container_of(mdev, struct mt7615_dev, mt76);
mt76_mmio_init(&dev->mt76, mem_base);
tasklet_setup(&dev->irq_tasklet, mt7615_irq_tasklet);
dev->reg_map = map;
dev->ops = ops;
mdev->rev = (mt76_rr(dev, MT_HW_CHIPID) << 16) |
(mt76_rr(dev, MT_HW_REV) & 0xff);
dev_dbg(mdev->dev, "ASIC revision: %04x\n", mdev->rev);
dev->bus_ops = dev->mt76.bus;
bus_ops = devm_kmemdup(dev->mt76.dev, dev->bus_ops, sizeof(*bus_ops),
GFP_KERNEL);
if (!bus_ops) {
ret = -ENOMEM;
goto err_free_dev;
}
bus_ops->rr = mt7615_rr;
bus_ops->wr = mt7615_wr;
bus_ops->rmw = mt7615_rmw;
dev->mt76.bus = bus_ops;
mt76_wr(dev, MT_INT_MASK_CSR, 0);
ret = devm_request_irq(mdev->dev, irq, mt7615_irq_handler,
IRQF_SHARED, KBUILD_MODNAME, dev);
if (ret)
goto err_free_dev;
if (is_mt7663(mdev))
mt76_wr(dev, MT_PCIE_IRQ_ENABLE, 1);
ret = mt7615_register_device(dev);
if (ret)
goto err_free_irq;
return 0;
err_free_irq:
devm_free_irq(pdev, irq, dev);
err_free_dev:
mt76_free_device(&dev->mt76);
return ret;
}
static int __init mt7615_init(void)
{
int ret;
ret = pci_register_driver(&mt7615_pci_driver);
if (ret)
return ret;
if (IS_ENABLED(CONFIG_MT7622_WMAC)) {
ret = platform_driver_register(&mt7622_wmac_driver);
if (ret)
pci_unregister_driver(&mt7615_pci_driver);
}
return ret;
}
static void __exit mt7615_exit(void)
{
if (IS_ENABLED(CONFIG_MT7622_WMAC))
platform_driver_unregister(&mt7622_wmac_driver);
pci_unregister_driver(&mt7615_pci_driver);
}
module_init(mt7615_init);
module_exit(mt7615_exit);
MODULE_LICENSE("Dual BSD/GPL");

View File

@ -0,0 +1,565 @@
/* SPDX-License-Identifier: ISC */
/* Copyright (C) 2019 MediaTek Inc. */
#ifndef __MT7615_H
#define __MT7615_H
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/ktime.h>
#include <linux/regmap.h>
#include "../mt76_connac_mcu.h"
#include "regs.h"
#define MT7615_MAX_INTERFACES 16
#define MT7615_MAX_WMM_SETS 4
#define MT7663_WTBL_SIZE 32
#define MT7615_WTBL_SIZE 128
#define MT7615_WTBL_RESERVED (mt7615_wtbl_size(dev) - 1)
#define MT7615_WTBL_STA (MT7615_WTBL_RESERVED - \
MT7615_MAX_INTERFACES)
#define MT7615_PM_TIMEOUT (HZ / 12)
#define MT7615_HW_SCAN_TIMEOUT (HZ / 10)
#define MT7615_RESET_TIMEOUT (30 * HZ)
#define MT7615_RATE_RETRY 2
#define MT7615_TX_RING_SIZE 1024
#define MT7615_TX_MGMT_RING_SIZE 128
#define MT7615_TX_MCU_RING_SIZE 128
#define MT7615_TX_FWDL_RING_SIZE 128
#define MT7615_RX_RING_SIZE 1024
#define MT7615_RX_MCU_RING_SIZE 512
#define MT7615_DRV_OWN_RETRY_COUNT 10
#define MT7615_FIRMWARE_CR4 "mediatek/mt7615_cr4.bin"
#define MT7615_FIRMWARE_N9 "mediatek/mt7615_n9.bin"
#define MT7615_ROM_PATCH "mediatek/mt7615_rom_patch.bin"
#define MT7622_FIRMWARE_N9 "mediatek/mt7622_n9.bin"
#define MT7622_ROM_PATCH "mediatek/mt7622_rom_patch.bin"
#define MT7615_FIRMWARE_V1 1
#define MT7615_FIRMWARE_V2 2
#define MT7615_FIRMWARE_V3 3
#define MT7663_OFFLOAD_ROM_PATCH "mediatek/mt7663pr2h.bin"
#define MT7663_OFFLOAD_FIRMWARE_N9 "mediatek/mt7663_n9_v3.bin"
#define MT7663_ROM_PATCH "mediatek/mt7663pr2h_rebb.bin"
#define MT7663_FIRMWARE_N9 "mediatek/mt7663_n9_rebb.bin"
#define MT7615_EEPROM_SIZE 1024
#define MT7615_TOKEN_SIZE 4096
#define MT_FRAC_SCALE 12
#define MT_FRAC(val, div) (((val) << MT_FRAC_SCALE) / (div))
#define MT_CHFREQ_VALID BIT(7)
#define MT_CHFREQ_DBDC_IDX BIT(6)
#define MT_CHFREQ_SEQ GENMASK(5, 0)
#define MT7615_BAR_RATE_DEFAULT 0x4b /* OFDM 6M */
#define MT7615_CFEND_RATE_DEFAULT 0x49 /* OFDM 24M */
#define MT7615_CFEND_RATE_11B 0x03 /* 11B LP, 11M */
struct mt7615_vif;
struct mt7615_sta;
struct mt7615_dfs_pulse;
struct mt7615_dfs_pattern;
enum mt7615_cipher_type;
enum mt7615_hw_txq_id {
MT7615_TXQ_MAIN,
MT7615_TXQ_EXT,
MT7615_TXQ_MCU,
MT7615_TXQ_FWDL,
};
enum mt7622_hw_txq_id {
MT7622_TXQ_AC0,
MT7622_TXQ_AC1,
MT7622_TXQ_AC2,
MT7622_TXQ_FWDL = MT7615_TXQ_FWDL,
MT7622_TXQ_AC3,
MT7622_TXQ_MGMT,
MT7622_TXQ_MCU = 15,
};
struct mt7615_rate_set {
struct ieee80211_tx_rate probe_rate;
struct ieee80211_tx_rate rates[4];
};
struct mt7615_rate_desc {
bool rateset;
u16 probe_val;
u16 val[4];
u8 bw_idx;
u8 bw;
};
struct mt7615_wtbl_rate_desc {
struct list_head node;
struct mt7615_rate_desc rate;
struct mt7615_sta *sta;
};
struct mt7663s_intr {
u32 isr;
struct {
u32 wtqcr[8];
} tx;
struct {
u16 num[2];
u16 len[2][16];
} rx;
u32 rec_mb[2];
} __packed;
struct mt7615_sta {
struct mt76_wcid wcid; /* must be first */
struct mt7615_vif *vif;
struct list_head poll_list;
u32 airtime_ac[8];
struct ieee80211_tx_rate rates[4];
struct mt7615_rate_set rateset[2];
u32 rate_set_tsf;
u8 rate_count;
u8 n_rates;
u8 rate_probe;
};
struct mt7615_vif {
struct mt76_vif mt76; /* must be first */
struct mt7615_sta sta;
bool sta_added;
};
struct mib_stats {
u32 ack_fail_cnt;
u32 fcs_err_cnt;
u32 rts_cnt;
u32 rts_retries_cnt;
u32 ba_miss_cnt;
unsigned long aggr_per;
};
struct mt7615_phy {
struct mt76_phy *mt76;
struct mt7615_dev *dev;
struct ieee80211_vif *monitor_vif;
u8 n_beacon_vif;
u32 rxfilter;
u64 omac_mask;
u16 noise;
bool scs_en;
unsigned long last_cca_adj;
int false_cca_ofdm, false_cca_cck;
s8 ofdm_sensitivity;
s8 cck_sensitivity;
s16 coverage_class;
u8 slottime;
u8 chfreq;
u8 rdd_state;
u32 rx_ampdu_ts;
u32 ampdu_ref;
struct mib_stats mib;
struct sk_buff_head scan_event_list;
struct delayed_work scan_work;
struct work_struct roc_work;
struct timer_list roc_timer;
wait_queue_head_t roc_wait;
bool roc_grant;
#ifdef CONFIG_NL80211_TESTMODE
struct {
u32 *reg_backup;
s16 last_freq_offset;
u8 last_rcpi[4];
s8 last_ib_rssi[4];
s8 last_wb_rssi[4];
} test;
#endif
};
#define mt7615_mcu_add_tx_ba(dev, ...) (dev)->mcu_ops->add_tx_ba((dev), __VA_ARGS__)
#define mt7615_mcu_add_rx_ba(dev, ...) (dev)->mcu_ops->add_rx_ba((dev), __VA_ARGS__)
#define mt7615_mcu_sta_add(phy, ...) ((phy)->dev)->mcu_ops->sta_add((phy), __VA_ARGS__)
#define mt7615_mcu_add_dev_info(phy, ...) ((phy)->dev)->mcu_ops->add_dev_info((phy), __VA_ARGS__)
#define mt7615_mcu_add_bss_info(phy, ...) ((phy)->dev)->mcu_ops->add_bss_info((phy), __VA_ARGS__)
#define mt7615_mcu_add_beacon(dev, ...) (dev)->mcu_ops->add_beacon_offload((dev), __VA_ARGS__)
#define mt7615_mcu_set_pm(dev, ...) (dev)->mcu_ops->set_pm_state((dev), __VA_ARGS__)
#define mt7615_mcu_set_drv_ctrl(dev) (dev)->mcu_ops->set_drv_ctrl((dev))
#define mt7615_mcu_set_fw_ctrl(dev) (dev)->mcu_ops->set_fw_ctrl((dev))
#define mt7615_mcu_set_sta_decap_offload(dev, ...) (dev)->mcu_ops->set_sta_decap_offload((dev), __VA_ARGS__)
struct mt7615_mcu_ops {
int (*add_tx_ba)(struct mt7615_dev *dev,
struct ieee80211_ampdu_params *params,
bool enable);
int (*add_rx_ba)(struct mt7615_dev *dev,
struct ieee80211_ampdu_params *params,
bool enable);
int (*sta_add)(struct mt7615_phy *phy, struct ieee80211_vif *vif,
struct ieee80211_sta *sta, bool enable);
int (*add_dev_info)(struct mt7615_phy *phy, struct ieee80211_vif *vif,
bool enable);
int (*add_bss_info)(struct mt7615_phy *phy, struct ieee80211_vif *vif,
struct ieee80211_sta *sta, bool enable);
int (*add_beacon_offload)(struct mt7615_dev *dev,
struct ieee80211_hw *hw,
struct ieee80211_vif *vif, bool enable);
int (*set_pm_state)(struct mt7615_dev *dev, int band, int state);
int (*set_drv_ctrl)(struct mt7615_dev *dev);
int (*set_fw_ctrl)(struct mt7615_dev *dev);
int (*set_sta_decap_offload)(struct mt7615_dev *dev,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
};
struct mt7615_dev {
union { /* must be first */
struct mt76_dev mt76;
struct mt76_phy mphy;
};
const struct mt76_bus_ops *bus_ops;
struct tasklet_struct irq_tasklet;
struct mt7615_phy phy;
u64 omac_mask;
u16 chainmask;
struct ieee80211_ops *ops;
const struct mt7615_mcu_ops *mcu_ops;
struct regmap *infracfg;
const u32 *reg_map;
struct work_struct mcu_work;
struct work_struct reset_work;
wait_queue_head_t reset_wait;
u32 reset_state;
struct list_head sta_poll_list;
spinlock_t sta_poll_lock;
struct {
u8 n_pulses;
u32 period;
u16 width;
s16 power;
} radar_pattern;
u32 hw_pattern;
bool fw_debug;
bool flash_eeprom;
bool dbdc_support;
u8 fw_ver;
struct work_struct rate_work;
struct list_head wrd_head;
u32 debugfs_rf_wf;
u32 debugfs_rf_reg;
u32 muar_mask;
struct mt76_connac_pm pm;
struct mt76_connac_coredump coredump;
};
enum tx_pkt_queue_idx {
MT_LMAC_AC00,
MT_LMAC_AC01,
MT_LMAC_AC02,
MT_LMAC_AC03,
MT_LMAC_ALTX0 = 0x10,
MT_LMAC_BMC0,
MT_LMAC_BCN0,
MT_LMAC_PSMP0,
MT_LMAC_ALTX1,
MT_LMAC_BMC1,
MT_LMAC_BCN1,
MT_LMAC_PSMP1,
};
enum {
MT_RX_SEL0,
MT_RX_SEL1,
};
enum mt7615_rdd_cmd {
RDD_STOP,
RDD_START,
RDD_DET_MODE,
RDD_DET_STOP,
RDD_CAC_START,
RDD_CAC_END,
RDD_NORMAL_START,
RDD_DISABLE_DFS_CAL,
RDD_PULSE_DBG,
RDD_READ_PULSE,
RDD_RESUME_BF,
};
static inline struct mt7615_phy *
mt7615_hw_phy(struct ieee80211_hw *hw)
{
struct mt76_phy *phy = hw->priv;
return phy->priv;
}
static inline struct mt7615_dev *
mt7615_hw_dev(struct ieee80211_hw *hw)
{
struct mt76_phy *phy = hw->priv;
return container_of(phy->dev, struct mt7615_dev, mt76);
}
static inline struct mt7615_phy *
mt7615_ext_phy(struct mt7615_dev *dev)
{
struct mt76_phy *phy = dev->mt76.phys[MT_BAND1];
if (!phy)
return NULL;
return phy->priv;
}
extern struct ieee80211_rate mt7615_rates[12];
extern const struct ieee80211_ops mt7615_ops;
extern const u32 mt7615e_reg_map[__MT_BASE_MAX];
extern const u32 mt7663e_reg_map[__MT_BASE_MAX];
extern const u32 mt7663_usb_sdio_reg_map[__MT_BASE_MAX];
extern struct pci_driver mt7615_pci_driver;
extern struct platform_driver mt7622_wmac_driver;
extern const struct mt76_testmode_ops mt7615_testmode_ops;
#ifdef CONFIG_MT7622_WMAC
int mt7622_wmac_init(struct mt7615_dev *dev);
#else
static inline int mt7622_wmac_init(struct mt7615_dev *dev)
{
return 0;
}
#endif
int mt7615_thermal_init(struct mt7615_dev *dev);
int mt7615_mmio_probe(struct device *pdev, void __iomem *mem_base,
int irq, const u32 *map);
u32 mt7615_reg_map(struct mt7615_dev *dev, u32 addr);
void mt7615_init_device(struct mt7615_dev *dev);
int mt7615_register_device(struct mt7615_dev *dev);
void mt7615_unregister_device(struct mt7615_dev *dev);
int mt7615_register_ext_phy(struct mt7615_dev *dev);
void mt7615_unregister_ext_phy(struct mt7615_dev *dev);
int mt7615_eeprom_init(struct mt7615_dev *dev, u32 addr);
int mt7615_eeprom_get_target_power_index(struct mt7615_dev *dev,
struct ieee80211_channel *chan,
u8 chain_idx);
int mt7615_eeprom_get_power_delta_index(struct mt7615_dev *dev,
enum nl80211_band band);
int mt7615_wait_pdma_busy(struct mt7615_dev *dev);
int mt7615_dma_init(struct mt7615_dev *dev);
void mt7615_dma_start(struct mt7615_dev *dev);
void mt7615_dma_cleanup(struct mt7615_dev *dev);
int mt7615_mcu_init(struct mt7615_dev *dev);
bool mt7615_wait_for_mcu_init(struct mt7615_dev *dev);
void mt7615_mac_set_rates(struct mt7615_phy *phy, struct mt7615_sta *sta,
struct ieee80211_tx_rate *probe_rate,
struct ieee80211_tx_rate *rates);
void mt7615_pm_wake_work(struct work_struct *work);
void mt7615_pm_power_save_work(struct work_struct *work);
int mt7615_mcu_del_wtbl_all(struct mt7615_dev *dev);
int mt7615_mcu_set_chan_info(struct mt7615_phy *phy, int cmd);
int mt7615_mcu_set_wmm(struct mt7615_dev *dev, u8 queue,
const struct ieee80211_tx_queue_params *params);
void mt7615_mcu_rx_event(struct mt7615_dev *dev, struct sk_buff *skb);
int mt7615_mcu_rdd_send_pattern(struct mt7615_dev *dev);
int mt7615_mcu_fw_log_2_host(struct mt7615_dev *dev, u8 ctrl);
static inline void mt7615_irq_enable(struct mt7615_dev *dev, u32 mask)
{
mt76_set_irq_mask(&dev->mt76, 0, 0, mask);
tasklet_schedule(&dev->irq_tasklet);
}
static inline bool mt7615_firmware_offload(struct mt7615_dev *dev)
{
return dev->fw_ver > MT7615_FIRMWARE_V2;
}
static inline u16 mt7615_wtbl_size(struct mt7615_dev *dev)
{
if (is_mt7663(&dev->mt76) && mt7615_firmware_offload(dev))
return MT7663_WTBL_SIZE;
else
return MT7615_WTBL_SIZE;
}
#define mt7615_mutex_acquire(dev) \
mt76_connac_mutex_acquire(&(dev)->mt76, &(dev)->pm)
#define mt7615_mutex_release(dev) \
mt76_connac_mutex_release(&(dev)->mt76, &(dev)->pm)
static inline u8 mt7615_lmac_mapping(struct mt7615_dev *dev, u8 ac)
{
static const u8 lmac_queue_map[] = {
[IEEE80211_AC_BK] = MT_LMAC_AC00,
[IEEE80211_AC_BE] = MT_LMAC_AC01,
[IEEE80211_AC_VI] = MT_LMAC_AC02,
[IEEE80211_AC_VO] = MT_LMAC_AC03,
};
if (WARN_ON_ONCE(ac >= ARRAY_SIZE(lmac_queue_map)))
return MT_LMAC_AC01; /* BE */
return lmac_queue_map[ac];
}
static inline u32 mt7615_tx_mcu_int_mask(struct mt7615_dev *dev)
{
return MT_INT_TX_DONE(dev->mt76.q_mcu[MT_MCUQ_WM]->hw_idx);
}
static inline unsigned long
mt7615_get_macwork_timeout(struct mt7615_dev *dev)
{
return dev->pm.enable ? HZ / 3 : HZ / 10;
}
void mt7615_dma_reset(struct mt7615_dev *dev);
void mt7615_scan_work(struct work_struct *work);
void mt7615_roc_work(struct work_struct *work);
void mt7615_roc_timer(struct timer_list *timer);
void mt7615_init_txpower(struct mt7615_dev *dev,
struct ieee80211_supported_band *sband);
int mt7615_set_channel(struct mt7615_phy *phy);
void mt7615_init_work(struct mt7615_dev *dev);
int mt7615_mcu_restart(struct mt76_dev *dev);
void mt7615_update_channel(struct mt76_phy *mphy);
bool mt7615_mac_wtbl_update(struct mt7615_dev *dev, int idx, u32 mask);
void mt7615_mac_reset_counters(struct mt7615_dev *dev);
void mt7615_mac_cca_stats_reset(struct mt7615_phy *phy);
void mt7615_mac_set_scs(struct mt7615_phy *phy, bool enable);
void mt7615_mac_enable_nf(struct mt7615_dev *dev, bool ext_phy);
void mt7615_mac_sta_poll(struct mt7615_dev *dev);
int mt7615_mac_write_txwi(struct mt7615_dev *dev, __le32 *txwi,
struct sk_buff *skb, struct mt76_wcid *wcid,
struct ieee80211_sta *sta, int pid,
struct ieee80211_key_conf *key,
enum mt76_txq_id qid, bool beacon);
void mt7615_mac_set_timing(struct mt7615_phy *phy);
int __mt7615_mac_wtbl_set_key(struct mt7615_dev *dev,
struct mt76_wcid *wcid,
struct ieee80211_key_conf *key,
enum set_key_cmd cmd);
int mt7615_mac_wtbl_set_key(struct mt7615_dev *dev, struct mt76_wcid *wcid,
struct ieee80211_key_conf *key,
enum set_key_cmd cmd);
void mt7615_mac_reset_work(struct work_struct *work);
u32 mt7615_mac_get_sta_tid_sn(struct mt7615_dev *dev, int wcid, u8 tid);
int mt7615_mcu_parse_response(struct mt76_dev *mdev, int cmd,
struct sk_buff *skb, int seq);
u32 mt7615_rf_rr(struct mt7615_dev *dev, u32 wf, u32 reg);
int mt7615_rf_wr(struct mt7615_dev *dev, u32 wf, u32 reg, u32 val);
int mt7615_mcu_set_dbdc(struct mt7615_dev *dev);
int mt7615_mcu_set_eeprom(struct mt7615_dev *dev);
int mt7615_mcu_get_temperature(struct mt7615_dev *dev);
int mt7615_mcu_set_tx_power(struct mt7615_phy *phy);
void mt7615_mcu_exit(struct mt7615_dev *dev);
void mt7615_mcu_fill_msg(struct mt7615_dev *dev, struct sk_buff *skb,
int cmd, int *wait_seq);
int mt7615_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr,
enum mt76_txq_id qid, struct mt76_wcid *wcid,
struct ieee80211_sta *sta,
struct mt76_tx_info *tx_info);
void mt7615_tx_worker(struct mt76_worker *w);
void mt7615_tx_token_put(struct mt7615_dev *dev);
bool mt7615_rx_check(struct mt76_dev *mdev, void *data, int len);
void mt7615_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q,
struct sk_buff *skb);
void mt7615_sta_ps(struct mt76_dev *mdev, struct ieee80211_sta *sta, bool ps);
int mt7615_mac_sta_add(struct mt76_dev *mdev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
void mt7615_mac_sta_remove(struct mt76_dev *mdev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
void mt7615_mac_work(struct work_struct *work);
int mt7615_mcu_set_rx_hdr_trans_blacklist(struct mt7615_dev *dev);
int mt7615_mcu_set_fcc5_lpn(struct mt7615_dev *dev, int val);
int mt7615_mcu_set_pulse_th(struct mt7615_dev *dev,
const struct mt7615_dfs_pulse *pulse);
int mt7615_mcu_set_radar_th(struct mt7615_dev *dev, int index,
const struct mt7615_dfs_pattern *pattern);
int mt7615_mcu_set_test_param(struct mt7615_dev *dev, u8 param, bool test_mode,
u32 val);
int mt7615_mcu_set_sku_en(struct mt7615_phy *phy, bool enable);
int mt7615_mcu_apply_rx_dcoc(struct mt7615_phy *phy);
int mt7615_mcu_apply_tx_dpd(struct mt7615_phy *phy);
int mt7615_dfs_init_radar_detector(struct mt7615_phy *phy);
int mt7615_mcu_set_roc(struct mt7615_phy *phy, struct ieee80211_vif *vif,
struct ieee80211_channel *chan, int duration);
int mt7615_init_debugfs(struct mt7615_dev *dev);
int mt7615_mcu_wait_response(struct mt7615_dev *dev, int cmd, int seq);
int mt7615_mac_set_beacon_filter(struct mt7615_phy *phy,
struct ieee80211_vif *vif,
bool enable);
int mt7615_mcu_set_bss_pm(struct mt7615_dev *dev, struct ieee80211_vif *vif,
bool enable);
int __mt7663_load_firmware(struct mt7615_dev *dev);
void mt7615_coredump_work(struct work_struct *work);
void mt7622_trigger_hif_int(struct mt7615_dev *dev, bool en);
/* usb */
int mt7663_usb_sdio_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr,
enum mt76_txq_id qid, struct mt76_wcid *wcid,
struct ieee80211_sta *sta,
struct mt76_tx_info *tx_info);
bool mt7663_usb_sdio_tx_status_data(struct mt76_dev *mdev, u8 *update);
void mt7663_usb_sdio_tx_complete_skb(struct mt76_dev *mdev,
struct mt76_queue_entry *e);
int mt7663_usb_sdio_register_device(struct mt7615_dev *dev);
int mt7663u_mcu_init(struct mt7615_dev *dev);
int mt7663u_mcu_power_on(struct mt7615_dev *dev);
/* sdio */
int mt7663s_mcu_init(struct mt7615_dev *dev);
#endif

View File

@ -0,0 +1,56 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2019 Lorenzo Bianconi <lorenzo@kernel.org>
*/
#if !defined(__MT7615_TRACE_H) || defined(TRACE_HEADER_MULTI_READ)
#define __MT7615_TRACE_H
#include <linux/tracepoint.h>
#include "mt7615.h"
#undef TRACE_SYSTEM
#define TRACE_SYSTEM mt7615
#define MAXNAME 32
#define DEV_ENTRY __array(char, wiphy_name, 32)
#define DEV_ASSIGN strlcpy(__entry->wiphy_name, \
wiphy_name(mt76_hw(dev)->wiphy), MAXNAME)
#define DEV_PR_FMT "%s"
#define DEV_PR_ARG __entry->wiphy_name
#define TOKEN_ENTRY __field(u16, token)
#define TOKEN_ASSIGN __entry->token = token
#define TOKEN_PR_FMT " %d"
#define TOKEN_PR_ARG __entry->token
DECLARE_EVENT_CLASS(dev_token,
TP_PROTO(struct mt7615_dev *dev, u16 token),
TP_ARGS(dev, token),
TP_STRUCT__entry(
DEV_ENTRY
TOKEN_ENTRY
),
TP_fast_assign(
DEV_ASSIGN;
TOKEN_ASSIGN;
),
TP_printk(
DEV_PR_FMT TOKEN_PR_FMT,
DEV_PR_ARG, TOKEN_PR_ARG
)
);
DEFINE_EVENT(dev_token, mac_tx_free,
TP_PROTO(struct mt7615_dev *dev, u16 token),
TP_ARGS(dev, token)
);
#endif
#undef TRACE_INCLUDE_PATH
#define TRACE_INCLUDE_PATH .
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_FILE mt7615_trace
#include <trace/define_trace.h>

View File

@ -0,0 +1,202 @@
// SPDX-License-Identifier: ISC
/* Copyright (C) 2019 MediaTek Inc.
*
* Author: Ryder Lee <ryder.lee@mediatek.com>
* Felix Fietkau <nbd@nbd.name>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include "mt7615.h"
#include "mcu.h"
static const struct pci_device_id mt7615_pci_device_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7615) },
{ PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7663) },
{ PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7611) },
{ },
};
static int mt7615_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
const u32 *map;
int ret;
ret = pcim_enable_device(pdev);
if (ret)
return ret;
ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
if (ret)
return ret;
pci_set_master(pdev);
ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
if (ret < 0)
return ret;
ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
if (ret)
goto error;
mt76_pci_disable_aspm(pdev);
map = id->device == 0x7663 ? mt7663e_reg_map : mt7615e_reg_map;
ret = mt7615_mmio_probe(&pdev->dev, pcim_iomap_table(pdev)[0],
pdev->irq, map);
if (ret)
goto error;
return 0;
error:
pci_free_irq_vectors(pdev);
return ret;
}
static void mt7615_pci_remove(struct pci_dev *pdev)
{
struct mt76_dev *mdev = pci_get_drvdata(pdev);
struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
mt7615_unregister_device(dev);
devm_free_irq(&pdev->dev, pdev->irq, dev);
pci_free_irq_vectors(pdev);
}
#ifdef CONFIG_PM
static int mt7615_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct mt76_dev *mdev = pci_get_drvdata(pdev);
struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
bool hif_suspend;
int i, err;
err = mt76_connac_pm_wake(&dev->mphy, &dev->pm);
if (err < 0)
return err;
hif_suspend = !test_bit(MT76_STATE_SUSPEND, &dev->mphy.state) &&
mt7615_firmware_offload(dev);
if (hif_suspend) {
err = mt76_connac_mcu_set_hif_suspend(mdev, true);
if (err)
return err;
}
napi_disable(&mdev->tx_napi);
mt76_worker_disable(&mdev->tx_worker);
mt76_for_each_q_rx(mdev, i) {
napi_disable(&mdev->napi[i]);
}
tasklet_kill(&dev->irq_tasklet);
mt7615_dma_reset(dev);
err = mt7615_wait_pdma_busy(dev);
if (err)
goto restore;
if (is_mt7663(mdev)) {
mt76_set(dev, MT_PDMA_SLP_PROT, MT_PDMA_AXI_SLPPROT_ENABLE);
if (!mt76_poll_msec(dev, MT_PDMA_SLP_PROT,
MT_PDMA_AXI_SLPPROT_RDY,
MT_PDMA_AXI_SLPPROT_RDY, 1000)) {
dev_err(mdev->dev, "PDMA sleep protection failed\n");
err = -EIO;
goto restore;
}
}
pci_enable_wake(pdev, pci_choose_state(pdev, state), true);
pci_save_state(pdev);
err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
if (err)
goto restore;
err = mt7615_mcu_set_fw_ctrl(dev);
if (err)
goto restore;
return 0;
restore:
mt76_for_each_q_rx(mdev, i) {
napi_enable(&mdev->napi[i]);
}
napi_enable(&mdev->tx_napi);
if (hif_suspend)
mt76_connac_mcu_set_hif_suspend(mdev, false);
return err;
}
static int mt7615_pci_resume(struct pci_dev *pdev)
{
struct mt76_dev *mdev = pci_get_drvdata(pdev);
struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
bool pdma_reset;
int i, err;
err = mt7615_mcu_set_drv_ctrl(dev);
if (err < 0)
return err;
err = pci_set_power_state(pdev, PCI_D0);
if (err)
return err;
pci_restore_state(pdev);
if (is_mt7663(&dev->mt76)) {
mt76_clear(dev, MT_PDMA_SLP_PROT, MT_PDMA_AXI_SLPPROT_ENABLE);
mt76_wr(dev, MT_PCIE_IRQ_ENABLE, 1);
}
pdma_reset = !mt76_rr(dev, MT_WPDMA_TX_RING0_CTRL0) &&
!mt76_rr(dev, MT_WPDMA_TX_RING0_CTRL1);
if (pdma_reset)
dev_err(mdev->dev, "PDMA engine must be reinitialized\n");
mt76_worker_enable(&mdev->tx_worker);
local_bh_disable();
mt76_for_each_q_rx(mdev, i) {
napi_enable(&mdev->napi[i]);
napi_schedule(&mdev->napi[i]);
}
napi_enable(&mdev->tx_napi);
napi_schedule(&mdev->tx_napi);
local_bh_enable();
if (!test_bit(MT76_STATE_SUSPEND, &dev->mphy.state) &&
mt7615_firmware_offload(dev))
err = mt76_connac_mcu_set_hif_suspend(mdev, false);
return err;
}
#endif /* CONFIG_PM */
struct pci_driver mt7615_pci_driver = {
.name = KBUILD_MODNAME,
.id_table = mt7615_pci_device_table,
.probe = mt7615_pci_probe,
.remove = mt7615_pci_remove,
#ifdef CONFIG_PM
.suspend = mt7615_pci_suspend,
.resume = mt7615_pci_resume,
#endif /* CONFIG_PM */
};
MODULE_DEVICE_TABLE(pci, mt7615_pci_device_table);
MODULE_FIRMWARE(MT7615_FIRMWARE_CR4);
MODULE_FIRMWARE(MT7615_FIRMWARE_N9);
MODULE_FIRMWARE(MT7615_ROM_PATCH);
MODULE_FIRMWARE(MT7663_OFFLOAD_FIRMWARE_N9);
MODULE_FIRMWARE(MT7663_OFFLOAD_ROM_PATCH);
MODULE_FIRMWARE(MT7663_FIRMWARE_N9);
MODULE_FIRMWARE(MT7663_ROM_PATCH);

View File

@ -0,0 +1,186 @@
// SPDX-License-Identifier: ISC
/* Copyright (C) 2019 MediaTek Inc.
*
* Author: Roy Luo <royluo@google.com>
* Ryder Lee <ryder.lee@mediatek.com>
* Felix Fietkau <nbd@nbd.name>
* Lorenzo Bianconi <lorenzo@kernel.org>
*/
#include <linux/etherdevice.h>
#include "mt7615.h"
#include "mac.h"
#include "eeprom.h"
static void mt7615_pci_init_work(struct work_struct *work)
{
struct mt7615_dev *dev = container_of(work, struct mt7615_dev,
mcu_work);
int i, ret;
ret = mt7615_mcu_init(dev);
for (i = 0; (ret == -EAGAIN) && (i < 10); i++) {
msleep(200);
ret = mt7615_mcu_init(dev);
}
if (ret)
return;
mt7615_init_work(dev);
}
static int mt7615_init_hardware(struct mt7615_dev *dev)
{
u32 addr = mt7615_reg_map(dev, MT_EFUSE_BASE);
int ret, idx;
mt76_wr(dev, MT_INT_SOURCE_CSR, ~0);
INIT_WORK(&dev->mcu_work, mt7615_pci_init_work);
ret = mt7615_eeprom_init(dev, addr);
if (ret < 0)
return ret;
if (is_mt7663(&dev->mt76)) {
/* Reset RGU */
mt76_clear(dev, MT_MCU_CIRQ_IRQ_SEL(4), BIT(1));
mt76_set(dev, MT_MCU_CIRQ_IRQ_SEL(4), BIT(1));
}
ret = mt7615_dma_init(dev);
if (ret)
return ret;
set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state);
/* Beacon and mgmt frames should occupy wcid 0 */
idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7615_WTBL_STA - 1);
if (idx)
return -ENOSPC;
dev->mt76.global_wcid.idx = idx;
dev->mt76.global_wcid.hw_key_idx = -1;
rcu_assign_pointer(dev->mt76.wcid[idx], &dev->mt76.global_wcid);
return 0;
}
static void
mt7615_led_set_config(struct led_classdev *led_cdev,
u8 delay_on, u8 delay_off)
{
struct mt7615_dev *dev;
struct mt76_dev *mt76;
u32 val, addr;
mt76 = container_of(led_cdev, struct mt76_dev, led_cdev);
dev = container_of(mt76, struct mt7615_dev, mt76);
if (!mt76_connac_pm_ref(&dev->mphy, &dev->pm))
return;
val = FIELD_PREP(MT_LED_STATUS_DURATION, 0xffff) |
FIELD_PREP(MT_LED_STATUS_OFF, delay_off) |
FIELD_PREP(MT_LED_STATUS_ON, delay_on);
addr = mt7615_reg_map(dev, MT_LED_STATUS_0(mt76->led_pin));
mt76_wr(dev, addr, val);
addr = mt7615_reg_map(dev, MT_LED_STATUS_1(mt76->led_pin));
mt76_wr(dev, addr, val);
val = MT_LED_CTRL_REPLAY(mt76->led_pin) |
MT_LED_CTRL_KICK(mt76->led_pin);
if (mt76->led_al)
val |= MT_LED_CTRL_POLARITY(mt76->led_pin);
addr = mt7615_reg_map(dev, MT_LED_CTRL);
mt76_wr(dev, addr, val);
mt76_connac_pm_unref(&dev->mphy, &dev->pm);
}
static int
mt7615_led_set_blink(struct led_classdev *led_cdev,
unsigned long *delay_on,
unsigned long *delay_off)
{
u8 delta_on, delta_off;
delta_off = max_t(u8, *delay_off / 10, 1);
delta_on = max_t(u8, *delay_on / 10, 1);
mt7615_led_set_config(led_cdev, delta_on, delta_off);
return 0;
}
static void
mt7615_led_set_brightness(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
if (!brightness)
mt7615_led_set_config(led_cdev, 0, 0xff);
else
mt7615_led_set_config(led_cdev, 0xff, 0);
}
int mt7615_register_device(struct mt7615_dev *dev)
{
int ret;
mt7615_init_device(dev);
INIT_WORK(&dev->reset_work, mt7615_mac_reset_work);
/* init led callbacks */
if (IS_ENABLED(CONFIG_MT76_LEDS)) {
dev->mt76.led_cdev.brightness_set = mt7615_led_set_brightness;
dev->mt76.led_cdev.blink_set = mt7615_led_set_blink;
}
ret = mt7622_wmac_init(dev);
if (ret)
return ret;
ret = mt7615_init_hardware(dev);
if (ret)
return ret;
ret = mt76_register_device(&dev->mt76, true, mt76_rates,
ARRAY_SIZE(mt76_rates));
if (ret)
return ret;
ret = mt7615_thermal_init(dev);
if (ret)
return ret;
ieee80211_queue_work(mt76_hw(dev), &dev->mcu_work);
mt7615_init_txpower(dev, &dev->mphy.sband_2g.sband);
mt7615_init_txpower(dev, &dev->mphy.sband_5g.sband);
if (dev->dbdc_support) {
ret = mt7615_register_ext_phy(dev);
if (ret)
return ret;
}
return mt7615_init_debugfs(dev);
}
void mt7615_unregister_device(struct mt7615_dev *dev)
{
bool mcu_running;
mcu_running = mt7615_wait_for_mcu_init(dev);
mt7615_unregister_ext_phy(dev);
mt76_unregister_device(&dev->mt76);
if (mcu_running)
mt7615_mcu_exit(dev);
mt7615_tx_token_put(dev);
mt7615_dma_cleanup(dev);
tasklet_disable(&dev->irq_tasklet);
mt76_free_device(&dev->mt76);
}

View File

@ -0,0 +1,293 @@
// SPDX-License-Identifier: ISC
/* Copyright (C) 2020 MediaTek Inc.
*
* Author: Ryder Lee <ryder.lee@mediatek.com>
* Roy Luo <royluo@google.com>
* Felix Fietkau <nbd@nbd.name>
* Lorenzo Bianconi <lorenzo@kernel.org>
*/
#include <linux/etherdevice.h>
#include <linux/timekeeping.h>
#include "mt7615.h"
#include "../dma.h"
#include "mac.h"
static void
mt7615_write_fw_txp(struct mt7615_dev *dev, struct mt76_tx_info *tx_info,
void *txp_ptr, u32 id)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx_info->skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_info->skb);
struct ieee80211_key_conf *key = info->control.hw_key;
struct ieee80211_vif *vif = info->control.vif;
struct mt76_connac_fw_txp *txp = txp_ptr;
u8 *rept_wds_wcid = (u8 *)&txp->rept_wds_wcid;
int nbuf = tx_info->nbuf - 1;
int i;
for (i = 0; i < nbuf; i++) {
txp->buf[i] = cpu_to_le32(tx_info->buf[i + 1].addr);
txp->len[i] = cpu_to_le16(tx_info->buf[i + 1].len);
}
txp->nbuf = nbuf;
/* pass partial skb header to fw */
tx_info->buf[0].len = MT_TXD_SIZE + sizeof(*txp);
tx_info->buf[1].len = MT_CT_PARSE_LEN;
tx_info->buf[1].skip_unmap = true;
tx_info->nbuf = MT_CT_DMA_BUF_NUM;
txp->flags = cpu_to_le16(MT_CT_INFO_APPLY_TXD);
if (!key)
txp->flags |= cpu_to_le16(MT_CT_INFO_NONE_CIPHER_FRAME);
if (ieee80211_is_mgmt(hdr->frame_control))
txp->flags |= cpu_to_le16(MT_CT_INFO_MGMT_FRAME);
if (vif) {
struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv;
txp->bss_idx = mvif->idx;
}
txp->token = cpu_to_le16(id);
*rept_wds_wcid = 0xff;
}
int mt7615_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr,
enum mt76_txq_id qid, struct mt76_wcid *wcid,
struct ieee80211_sta *sta,
struct mt76_tx_info *tx_info)
{
struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_info->skb);
struct ieee80211_key_conf *key = info->control.hw_key;
int pid, id;
u8 *txwi = (u8 *)txwi_ptr;
struct mt76_txwi_cache *t;
struct mt7615_sta *msta;
void *txp;
msta = wcid ? container_of(wcid, struct mt7615_sta, wcid) : NULL;
if (!wcid)
wcid = &dev->mt76.global_wcid;
if ((info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) && msta) {
struct mt7615_phy *phy = &dev->phy;
u8 phy_idx = (info->hw_queue & MT_TX_HW_QUEUE_PHY) >> 2;
if (phy_idx && mdev->phys[MT_BAND1])
phy = mdev->phys[MT_BAND1]->priv;
spin_lock_bh(&dev->mt76.lock);
mt7615_mac_set_rates(phy, msta, &info->control.rates[0],
msta->rates);
spin_unlock_bh(&dev->mt76.lock);
}
t = (struct mt76_txwi_cache *)(txwi + mdev->drv->txwi_size);
t->skb = tx_info->skb;
id = mt76_token_get(mdev, &t);
if (id < 0)
return id;
pid = mt76_tx_status_skb_add(mdev, wcid, tx_info->skb);
mt7615_mac_write_txwi(dev, txwi_ptr, tx_info->skb, wcid, sta,
pid, key, qid, false);
txp = txwi + MT_TXD_SIZE;
memset(txp, 0, sizeof(struct mt76_connac_txp_common));
if (is_mt7615(&dev->mt76))
mt7615_write_fw_txp(dev, tx_info, txp, id);
else
mt76_connac_write_hw_txp(mdev, tx_info, txp, id);
tx_info->skb = DMA_DUMMY_DATA;
return 0;
}
void mt7615_dma_reset(struct mt7615_dev *dev)
{
int i;
mt76_clear(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_RX_DMA_EN | MT_WPDMA_GLO_CFG_TX_DMA_EN |
MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE);
usleep_range(1000, 2000);
for (i = 0; i < __MT_TXQ_MAX; i++)
mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], true);
for (i = 0; i < __MT_MCUQ_MAX; i++)
mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[i], true);
mt76_for_each_q_rx(&dev->mt76, i)
mt76_queue_rx_reset(dev, i);
mt76_tx_status_check(&dev->mt76, true);
mt7615_dma_start(dev);
}
EXPORT_SYMBOL_GPL(mt7615_dma_reset);
static void
mt7615_hif_int_event_trigger(struct mt7615_dev *dev, u8 event)
{
u32 reg = MT_MCU_INT_EVENT;
if (is_mt7663(&dev->mt76))
reg = MT7663_MCU_INT_EVENT;
mt76_wr(dev, reg, event);
mt7622_trigger_hif_int(dev, true);
mt7622_trigger_hif_int(dev, false);
}
static bool
mt7615_wait_reset_state(struct mt7615_dev *dev, u32 state)
{
bool ret;
ret = wait_event_timeout(dev->reset_wait,
(READ_ONCE(dev->reset_state) & state),
MT7615_RESET_TIMEOUT);
WARN(!ret, "Timeout waiting for MCU reset state %x\n", state);
return ret;
}
static void
mt7615_update_vif_beacon(void *priv, u8 *mac, struct ieee80211_vif *vif)
{
struct ieee80211_hw *hw = priv;
struct mt7615_dev *dev = mt7615_hw_dev(hw);
switch (vif->type) {
case NL80211_IFTYPE_MESH_POINT:
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_AP:
mt7615_mcu_add_beacon(dev, hw, vif,
vif->bss_conf.enable_beacon);
break;
default:
break;
}
}
static void
mt7615_update_beacons(struct mt7615_dev *dev)
{
struct mt76_phy *mphy_ext = dev->mt76.phys[MT_BAND1];
ieee80211_iterate_active_interfaces(dev->mt76.hw,
IEEE80211_IFACE_ITER_RESUME_ALL,
mt7615_update_vif_beacon, dev->mt76.hw);
if (!mphy_ext)
return;
ieee80211_iterate_active_interfaces(mphy_ext->hw,
IEEE80211_IFACE_ITER_RESUME_ALL,
mt7615_update_vif_beacon, mphy_ext->hw);
}
void mt7615_mac_reset_work(struct work_struct *work)
{
struct mt7615_phy *phy2;
struct mt76_phy *ext_phy;
struct mt7615_dev *dev;
unsigned long timeout;
int i;
dev = container_of(work, struct mt7615_dev, reset_work);
ext_phy = dev->mt76.phys[MT_BAND1];
phy2 = ext_phy ? ext_phy->priv : NULL;
if (!(READ_ONCE(dev->reset_state) & MT_MCU_CMD_STOP_PDMA))
return;
ieee80211_stop_queues(mt76_hw(dev));
if (ext_phy)
ieee80211_stop_queues(ext_phy->hw);
set_bit(MT76_RESET, &dev->mphy.state);
set_bit(MT76_MCU_RESET, &dev->mphy.state);
wake_up(&dev->mt76.mcu.wait);
cancel_delayed_work_sync(&dev->mphy.mac_work);
del_timer_sync(&dev->phy.roc_timer);
cancel_work_sync(&dev->phy.roc_work);
if (phy2) {
set_bit(MT76_RESET, &phy2->mt76->state);
cancel_delayed_work_sync(&phy2->mt76->mac_work);
del_timer_sync(&phy2->roc_timer);
cancel_work_sync(&phy2->roc_work);
}
/* lock/unlock all queues to ensure that no tx is pending */
mt76_txq_schedule_all(&dev->mphy);
if (ext_phy)
mt76_txq_schedule_all(ext_phy);
mt76_worker_disable(&dev->mt76.tx_worker);
mt76_for_each_q_rx(&dev->mt76, i)
napi_disable(&dev->mt76.napi[i]);
napi_disable(&dev->mt76.tx_napi);
mt7615_mutex_acquire(dev);
mt7615_hif_int_event_trigger(dev, MT_MCU_INT_EVENT_PDMA_STOPPED);
if (mt7615_wait_reset_state(dev, MT_MCU_CMD_RESET_DONE)) {
mt7615_dma_reset(dev);
mt7615_tx_token_put(dev);
idr_init(&dev->mt76.token);
mt76_wr(dev, MT_WPDMA_MEM_RNG_ERR, 0);
mt7615_hif_int_event_trigger(dev, MT_MCU_INT_EVENT_PDMA_INIT);
mt7615_wait_reset_state(dev, MT_MCU_CMD_RECOVERY_DONE);
}
clear_bit(MT76_MCU_RESET, &dev->mphy.state);
clear_bit(MT76_RESET, &dev->mphy.state);
if (phy2)
clear_bit(MT76_RESET, &phy2->mt76->state);
mt76_worker_enable(&dev->mt76.tx_worker);
local_bh_disable();
napi_enable(&dev->mt76.tx_napi);
napi_schedule(&dev->mt76.tx_napi);
mt76_for_each_q_rx(&dev->mt76, i) {
napi_enable(&dev->mt76.napi[i]);
napi_schedule(&dev->mt76.napi[i]);
}
local_bh_enable();
ieee80211_wake_queues(mt76_hw(dev));
if (ext_phy)
ieee80211_wake_queues(ext_phy->hw);
mt7615_hif_int_event_trigger(dev, MT_MCU_INT_EVENT_RESET_DONE);
mt7615_wait_reset_state(dev, MT_MCU_CMD_NORMAL_STATE);
mt7615_update_beacons(dev);
mt7615_mutex_release(dev);
timeout = mt7615_get_macwork_timeout(dev);
ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work,
timeout);
if (phy2)
ieee80211_queue_delayed_work(ext_phy->hw,
&phy2->mt76->mac_work, timeout);
}

View File

@ -0,0 +1,609 @@
/* SPDX-License-Identifier: ISC */
/* Copyright (C) 2019 MediaTek Inc. */
#ifndef __MT7615_REGS_H
#define __MT7615_REGS_H
enum mt7615_reg_base {
MT_TOP_CFG_BASE,
MT_HW_BASE,
MT_DMA_SHDL_BASE,
MT_PCIE_REMAP_2,
MT_ARB_BASE,
MT_HIF_BASE,
MT_CSR_BASE,
MT_PLE_BASE,
MT_PSE_BASE,
MT_CFG_BASE,
MT_AGG_BASE,
MT_TMAC_BASE,
MT_RMAC_BASE,
MT_DMA_BASE,
MT_PF_BASE,
MT_WTBL_BASE_ON,
MT_WTBL_BASE_OFF,
MT_LPON_BASE,
MT_MIB_BASE,
MT_WTBL_BASE_ADDR,
MT_PCIE_REMAP_BASE2,
MT_TOP_MISC_BASE,
MT_EFUSE_ADDR_BASE,
MT_PP_BASE,
__MT_BASE_MAX,
};
#define MT_HW_INFO_BASE ((dev)->reg_map[MT_HW_BASE])
#define MT_HW_INFO(ofs) (MT_HW_INFO_BASE + (ofs))
#define MT_HW_REV MT_HW_INFO(0x000)
#define MT_HW_CHIPID MT_HW_INFO(0x008)
#define MT_TOP_STRAP_STA MT_HW_INFO(0x010)
#define MT_TOP_3NSS BIT(24)
#define MT_TOP_OFF_RSV 0x1128
#define MT_TOP_OFF_RSV_FW_STATE GENMASK(18, 16)
#define MT_TOP_MISC2 ((dev)->reg_map[MT_TOP_CFG_BASE] + 0x134)
#define MT_TOP_MISC2_FW_STATE GENMASK(2, 0)
#define MT7663_TOP_MISC2_FW_STATE GENMASK(3, 1)
#define MT_TOP_MISC2_FW_PWR_ON BIT(1)
#define MT_MCU_BASE 0x2000
#define MT_MCU(ofs) (MT_MCU_BASE + (ofs))
#define MT_MCU_PCIE_REMAP_1 MT_MCU(0x500)
#define MT_MCU_PCIE_REMAP_1_OFFSET GENMASK(17, 0)
#define MT_MCU_PCIE_REMAP_1_BASE GENMASK(31, 18)
#define MT_PCIE_REMAP_BASE_1 0x40000
#define MT_MCU_PCIE_REMAP_2 ((dev)->reg_map[MT_PCIE_REMAP_2])
#define MT_MCU_PCIE_REMAP_2_OFFSET GENMASK(18, 0)
#define MT_MCU_PCIE_REMAP_2_BASE GENMASK(31, 19)
#define MT_PCIE_REMAP_BASE_2 ((dev)->reg_map[MT_PCIE_REMAP_BASE2])
#define MT_MCU_CIRQ_BASE 0xc0000
#define MT_MCU_CIRQ(ofs) (MT_MCU_CIRQ_BASE + (ofs))
#define MT_MCU_CIRQ_IRQ_SEL(n) MT_MCU_CIRQ((n) << 2)
#define MT_HIF(ofs) ((dev)->reg_map[MT_HIF_BASE] + (ofs))
#define MT_HIF_RST MT_HIF(0x100)
#define MT_HIF_LOGIC_RST_N BIT(4)
#define MT_PDMA_SLP_PROT MT_HIF(0x154)
#define MT_PDMA_AXI_SLPPROT_ENABLE BIT(0)
#define MT_PDMA_AXI_SLPPROT_RDY BIT(16)
#define MT_PDMA_BUSY_STATUS MT_HIF(0x168)
#define MT_PDMA_TX_IDX_BUSY BIT(2)
#define MT_PDMA_BUSY_IDX BIT(31)
#define MT_WPDMA_TX_RING0_CTRL0 MT_HIF(0x300)
#define MT_WPDMA_TX_RING0_CTRL1 MT_HIF(0x304)
#define MT7663_MCU_PCIE_REMAP_2_OFFSET GENMASK(15, 0)
#define MT7663_MCU_PCIE_REMAP_2_BASE GENMASK(31, 16)
#define MT_HIF2_BASE 0xf0000
#define MT_HIF2(ofs) (MT_HIF2_BASE + (ofs))
#define MT_PCIE_IRQ_ENABLE MT_HIF2(0x188)
#define MT_PCIE_DOORBELL_PUSH MT_HIF2(0x1484)
#define MT_CFG_LPCR_HOST MT_HIF(0x1f0)
#define MT_CFG_LPCR_HOST_FW_OWN BIT(0)
#define MT_CFG_LPCR_HOST_DRV_OWN BIT(1)
#define MT_MCU2HOST_INT_STATUS MT_HIF(0x1f0)
#define MT_MCU2HOST_INT_ENABLE MT_HIF(0x1f4)
#define MT7663_MCU_INT_EVENT MT_HIF(0x108)
#define MT_MCU_INT_EVENT MT_HIF(0x1f8)
#define MT_MCU_INT_EVENT_PDMA_STOPPED BIT(0)
#define MT_MCU_INT_EVENT_PDMA_INIT BIT(1)
#define MT_MCU_INT_EVENT_SER_TRIGGER BIT(2)
#define MT_MCU_INT_EVENT_RESET_DONE BIT(3)
#define MT_INT_SOURCE_CSR MT_HIF(0x200)
#define MT_INT_MASK_CSR MT_HIF(0x204)
#define MT_DELAY_INT_CFG MT_HIF(0x210)
#define MT_INT_RX_DONE(_n) BIT(_n)
#define MT_INT_RX_DONE_ALL GENMASK(1, 0)
#define MT_INT_TX_DONE_ALL GENMASK(19, 4)
#define MT_INT_TX_DONE(_n) BIT((_n) + 4)
#define MT7663_INT_MCU_CMD BIT(29)
#define MT_INT_MCU_CMD BIT(30)
#define MT_WPDMA_GLO_CFG MT_HIF(0x208)
#define MT_WPDMA_GLO_CFG_TX_DMA_EN BIT(0)
#define MT_WPDMA_GLO_CFG_TX_DMA_BUSY BIT(1)
#define MT_WPDMA_GLO_CFG_RX_DMA_EN BIT(2)
#define MT_WPDMA_GLO_CFG_RX_DMA_BUSY BIT(3)
#define MT_WPDMA_GLO_CFG_DMA_BURST_SIZE GENMASK(5, 4)
#define MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE BIT(6)
#define MT_WPDMA_GLO_CFG_BIG_ENDIAN BIT(7)
#define MT_WPDMA_GLO_CFG_TX_BT_SIZE_BIT0 BIT(9)
#define MT_WPDMA_GLO_CFG_BYPASS_TX_SCH BIT(9) /* MT7622 */
#define MT_WPDMA_GLO_CFG_MULTI_DMA_EN GENMASK(11, 10)
#define MT_WPDMA_GLO_CFG_FIFO_LITTLE_ENDIAN BIT(12)
#define MT_WPDMA_GLO_CFG_TX_BT_SIZE_BIT21 GENMASK(23, 22)
#define MT_WPDMA_GLO_CFG_SW_RESET BIT(24)
#define MT_WPDMA_GLO_CFG_FIRST_TOKEN_ONLY BIT(26)
#define MT_WPDMA_GLO_CFG_OMIT_TX_INFO BIT(28)
#define MT_WPDMA_RST_IDX MT_HIF(0x20c)
#define MT_WPDMA_MEM_RNG_ERR MT_HIF(0x224)
#define MT_MCU_CMD MT_HIF(0x234)
#define MT_MCU_CMD_CLEAR_FW_OWN BIT(0)
#define MT_MCU_CMD_STOP_PDMA_FW_RELOAD BIT(1)
#define MT_MCU_CMD_STOP_PDMA BIT(2)
#define MT_MCU_CMD_RESET_DONE BIT(3)
#define MT_MCU_CMD_RECOVERY_DONE BIT(4)
#define MT_MCU_CMD_NORMAL_STATE BIT(5)
#define MT_MCU_CMD_LMAC_ERROR BIT(24)
#define MT_MCU_CMD_PSE_ERROR BIT(25)
#define MT_MCU_CMD_PLE_ERROR BIT(26)
#define MT_MCU_CMD_PDMA_ERROR BIT(27)
#define MT_MCU_CMD_PCIE_ERROR BIT(28)
#define MT_MCU_CMD_ERROR_MASK (GENMASK(5, 1) | GENMASK(28, 24))
#define MT7663_MCU_CMD_ERROR_MASK GENMASK(5, 2)
#define MT_TX_RING_BASE MT_HIF(0x300)
#define MT_RX_RING_BASE MT_HIF(0x400)
#define MT_WPDMA_GLO_CFG1 MT_HIF(0x500)
#define MT_WPDMA_TX_PRE_CFG MT_HIF(0x510)
#define MT_WPDMA_RX_PRE_CFG MT_HIF(0x520)
#define MT_WPDMA_ABT_CFG MT_HIF(0x530)
#define MT_WPDMA_ABT_CFG1 MT_HIF(0x534)
#define MT_CSR(ofs) ((dev)->reg_map[MT_CSR_BASE] + (ofs))
#define MT_CONN_HIF_ON_LPCTL MT_CSR(0x000)
#define MT_PLE(ofs) ((dev)->reg_map[MT_PLE_BASE] + (ofs))
#define MT_PLE_PG_HIF0_GROUP MT_PLE(0x110)
#define MT_HIF0_MIN_QUOTA GENMASK(11, 0)
#define MT_PLE_FL_Q0_CTRL MT_PLE(0x1b0)
#define MT_PLE_FL_Q1_CTRL MT_PLE(0x1b4)
#define MT_PLE_FL_Q2_CTRL MT_PLE(0x1b8)
#define MT_PLE_FL_Q3_CTRL MT_PLE(0x1bc)
#define MT_PLE_AC_QEMPTY(ac, n) MT_PLE(0x300 + 0x10 * (ac) + \
((n) << 2))
#define MT_PSE(ofs) ((dev)->reg_map[MT_PSE_BASE] + (ofs))
#define MT_PSE_PG_HIF0_GROUP MT_PSE(0x110)
#define MT_HIF0_MIN_QUOTA GENMASK(11, 0)
#define MT_PSE_PG_HIF1_GROUP MT_PSE(0x118)
#define MT_HIF1_MIN_QUOTA GENMASK(11, 0)
#define MT_PSE_QUEUE_EMPTY MT_PSE(0x0b4)
#define MT_HIF_0_EMPTY_MASK BIT(16)
#define MT_HIF_1_EMPTY_MASK BIT(17)
#define MT_HIF_ALL_EMPTY_MASK GENMASK(17, 16)
#define MT_PSE_PG_INFO MT_PSE(0x194)
#define MT_PSE_SRC_CNT GENMASK(27, 16)
#define MT_PP(ofs) ((dev)->reg_map[MT_PP_BASE] + (ofs))
#define MT_PP_TXDWCNT MT_PP(0x0)
#define MT_PP_TXDWCNT_TX0_ADD_DW_CNT GENMASK(7, 0)
#define MT_PP_TXDWCNT_TX1_ADD_DW_CNT GENMASK(15, 8)
#define MT_WF_PHY_BASE 0x82070000
#define MT_WF_PHY(ofs) (MT_WF_PHY_BASE + (ofs))
#define MT_WF_PHY_WF2_RFCTRL0(n) MT_WF_PHY(0x1900 + (n) * 0x400)
#define MT_WF_PHY_WF2_RFCTRL0_LPBCN_EN BIT(9)
#define MT_WF_PHY_R0_PHYMUX_5(_phy) MT_WF_PHY(0x0614 + ((_phy) << 9))
#define MT7663_WF_PHY_R0_PHYMUX_5 MT_WF_PHY(0x0414)
#define MT_WF_PHY_R0_PHYCTRL_STS0(_phy) MT_WF_PHY(0x020c + ((_phy) << 9))
#define MT_WF_PHYCTRL_STAT_PD_OFDM GENMASK(31, 16)
#define MT_WF_PHYCTRL_STAT_PD_CCK GENMASK(15, 0)
#define MT7663_WF_PHY_R0_PHYCTRL_STS0(_phy) MT_WF_PHY(0x0210 + ((_phy) << 12))
#define MT_WF_PHY_R0_PHYCTRL_STS5(_phy) MT_WF_PHY(0x0220 + ((_phy) << 9))
#define MT_WF_PHYCTRL_STAT_MDRDY_OFDM GENMASK(31, 16)
#define MT_WF_PHYCTRL_STAT_MDRDY_CCK GENMASK(15, 0)
#define MT7663_WF_PHY_R0_PHYCTRL_STS5(_phy) MT_WF_PHY(0x0224 + ((_phy) << 12))
#define MT_WF_PHY_MIN_PRI_PWR(_phy) MT_WF_PHY((_phy) ? 0x084 : 0x229c)
#define MT_WF_PHY_PD_OFDM_MASK(_phy) ((_phy) ? GENMASK(24, 16) : \
GENMASK(28, 20))
#define MT_WF_PHY_PD_OFDM(_phy, v) ((v) << ((_phy) ? 16 : 20))
#define MT_WF_PHY_PD_BLK(_phy) ((_phy) ? BIT(25) : BIT(19))
#define MT7663_WF_PHY_MIN_PRI_PWR(_phy) MT_WF_PHY((_phy) ? 0x2aec : 0x22f0)
#define MT_WF_PHY_RXTD_BASE MT_WF_PHY(0x2200)
#define MT_WF_PHY_RXTD(_n) (MT_WF_PHY_RXTD_BASE + ((_n) << 2))
#define MT7663_WF_PHY_RXTD(_n) (MT_WF_PHY(0x25b0) + ((_n) << 2))
#define MT_WF_PHY_RXTD_CCK_PD(_phy) MT_WF_PHY((_phy) ? 0x2314 : 0x2310)
#define MT_WF_PHY_PD_CCK_MASK(_phy) (_phy) ? GENMASK(31, 24) : \
GENMASK(8, 1)
#define MT_WF_PHY_PD_CCK(_phy, v) ((v) << ((_phy) ? 24 : 1))
#define MT7663_WF_PHY_RXTD_CCK_PD(_phy) MT_WF_PHY((_phy) ? 0x2350 : 0x234c)
#define MT_WF_PHY_RXTD2_BASE MT_WF_PHY(0x2a00)
#define MT_WF_PHY_RXTD2(_n) (MT_WF_PHY_RXTD2_BASE + ((_n) << 2))
#define MT_WF_PHY_RFINTF3_0(_n) MT_WF_PHY(0x1100 + (_n) * 0x400)
#define MT_WF_PHY_RFINTF3_0_ANT GENMASK(7, 4)
#define MT_WF_CFG_BASE ((dev)->reg_map[MT_CFG_BASE])
#define MT_WF_CFG(ofs) (MT_WF_CFG_BASE + (ofs))
#define MT_CFG_CCR MT_WF_CFG(0x000)
#define MT_CFG_CCR_MAC_D1_1X_GC_EN BIT(24)
#define MT_CFG_CCR_MAC_D0_1X_GC_EN BIT(25)
#define MT_CFG_CCR_MAC_D1_2X_GC_EN BIT(30)
#define MT_CFG_CCR_MAC_D0_2X_GC_EN BIT(31)
#define MT_WF_AGG_BASE ((dev)->reg_map[MT_AGG_BASE])
#define MT_WF_AGG(ofs) (MT_WF_AGG_BASE + (ofs))
#define MT_AGG_ARCR MT_WF_AGG(0x010)
#define MT_AGG_ARCR_INIT_RATE1 BIT(0)
#define MT_AGG_ARCR_RTS_RATE_THR GENMASK(12, 8)
#define MT_AGG_ARCR_RATE_DOWN_RATIO GENMASK(17, 16)
#define MT_AGG_ARCR_RATE_DOWN_RATIO_EN BIT(19)
#define MT_AGG_ARCR_RATE_UP_EXTRA_TH GENMASK(22, 20)
#define MT_AGG_ARUCR(_band) MT_WF_AGG(0x018 + (_band) * 0x100)
#define MT_AGG_ARDCR(_band) MT_WF_AGG(0x01c + (_band) * 0x100)
#define MT_AGG_ARxCR_LIMIT_SHIFT(_n) (4 * (_n))
#define MT_AGG_ARxCR_LIMIT(_n) GENMASK(2 + \
MT_AGG_ARxCR_LIMIT_SHIFT(_n), \
MT_AGG_ARxCR_LIMIT_SHIFT(_n))
#define MT_AGG_ASRCR0 MT_WF_AGG(0x060)
#define MT_AGG_ASRCR1 MT_WF_AGG(0x064)
#define MT_AGG_ASRCR_RANGE(val, n) (((val) >> ((n) << 3)) & GENMASK(5, 0))
#define MT_AGG_ACR(_band) MT_WF_AGG(0x070 + (_band) * 0x100)
#define MT_AGG_ACR_NO_BA_RULE BIT(0)
#define MT_AGG_ACR_NO_BA_AR_RULE BIT(1)
#define MT_AGG_ACR_PKT_TIME_EN BIT(2)
#define MT_AGG_ACR_CFEND_RATE GENMASK(15, 4)
#define MT_AGG_ACR_BAR_RATE GENMASK(31, 20)
#define MT_AGG_SCR MT_WF_AGG(0x0fc)
#define MT_AGG_SCR_NLNAV_MID_PTEC_DIS BIT(3)
#define MT_WF_ARB_BASE ((dev)->reg_map[MT_ARB_BASE])
#define MT_WF_ARB(ofs) (MT_WF_ARB_BASE + (ofs))
#define MT_ARB_RQCR MT_WF_ARB(0x070)
#define MT_ARB_RQCR_RX_START BIT(0)
#define MT_ARB_RQCR_RXV_START BIT(4)
#define MT_ARB_RQCR_RXV_R_EN BIT(7)
#define MT_ARB_RQCR_RXV_T_EN BIT(8)
#define MT_ARB_RQCR_BAND_SHIFT 16
#define MT_ARB_SCR MT_WF_ARB(0x080)
#define MT_ARB_SCR_TX0_DISABLE BIT(8)
#define MT_ARB_SCR_RX0_DISABLE BIT(9)
#define MT_ARB_SCR_TX1_DISABLE BIT(10)
#define MT_ARB_SCR_RX1_DISABLE BIT(11)
#define MT_WF_TMAC_BASE ((dev)->reg_map[MT_TMAC_BASE])
#define MT_WF_TMAC(ofs) (MT_WF_TMAC_BASE + (ofs))
#define MT_TMAC_CDTR MT_WF_TMAC(0x090)
#define MT_TMAC_ODTR MT_WF_TMAC(0x094)
#define MT_TIMEOUT_VAL_PLCP GENMASK(15, 0)
#define MT_TIMEOUT_VAL_CCA GENMASK(31, 16)
#define MT_TMAC_TRCR(_band) MT_WF_TMAC((_band) ? 0x070 : 0x09c)
#define MT_TMAC_TRCR_CCA_SEL GENMASK(31, 30)
#define MT_TMAC_TRCR_SEC_CCA_SEL GENMASK(29, 28)
#define MT_TMAC_ICR(_band) MT_WF_TMAC((_band) ? 0x074 : 0x0a4)
#define MT_IFS_EIFS GENMASK(8, 0)
#define MT_IFS_RIFS GENMASK(14, 10)
#define MT_IFS_SIFS GENMASK(22, 16)
#define MT_IFS_SLOT GENMASK(30, 24)
#define MT_TMAC_CTCR0 MT_WF_TMAC(0x0f4)
#define MT_TMAC_CTCR0_INS_DDLMT_REFTIME GENMASK(5, 0)
#define MT_TMAC_CTCR0_INS_DDLMT_DENSITY GENMASK(15, 12)
#define MT_TMAC_CTCR0_INS_DDLMT_EN BIT(17)
#define MT_TMAC_CTCR0_INS_DDLMT_VHT_SMPDU_EN BIT(18)
#define MT_WF_RMAC_BASE ((dev)->reg_map[MT_RMAC_BASE])
#define MT_WF_RMAC(ofs) (MT_WF_RMAC_BASE + (ofs))
#define MT_WF_RFCR(_band) MT_WF_RMAC((_band) ? 0x100 : 0x000)
#define MT_WF_RFCR_DROP_STBC_MULTI BIT(0)
#define MT_WF_RFCR_DROP_FCSFAIL BIT(1)
#define MT_WF_RFCR_DROP_VERSION BIT(3)
#define MT_WF_RFCR_DROP_PROBEREQ BIT(4)
#define MT_WF_RFCR_DROP_MCAST BIT(5)
#define MT_WF_RFCR_DROP_BCAST BIT(6)
#define MT_WF_RFCR_DROP_MCAST_FILTERED BIT(7)
#define MT_WF_RFCR_DROP_A3_MAC BIT(8)
#define MT_WF_RFCR_DROP_A3_BSSID BIT(9)
#define MT_WF_RFCR_DROP_A2_BSSID BIT(10)
#define MT_WF_RFCR_DROP_OTHER_BEACON BIT(11)
#define MT_WF_RFCR_DROP_FRAME_REPORT BIT(12)
#define MT_WF_RFCR_DROP_CTL_RSV BIT(13)
#define MT_WF_RFCR_DROP_CTS BIT(14)
#define MT_WF_RFCR_DROP_RTS BIT(15)
#define MT_WF_RFCR_DROP_DUPLICATE BIT(16)
#define MT_WF_RFCR_DROP_OTHER_BSS BIT(17)
#define MT_WF_RFCR_DROP_OTHER_UC BIT(18)
#define MT_WF_RFCR_DROP_OTHER_TIM BIT(19)
#define MT_WF_RFCR_DROP_NDPA BIT(20)
#define MT_WF_RFCR_DROP_UNWANTED_CTL BIT(21)
#define MT_WF_RMAC_MORE(_band) MT_WF_RMAC((_band) ? 0x124 : 0x024)
#define MT_WF_RMAC_MORE_MUAR_MODE GENMASK(31, 30)
#define MT_WF_RFCR1(_band) MT_WF_RMAC((_band) ? 0x104 : 0x004)
#define MT_WF_RFCR1_DROP_ACK BIT(4)
#define MT_WF_RFCR1_DROP_BF_POLL BIT(5)
#define MT_WF_RFCR1_DROP_BA BIT(6)
#define MT_WF_RFCR1_DROP_CFEND BIT(7)
#define MT_WF_RFCR1_DROP_CFACK BIT(8)
#define MT_CHFREQ(_band) MT_WF_RMAC((_band) ? 0x130 : 0x030)
#define MT_WF_RMAC_MAR0 MT_WF_RMAC(0x025c)
#define MT_WF_RMAC_MAR1 MT_WF_RMAC(0x0260)
#define MT_WF_RMAC_MAR1_ADDR GENMASK(15, 0)
#define MT_WF_RMAC_MAR1_START BIT(16)
#define MT_WF_RMAC_MAR1_WRITE BIT(17)
#define MT_WF_RMAC_MAR1_IDX GENMASK(29, 24)
#define MT_WF_RMAC_MAR1_GROUP GENMASK(31, 30)
#define MT_WF_RMAC_MIB_TIME0 MT_WF_RMAC(0x03c4)
#define MT_WF_RMAC_MIB_RXTIME_CLR BIT(31)
#define MT_WF_RMAC_MIB_RXTIME_EN BIT(30)
#define MT_WF_RMAC_MIB_AIRTIME0 MT_WF_RMAC(0x0380)
#define MT_WF_RMAC_MIB_TIME5 MT_WF_RMAC(0x03d8)
#define MT_WF_RMAC_MIB_TIME6 MT_WF_RMAC(0x03dc)
#define MT_MIB_OBSSTIME_MASK GENMASK(23, 0)
#define MT_WF_DMA_BASE ((dev)->reg_map[MT_DMA_BASE])
#define MT_WF_DMA(ofs) (MT_WF_DMA_BASE + (ofs))
#define MT_DMA_DCR0 MT_WF_DMA(0x000)
#define MT_DMA_DCR0_MAX_RX_LEN GENMASK(15, 2)
#define MT_DMA_DCR0_DAMSDU_EN BIT(16)
#define MT_DMA_DCR0_RX_VEC_DROP BIT(17)
#define MT_DMA_DCR0_RX_HDR_TRANS_EN BIT(19)
#define MT_DMA_RCFR0(_band) MT_WF_DMA(0x070 + (_band) * 0x40)
#define MT_DMA_RCFR0_MCU_RX_MGMT BIT(2)
#define MT_DMA_RCFR0_MCU_RX_CTL_NON_BAR BIT(3)
#define MT_DMA_RCFR0_MCU_RX_CTL_BAR BIT(4)
#define MT_DMA_RCFR0_MCU_RX_TDLS BIT(19)
#define MT_DMA_RCFR0_MCU_RX_BYPASS BIT(21)
#define MT_DMA_RCFR0_RX_DROPPED_UCAST GENMASK(25, 24)
#define MT_DMA_RCFR0_RX_DROPPED_MCAST GENMASK(27, 26)
#define MT_WF_PF_BASE ((dev)->reg_map[MT_PF_BASE])
#define MT_WF_PF(ofs) (MT_WF_PF_BASE + (ofs))
#define MT_WF_PFCR MT_WF_PF(0x000)
#define MT_WF_PFCR_TDLS_EN BIT(9)
#define MT_WTBL_BASE(dev) ((dev)->reg_map[MT_WTBL_BASE_ADDR])
#define MT_WTBL_ENTRY_SIZE 256
#define MT_WTBL_OFF_BASE ((dev)->reg_map[MT_WTBL_BASE_OFF])
#define MT_WTBL_OFF(n) (MT_WTBL_OFF_BASE + (n))
#define MT_WTBL_W0_KEY_IDX GENMASK(24, 23)
#define MT_WTBL_W0_RX_KEY_VALID BIT(26)
#define MT_WTBL_W0_RX_IK_VALID BIT(27)
#define MT_WTBL_W2_KEY_TYPE GENMASK(7, 4)
#define MT_WTBL_UPDATE MT_WTBL_OFF(0x030)
#define MT_WTBL_UPDATE_WLAN_IDX GENMASK(7, 0)
#define MT_WTBL_UPDATE_RXINFO_UPDATE BIT(11)
#define MT_WTBL_UPDATE_ADM_COUNT_CLEAR BIT(12)
#define MT_WTBL_UPDATE_RATE_UPDATE BIT(13)
#define MT_WTBL_UPDATE_TX_COUNT_CLEAR BIT(14)
#define MT_WTBL_UPDATE_BUSY BIT(31)
#define MT_TOP_MISC(ofs) ((dev)->reg_map[MT_TOP_MISC_BASE] + (ofs))
#define MT_CONN_ON_MISC MT_TOP_MISC(0x1140)
#define MT_TOP_MISC2_FW_N9_RDY BIT(2)
#define MT_WTBL_ON_BASE ((dev)->reg_map[MT_WTBL_BASE_ON])
#define MT_WTBL_ON(_n) (MT_WTBL_ON_BASE + (_n))
#define MT_WTBL_RICR0 MT_WTBL_ON(0x010)
#define MT_WTBL_RICR1 MT_WTBL_ON(0x014)
#define MT_WTBL_RIUCR0 MT_WTBL_ON(0x020)
#define MT_WTBL_RIUCR1 MT_WTBL_ON(0x024)
#define MT_WTBL_RIUCR1_RATE0 GENMASK(11, 0)
#define MT_WTBL_RIUCR1_RATE1 GENMASK(23, 12)
#define MT_WTBL_RIUCR1_RATE2_LO GENMASK(31, 24)
#define MT_WTBL_RIUCR2 MT_WTBL_ON(0x028)
#define MT_WTBL_RIUCR2_RATE2_HI GENMASK(3, 0)
#define MT_WTBL_RIUCR2_RATE3 GENMASK(15, 4)
#define MT_WTBL_RIUCR2_RATE4 GENMASK(27, 16)
#define MT_WTBL_RIUCR2_RATE5_LO GENMASK(31, 28)
#define MT_WTBL_RIUCR3 MT_WTBL_ON(0x02c)
#define MT_WTBL_RIUCR3_RATE5_HI GENMASK(7, 0)
#define MT_WTBL_RIUCR3_RATE6 GENMASK(19, 8)
#define MT_WTBL_RIUCR3_RATE7 GENMASK(31, 20)
#define MT_WTBL_W5_CHANGE_BW_RATE GENMASK(7, 5)
#define MT_WTBL_W5_SHORT_GI_20 BIT(8)
#define MT_WTBL_W5_SHORT_GI_40 BIT(9)
#define MT_WTBL_W5_SHORT_GI_80 BIT(10)
#define MT_WTBL_W5_SHORT_GI_160 BIT(11)
#define MT_WTBL_W5_BW_CAP GENMASK(13, 12)
#define MT_WTBL_W5_MPDU_FAIL_COUNT GENMASK(25, 23)
#define MT_WTBL_W5_MPDU_OK_COUNT GENMASK(28, 26)
#define MT_WTBL_W5_RATE_IDX GENMASK(31, 29)
#define MT_WTBL_W27_CC_BW_SEL GENMASK(6, 5)
#define MT_LPON(_n) ((dev)->reg_map[MT_LPON_BASE] + (_n))
#define MT_LPON_TCR0(_n) MT_LPON(0x010 + ((_n) * 4))
#define MT_LPON_TCR2(_n) MT_LPON(0x0f8 + ((_n) - 2) * 4)
#define MT_LPON_TCR_MODE GENMASK(1, 0)
#define MT_LPON_TCR_READ GENMASK(1, 0)
#define MT_LPON_TCR_WRITE BIT(0)
#define MT_LPON_TCR_ADJUST BIT(1)
#define MT_LPON_UTTR0 MT_LPON(0x018)
#define MT_LPON_UTTR1 MT_LPON(0x01c)
#define MT_WF_MIB_BASE (dev->reg_map[MT_MIB_BASE])
#define MT_WF_MIB(_band, ofs) (MT_WF_MIB_BASE + (ofs) + (_band) * 0x200)
#define MT_WF_MIB_SCR0 MT_WF_MIB(0, 0)
#define MT_MIB_SCR0_AGG_CNT_RANGE_EN BIT(21)
#define MT_MIB_M0_MISC_CR(_band) MT_WF_MIB(_band, 0x00c)
#define MT_MIB_SDR3(_band) MT_WF_MIB(_band, 0x014)
#define MT_MIB_SDR3_FCS_ERR_MASK GENMASK(15, 0)
#define MT_MIB_SDR9(_band) MT_WF_MIB(_band, 0x02c)
#define MT_MIB_SDR9_BUSY_MASK GENMASK(23, 0)
#define MT_MIB_SDR14(_band) MT_WF_MIB(_band, 0x040)
#define MT_MIB_AMPDU_MPDU_COUNT GENMASK(23, 0)
#define MT_MIB_SDR15(_band) MT_WF_MIB(_band, 0x044)
#define MT_MIB_AMPDU_ACK_COUNT GENMASK(23, 0)
#define MT_MIB_SDR16(_band) MT_WF_MIB(_band, 0x048)
#define MT_MIB_SDR16_BUSY_MASK GENMASK(23, 0)
#define MT_MIB_SDR36(_band) MT_WF_MIB(_band, 0x098)
#define MT_MIB_SDR36_TXTIME_MASK GENMASK(23, 0)
#define MT_MIB_SDR37(_band) MT_WF_MIB(_band, 0x09c)
#define MT_MIB_SDR37_RXTIME_MASK GENMASK(23, 0)
#define MT_MIB_MB_SDR0(_band, n) MT_WF_MIB(_band, 0x100 + ((n) << 4))
#define MT_MIB_RTS_RETRIES_COUNT_MASK GENMASK(31, 16)
#define MT_MIB_RTS_COUNT_MASK GENMASK(15, 0)
#define MT_MIB_MB_SDR1(_band, n) MT_WF_MIB(_band, 0x104 + ((n) << 4))
#define MT_MIB_BA_MISS_COUNT_MASK GENMASK(15, 0)
#define MT_MIB_ACK_FAIL_COUNT_MASK GENMASK(31, 16)
#define MT_MIB_ARNG(n) MT_WF_MIB(0, 0x4b8 + ((n) << 2))
#define MT_TX_AGG_CNT(_band, n) MT_WF_MIB(_band, 0xa8 + ((n) << 2))
#define MT_DMA_SHDL(ofs) (dev->reg_map[MT_DMA_SHDL_BASE] + (ofs))
#define MT_DMASHDL_BASE 0x5000a000
#define MT_DMASHDL_OPTIONAL 0x008
#define MT_DMASHDL_PAGE 0x00c
#define MT_DMASHDL_REFILL 0x010
#define MT_DMASHDL_PKT_MAX_SIZE 0x01c
#define MT_DMASHDL_PKT_MAX_SIZE_PLE GENMASK(11, 0)
#define MT_DMASHDL_PKT_MAX_SIZE_PSE GENMASK(27, 16)
#define MT_DMASHDL_GROUP_QUOTA(_n) (0x020 + ((_n) << 2))
#define MT_DMASHDL_GROUP_QUOTA_MIN GENMASK(11, 0)
#define MT_DMASHDL_GROUP_QUOTA_MAX GENMASK(27, 16)
#define MT_DMASHDL_SCHED_SET0 0x0b0
#define MT_DMASHDL_SCHED_SET1 0x0b4
#define MT_DMASHDL_Q_MAP(_n) (0x0d0 + ((_n) << 2))
#define MT_DMASHDL_Q_MAP_MASK GENMASK(3, 0)
#define MT_DMASHDL_Q_MAP_SHIFT(_n) (4 * ((_n) % 8))
#define MT_LED_BASE_PHYS 0x80024000
#define MT_LED_PHYS(_n) (MT_LED_BASE_PHYS + (_n))
#define MT_LED_CTRL MT_LED_PHYS(0x00)
#define MT_LED_CTRL_REPLAY(_n) BIT(0 + (8 * (_n)))
#define MT_LED_CTRL_POLARITY(_n) BIT(1 + (8 * (_n)))
#define MT_LED_CTRL_TX_BLINK_MODE(_n) BIT(2 + (8 * (_n)))
#define MT_LED_CTRL_TX_MANUAL_BLINK(_n) BIT(3 + (8 * (_n)))
#define MT_LED_CTRL_TX_OVER_BLINK(_n) BIT(5 + (8 * (_n)))
#define MT_LED_CTRL_KICK(_n) BIT(7 + (8 * (_n)))
#define MT_LED_STATUS_0(_n) MT_LED_PHYS(0x10 + ((_n) * 8))
#define MT_LED_STATUS_1(_n) MT_LED_PHYS(0x14 + ((_n) * 8))
#define MT_LED_STATUS_OFF GENMASK(31, 24)
#define MT_LED_STATUS_ON GENMASK(23, 16)
#define MT_LED_STATUS_DURATION GENMASK(15, 0)
#define MT_PDMA_BUSY 0x82000504
#define MT_PDMA_TX_BUSY BIT(0)
#define MT_PDMA_RX_BUSY BIT(1)
#define MT_EFUSE_BASE ((dev)->reg_map[MT_EFUSE_ADDR_BASE])
#define MT_EFUSE_BASE_CTRL 0x000
#define MT_EFUSE_BASE_CTRL_EMPTY BIT(30)
#define MT_EFUSE_CTRL 0x008
#define MT_EFUSE_CTRL_AOUT GENMASK(5, 0)
#define MT_EFUSE_CTRL_MODE GENMASK(7, 6)
#define MT_EFUSE_CTRL_LDO_OFF_TIME GENMASK(13, 8)
#define MT_EFUSE_CTRL_LDO_ON_TIME GENMASK(15, 14)
#define MT_EFUSE_CTRL_AIN GENMASK(25, 16)
#define MT_EFUSE_CTRL_VALID BIT(29)
#define MT_EFUSE_CTRL_KICK BIT(30)
#define MT_EFUSE_CTRL_SEL BIT(31)
#define MT_EFUSE_WDATA(_i) (0x010 + ((_i) * 4))
#define MT_EFUSE_RDATA(_i) (0x030 + ((_i) * 4))
/* INFRACFG host register range on MT7622 */
#define MT_INFRACFG_MISC 0x700
#define MT_INFRACFG_MISC_AP2CONN_WAKE BIT(1)
#define MT_UMAC_BASE 0x7c000000
#define MT_UMAC(ofs) (MT_UMAC_BASE + (ofs))
#define MT_UDMA_TX_QSEL MT_UMAC(0x008)
#define MT_FW_DL_EN BIT(3)
#define MT_UDMA_WLCFG_1 MT_UMAC(0x00c)
#define MT_WL_RX_AGG_PKT_LMT GENMASK(7, 0)
#define MT_WL_TX_TMOUT_LMT GENMASK(27, 8)
#define MT_UDMA_WLCFG_0 MT_UMAC(0x18)
#define MT_WL_RX_AGG_TO GENMASK(7, 0)
#define MT_WL_RX_AGG_LMT GENMASK(15, 8)
#define MT_WL_TX_TMOUT_FUNC_EN BIT(16)
#define MT_WL_TX_DPH_CHK_EN BIT(17)
#define MT_WL_RX_MPSZ_PAD0 BIT(18)
#define MT_WL_RX_FLUSH BIT(19)
#define MT_TICK_1US_EN BIT(20)
#define MT_WL_RX_AGG_EN BIT(21)
#define MT_WL_RX_EN BIT(22)
#define MT_WL_TX_EN BIT(23)
#define MT_WL_RX_BUSY BIT(30)
#define MT_WL_TX_BUSY BIT(31)
#define MT_MCU_PTA_BASE 0x81060000
#define MT_MCU_PTA(_n) (MT_MCU_PTA_BASE + (_n))
#define MT_ANT_SWITCH_CON(_n) MT_MCU_PTA(0x0c8 + ((_n) - 1) * 4)
#define MT_ANT_SWITCH_CON_MODE(_n) (GENMASK(4, 0) << (_n * 8))
#define MT_ANT_SWITCH_CON_MODE1(_n) (GENMASK(3, 0) << (_n * 8))
#endif

View File

@ -0,0 +1,257 @@
// SPDX-License-Identifier: ISC
/* Copyright (C) 2020 MediaTek Inc.
*
* Author: Felix Fietkau <nbd@nbd.name>
* Lorenzo Bianconi <lorenzo@kernel.org>
* Sean Wang <sean.wang@mediatek.com>
*/
#include <linux/kernel.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mmc/host.h>
#include <linux/mmc/sdio_ids.h>
#include <linux/mmc/sdio_func.h>
#include "../sdio.h"
#include "mt7615.h"
#include "mac.h"
#include "mcu.h"
static const struct sdio_device_id mt7663s_table[] = {
{ SDIO_DEVICE(SDIO_VENDOR_ID_MEDIATEK, 0x7603) },
{ } /* Terminating entry */
};
static void mt7663s_txrx_worker(struct mt76_worker *w)
{
struct mt76_sdio *sdio = container_of(w, struct mt76_sdio,
txrx_worker);
struct mt76_dev *mdev = container_of(sdio, struct mt76_dev, sdio);
struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
if (!mt76_connac_pm_ref(&dev->mphy, &dev->pm)) {
queue_work(mdev->wq, &dev->pm.wake_work);
return;
}
mt76s_txrx_worker(sdio);
mt76_connac_pm_unref(&dev->mphy, &dev->pm);
}
static void mt7663s_init_work(struct work_struct *work)
{
struct mt7615_dev *dev;
dev = container_of(work, struct mt7615_dev, mcu_work);
if (mt7663s_mcu_init(dev))
return;
mt7615_init_work(dev);
}
static int mt7663s_parse_intr(struct mt76_dev *dev, struct mt76s_intr *intr)
{
struct mt76_sdio *sdio = &dev->sdio;
struct mt7663s_intr *irq_data = sdio->intr_data;
int i, err;
sdio_claim_host(sdio->func);
err = sdio_readsb(sdio->func, irq_data, MCR_WHISR, sizeof(*irq_data));
sdio_release_host(sdio->func);
if (err)
return err;
intr->isr = irq_data->isr;
intr->rec_mb = irq_data->rec_mb;
intr->tx.wtqcr = irq_data->tx.wtqcr;
intr->rx.num = irq_data->rx.num;
for (i = 0; i < 2 ; i++)
intr->rx.len[i] = irq_data->rx.len[i];
return 0;
}
static int mt7663s_probe(struct sdio_func *func,
const struct sdio_device_id *id)
{
static const struct mt76_driver_ops drv_ops = {
.txwi_size = MT_USB_TXD_SIZE,
.drv_flags = MT_DRV_RX_DMA_HDR,
.tx_prepare_skb = mt7663_usb_sdio_tx_prepare_skb,
.tx_complete_skb = mt7663_usb_sdio_tx_complete_skb,
.tx_status_data = mt7663_usb_sdio_tx_status_data,
.rx_skb = mt7615_queue_rx_skb,
.rx_check = mt7615_rx_check,
.sta_ps = mt7615_sta_ps,
.sta_add = mt7615_mac_sta_add,
.sta_remove = mt7615_mac_sta_remove,
.update_survey = mt7615_update_channel,
};
static const struct mt76_bus_ops mt7663s_ops = {
.rr = mt76s_rr,
.rmw = mt76s_rmw,
.wr = mt76s_wr,
.write_copy = mt76s_write_copy,
.read_copy = mt76s_read_copy,
.wr_rp = mt76s_wr_rp,
.rd_rp = mt76s_rd_rp,
.type = MT76_BUS_SDIO,
};
struct ieee80211_ops *ops;
struct mt7615_dev *dev;
struct mt76_dev *mdev;
int ret;
ops = devm_kmemdup(&func->dev, &mt7615_ops, sizeof(mt7615_ops),
GFP_KERNEL);
if (!ops)
return -ENOMEM;
mdev = mt76_alloc_device(&func->dev, sizeof(*dev), ops, &drv_ops);
if (!mdev)
return -ENOMEM;
dev = container_of(mdev, struct mt7615_dev, mt76);
INIT_WORK(&dev->mcu_work, mt7663s_init_work);
dev->reg_map = mt7663_usb_sdio_reg_map;
dev->ops = ops;
sdio_set_drvdata(func, dev);
ret = mt76s_init(mdev, func, &mt7663s_ops);
if (ret < 0)
goto error;
ret = mt76s_hw_init(mdev, func, MT76_CONNAC_SDIO);
if (ret)
goto error;
mdev->rev = (mt76_rr(dev, MT_HW_CHIPID) << 16) |
(mt76_rr(dev, MT_HW_REV) & 0xff);
dev_dbg(mdev->dev, "ASIC revision: %04x\n", mdev->rev);
mdev->sdio.parse_irq = mt7663s_parse_intr;
mdev->sdio.intr_data = devm_kmalloc(mdev->dev,
sizeof(struct mt7663s_intr),
GFP_KERNEL);
if (!mdev->sdio.intr_data) {
ret = -ENOMEM;
goto error;
}
ret = mt76s_alloc_rx_queue(mdev, MT_RXQ_MAIN);
if (ret)
goto error;
ret = mt76s_alloc_tx(mdev);
if (ret)
goto error;
ret = mt76_worker_setup(mt76_hw(dev), &mdev->sdio.txrx_worker,
mt7663s_txrx_worker, "sdio-txrx");
if (ret)
goto error;
sched_set_fifo_low(mdev->sdio.txrx_worker.task);
ret = mt7663_usb_sdio_register_device(dev);
if (ret)
goto error;
return 0;
error:
mt76s_deinit(&dev->mt76);
mt76_free_device(&dev->mt76);
return ret;
}
static void mt7663s_remove(struct sdio_func *func)
{
struct mt7615_dev *dev = sdio_get_drvdata(func);
if (!test_and_clear_bit(MT76_STATE_INITIALIZED, &dev->mphy.state))
return;
ieee80211_unregister_hw(dev->mt76.hw);
mt76s_deinit(&dev->mt76);
mt76_free_device(&dev->mt76);
}
static int mt7663s_suspend(struct device *dev)
{
struct sdio_func *func = dev_to_sdio_func(dev);
struct mt7615_dev *mdev = sdio_get_drvdata(func);
int err;
if (!test_bit(MT76_STATE_SUSPEND, &mdev->mphy.state) &&
mt7615_firmware_offload(mdev)) {
int err;
err = mt76_connac_mcu_set_hif_suspend(&mdev->mt76, true);
if (err < 0)
return err;
}
sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
err = mt7615_mcu_set_fw_ctrl(mdev);
if (err)
return err;
mt76_worker_disable(&mdev->mt76.sdio.txrx_worker);
mt76_worker_disable(&mdev->mt76.sdio.status_worker);
mt76_worker_disable(&mdev->mt76.sdio.net_worker);
cancel_work_sync(&mdev->mt76.sdio.stat_work);
clear_bit(MT76_READING_STATS, &mdev->mphy.state);
mt76_tx_status_check(&mdev->mt76, true);
return 0;
}
static int mt7663s_resume(struct device *dev)
{
struct sdio_func *func = dev_to_sdio_func(dev);
struct mt7615_dev *mdev = sdio_get_drvdata(func);
int err;
mt76_worker_enable(&mdev->mt76.sdio.txrx_worker);
mt76_worker_enable(&mdev->mt76.sdio.status_worker);
mt76_worker_enable(&mdev->mt76.sdio.net_worker);
err = mt7615_mcu_set_drv_ctrl(mdev);
if (err)
return err;
if (!test_bit(MT76_STATE_SUSPEND, &mdev->mphy.state) &&
mt7615_firmware_offload(mdev))
err = mt76_connac_mcu_set_hif_suspend(&mdev->mt76, false);
return err;
}
MODULE_DEVICE_TABLE(sdio, mt7663s_table);
MODULE_FIRMWARE(MT7663_OFFLOAD_FIRMWARE_N9);
MODULE_FIRMWARE(MT7663_OFFLOAD_ROM_PATCH);
MODULE_FIRMWARE(MT7663_FIRMWARE_N9);
MODULE_FIRMWARE(MT7663_ROM_PATCH);
static DEFINE_SIMPLE_DEV_PM_OPS(mt7663s_pm_ops, mt7663s_suspend, mt7663s_resume);
static struct sdio_driver mt7663s_driver = {
.name = KBUILD_MODNAME,
.probe = mt7663s_probe,
.remove = mt7663s_remove,
.id_table = mt7663s_table,
.drv.pm = pm_sleep_ptr(&mt7663s_pm_ops),
};
module_sdio_driver(mt7663s_driver);
MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
MODULE_AUTHOR("Lorenzo Bianconi <lorenzo@kernel.org>");
MODULE_LICENSE("Dual BSD/GPL");

View File

@ -0,0 +1,72 @@
// SPDX-License-Identifier: ISC
/* Copyright (C) 2019 MediaTek Inc.
*
* Author: Ryder Lee <ryder.lee@mediatek.com>
* Felix Fietkau <nbd@nbd.name>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/of.h>
#include "mt7615.h"
int mt7622_wmac_init(struct mt7615_dev *dev)
{
struct device_node *np = dev->mt76.dev->of_node;
if (!is_mt7622(&dev->mt76))
return 0;
dev->infracfg = syscon_regmap_lookup_by_phandle(np, "mediatek,infracfg");
if (IS_ERR(dev->infracfg)) {
dev_err(dev->mt76.dev, "Cannot find infracfg controller\n");
return PTR_ERR(dev->infracfg);
}
return 0;
}
static int mt7622_wmac_probe(struct platform_device *pdev)
{
void __iomem *mem_base;
int irq;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
mem_base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
if (IS_ERR(mem_base))
return PTR_ERR(mem_base);
return mt7615_mmio_probe(&pdev->dev, mem_base, irq, mt7615e_reg_map);
}
static int mt7622_wmac_remove(struct platform_device *pdev)
{
struct mt7615_dev *dev = platform_get_drvdata(pdev);
mt7615_unregister_device(dev);
return 0;
}
static const struct of_device_id mt7622_wmac_of_match[] = {
{ .compatible = "mediatek,mt7622-wmac" },
{},
};
struct platform_driver mt7622_wmac_driver = {
.driver = {
.name = "mt7622-wmac",
.of_match_table = mt7622_wmac_of_match,
},
.probe = mt7622_wmac_probe,
.remove = mt7622_wmac_remove,
};
MODULE_FIRMWARE(MT7622_FIRMWARE_N9);
MODULE_FIRMWARE(MT7622_ROM_PATCH);

View File

@ -0,0 +1,376 @@
// SPDX-License-Identifier: ISC
/* Copyright (C) 2020 Felix Fietkau <nbd@nbd.name> */
#include "mt7615.h"
#include "eeprom.h"
#include "mcu.h"
enum {
TM_CHANGED_TXPOWER_CTRL,
TM_CHANGED_TXPOWER,
TM_CHANGED_FREQ_OFFSET,
/* must be last */
NUM_TM_CHANGED
};
static const u8 tm_change_map[] = {
[TM_CHANGED_TXPOWER_CTRL] = MT76_TM_ATTR_TX_POWER_CONTROL,
[TM_CHANGED_TXPOWER] = MT76_TM_ATTR_TX_POWER,
[TM_CHANGED_FREQ_OFFSET] = MT76_TM_ATTR_FREQ_OFFSET,
};
static const u32 reg_backup_list[] = {
MT_WF_PHY_RFINTF3_0(0),
MT_WF_PHY_RFINTF3_0(1),
MT_WF_PHY_RFINTF3_0(2),
MT_WF_PHY_RFINTF3_0(3),
MT_ANT_SWITCH_CON(2),
MT_ANT_SWITCH_CON(3),
MT_ANT_SWITCH_CON(4),
MT_ANT_SWITCH_CON(6),
MT_ANT_SWITCH_CON(7),
MT_ANT_SWITCH_CON(8),
};
static const struct {
u16 wf;
u16 reg;
} rf_backup_list[] = {
{ 0, 0x48 },
{ 1, 0x48 },
{ 2, 0x48 },
{ 3, 0x48 },
};
static int
mt7615_tm_set_tx_power(struct mt7615_phy *phy)
{
struct mt7615_dev *dev = phy->dev;
struct mt76_phy *mphy = phy->mt76;
int i, ret, n_chains = hweight8(mphy->antenna_mask);
struct cfg80211_chan_def *chandef = &mphy->chandef;
int freq = chandef->center_freq1, len, target_chains;
u8 *data, *eep = (u8 *)dev->mt76.eeprom.data;
enum nl80211_band band = chandef->chan->band;
struct sk_buff *skb;
struct {
u8 center_chan;
u8 dbdc_idx;
u8 band;
u8 rsv;
} __packed req_hdr = {
.center_chan = ieee80211_frequency_to_channel(freq),
.band = band,
.dbdc_idx = phy != &dev->phy,
};
u8 *tx_power = NULL;
if (mphy->test.state != MT76_TM_STATE_OFF)
tx_power = mphy->test.tx_power;
len = MT7615_EE_MAX - MT_EE_NIC_CONF_0;
skb = mt76_mcu_msg_alloc(&dev->mt76, NULL, sizeof(req_hdr) + len);
if (!skb)
return -ENOMEM;
skb_put_data(skb, &req_hdr, sizeof(req_hdr));
data = skb_put_data(skb, eep + MT_EE_NIC_CONF_0, len);
target_chains = mt7615_ext_pa_enabled(dev, band) ? 1 : n_chains;
for (i = 0; i < target_chains; i++) {
ret = mt7615_eeprom_get_target_power_index(dev, chandef->chan, i);
if (ret < 0) {
dev_kfree_skb(skb);
return -EINVAL;
}
if (tx_power && tx_power[i])
data[ret - MT_EE_NIC_CONF_0] = tx_power[i];
}
return mt76_mcu_skb_send_msg(&dev->mt76, skb,
MCU_EXT_CMD(SET_TX_POWER_CTRL), false);
}
static void
mt7615_tm_reg_backup_restore(struct mt7615_phy *phy)
{
struct mt7615_dev *dev = phy->dev;
u32 *b = phy->test.reg_backup;
int n_regs = ARRAY_SIZE(reg_backup_list);
int n_rf_regs = ARRAY_SIZE(rf_backup_list);
int i;
if (phy->mt76->test.state == MT76_TM_STATE_OFF) {
for (i = 0; i < n_regs; i++)
mt76_wr(dev, reg_backup_list[i], b[i]);
for (i = 0; i < n_rf_regs; i++)
mt7615_rf_wr(dev, rf_backup_list[i].wf,
rf_backup_list[i].reg, b[n_regs + i]);
return;
}
if (b)
return;
b = devm_kzalloc(dev->mt76.dev, 4 * (n_regs + n_rf_regs),
GFP_KERNEL);
if (!b)
return;
phy->test.reg_backup = b;
for (i = 0; i < n_regs; i++)
b[i] = mt76_rr(dev, reg_backup_list[i]);
for (i = 0; i < n_rf_regs; i++)
b[n_regs + i] = mt7615_rf_rr(dev, rf_backup_list[i].wf,
rf_backup_list[i].reg);
}
static void
mt7615_tm_init(struct mt7615_phy *phy)
{
struct mt7615_dev *dev = phy->dev;
unsigned int total_flags = ~0;
if (!test_bit(MT76_STATE_RUNNING, &phy->mt76->state))
return;
mt7615_mcu_set_sku_en(phy, phy->mt76->test.state == MT76_TM_STATE_OFF);
mutex_unlock(&dev->mt76.mutex);
mt7615_set_channel(phy);
mt7615_ops.configure_filter(phy->mt76->hw, 0, &total_flags, 0);
mutex_lock(&dev->mt76.mutex);
mt7615_tm_reg_backup_restore(phy);
}
static void
mt7615_tm_set_rx_enable(struct mt7615_dev *dev, bool en)
{
u32 rqcr_mask = (MT_ARB_RQCR_RX_START |
MT_ARB_RQCR_RXV_START |
MT_ARB_RQCR_RXV_R_EN |
MT_ARB_RQCR_RXV_T_EN) *
(BIT(0) | BIT(MT_ARB_RQCR_BAND_SHIFT));
if (en) {
mt76_clear(dev, MT_ARB_SCR,
MT_ARB_SCR_RX0_DISABLE | MT_ARB_SCR_RX1_DISABLE);
mt76_set(dev, MT_ARB_RQCR, rqcr_mask);
} else {
mt76_set(dev, MT_ARB_SCR,
MT_ARB_SCR_RX0_DISABLE | MT_ARB_SCR_RX1_DISABLE);
mt76_clear(dev, MT_ARB_RQCR, rqcr_mask);
}
}
static void
mt7615_tm_set_tx_antenna(struct mt7615_phy *phy, bool en)
{
struct mt7615_dev *dev = phy->dev;
struct mt76_testmode_data *td = &phy->mt76->test;
u8 mask = td->tx_antenna_mask;
int i;
if (!mask)
return;
if (!en)
mask = phy->mt76->chainmask;
for (i = 0; i < 4; i++) {
mt76_rmw_field(dev, MT_WF_PHY_RFINTF3_0(i),
MT_WF_PHY_RFINTF3_0_ANT,
(mask & BIT(i)) ? 0 : 0xa);
}
/* 2.4 GHz band */
mt76_rmw_field(dev, MT_ANT_SWITCH_CON(3), MT_ANT_SWITCH_CON_MODE(0),
(mask & BIT(0)) ? 0x8 : 0x1b);
mt76_rmw_field(dev, MT_ANT_SWITCH_CON(4), MT_ANT_SWITCH_CON_MODE(2),
(mask & BIT(1)) ? 0xe : 0x1b);
mt76_rmw_field(dev, MT_ANT_SWITCH_CON(6), MT_ANT_SWITCH_CON_MODE1(0),
(mask & BIT(2)) ? 0x0 : 0xf);
mt76_rmw_field(dev, MT_ANT_SWITCH_CON(7), MT_ANT_SWITCH_CON_MODE1(2),
(mask & BIT(3)) ? 0x6 : 0xf);
/* 5 GHz band */
mt76_rmw_field(dev, MT_ANT_SWITCH_CON(4), MT_ANT_SWITCH_CON_MODE(1),
(mask & BIT(0)) ? 0xd : 0x1b);
mt76_rmw_field(dev, MT_ANT_SWITCH_CON(2), MT_ANT_SWITCH_CON_MODE(3),
(mask & BIT(1)) ? 0x13 : 0x1b);
mt76_rmw_field(dev, MT_ANT_SWITCH_CON(7), MT_ANT_SWITCH_CON_MODE1(1),
(mask & BIT(2)) ? 0x5 : 0xf);
mt76_rmw_field(dev, MT_ANT_SWITCH_CON(8), MT_ANT_SWITCH_CON_MODE1(3),
(mask & BIT(3)) ? 0xb : 0xf);
for (i = 0; i < 4; i++) {
u32 val;
val = mt7615_rf_rr(dev, i, 0x48);
val &= ~(0x3ff << 20);
if (mask & BIT(i))
val |= 3 << 20;
else
val |= (2 << 28) | (2 << 26) | (8 << 20);
mt7615_rf_wr(dev, i, 0x48, val);
}
}
static void
mt7615_tm_set_tx_frames(struct mt7615_phy *phy, bool en)
{
struct mt7615_dev *dev = phy->dev;
struct ieee80211_tx_info *info;
struct sk_buff *skb = phy->mt76->test.tx_skb;
mt7615_mcu_set_chan_info(phy, MCU_EXT_CMD(SET_RX_PATH));
mt7615_tm_set_tx_antenna(phy, en);
mt7615_tm_set_rx_enable(dev, !en);
if (!en || !skb)
return;
info = IEEE80211_SKB_CB(skb);
info->control.vif = phy->monitor_vif;
}
static void
mt7615_tm_update_params(struct mt7615_phy *phy, u32 changed)
{
struct mt7615_dev *dev = phy->dev;
struct mt76_testmode_data *td = &phy->mt76->test;
bool en = phy->mt76->test.state != MT76_TM_STATE_OFF;
if (changed & BIT(TM_CHANGED_TXPOWER_CTRL))
mt7615_mcu_set_test_param(dev, MCU_ATE_SET_TX_POWER_CONTROL,
en, en && td->tx_power_control);
if (changed & BIT(TM_CHANGED_FREQ_OFFSET))
mt7615_mcu_set_test_param(dev, MCU_ATE_SET_FREQ_OFFSET,
en, en ? td->freq_offset : 0);
if (changed & BIT(TM_CHANGED_TXPOWER))
mt7615_tm_set_tx_power(phy);
}
static int
mt7615_tm_set_state(struct mt76_phy *mphy, enum mt76_testmode_state state)
{
struct mt7615_phy *phy = mphy->priv;
struct mt76_testmode_data *td = &mphy->test;
enum mt76_testmode_state prev_state = td->state;
mphy->test.state = state;
if (prev_state == MT76_TM_STATE_TX_FRAMES)
mt7615_tm_set_tx_frames(phy, false);
else if (state == MT76_TM_STATE_TX_FRAMES)
mt7615_tm_set_tx_frames(phy, true);
if (state <= MT76_TM_STATE_IDLE)
mt7615_tm_init(phy);
if ((state == MT76_TM_STATE_IDLE &&
prev_state == MT76_TM_STATE_OFF) ||
(state == MT76_TM_STATE_OFF &&
prev_state == MT76_TM_STATE_IDLE)) {
u32 changed = 0;
int i;
for (i = 0; i < ARRAY_SIZE(tm_change_map); i++) {
u16 cur = tm_change_map[i];
if (td->param_set[cur / 32] & BIT(cur % 32))
changed |= BIT(i);
}
mt7615_tm_update_params(phy, changed);
}
return 0;
}
static int
mt7615_tm_set_params(struct mt76_phy *mphy, struct nlattr **tb,
enum mt76_testmode_state new_state)
{
struct mt76_testmode_data *td = &mphy->test;
struct mt7615_phy *phy = mphy->priv;
u32 changed = 0;
int i;
BUILD_BUG_ON(NUM_TM_CHANGED >= 32);
if (new_state == MT76_TM_STATE_OFF ||
td->state == MT76_TM_STATE_OFF)
return 0;
if (td->tx_antenna_mask & ~mphy->chainmask)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(tm_change_map); i++) {
if (tb[tm_change_map[i]])
changed |= BIT(i);
}
mt7615_tm_update_params(phy, changed);
return 0;
}
static int
mt7615_tm_dump_stats(struct mt76_phy *mphy, struct sk_buff *msg)
{
struct mt7615_phy *phy = mphy->priv;
void *rx, *rssi;
int i;
rx = nla_nest_start(msg, MT76_TM_STATS_ATTR_LAST_RX);
if (!rx)
return -ENOMEM;
if (nla_put_s32(msg, MT76_TM_RX_ATTR_FREQ_OFFSET, phy->test.last_freq_offset))
return -ENOMEM;
rssi = nla_nest_start(msg, MT76_TM_RX_ATTR_RCPI);
if (!rssi)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(phy->test.last_rcpi); i++)
if (nla_put_u8(msg, i, phy->test.last_rcpi[i]))
return -ENOMEM;
nla_nest_end(msg, rssi);
rssi = nla_nest_start(msg, MT76_TM_RX_ATTR_IB_RSSI);
if (!rssi)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(phy->test.last_ib_rssi); i++)
if (nla_put_s8(msg, i, phy->test.last_ib_rssi[i]))
return -ENOMEM;
nla_nest_end(msg, rssi);
rssi = nla_nest_start(msg, MT76_TM_RX_ATTR_WB_RSSI);
if (!rssi)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(phy->test.last_wb_rssi); i++)
if (nla_put_s8(msg, i, phy->test.last_wb_rssi[i]))
return -ENOMEM;
nla_nest_end(msg, rssi);
nla_nest_end(msg, rx);
return 0;
}
const struct mt76_testmode_ops mt7615_testmode_ops = {
.set_state = mt7615_tm_set_state,
.set_params = mt7615_tm_set_params,
.dump_stats = mt7615_tm_dump_stats,
};

View File

@ -0,0 +1,12 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2019 Lorenzo Bianconi <lorenzo@kernel.org>
*/
#include <linux/module.h>
#ifndef __CHECKER__
#define CREATE_TRACE_POINTS
#include "mt7615_trace.h"
#endif

View File

@ -0,0 +1,285 @@
// SPDX-License-Identifier: ISC
/* Copyright (C) 2019 MediaTek Inc.
*
* Author: Felix Fietkau <nbd@nbd.name>
* Lorenzo Bianconi <lorenzo@kernel.org>
* Sean Wang <sean.wang@mediatek.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/usb.h>
#include "mt7615.h"
#include "mac.h"
#include "mcu.h"
#include "regs.h"
static const struct usb_device_id mt7615_device_table[] = {
{ USB_DEVICE_AND_INTERFACE_INFO(0x0e8d, 0x7663, 0xff, 0xff, 0xff) },
{ USB_DEVICE_AND_INTERFACE_INFO(0x043e, 0x310c, 0xff, 0xff, 0xff) },
{ },
};
static u32 mt7663u_rr(struct mt76_dev *dev, u32 addr)
{
u32 ret;
mutex_lock(&dev->usb.usb_ctrl_mtx);
ret = ___mt76u_rr(dev, MT_VEND_READ_EXT,
USB_DIR_IN | USB_TYPE_VENDOR, addr);
mutex_unlock(&dev->usb.usb_ctrl_mtx);
return ret;
}
static void mt7663u_wr(struct mt76_dev *dev, u32 addr, u32 val)
{
mutex_lock(&dev->usb.usb_ctrl_mtx);
___mt76u_wr(dev, MT_VEND_WRITE_EXT,
USB_DIR_OUT | USB_TYPE_VENDOR, addr, val);
mutex_unlock(&dev->usb.usb_ctrl_mtx);
}
static u32 mt7663u_rmw(struct mt76_dev *dev, u32 addr,
u32 mask, u32 val)
{
mutex_lock(&dev->usb.usb_ctrl_mtx);
val |= ___mt76u_rr(dev, MT_VEND_READ_EXT,
USB_DIR_IN | USB_TYPE_VENDOR, addr) & ~mask;
___mt76u_wr(dev, MT_VEND_WRITE_EXT,
USB_DIR_OUT | USB_TYPE_VENDOR, addr, val);
mutex_unlock(&dev->usb.usb_ctrl_mtx);
return val;
}
static void mt7663u_copy(struct mt76_dev *dev, u32 offset,
const void *data, int len)
{
struct mt76_usb *usb = &dev->usb;
int ret, i = 0, batch_len;
const u8 *val = data;
len = round_up(len, 4);
mutex_lock(&usb->usb_ctrl_mtx);
while (i < len) {
batch_len = min_t(int, usb->data_len, len - i);
memcpy(usb->data, val + i, batch_len);
ret = __mt76u_vendor_request(dev, MT_VEND_WRITE_EXT,
USB_DIR_OUT | USB_TYPE_VENDOR,
(offset + i) >> 16, offset + i,
usb->data, batch_len);
if (ret < 0)
break;
i += batch_len;
}
mutex_unlock(&usb->usb_ctrl_mtx);
}
static void mt7663u_stop(struct ieee80211_hw *hw)
{
struct mt7615_phy *phy = mt7615_hw_phy(hw);
struct mt7615_dev *dev = hw->priv;
clear_bit(MT76_STATE_RUNNING, &dev->mphy.state);
del_timer_sync(&phy->roc_timer);
cancel_work_sync(&phy->roc_work);
cancel_delayed_work_sync(&phy->scan_work);
cancel_delayed_work_sync(&phy->mt76->mac_work);
mt76u_stop_tx(&dev->mt76);
}
static void mt7663u_cleanup(struct mt7615_dev *dev)
{
clear_bit(MT76_STATE_INITIALIZED, &dev->mphy.state);
mt76u_queues_deinit(&dev->mt76);
}
static void mt7663u_init_work(struct work_struct *work)
{
struct mt7615_dev *dev;
dev = container_of(work, struct mt7615_dev, mcu_work);
if (mt7663u_mcu_init(dev))
return;
mt7615_init_work(dev);
}
static int mt7663u_probe(struct usb_interface *usb_intf,
const struct usb_device_id *id)
{
static const struct mt76_driver_ops drv_ops = {
.txwi_size = MT_USB_TXD_SIZE,
.drv_flags = MT_DRV_RX_DMA_HDR | MT_DRV_HW_MGMT_TXQ,
.tx_prepare_skb = mt7663_usb_sdio_tx_prepare_skb,
.tx_complete_skb = mt7663_usb_sdio_tx_complete_skb,
.tx_status_data = mt7663_usb_sdio_tx_status_data,
.rx_skb = mt7615_queue_rx_skb,
.rx_check = mt7615_rx_check,
.sta_ps = mt7615_sta_ps,
.sta_add = mt7615_mac_sta_add,
.sta_remove = mt7615_mac_sta_remove,
.update_survey = mt7615_update_channel,
};
static struct mt76_bus_ops bus_ops = {
.rr = mt7663u_rr,
.wr = mt7663u_wr,
.rmw = mt7663u_rmw,
.read_copy = mt76u_read_copy,
.write_copy = mt7663u_copy,
.type = MT76_BUS_USB,
};
struct usb_device *udev = interface_to_usbdev(usb_intf);
struct ieee80211_ops *ops;
struct mt7615_dev *dev;
struct mt76_dev *mdev;
int ret;
ops = devm_kmemdup(&usb_intf->dev, &mt7615_ops, sizeof(mt7615_ops),
GFP_KERNEL);
if (!ops)
return -ENOMEM;
ops->stop = mt7663u_stop;
mdev = mt76_alloc_device(&usb_intf->dev, sizeof(*dev), ops, &drv_ops);
if (!mdev)
return -ENOMEM;
dev = container_of(mdev, struct mt7615_dev, mt76);
udev = usb_get_dev(udev);
usb_reset_device(udev);
usb_set_intfdata(usb_intf, dev);
INIT_WORK(&dev->mcu_work, mt7663u_init_work);
dev->reg_map = mt7663_usb_sdio_reg_map;
dev->ops = ops;
ret = __mt76u_init(mdev, usb_intf, &bus_ops);
if (ret < 0)
goto error;
mdev->rev = (mt76_rr(dev, MT_HW_CHIPID) << 16) |
(mt76_rr(dev, MT_HW_REV) & 0xff);
dev_dbg(mdev->dev, "ASIC revision: %04x\n", mdev->rev);
if (!mt76_poll_msec(dev, MT_CONN_ON_MISC, MT_TOP_MISC2_FW_PWR_ON,
FW_STATE_PWR_ON << 1, 500)) {
ret = mt7663u_mcu_power_on(dev);
if (ret)
goto error;
} else {
set_bit(MT76_STATE_POWER_OFF, &dev->mphy.state);
}
ret = mt76u_alloc_mcu_queue(&dev->mt76);
if (ret)
goto error;
ret = mt76u_alloc_queues(&dev->mt76);
if (ret)
goto error;
ret = mt7663_usb_sdio_register_device(dev);
if (ret)
goto error;
return 0;
error:
mt76u_queues_deinit(&dev->mt76);
usb_set_intfdata(usb_intf, NULL);
usb_put_dev(interface_to_usbdev(usb_intf));
mt76_free_device(&dev->mt76);
return ret;
}
static void mt7663u_disconnect(struct usb_interface *usb_intf)
{
struct mt7615_dev *dev = usb_get_intfdata(usb_intf);
if (!test_bit(MT76_STATE_INITIALIZED, &dev->mphy.state))
return;
ieee80211_unregister_hw(dev->mt76.hw);
mt7663u_cleanup(dev);
usb_set_intfdata(usb_intf, NULL);
usb_put_dev(interface_to_usbdev(usb_intf));
mt76_free_device(&dev->mt76);
}
#ifdef CONFIG_PM
static int mt7663u_suspend(struct usb_interface *intf, pm_message_t state)
{
struct mt7615_dev *dev = usb_get_intfdata(intf);
if (!test_bit(MT76_STATE_SUSPEND, &dev->mphy.state) &&
mt7615_firmware_offload(dev)) {
int err;
err = mt76_connac_mcu_set_hif_suspend(&dev->mt76, true);
if (err < 0)
return err;
}
mt76u_stop_rx(&dev->mt76);
mt76u_stop_tx(&dev->mt76);
return 0;
}
static int mt7663u_resume(struct usb_interface *intf)
{
struct mt7615_dev *dev = usb_get_intfdata(intf);
int err;
err = mt76u_vendor_request(&dev->mt76, MT_VEND_FEATURE_SET,
USB_DIR_OUT | USB_TYPE_VENDOR,
0x5, 0x0, NULL, 0);
if (err)
return err;
err = mt76u_resume_rx(&dev->mt76);
if (err < 0)
return err;
if (!test_bit(MT76_STATE_SUSPEND, &dev->mphy.state) &&
mt7615_firmware_offload(dev))
err = mt76_connac_mcu_set_hif_suspend(&dev->mt76, false);
return err;
}
#endif /* CONFIG_PM */
MODULE_DEVICE_TABLE(usb, mt7615_device_table);
MODULE_FIRMWARE(MT7663_OFFLOAD_FIRMWARE_N9);
MODULE_FIRMWARE(MT7663_OFFLOAD_ROM_PATCH);
MODULE_FIRMWARE(MT7663_FIRMWARE_N9);
MODULE_FIRMWARE(MT7663_ROM_PATCH);
static struct usb_driver mt7663u_driver = {
.name = KBUILD_MODNAME,
.id_table = mt7615_device_table,
.probe = mt7663u_probe,
.disconnect = mt7663u_disconnect,
#ifdef CONFIG_PM
.suspend = mt7663u_suspend,
.resume = mt7663u_resume,
.reset_resume = mt7663u_resume,
#endif /* CONFIG_PM */
.soft_unbind = 1,
.disable_hub_initiated_lpm = 1,
};
module_usb_driver(mt7663u_driver);
MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
MODULE_AUTHOR("Lorenzo Bianconi <lorenzo@kernel.org>");
MODULE_LICENSE("Dual BSD/GPL");

View File

@ -0,0 +1,352 @@
// SPDX-License-Identifier: ISC
/* Copyright (C) 2020 MediaTek Inc.
*
* Author: Lorenzo Bianconi <lorenzo@kernel.org>
* Sean Wang <sean.wang@mediatek.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/usb.h>
#include "mt7615.h"
#include "mac.h"
#include "mcu.h"
#include "regs.h"
const u32 mt7663_usb_sdio_reg_map[] = {
[MT_TOP_CFG_BASE] = 0x80020000,
[MT_HW_BASE] = 0x80000000,
[MT_DMA_SHDL_BASE] = 0x5000a000,
[MT_HIF_BASE] = 0x50000000,
[MT_CSR_BASE] = 0x40000000,
[MT_EFUSE_ADDR_BASE] = 0x78011000,
[MT_TOP_MISC_BASE] = 0x81020000,
[MT_PLE_BASE] = 0x82060000,
[MT_PSE_BASE] = 0x82068000,
[MT_PP_BASE] = 0x8206c000,
[MT_WTBL_BASE_ADDR] = 0x820e0000,
[MT_CFG_BASE] = 0x820f0000,
[MT_AGG_BASE] = 0x820f2000,
[MT_ARB_BASE] = 0x820f3000,
[MT_TMAC_BASE] = 0x820f4000,
[MT_RMAC_BASE] = 0x820f5000,
[MT_DMA_BASE] = 0x820f7000,
[MT_PF_BASE] = 0x820f8000,
[MT_WTBL_BASE_ON] = 0x820f9000,
[MT_WTBL_BASE_OFF] = 0x820f9800,
[MT_LPON_BASE] = 0x820fb000,
[MT_MIB_BASE] = 0x820fd000,
};
EXPORT_SYMBOL_GPL(mt7663_usb_sdio_reg_map);
static void
mt7663_usb_sdio_write_txwi(struct mt7615_dev *dev, struct mt76_wcid *wcid,
enum mt76_txq_id qid, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key, int pid,
struct sk_buff *skb)
{
__le32 *txwi = (__le32 *)(skb->data - MT_USB_TXD_SIZE);
memset(txwi, 0, MT_USB_TXD_SIZE);
mt7615_mac_write_txwi(dev, txwi, skb, wcid, sta, pid, key, qid, false);
skb_push(skb, MT_USB_TXD_SIZE);
}
static int mt7663_usb_sdio_set_rates(struct mt7615_dev *dev,
struct mt7615_wtbl_rate_desc *wrd)
{
struct mt7615_rate_desc *rate = &wrd->rate;
struct mt7615_sta *sta = wrd->sta;
u32 w5, w27, addr, val;
u16 idx;
lockdep_assert_held(&dev->mt76.mutex);
if (!sta)
return -EINVAL;
if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000))
return -ETIMEDOUT;
addr = mt7615_mac_wtbl_addr(dev, sta->wcid.idx);
w27 = mt76_rr(dev, addr + 27 * 4);
w27 &= ~MT_WTBL_W27_CC_BW_SEL;
w27 |= FIELD_PREP(MT_WTBL_W27_CC_BW_SEL, rate->bw);
w5 = mt76_rr(dev, addr + 5 * 4);
w5 &= ~(MT_WTBL_W5_BW_CAP | MT_WTBL_W5_CHANGE_BW_RATE |
MT_WTBL_W5_MPDU_OK_COUNT |
MT_WTBL_W5_MPDU_FAIL_COUNT |
MT_WTBL_W5_RATE_IDX);
w5 |= FIELD_PREP(MT_WTBL_W5_BW_CAP, rate->bw) |
FIELD_PREP(MT_WTBL_W5_CHANGE_BW_RATE,
rate->bw_idx ? rate->bw_idx - 1 : 7);
mt76_wr(dev, MT_WTBL_RIUCR0, w5);
mt76_wr(dev, MT_WTBL_RIUCR1,
FIELD_PREP(MT_WTBL_RIUCR1_RATE0, rate->probe_val) |
FIELD_PREP(MT_WTBL_RIUCR1_RATE1, rate->val[0]) |
FIELD_PREP(MT_WTBL_RIUCR1_RATE2_LO, rate->val[1]));
mt76_wr(dev, MT_WTBL_RIUCR2,
FIELD_PREP(MT_WTBL_RIUCR2_RATE2_HI, rate->val[1] >> 8) |
FIELD_PREP(MT_WTBL_RIUCR2_RATE3, rate->val[1]) |
FIELD_PREP(MT_WTBL_RIUCR2_RATE4, rate->val[2]) |
FIELD_PREP(MT_WTBL_RIUCR2_RATE5_LO, rate->val[2]));
mt76_wr(dev, MT_WTBL_RIUCR3,
FIELD_PREP(MT_WTBL_RIUCR3_RATE5_HI, rate->val[2] >> 4) |
FIELD_PREP(MT_WTBL_RIUCR3_RATE6, rate->val[3]) |
FIELD_PREP(MT_WTBL_RIUCR3_RATE7, rate->val[3]));
mt76_wr(dev, MT_WTBL_UPDATE,
FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, sta->wcid.idx) |
MT_WTBL_UPDATE_RATE_UPDATE |
MT_WTBL_UPDATE_TX_COUNT_CLEAR);
mt76_wr(dev, addr + 27 * 4, w27);
sta->rate_probe = sta->rateset[rate->rateset].probe_rate.idx != -1;
idx = sta->vif->mt76.omac_idx;
idx = idx > HW_BSSID_MAX ? HW_BSSID_0 : idx;
addr = idx > 1 ? MT_LPON_TCR2(idx): MT_LPON_TCR0(idx);
mt76_rmw(dev, addr, MT_LPON_TCR_MODE, MT_LPON_TCR_READ); /* TSF read */
val = mt76_rr(dev, MT_LPON_UTTR0);
sta->rate_set_tsf = (val & ~BIT(0)) | rate->rateset;
if (!(sta->wcid.tx_info & MT_WCID_TX_INFO_SET))
mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
sta->rate_count = 2 * MT7615_RATE_RETRY * sta->n_rates;
sta->wcid.tx_info |= MT_WCID_TX_INFO_SET;
return 0;
}
static void mt7663_usb_sdio_rate_work(struct work_struct *work)
{
struct mt7615_wtbl_rate_desc *wrd, *wrd_next;
struct list_head wrd_list;
struct mt7615_dev *dev;
dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev,
rate_work);
INIT_LIST_HEAD(&wrd_list);
spin_lock_bh(&dev->mt76.lock);
list_splice_init(&dev->wrd_head, &wrd_list);
spin_unlock_bh(&dev->mt76.lock);
list_for_each_entry_safe(wrd, wrd_next, &wrd_list, node) {
list_del(&wrd->node);
mt7615_mutex_acquire(dev);
mt7663_usb_sdio_set_rates(dev, wrd);
mt7615_mutex_release(dev);
kfree(wrd);
}
}
bool mt7663_usb_sdio_tx_status_data(struct mt76_dev *mdev, u8 *update)
{
struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
mt7615_mutex_acquire(dev);
mt7615_mac_sta_poll(dev);
mt7615_mutex_release(dev);
return false;
}
EXPORT_SYMBOL_GPL(mt7663_usb_sdio_tx_status_data);
void mt7663_usb_sdio_tx_complete_skb(struct mt76_dev *mdev,
struct mt76_queue_entry *e)
{
unsigned int headroom = MT_USB_TXD_SIZE;
if (mt76_is_usb(mdev))
headroom += MT_USB_HDR_SIZE;
skb_pull(e->skb, headroom);
mt76_tx_complete_skb(mdev, e->wcid, e->skb);
}
EXPORT_SYMBOL_GPL(mt7663_usb_sdio_tx_complete_skb);
int mt7663_usb_sdio_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr,
enum mt76_txq_id qid, struct mt76_wcid *wcid,
struct ieee80211_sta *sta,
struct mt76_tx_info *tx_info)
{
struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
struct sk_buff *skb = tx_info->skb;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_key_conf *key = info->control.hw_key;
struct mt7615_sta *msta;
int pad, err, pktid;
msta = wcid ? container_of(wcid, struct mt7615_sta, wcid) : NULL;
if (!wcid)
wcid = &dev->mt76.global_wcid;
if ((info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) &&
msta && !msta->rate_probe) {
/* request to configure sampling rate */
spin_lock_bh(&dev->mt76.lock);
mt7615_mac_set_rates(&dev->phy, msta, &info->control.rates[0],
msta->rates);
spin_unlock_bh(&dev->mt76.lock);
}
pktid = mt76_tx_status_skb_add(&dev->mt76, wcid, skb);
mt7663_usb_sdio_write_txwi(dev, wcid, qid, sta, key, pktid, skb);
if (mt76_is_usb(mdev)) {
u32 len = skb->len;
put_unaligned_le32(len, skb_push(skb, sizeof(len)));
pad = round_up(skb->len, 4) + 4 - skb->len;
} else {
pad = round_up(skb->len, 4) - skb->len;
}
err = mt76_skb_adjust_pad(skb, pad);
if (err)
/* Release pktid in case of error. */
idr_remove(&wcid->pktid, pktid);
return err;
}
EXPORT_SYMBOL_GPL(mt7663_usb_sdio_tx_prepare_skb);
static int mt7663u_dma_sched_init(struct mt7615_dev *dev)
{
int i;
mt76_rmw(dev, MT_DMA_SHDL(MT_DMASHDL_PKT_MAX_SIZE),
MT_DMASHDL_PKT_MAX_SIZE_PLE | MT_DMASHDL_PKT_MAX_SIZE_PSE,
FIELD_PREP(MT_DMASHDL_PKT_MAX_SIZE_PLE, 1) |
FIELD_PREP(MT_DMASHDL_PKT_MAX_SIZE_PSE, 8));
/* disable refill group 5 - group 15 and raise group 2
* and 3 as high priority.
*/
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_REFILL), 0xffe00006);
mt76_clear(dev, MT_DMA_SHDL(MT_DMASHDL_PAGE), BIT(16));
for (i = 0; i < 5; i++)
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_GROUP_QUOTA(i)),
FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MIN, 0x3) |
FIELD_PREP(MT_DMASHDL_GROUP_QUOTA_MAX, 0x1ff));
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_Q_MAP(0)), 0x42104210);
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_Q_MAP(1)), 0x42104210);
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_Q_MAP(2)), 0x4444);
/* group pririority from high to low:
* 15 (cmd groups) > 4 > 3 > 2 > 1 > 0.
*/
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_SCHED_SET0), 0x6501234f);
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_SCHED_SET1), 0xedcba987);
mt76_wr(dev, MT_DMA_SHDL(MT_DMASHDL_OPTIONAL), 0x7004801c);
mt76_wr(dev, MT_UDMA_WLCFG_1,
FIELD_PREP(MT_WL_TX_TMOUT_LMT, 80000) |
FIELD_PREP(MT_WL_RX_AGG_PKT_LMT, 1));
/* setup UDMA Rx Flush */
mt76_clear(dev, MT_UDMA_WLCFG_0, MT_WL_RX_FLUSH);
/* hif reset */
mt76_set(dev, MT_HIF_RST, MT_HIF_LOGIC_RST_N);
mt76_set(dev, MT_UDMA_WLCFG_0,
MT_WL_RX_AGG_EN | MT_WL_RX_EN | MT_WL_TX_EN |
MT_WL_RX_MPSZ_PAD0 | MT_TICK_1US_EN |
MT_WL_TX_TMOUT_FUNC_EN);
mt76_rmw(dev, MT_UDMA_WLCFG_0, MT_WL_RX_AGG_LMT | MT_WL_RX_AGG_TO,
FIELD_PREP(MT_WL_RX_AGG_LMT, 32) |
FIELD_PREP(MT_WL_RX_AGG_TO, 100));
return 0;
}
static int mt7663_usb_sdio_init_hardware(struct mt7615_dev *dev)
{
int ret, idx;
ret = mt7615_eeprom_init(dev, MT_EFUSE_BASE);
if (ret < 0)
return ret;
if (mt76_is_usb(&dev->mt76)) {
ret = mt7663u_dma_sched_init(dev);
if (ret)
return ret;
}
set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state);
/* Beacon and mgmt frames should occupy wcid 0 */
idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7615_WTBL_STA - 1);
if (idx)
return -ENOSPC;
dev->mt76.global_wcid.idx = idx;
dev->mt76.global_wcid.hw_key_idx = -1;
rcu_assign_pointer(dev->mt76.wcid[idx], &dev->mt76.global_wcid);
return 0;
}
int mt7663_usb_sdio_register_device(struct mt7615_dev *dev)
{
struct ieee80211_hw *hw = mt76_hw(dev);
int err;
INIT_WORK(&dev->rate_work, mt7663_usb_sdio_rate_work);
INIT_LIST_HEAD(&dev->wrd_head);
mt7615_init_device(dev);
err = mt7663_usb_sdio_init_hardware(dev);
if (err)
return err;
hw->extra_tx_headroom += MT_USB_TXD_SIZE;
if (mt76_is_usb(&dev->mt76)) {
hw->extra_tx_headroom += MT_USB_HDR_SIZE;
/* check hw sg support in order to enable AMSDU */
if (dev->mt76.usb.sg_en)
hw->max_tx_fragments = MT_HW_TXP_MAX_BUF_NUM;
else
hw->max_tx_fragments = 1;
}
err = mt76_register_device(&dev->mt76, true, mt76_rates,
ARRAY_SIZE(mt76_rates));
if (err < 0)
return err;
if (!dev->mt76.usb.sg_en) {
struct ieee80211_sta_vht_cap *vht_cap;
/* decrease max A-MSDU size if SG is not supported */
vht_cap = &dev->mphy.sband_5g.sband.vht_cap;
vht_cap->cap &= ~IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
}
ieee80211_queue_work(hw, &dev->mcu_work);
mt7615_init_txpower(dev, &dev->mphy.sband_2g.sband);
mt7615_init_txpower(dev, &dev->mphy.sband_5g.sband);
return mt7615_init_debugfs(dev);
}
EXPORT_SYMBOL_GPL(mt7663_usb_sdio_register_device);
MODULE_AUTHOR("Lorenzo Bianconi <lorenzo@kernel.org>");
MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
MODULE_LICENSE("Dual BSD/GPL");

View File

@ -0,0 +1,371 @@
/* SPDX-License-Identifier: ISC */
/* Copyright (C) 2020 MediaTek Inc. */
#ifndef __MT76_CONNAC_H
#define __MT76_CONNAC_H
#include "mt76.h"
#define MT76_CONNAC_SCAN_IE_LEN 600
#define MT76_CONNAC_MAX_NUM_SCHED_SCAN_INTERVAL 10
#define MT76_CONNAC_MAX_TIME_SCHED_SCAN_INTERVAL U16_MAX
#define MT76_CONNAC_MAX_SCHED_SCAN_SSID 10
#define MT76_CONNAC_MAX_SCAN_MATCH 16
#define MT76_CONNAC_MAX_WMM_SETS 4
#define MT76_CONNAC_COREDUMP_TIMEOUT (HZ / 20)
#define MT76_CONNAC_COREDUMP_SZ (1300 * 1024)
#define MT_TXD_SIZE (8 * 4)
#define MT_USB_TXD_SIZE (MT_TXD_SIZE + 8 * 4)
#define MT_USB_HDR_SIZE 4
#define MT_USB_TAIL_SIZE 4
#define MT_SDIO_TXD_SIZE (MT_TXD_SIZE + 8 * 4)
#define MT_SDIO_TAIL_SIZE 8
#define MT_SDIO_HDR_SIZE 4
#define MT_MSDU_ID_VALID BIT(15)
#define MT_TXD_LEN_LAST BIT(15)
#define MT_TXD_LEN_MASK GENMASK(11, 0)
#define MT_TXD_LEN_MSDU_LAST BIT(14)
#define MT_TXD_LEN_AMSDU_LAST BIT(15)
enum {
CMD_CBW_20MHZ = IEEE80211_STA_RX_BW_20,
CMD_CBW_40MHZ = IEEE80211_STA_RX_BW_40,
CMD_CBW_80MHZ = IEEE80211_STA_RX_BW_80,
CMD_CBW_160MHZ = IEEE80211_STA_RX_BW_160,
CMD_CBW_10MHZ,
CMD_CBW_5MHZ,
CMD_CBW_8080MHZ,
CMD_HE_MCS_BW80 = 0,
CMD_HE_MCS_BW160,
CMD_HE_MCS_BW8080,
CMD_HE_MCS_BW_NUM
};
enum {
HW_BSSID_0 = 0x0,
HW_BSSID_1,
HW_BSSID_2,
HW_BSSID_3,
HW_BSSID_MAX = HW_BSSID_3,
EXT_BSSID_START = 0x10,
EXT_BSSID_1,
EXT_BSSID_15 = 0x1f,
EXT_BSSID_MAX = EXT_BSSID_15,
REPEATER_BSSID_START = 0x20,
REPEATER_BSSID_MAX = 0x3f,
};
struct mt76_connac_reg_map {
u32 phys;
u32 maps;
u32 size;
};
struct mt76_connac_pm {
bool enable:1;
bool enable_user:1;
bool ds_enable:1;
bool ds_enable_user:1;
bool suspended:1;
spinlock_t txq_lock;
struct {
struct mt76_wcid *wcid;
struct sk_buff *skb;
} tx_q[IEEE80211_NUM_ACS];
struct work_struct wake_work;
wait_queue_head_t wait;
struct {
spinlock_t lock;
u32 count;
} wake;
struct mutex mutex;
struct delayed_work ps_work;
unsigned long last_activity;
unsigned long idle_timeout;
struct {
unsigned long last_wake_event;
unsigned long awake_time;
unsigned long last_doze_event;
unsigned long doze_time;
unsigned int lp_wake;
} stats;
};
struct mt76_connac_coredump {
struct sk_buff_head msg_list;
struct delayed_work work;
unsigned long last_activity;
};
struct mt76_connac_sta_key_conf {
s8 keyidx;
u8 key[16];
};
#define MT_TXP_MAX_BUF_NUM 6
struct mt76_connac_fw_txp {
__le16 flags;
__le16 token;
u8 bss_idx;
__le16 rept_wds_wcid;
u8 nbuf;
__le32 buf[MT_TXP_MAX_BUF_NUM];
__le16 len[MT_TXP_MAX_BUF_NUM];
} __packed __aligned(4);
#define MT_HW_TXP_MAX_MSDU_NUM 4
#define MT_HW_TXP_MAX_BUF_NUM 4
struct mt76_connac_txp_ptr {
__le32 buf0;
__le16 len0;
__le16 len1;
__le32 buf1;
} __packed __aligned(4);
struct mt76_connac_hw_txp {
__le16 msdu_id[MT_HW_TXP_MAX_MSDU_NUM];
struct mt76_connac_txp_ptr ptr[MT_HW_TXP_MAX_BUF_NUM / 2];
} __packed __aligned(4);
struct mt76_connac_txp_common {
union {
struct mt76_connac_fw_txp fw;
struct mt76_connac_hw_txp hw;
};
};
struct mt76_connac_tx_free {
__le16 rx_byte_cnt;
__le16 ctrl;
__le32 txd;
} __packed __aligned(4);
extern const struct wiphy_wowlan_support mt76_connac_wowlan_support;
static inline bool is_mt7922(struct mt76_dev *dev)
{
return mt76_chip(dev) == 0x7922;
}
static inline bool is_mt7921(struct mt76_dev *dev)
{
return mt76_chip(dev) == 0x7961 || is_mt7922(dev);
}
static inline bool is_mt7663(struct mt76_dev *dev)
{
return mt76_chip(dev) == 0x7663;
}
static inline bool is_mt7915(struct mt76_dev *dev)
{
return mt76_chip(dev) == 0x7915;
}
static inline bool is_mt7916(struct mt76_dev *dev)
{
return mt76_chip(dev) == 0x7906;
}
static inline bool is_mt7986(struct mt76_dev *dev)
{
return mt76_chip(dev) == 0x7986;
}
static inline bool is_mt7622(struct mt76_dev *dev)
{
if (!IS_ENABLED(CONFIG_MT7622_WMAC))
return false;
return mt76_chip(dev) == 0x7622;
}
static inline bool is_mt7615(struct mt76_dev *dev)
{
return mt76_chip(dev) == 0x7615 || mt76_chip(dev) == 0x7611;
}
static inline bool is_mt7611(struct mt76_dev *dev)
{
return mt76_chip(dev) == 0x7611;
}
static inline bool is_connac_v1(struct mt76_dev *dev)
{
return is_mt7615(dev) || is_mt7663(dev) || is_mt7622(dev);
}
static inline bool is_mt76_fw_txp(struct mt76_dev *dev)
{
switch (mt76_chip(dev)) {
case 0x7961:
case 0x7922:
case 0x7663:
case 0x7622:
return false;
default:
return true;
}
}
static inline u8 mt76_connac_chan_bw(struct cfg80211_chan_def *chandef)
{
static const u8 width_to_bw[] = {
[NL80211_CHAN_WIDTH_40] = CMD_CBW_40MHZ,
[NL80211_CHAN_WIDTH_80] = CMD_CBW_80MHZ,
[NL80211_CHAN_WIDTH_80P80] = CMD_CBW_8080MHZ,
[NL80211_CHAN_WIDTH_160] = CMD_CBW_160MHZ,
[NL80211_CHAN_WIDTH_5] = CMD_CBW_5MHZ,
[NL80211_CHAN_WIDTH_10] = CMD_CBW_10MHZ,
[NL80211_CHAN_WIDTH_20] = CMD_CBW_20MHZ,
[NL80211_CHAN_WIDTH_20_NOHT] = CMD_CBW_20MHZ,
};
if (chandef->width >= ARRAY_SIZE(width_to_bw))
return 0;
return width_to_bw[chandef->width];
}
static inline u8 mt76_connac_lmac_mapping(u8 ac)
{
/* LMAC uses the reverse order of mac80211 AC indexes */
return 3 - ac;
}
static inline void *
mt76_connac_txwi_to_txp(struct mt76_dev *dev, struct mt76_txwi_cache *t)
{
u8 *txwi;
if (!t)
return NULL;
txwi = mt76_get_txwi_ptr(dev, t);
return (void *)(txwi + MT_TXD_SIZE);
}
int mt76_connac_pm_wake(struct mt76_phy *phy, struct mt76_connac_pm *pm);
void mt76_connac_power_save_sched(struct mt76_phy *phy,
struct mt76_connac_pm *pm);
void mt76_connac_free_pending_tx_skbs(struct mt76_connac_pm *pm,
struct mt76_wcid *wcid);
static inline void mt76_connac_tx_cleanup(struct mt76_dev *dev)
{
dev->queue_ops->tx_cleanup(dev, dev->q_mcu[MT_MCUQ_WM], false);
dev->queue_ops->tx_cleanup(dev, dev->q_mcu[MT_MCUQ_WA], false);
}
static inline bool
mt76_connac_pm_ref(struct mt76_phy *phy, struct mt76_connac_pm *pm)
{
bool ret = false;
spin_lock_bh(&pm->wake.lock);
if (test_bit(MT76_STATE_PM, &phy->state))
goto out;
pm->wake.count++;
ret = true;
out:
spin_unlock_bh(&pm->wake.lock);
return ret;
}
static inline void
mt76_connac_pm_unref(struct mt76_phy *phy, struct mt76_connac_pm *pm)
{
spin_lock_bh(&pm->wake.lock);
pm->last_activity = jiffies;
if (--pm->wake.count == 0 &&
test_bit(MT76_STATE_MCU_RUNNING, &phy->state))
mt76_connac_power_save_sched(phy, pm);
spin_unlock_bh(&pm->wake.lock);
}
static inline bool
mt76_connac_skip_fw_pmctrl(struct mt76_phy *phy, struct mt76_connac_pm *pm)
{
struct mt76_dev *dev = phy->dev;
bool ret;
if (dev->token_count)
return true;
spin_lock_bh(&pm->wake.lock);
ret = pm->wake.count || test_and_set_bit(MT76_STATE_PM, &phy->state);
spin_unlock_bh(&pm->wake.lock);
return ret;
}
static inline void
mt76_connac_mutex_acquire(struct mt76_dev *dev, struct mt76_connac_pm *pm)
__acquires(&dev->mutex)
{
mutex_lock(&dev->mutex);
mt76_connac_pm_wake(&dev->phy, pm);
}
static inline void
mt76_connac_mutex_release(struct mt76_dev *dev, struct mt76_connac_pm *pm)
__releases(&dev->mutex)
{
mt76_connac_power_save_sched(&dev->phy, pm);
mutex_unlock(&dev->mutex);
}
int mt76_connac_init_tx_queues(struct mt76_phy *phy, int idx, int n_desc,
int ring_base, u32 flags);
void mt76_connac_write_hw_txp(struct mt76_dev *dev,
struct mt76_tx_info *tx_info,
void *txp_ptr, u32 id);
void mt76_connac_txp_skb_unmap(struct mt76_dev *dev,
struct mt76_txwi_cache *txwi);
void mt76_connac_tx_complete_skb(struct mt76_dev *mdev,
struct mt76_queue_entry *e);
void mt76_connac_pm_queue_skb(struct ieee80211_hw *hw,
struct mt76_connac_pm *pm,
struct mt76_wcid *wcid,
struct sk_buff *skb);
void mt76_connac_pm_dequeue_skbs(struct mt76_phy *phy,
struct mt76_connac_pm *pm);
void mt76_connac2_mac_write_txwi(struct mt76_dev *dev, __le32 *txwi,
struct sk_buff *skb, struct mt76_wcid *wcid,
struct ieee80211_key_conf *key, int pid,
enum mt76_txq_id qid, u32 changed);
bool mt76_connac2_mac_fill_txs(struct mt76_dev *dev, struct mt76_wcid *wcid,
__le32 *txs_data);
bool mt76_connac2_mac_add_txs_skb(struct mt76_dev *dev, struct mt76_wcid *wcid,
int pid, __le32 *txs_data);
void mt76_connac2_mac_decode_he_radiotap(struct mt76_dev *dev,
struct sk_buff *skb,
__le32 *rxv, u32 mode);
int mt76_connac2_reverse_frag0_hdr_trans(struct ieee80211_vif *vif,
struct sk_buff *skb, u16 hdr_offset);
int mt76_connac2_mac_fill_rx_rate(struct mt76_dev *dev,
struct mt76_rx_status *status,
struct ieee80211_supported_band *sband,
__le32 *rxv, u8 *mode);
#endif /* __MT76_CONNAC_H */

View File

@ -0,0 +1,331 @@
/* SPDX-License-Identifier: ISC */
/* Copyright (C) 2022 MediaTek Inc. */
#ifndef __MT76_CONNAC2_MAC_H
#define __MT76_CONNAC2_MAC_H
enum tx_header_format {
MT_HDR_FORMAT_802_3,
MT_HDR_FORMAT_CMD,
MT_HDR_FORMAT_802_11,
MT_HDR_FORMAT_802_11_EXT,
};
enum tx_pkt_type {
MT_TX_TYPE_CT,
MT_TX_TYPE_SF,
MT_TX_TYPE_CMD,
MT_TX_TYPE_FW,
};
enum {
MT_CTX0,
MT_HIF0 = 0x0,
MT_LMAC_AC00 = 0x0,
MT_LMAC_AC01,
MT_LMAC_AC02,
MT_LMAC_AC03,
MT_LMAC_ALTX0 = 0x10,
MT_LMAC_BMC0,
MT_LMAC_BCN0,
MT_LMAC_PSMP0,
};
#define MT_TXD0_Q_IDX GENMASK(31, 25)
#define MT_TXD0_PKT_FMT GENMASK(24, 23)
#define MT_TXD0_ETH_TYPE_OFFSET GENMASK(22, 16)
#define MT_TXD0_TX_BYTES GENMASK(15, 0)
#define MT_TXD1_LONG_FORMAT BIT(31)
#define MT_TXD1_TGID BIT(30)
#define MT_TXD1_OWN_MAC GENMASK(29, 24)
#define MT_TXD1_AMSDU BIT(23)
#define MT_TXD1_TID GENMASK(22, 20)
#define MT_TXD1_HDR_PAD GENMASK(19, 18)
#define MT_TXD1_HDR_FORMAT GENMASK(17, 16)
#define MT_TXD1_HDR_INFO GENMASK(15, 11)
#define MT_TXD1_ETH_802_3 BIT(15)
#define MT_TXD1_VTA BIT(10)
#define MT_TXD1_WLAN_IDX GENMASK(9, 0)
#define MT_TXD2_FIX_RATE BIT(31)
#define MT_TXD2_FIXED_RATE BIT(30)
#define MT_TXD2_POWER_OFFSET GENMASK(29, 24)
#define MT_TXD2_MAX_TX_TIME GENMASK(23, 16)
#define MT_TXD2_FRAG GENMASK(15, 14)
#define MT_TXD2_HTC_VLD BIT(13)
#define MT_TXD2_DURATION BIT(12)
#define MT_TXD2_BIP BIT(11)
#define MT_TXD2_MULTICAST BIT(10)
#define MT_TXD2_RTS BIT(9)
#define MT_TXD2_SOUNDING BIT(8)
#define MT_TXD2_NDPA BIT(7)
#define MT_TXD2_NDP BIT(6)
#define MT_TXD2_FRAME_TYPE GENMASK(5, 4)
#define MT_TXD2_SUB_TYPE GENMASK(3, 0)
#define MT_TXD3_SN_VALID BIT(31)
#define MT_TXD3_PN_VALID BIT(30)
#define MT_TXD3_SW_POWER_MGMT BIT(29)
#define MT_TXD3_BA_DISABLE BIT(28)
#define MT_TXD3_SEQ GENMASK(27, 16)
#define MT_TXD3_REM_TX_COUNT GENMASK(15, 11)
#define MT_TXD3_TX_COUNT GENMASK(10, 6)
#define MT_TXD3_TIMING_MEASURE BIT(5)
#define MT_TXD3_DAS BIT(4)
#define MT_TXD3_EEOSP BIT(3)
#define MT_TXD3_EMRD BIT(2)
#define MT_TXD3_PROTECT_FRAME BIT(1)
#define MT_TXD3_NO_ACK BIT(0)
#define MT_TXD4_PN_LOW GENMASK(31, 0)
#define MT_TXD5_PN_HIGH GENMASK(31, 16)
#define MT_TXD5_MD BIT(15)
#define MT_TXD5_ADD_BA BIT(14)
#define MT_TXD5_TX_STATUS_HOST BIT(10)
#define MT_TXD5_TX_STATUS_MCU BIT(9)
#define MT_TXD5_TX_STATUS_FMT BIT(8)
#define MT_TXD5_PID GENMASK(7, 0)
#define MT_TXD6_TX_IBF BIT(31)
#define MT_TXD6_TX_EBF BIT(30)
#define MT_TXD6_TX_RATE GENMASK(29, 16)
#define MT_TXD6_SGI GENMASK(15, 14)
#define MT_TXD6_HELTF GENMASK(13, 12)
#define MT_TXD6_LDPC BIT(11)
#define MT_TXD6_SPE_ID_IDX BIT(10)
#define MT_TXD6_ANT_ID GENMASK(7, 4)
#define MT_TXD6_DYN_BW BIT(3)
#define MT_TXD6_FIXED_BW BIT(2)
#define MT_TXD6_BW GENMASK(1, 0)
#define MT_TXD7_TXD_LEN GENMASK(31, 30)
#define MT_TXD7_UDP_TCP_SUM BIT(29)
#define MT_TXD7_IP_SUM BIT(28)
#define MT_TXD7_TYPE GENMASK(21, 20)
#define MT_TXD7_SUB_TYPE GENMASK(19, 16)
#define MT_TXD7_PSE_FID GENMASK(27, 16)
#define MT_TXD7_SPE_IDX GENMASK(15, 11)
#define MT_TXD7_HW_AMSDU BIT(10)
#define MT_TXD7_TX_TIME GENMASK(9, 0)
#define MT_TXD8_L_TYPE GENMASK(5, 4)
#define MT_TXD8_L_SUB_TYPE GENMASK(3, 0)
#define MT_TX_RATE_STBC BIT(13)
#define MT_TX_RATE_NSS GENMASK(12, 10)
#define MT_TX_RATE_MODE GENMASK(9, 6)
#define MT_TX_RATE_SU_EXT_TONE BIT(5)
#define MT_TX_RATE_DCM BIT(4)
/* VHT/HE only use bits 0-3 */
#define MT_TX_RATE_IDX GENMASK(5, 0)
#define MT_TXS0_FIXED_RATE BIT(31)
#define MT_TXS0_BW GENMASK(30, 29)
#define MT_TXS0_TID GENMASK(28, 26)
#define MT_TXS0_AMPDU BIT(25)
#define MT_TXS0_TXS_FORMAT GENMASK(24, 23)
#define MT_TXS0_BA_ERROR BIT(22)
#define MT_TXS0_PS_FLAG BIT(21)
#define MT_TXS0_TXOP_TIMEOUT BIT(20)
#define MT_TXS0_BIP_ERROR BIT(19)
#define MT_TXS0_QUEUE_TIMEOUT BIT(18)
#define MT_TXS0_RTS_TIMEOUT BIT(17)
#define MT_TXS0_ACK_TIMEOUT BIT(16)
#define MT_TXS0_ACK_ERROR_MASK GENMASK(18, 16)
#define MT_TXS0_TX_STATUS_HOST BIT(15)
#define MT_TXS0_TX_STATUS_MCU BIT(14)
#define MT_TXS0_TX_RATE GENMASK(13, 0)
#define MT_TXS1_SEQNO GENMASK(31, 20)
#define MT_TXS1_RESP_RATE GENMASK(19, 16)
#define MT_TXS1_RXV_SEQNO GENMASK(15, 8)
#define MT_TXS1_TX_POWER_DBM GENMASK(7, 0)
#define MT_TXS2_BF_STATUS GENMASK(31, 30)
#define MT_TXS2_LAST_TX_RATE GENMASK(29, 27)
#define MT_TXS2_SHARED_ANTENNA BIT(26)
#define MT_TXS2_WCID GENMASK(25, 16)
#define MT_TXS2_TX_DELAY GENMASK(15, 0)
#define MT_TXS3_PID GENMASK(31, 24)
#define MT_TXS3_ANT_ID GENMASK(23, 0)
#define MT_TXS4_TIMESTAMP GENMASK(31, 0)
/* PPDU based TXS */
#define MT_TXS5_MPDU_TX_BYTE GENMASK(22, 0)
#define MT_TXS5_MPDU_TX_CNT GENMASK(31, 23)
#define MT_TXS6_MPDU_FAIL_CNT GENMASK(31, 23)
#define MT_TXS7_MPDU_RETRY_CNT GENMASK(31, 23)
/* RXD DW1 */
#define MT_RXD1_NORMAL_WLAN_IDX GENMASK(9, 0)
#define MT_RXD1_NORMAL_GROUP_1 BIT(11)
#define MT_RXD1_NORMAL_GROUP_2 BIT(12)
#define MT_RXD1_NORMAL_GROUP_3 BIT(13)
#define MT_RXD1_NORMAL_GROUP_4 BIT(14)
#define MT_RXD1_NORMAL_GROUP_5 BIT(15)
#define MT_RXD1_NORMAL_SEC_MODE GENMASK(20, 16)
#define MT_RXD1_NORMAL_KEY_ID GENMASK(22, 21)
#define MT_RXD1_NORMAL_CM BIT(23)
#define MT_RXD1_NORMAL_CLM BIT(24)
#define MT_RXD1_NORMAL_ICV_ERR BIT(25)
#define MT_RXD1_NORMAL_TKIP_MIC_ERR BIT(26)
#define MT_RXD1_NORMAL_FCS_ERR BIT(27)
#define MT_RXD1_NORMAL_BAND_IDX BIT(28)
#define MT_RXD1_NORMAL_SPP_EN BIT(29)
#define MT_RXD1_NORMAL_ADD_OM BIT(30)
#define MT_RXD1_NORMAL_SEC_DONE BIT(31)
/* RXD DW2 */
#define MT_RXD2_NORMAL_BSSID GENMASK(5, 0)
#define MT_RXD2_NORMAL_CO_ANT BIT(6)
#define MT_RXD2_NORMAL_BF_CQI BIT(7)
#define MT_RXD2_NORMAL_MAC_HDR_LEN GENMASK(12, 8)
#define MT_RXD2_NORMAL_HDR_TRANS BIT(13)
#define MT_RXD2_NORMAL_HDR_OFFSET GENMASK(15, 14)
#define MT_RXD2_NORMAL_TID GENMASK(19, 16)
#define MT_RXD2_NORMAL_MU_BAR BIT(21)
#define MT_RXD2_NORMAL_SW_BIT BIT(22)
#define MT_RXD2_NORMAL_AMSDU_ERR BIT(23)
#define MT_RXD2_NORMAL_MAX_LEN_ERROR BIT(24)
#define MT_RXD2_NORMAL_HDR_TRANS_ERROR BIT(25)
#define MT_RXD2_NORMAL_INT_FRAME BIT(26)
#define MT_RXD2_NORMAL_FRAG BIT(27)
#define MT_RXD2_NORMAL_NULL_FRAME BIT(28)
#define MT_RXD2_NORMAL_NDATA BIT(29)
#define MT_RXD2_NORMAL_NON_AMPDU BIT(30)
#define MT_RXD2_NORMAL_BF_REPORT BIT(31)
/* RXD DW4 */
#define MT_RXD4_NORMAL_PAYLOAD_FORMAT GENMASK(1, 0)
#define MT_RXD4_FIRST_AMSDU_FRAME GENMASK(1, 0)
#define MT_RXD4_MID_AMSDU_FRAME BIT(1)
#define MT_RXD4_LAST_AMSDU_FRAME BIT(0)
#define MT_RXD4_NORMAL_PATTERN_DROP BIT(9)
#define MT_RXD4_NORMAL_CLS BIT(10)
#define MT_RXD4_NORMAL_OFLD GENMASK(12, 11)
#define MT_RXD4_NORMAL_MAGIC_PKT BIT(13)
#define MT_RXD4_NORMAL_WOL GENMASK(18, 14)
#define MT_RXD4_NORMAL_CLS_BITMAP GENMASK(28, 19)
#define MT_RXD3_NORMAL_PF_MODE BIT(29)
#define MT_RXD3_NORMAL_PF_STS GENMASK(31, 30)
#define MT_RXV_HDR_BAND_IDX BIT(24)
/* RXD DW3 */
#define MT_RXD3_NORMAL_RXV_SEQ GENMASK(7, 0)
#define MT_RXD3_NORMAL_CH_FREQ GENMASK(15, 8)
#define MT_RXD3_NORMAL_ADDR_TYPE GENMASK(17, 16)
#define MT_RXD3_NORMAL_U2M BIT(0)
#define MT_RXD3_NORMAL_HTC_VLD BIT(0)
#define MT_RXD3_NORMAL_TSF_COMPARE_LOSS BIT(19)
#define MT_RXD3_NORMAL_BEACON_MC BIT(20)
#define MT_RXD3_NORMAL_BEACON_UC BIT(21)
#define MT_RXD3_NORMAL_AMSDU BIT(22)
#define MT_RXD3_NORMAL_MESH BIT(23)
#define MT_RXD3_NORMAL_MHCP BIT(24)
#define MT_RXD3_NORMAL_NO_INFO_WB BIT(25)
#define MT_RXD3_NORMAL_DISABLE_RX_HDR_TRANS BIT(26)
#define MT_RXD3_NORMAL_POWER_SAVE_STAT BIT(27)
#define MT_RXD3_NORMAL_MORE BIT(28)
#define MT_RXD3_NORMAL_UNWANT BIT(29)
#define MT_RXD3_NORMAL_RX_DROP BIT(30)
#define MT_RXD3_NORMAL_VLAN2ETH BIT(31)
/* RXD GROUP4 */
#define MT_RXD6_FRAME_CONTROL GENMASK(15, 0)
#define MT_RXD6_TA_LO GENMASK(31, 16)
#define MT_RXD7_TA_HI GENMASK(31, 0)
#define MT_RXD8_SEQ_CTRL GENMASK(15, 0)
#define MT_RXD8_QOS_CTL GENMASK(31, 16)
#define MT_RXD9_HT_CONTROL GENMASK(31, 0)
/* P-RXV DW0 */
#define MT_PRXV_TX_RATE GENMASK(6, 0)
#define MT_PRXV_TX_DCM BIT(4)
#define MT_PRXV_TX_ER_SU_106T BIT(5)
#define MT_PRXV_NSTS GENMASK(9, 7)
#define MT_PRXV_TXBF BIT(10)
#define MT_PRXV_HT_AD_CODE BIT(11)
#define MT_PRXV_HE_RU_ALLOC_L GENMASK(31, 28)
#define MT_PRXV_FRAME_MODE GENMASK(14, 12)
#define MT_PRXV_HT_SGI GENMASK(16, 15)
#define MT_PRXV_HT_STBC GENMASK(23, 22)
#define MT_PRXV_TX_MODE GENMASK(27, 24)
#define MT_PRXV_DCM BIT(17)
#define MT_PRXV_NUM_RX BIT(20, 18)
/* P-RXV DW1 */
#define MT_PRXV_RCPI3 GENMASK(31, 24)
#define MT_PRXV_RCPI2 GENMASK(23, 16)
#define MT_PRXV_RCPI1 GENMASK(15, 8)
#define MT_PRXV_RCPI0 GENMASK(7, 0)
#define MT_PRXV_HE_RU_ALLOC_H GENMASK(3, 0)
/* C-RXV */
#define MT_CRXV_HT_STBC GENMASK(1, 0)
#define MT_CRXV_TX_MODE GENMASK(7, 4)
#define MT_CRXV_FRAME_MODE GENMASK(10, 8)
#define MT_CRXV_HT_SHORT_GI GENMASK(14, 13)
#define MT_CRXV_HE_LTF_SIZE GENMASK(18, 17)
#define MT_CRXV_HE_LDPC_EXT_SYM BIT(20)
#define MT_CRXV_HE_PE_DISAMBIG BIT(23)
#define MT_CRXV_HE_NUM_USER GENMASK(30, 24)
#define MT_CRXV_HE_UPLINK BIT(31)
#define MT_CRXV_HE_RU0 GENMASK(7, 0)
#define MT_CRXV_HE_RU1 GENMASK(15, 8)
#define MT_CRXV_HE_RU2 GENMASK(23, 16)
#define MT_CRXV_HE_RU3 GENMASK(31, 24)
#define MT_CRXV_HE_MU_AID GENMASK(30, 20)
#define MT_CRXV_HE_SR_MASK GENMASK(11, 8)
#define MT_CRXV_HE_SR1_MASK GENMASK(16, 12)
#define MT_CRXV_HE_SR2_MASK GENMASK(20, 17)
#define MT_CRXV_HE_SR3_MASK GENMASK(24, 21)
#define MT_CRXV_HE_BSS_COLOR GENMASK(5, 0)
#define MT_CRXV_HE_TXOP_DUR GENMASK(12, 6)
#define MT_CRXV_HE_BEAM_CHNG BIT(13)
#define MT_CRXV_HE_DOPPLER BIT(16)
#define MT_CRXV_SNR GENMASK(18, 13)
#define MT_CRXV_FOE_LO GENMASK(31, 19)
#define MT_CRXV_FOE_HI GENMASK(6, 0)
#define MT_CRXV_FOE_SHIFT 13
#define MT_CT_INFO_APPLY_TXD BIT(0)
#define MT_CT_INFO_COPY_HOST_TXD_ALL BIT(1)
#define MT_CT_INFO_MGMT_FRAME BIT(2)
#define MT_CT_INFO_NONE_CIPHER_FRAME BIT(3)
#define MT_CT_INFO_HSR2_TX BIT(4)
#define MT_CT_INFO_FROM_HOST BIT(7)
enum tx_mcu_port_q_idx {
MT_TX_MCU_PORT_RX_Q0 = 0x20,
MT_TX_MCU_PORT_RX_Q1,
MT_TX_MCU_PORT_RX_Q2,
MT_TX_MCU_PORT_RX_Q3,
MT_TX_MCU_PORT_RX_FWDL = 0x3e
};
enum tx_port_idx {
MT_TX_PORT_IDX_LMAC,
MT_TX_PORT_IDX_MCU
};
#endif /* __MT76_CONNAC2_MAC_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,318 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include "mt76x0.h"
#include "mcu.h"
static int mt76x0e_start(struct ieee80211_hw *hw)
{
struct mt76x02_dev *dev = hw->priv;
mt76x02_mac_start(dev);
mt76x0_phy_calibrate(dev, true);
ieee80211_queue_delayed_work(dev->mt76.hw, &dev->mphy.mac_work,
MT_MAC_WORK_INTERVAL);
ieee80211_queue_delayed_work(dev->mt76.hw, &dev->cal_work,
MT_CALIBRATE_INTERVAL);
set_bit(MT76_STATE_RUNNING, &dev->mphy.state);
return 0;
}
static void mt76x0e_stop_hw(struct mt76x02_dev *dev)
{
cancel_delayed_work_sync(&dev->cal_work);
cancel_delayed_work_sync(&dev->mphy.mac_work);
clear_bit(MT76_RESTART, &dev->mphy.state);
if (!mt76_poll(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_BUSY,
0, 1000))
dev_warn(dev->mt76.dev, "TX DMA did not stop\n");
mt76_clear(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_DMA_EN);
mt76x0_mac_stop(dev);
if (!mt76_poll(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_RX_DMA_BUSY,
0, 1000))
dev_warn(dev->mt76.dev, "TX DMA did not stop\n");
mt76_clear(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_RX_DMA_EN);
}
static void mt76x0e_stop(struct ieee80211_hw *hw)
{
struct mt76x02_dev *dev = hw->priv;
clear_bit(MT76_STATE_RUNNING, &dev->mphy.state);
mt76x0e_stop_hw(dev);
}
static void
mt76x0e_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
u32 queues, bool drop)
{
}
static const struct ieee80211_ops mt76x0e_ops = {
.tx = mt76x02_tx,
.start = mt76x0e_start,
.stop = mt76x0e_stop,
.add_interface = mt76x02_add_interface,
.remove_interface = mt76x02_remove_interface,
.config = mt76x0_config,
.configure_filter = mt76x02_configure_filter,
.bss_info_changed = mt76x02_bss_info_changed,
.sta_state = mt76_sta_state,
.sta_pre_rcu_remove = mt76_sta_pre_rcu_remove,
.set_key = mt76x02_set_key,
.conf_tx = mt76x02_conf_tx,
.sw_scan_start = mt76_sw_scan,
.sw_scan_complete = mt76x02_sw_scan_complete,
.ampdu_action = mt76x02_ampdu_action,
.sta_rate_tbl_update = mt76x02_sta_rate_tbl_update,
.wake_tx_queue = mt76_wake_tx_queue,
.get_survey = mt76_get_survey,
.get_txpower = mt76_get_txpower,
.flush = mt76x0e_flush,
.set_tim = mt76_set_tim,
.release_buffered_frames = mt76_release_buffered_frames,
.set_coverage_class = mt76x02_set_coverage_class,
.set_rts_threshold = mt76x02_set_rts_threshold,
.get_antenna = mt76_get_antenna,
.reconfig_complete = mt76x02_reconfig_complete,
.set_sar_specs = mt76x0_set_sar_specs,
};
static int mt76x0e_init_hardware(struct mt76x02_dev *dev, bool resume)
{
int err;
mt76x0_chip_onoff(dev, true, false);
if (!mt76x02_wait_for_mac(&dev->mt76))
return -ETIMEDOUT;
mt76x02_dma_disable(dev);
err = mt76x0e_mcu_init(dev);
if (err < 0)
return err;
if (!resume) {
err = mt76x02_dma_init(dev);
if (err < 0)
return err;
}
err = mt76x0_init_hardware(dev);
if (err < 0)
return err;
mt76x02e_init_beacon_config(dev);
if (mt76_chip(&dev->mt76) == 0x7610) {
u16 val;
mt76_clear(dev, MT_COEXCFG0, BIT(0));
val = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_0);
if (!(val & MT_EE_NIC_CONF_0_PA_IO_CURRENT))
mt76_set(dev, MT_XO_CTRL7, 0xc03);
}
mt76_clear(dev, 0x110, BIT(9));
mt76_set(dev, MT_MAX_LEN_CFG, BIT(13));
return 0;
}
static int mt76x0e_register_device(struct mt76x02_dev *dev)
{
int err;
err = mt76x0e_init_hardware(dev, false);
if (err < 0)
return err;
err = mt76x0_register_device(dev);
if (err < 0)
return err;
set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state);
return 0;
}
static int
mt76x0e_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
static const struct mt76_driver_ops drv_ops = {
.txwi_size = sizeof(struct mt76x02_txwi),
.drv_flags = MT_DRV_TX_ALIGNED4_SKBS |
MT_DRV_SW_RX_AIRTIME,
.survey_flags = SURVEY_INFO_TIME_TX,
.update_survey = mt76x02_update_channel,
.tx_prepare_skb = mt76x02_tx_prepare_skb,
.tx_complete_skb = mt76x02_tx_complete_skb,
.rx_skb = mt76x02_queue_rx_skb,
.rx_poll_complete = mt76x02_rx_poll_complete,
.sta_ps = mt76x02_sta_ps,
.sta_add = mt76x02_sta_add,
.sta_remove = mt76x02_sta_remove,
};
struct mt76x02_dev *dev;
struct mt76_dev *mdev;
int ret;
ret = pcim_enable_device(pdev);
if (ret)
return ret;
ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
if (ret)
return ret;
pci_set_master(pdev);
ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
if (ret)
return ret;
mt76_pci_disable_aspm(pdev);
mdev = mt76_alloc_device(&pdev->dev, sizeof(*dev), &mt76x0e_ops,
&drv_ops);
if (!mdev)
return -ENOMEM;
dev = container_of(mdev, struct mt76x02_dev, mt76);
mutex_init(&dev->phy_mutex);
mt76_mmio_init(mdev, pcim_iomap_table(pdev)[0]);
mdev->rev = mt76_rr(dev, MT_ASIC_VERSION);
dev_info(mdev->dev, "ASIC revision: %08x\n", mdev->rev);
mt76_wr(dev, MT_INT_MASK_CSR, 0);
ret = devm_request_irq(mdev->dev, pdev->irq, mt76x02_irq_handler,
IRQF_SHARED, KBUILD_MODNAME, dev);
if (ret)
goto error;
ret = mt76x0e_register_device(dev);
if (ret < 0)
goto error;
return 0;
error:
mt76_free_device(&dev->mt76);
return ret;
}
static void mt76x0e_cleanup(struct mt76x02_dev *dev)
{
clear_bit(MT76_STATE_INITIALIZED, &dev->mphy.state);
tasklet_disable(&dev->mt76.pre_tbtt_tasklet);
mt76x0_chip_onoff(dev, false, false);
mt76x0e_stop_hw(dev);
mt76_dma_cleanup(&dev->mt76);
mt76x02_mcu_cleanup(dev);
}
static void
mt76x0e_remove(struct pci_dev *pdev)
{
struct mt76_dev *mdev = pci_get_drvdata(pdev);
struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
mt76_unregister_device(mdev);
mt76x0e_cleanup(dev);
mt76_free_device(mdev);
}
#ifdef CONFIG_PM
static int mt76x0e_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct mt76_dev *mdev = pci_get_drvdata(pdev);
struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
int i;
mt76_worker_disable(&mdev->tx_worker);
for (i = 0; i < ARRAY_SIZE(mdev->phy.q_tx); i++)
mt76_queue_tx_cleanup(dev, mdev->phy.q_tx[i], true);
for (i = 0; i < ARRAY_SIZE(mdev->q_mcu); i++)
mt76_queue_tx_cleanup(dev, mdev->q_mcu[i], true);
napi_disable(&mdev->tx_napi);
mt76_for_each_q_rx(mdev, i)
napi_disable(&mdev->napi[i]);
mt76x02_dma_disable(dev);
mt76x02_mcu_cleanup(dev);
mt76x0_chip_onoff(dev, false, false);
pci_enable_wake(pdev, pci_choose_state(pdev, state), true);
pci_save_state(pdev);
return pci_set_power_state(pdev, pci_choose_state(pdev, state));
}
static int mt76x0e_resume(struct pci_dev *pdev)
{
struct mt76_dev *mdev = pci_get_drvdata(pdev);
struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
int err, i;
err = pci_set_power_state(pdev, PCI_D0);
if (err)
return err;
pci_restore_state(pdev);
mt76_worker_enable(&mdev->tx_worker);
local_bh_disable();
mt76_for_each_q_rx(mdev, i) {
mt76_queue_rx_reset(dev, i);
napi_enable(&mdev->napi[i]);
napi_schedule(&mdev->napi[i]);
}
napi_enable(&mdev->tx_napi);
napi_schedule(&mdev->tx_napi);
local_bh_enable();
return mt76x0e_init_hardware(dev, true);
}
#endif /* CONFIG_PM */
static const struct pci_device_id mt76x0e_device_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7610) },
{ PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7630) },
{ PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7650) },
{ },
};
MODULE_DEVICE_TABLE(pci, mt76x0e_device_table);
MODULE_FIRMWARE(MT7610E_FIRMWARE);
MODULE_FIRMWARE(MT7650E_FIRMWARE);
MODULE_LICENSE("Dual BSD/GPL");
static struct pci_driver mt76x0e_driver = {
.name = KBUILD_MODNAME,
.id_table = mt76x0e_device_table,
.probe = mt76x0e_probe,
.remove = mt76x0e_remove,
#ifdef CONFIG_PM
.suspend = mt76x0e_suspend,
.resume = mt76x0e_resume,
#endif /* CONFIG_PM */
};
module_pci_driver(mt76x0e_driver);

View File

@ -0,0 +1,133 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include <linux/kernel.h>
#include <linux/firmware.h>
#include "mt76x0.h"
#include "mcu.h"
#define MT_MCU_IVB_ADDR (MT_MCU_ILM_ADDR + 0x54000 - MT_MCU_IVB_SIZE)
static int mt76x0e_load_firmware(struct mt76x02_dev *dev)
{
bool is_combo_chip = mt76_chip(&dev->mt76) != 0x7610;
u32 val, ilm_len, dlm_len, offset = 0;
const struct mt76x02_fw_header *hdr;
const struct firmware *fw;
const char *firmware;
const u8 *fw_payload;
int len, err;
if (is_combo_chip)
firmware = MT7650E_FIRMWARE;
else
firmware = MT7610E_FIRMWARE;
err = request_firmware(&fw, firmware, dev->mt76.dev);
if (err)
return err;
if (!fw || !fw->data || fw->size < sizeof(*hdr)) {
err = -EIO;
goto out;
}
hdr = (const struct mt76x02_fw_header *)fw->data;
len = sizeof(*hdr);
len += le32_to_cpu(hdr->ilm_len);
len += le32_to_cpu(hdr->dlm_len);
if (fw->size != len) {
err = -EIO;
goto out;
}
fw_payload = fw->data + sizeof(*hdr);
val = le16_to_cpu(hdr->fw_ver);
dev_info(dev->mt76.dev, "Firmware Version: %d.%d.%02d\n",
(val >> 12) & 0xf, (val >> 8) & 0xf, val & 0xf);
val = le16_to_cpu(hdr->fw_ver);
dev_dbg(dev->mt76.dev,
"Firmware Version: %d.%d.%02d Build: %x Build time: %.16s\n",
(val >> 12) & 0xf, (val >> 8) & 0xf, val & 0xf,
le16_to_cpu(hdr->build_ver), hdr->build_time);
if (is_combo_chip && !mt76_poll(dev, MT_MCU_SEMAPHORE_00, 1, 1, 600)) {
dev_err(dev->mt76.dev,
"Could not get hardware semaphore for loading fw\n");
err = -ETIMEDOUT;
goto out;
}
/* upload ILM. */
mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, 0);
ilm_len = le32_to_cpu(hdr->ilm_len);
if (is_combo_chip) {
ilm_len -= MT_MCU_IVB_SIZE;
offset = MT_MCU_IVB_SIZE;
}
dev_dbg(dev->mt76.dev, "loading FW - ILM %u\n", ilm_len);
mt76_wr_copy(dev, MT_MCU_ILM_ADDR + offset, fw_payload + offset,
ilm_len);
/* upload IVB. */
if (is_combo_chip) {
dev_dbg(dev->mt76.dev, "loading FW - IVB %u\n",
MT_MCU_IVB_SIZE);
mt76_wr_copy(dev, MT_MCU_IVB_ADDR, fw_payload, MT_MCU_IVB_SIZE);
}
/* upload DLM. */
mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, MT_MCU_DLM_OFFSET);
dlm_len = le32_to_cpu(hdr->dlm_len);
dev_dbg(dev->mt76.dev, "loading FW - DLM %u\n", dlm_len);
mt76_wr_copy(dev, MT_MCU_ILM_ADDR,
fw_payload + le32_to_cpu(hdr->ilm_len), dlm_len);
/* trigger firmware */
mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, 0);
if (is_combo_chip)
mt76_wr(dev, MT_MCU_INT_LEVEL, 0x3);
else
mt76_wr(dev, MT_MCU_RESET_CTL, 0x300);
if (!mt76_poll_msec(dev, MT_MCU_COM_REG0, 1, 1, 1000)) {
dev_err(dev->mt76.dev, "Firmware failed to start\n");
err = -ETIMEDOUT;
goto out;
}
mt76x02_set_ethtool_fwver(dev, hdr);
dev_dbg(dev->mt76.dev, "Firmware running!\n");
out:
if (is_combo_chip)
mt76_wr(dev, MT_MCU_SEMAPHORE_00, 0x1);
release_firmware(fw);
return err;
}
int mt76x0e_mcu_init(struct mt76x02_dev *dev)
{
static const struct mt76_mcu_ops mt76x0e_mcu_ops = {
.mcu_send_msg = mt76x02_mcu_msg_send,
.mcu_parse_response = mt76x02_mcu_parse_response,
};
int err;
dev->mt76.mcu_ops = &mt76x0e_mcu_ops;
err = mt76x0e_load_firmware(dev);
if (err < 0)
return err;
set_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state);
return 0;
}

View File

@ -0,0 +1,174 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include <linux/kernel.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include "mt76x0.h"
#include "mcu.h"
#include "../mt76x02_usb.h"
#define MCU_FW_URB_MAX_PAYLOAD 0x38f8
#define MCU_FW_URB_SIZE (MCU_FW_URB_MAX_PAYLOAD + 12)
static int
mt76x0u_upload_firmware(struct mt76x02_dev *dev,
const struct mt76x02_fw_header *hdr)
{
u8 *fw_payload = (u8 *)(hdr + 1);
u32 ilm_len, dlm_len;
void *ivb;
int err;
ivb = kmemdup(fw_payload, MT_MCU_IVB_SIZE, GFP_KERNEL);
if (!ivb)
return -ENOMEM;
ilm_len = le32_to_cpu(hdr->ilm_len) - MT_MCU_IVB_SIZE;
dev_dbg(dev->mt76.dev, "loading FW - ILM %u + IVB %u\n",
ilm_len, MT_MCU_IVB_SIZE);
err = mt76x02u_mcu_fw_send_data(dev, fw_payload + MT_MCU_IVB_SIZE,
ilm_len, MCU_FW_URB_MAX_PAYLOAD,
MT_MCU_IVB_SIZE);
if (err)
goto out;
dlm_len = le32_to_cpu(hdr->dlm_len);
dev_dbg(dev->mt76.dev, "loading FW - DLM %u\n", dlm_len);
err = mt76x02u_mcu_fw_send_data(dev,
fw_payload + le32_to_cpu(hdr->ilm_len),
dlm_len, MCU_FW_URB_MAX_PAYLOAD,
MT_MCU_DLM_OFFSET);
if (err)
goto out;
err = mt76u_vendor_request(&dev->mt76, MT_VEND_DEV_MODE,
USB_DIR_OUT | USB_TYPE_VENDOR,
0x12, 0, ivb, MT_MCU_IVB_SIZE);
if (err < 0)
goto out;
if (!mt76_poll_msec(dev, MT_MCU_COM_REG0, 1, 1, 1000)) {
dev_err(dev->mt76.dev, "Firmware failed to start\n");
err = -ETIMEDOUT;
goto out;
}
dev_dbg(dev->mt76.dev, "Firmware running!\n");
out:
kfree(ivb);
return err;
}
static int mt76x0_get_firmware(struct mt76x02_dev *dev,
const struct firmware **fw)
{
int err;
/* try to load mt7610e fw if available
* otherwise fall back to mt7610u one
*/
err = firmware_request_nowarn(fw, MT7610E_FIRMWARE, dev->mt76.dev);
if (err) {
dev_info(dev->mt76.dev, "%s not found, switching to %s",
MT7610E_FIRMWARE, MT7610U_FIRMWARE);
return request_firmware(fw, MT7610U_FIRMWARE,
dev->mt76.dev);
}
return 0;
}
static int mt76x0u_load_firmware(struct mt76x02_dev *dev)
{
const struct firmware *fw;
const struct mt76x02_fw_header *hdr;
int len, ret;
u32 val;
mt76_wr(dev, MT_USB_DMA_CFG, (MT_USB_DMA_CFG_RX_BULK_EN |
MT_USB_DMA_CFG_TX_BULK_EN));
if (mt76x0_firmware_running(dev))
return 0;
ret = mt76x0_get_firmware(dev, &fw);
if (ret)
return ret;
if (!fw || !fw->data || fw->size < sizeof(*hdr))
goto err_inv_fw;
hdr = (const struct mt76x02_fw_header *)fw->data;
if (le32_to_cpu(hdr->ilm_len) <= MT_MCU_IVB_SIZE)
goto err_inv_fw;
len = sizeof(*hdr);
len += le32_to_cpu(hdr->ilm_len);
len += le32_to_cpu(hdr->dlm_len);
if (fw->size != len)
goto err_inv_fw;
val = le16_to_cpu(hdr->fw_ver);
dev_dbg(dev->mt76.dev,
"Firmware Version: %d.%d.%02d Build: %x Build time: %.16s\n",
(val >> 12) & 0xf, (val >> 8) & 0xf, val & 0xf,
le16_to_cpu(hdr->build_ver), hdr->build_time);
len = le32_to_cpu(hdr->ilm_len);
mt76_wr(dev, 0x1004, 0x2c);
mt76_set(dev, MT_USB_DMA_CFG,
(MT_USB_DMA_CFG_RX_BULK_EN | MT_USB_DMA_CFG_TX_BULK_EN) |
FIELD_PREP(MT_USB_DMA_CFG_RX_BULK_AGG_TOUT, 0x20));
mt76x02u_mcu_fw_reset(dev);
usleep_range(5000, 6000);
mt76_wr(dev, MT_FCE_PSE_CTRL, 1);
/* FCE tx_fs_base_ptr */
mt76_wr(dev, MT_TX_CPU_FROM_FCE_BASE_PTR, 0x400230);
/* FCE tx_fs_max_cnt */
mt76_wr(dev, MT_TX_CPU_FROM_FCE_MAX_COUNT, 1);
/* FCE pdma enable */
mt76_wr(dev, MT_FCE_PDMA_GLOBAL_CONF, 0x44);
/* FCE skip_fs_en */
mt76_wr(dev, MT_FCE_SKIP_FS, 3);
val = mt76_rr(dev, MT_USB_DMA_CFG);
val |= MT_USB_DMA_CFG_UDMA_TX_WL_DROP;
mt76_wr(dev, MT_USB_DMA_CFG, val);
val &= ~MT_USB_DMA_CFG_UDMA_TX_WL_DROP;
mt76_wr(dev, MT_USB_DMA_CFG, val);
ret = mt76x0u_upload_firmware(dev, hdr);
release_firmware(fw);
mt76_wr(dev, MT_FCE_PSE_CTRL, 1);
return ret;
err_inv_fw:
dev_err(dev->mt76.dev, "Invalid firmware image\n");
release_firmware(fw);
return -ENOENT;
}
int mt76x0u_mcu_init(struct mt76x02_dev *dev)
{
int ret;
ret = mt76x0u_load_firmware(dev);
if (ret < 0)
return ret;
set_bit(MT76_STATE_MCU_RUNNING, &dev->mphy.state);
return 0;
}

View File

@ -0,0 +1,273 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl>
*/
#ifndef __MT76x02_H
#define __MT76x02_H
#include <linux/kfifo.h>
#include "mt76.h"
#include "mt76x02_regs.h"
#include "mt76x02_mac.h"
#include "mt76x02_dfs.h"
#include "mt76x02_dma.h"
#define MT76x02_TX_RING_SIZE 512
#define MT76x02_PSD_RING_SIZE 128
#define MT76x02_N_WCIDS 128
#define MT_CALIBRATE_INTERVAL HZ
#define MT_MAC_WORK_INTERVAL (HZ / 10)
#define MT_WATCHDOG_TIME (HZ / 10)
#define MT_TX_HANG_TH 10
#define MT_MAX_CHAINS 2
struct mt76x02_rx_freq_cal {
s8 high_gain[MT_MAX_CHAINS];
s8 rssi_offset[MT_MAX_CHAINS];
s8 lna_gain;
u32 mcu_gain;
s16 temp_offset;
u8 freq_offset;
};
struct mt76x02_calibration {
struct mt76x02_rx_freq_cal rx;
u8 agc_gain_init[MT_MAX_CHAINS];
u8 agc_gain_cur[MT_MAX_CHAINS];
u16 false_cca;
s8 avg_rssi_all;
s8 agc_gain_adjust;
s8 agc_lowest_gain;
s8 low_gain;
s8 temp_vco;
s8 temp;
bool init_cal_done;
bool tssi_cal_done;
bool tssi_comp_pending;
bool dpd_cal_done;
bool channel_cal_done;
bool gain_init_done;
int tssi_target;
s8 tssi_dc;
};
struct mt76x02_beacon_ops {
unsigned int nslots;
unsigned int slot_size;
void (*pre_tbtt_enable)(struct mt76x02_dev *dev, bool en);
void (*beacon_enable)(struct mt76x02_dev *dev, bool en);
};
#define mt76x02_beacon_enable(dev, enable) \
(dev)->beacon_ops->beacon_enable(dev, enable)
#define mt76x02_pre_tbtt_enable(dev, enable) \
(dev)->beacon_ops->pre_tbtt_enable(dev, enable)
struct mt76x02_dev {
union { /* must be first */
struct mt76_dev mt76;
struct mt76_phy mphy;
};
struct mac_address macaddr_list[8];
struct mutex phy_mutex;
u8 txdone_seq;
DECLARE_KFIFO_PTR(txstatus_fifo, struct mt76x02_tx_status);
spinlock_t txstatus_fifo_lock;
u32 tx_airtime;
u32 ampdu_ref;
struct sk_buff *rx_head;
struct delayed_work cal_work;
struct delayed_work wdt_work;
struct hrtimer pre_tbtt_timer;
struct work_struct pre_tbtt_work;
const struct mt76x02_beacon_ops *beacon_ops;
u8 beacon_data_count;
u8 tbtt_count;
u32 tx_hang_reset;
u8 tx_hang_check[4];
u8 beacon_hang_check;
u8 mcu_timeout;
struct mt76x02_calibration cal;
int txpower_conf;
s8 target_power;
s8 target_power_delta[2];
bool enable_tpc;
bool no_2ghz;
s16 coverage_class;
u8 slottime;
struct mt76x02_dfs_pattern_detector dfs_pd;
/* edcca monitor */
unsigned long ed_trigger_timeout;
bool ed_tx_blocked;
bool ed_monitor;
u8 ed_monitor_enabled;
u8 ed_monitor_learning;
u8 ed_trigger;
u8 ed_silent;
ktime_t ed_time;
};
extern struct ieee80211_rate mt76x02_rates[12];
int mt76x02_init_device(struct mt76x02_dev *dev);
void mt76x02_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags, u64 multicast);
int mt76x02_sta_add(struct mt76_dev *mdev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
void mt76x02_sta_remove(struct mt76_dev *mdev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
void mt76x02_config_mac_addr_list(struct mt76x02_dev *dev);
int mt76x02_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
void mt76x02_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
int mt76x02_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_ampdu_params *params);
int mt76x02_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key);
int mt76x02_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
unsigned int link_id, u16 queue,
const struct ieee80211_tx_queue_params *params);
void mt76x02_sta_rate_tbl_update(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
s8 mt76x02_tx_get_max_txpwr_adj(struct mt76x02_dev *dev,
const struct ieee80211_tx_rate *rate);
s8 mt76x02_tx_get_txpwr_adj(struct mt76x02_dev *dev, s8 txpwr,
s8 max_txpwr_adj);
void mt76x02_wdt_work(struct work_struct *work);
void mt76x02_tx_set_txpwr_auto(struct mt76x02_dev *dev, s8 txpwr);
void mt76x02_set_tx_ackto(struct mt76x02_dev *dev);
void mt76x02_set_coverage_class(struct ieee80211_hw *hw,
s16 coverage_class);
int mt76x02_set_rts_threshold(struct ieee80211_hw *hw, u32 val);
void mt76x02_remove_hdr_pad(struct sk_buff *skb, int len);
bool mt76x02_tx_status_data(struct mt76_dev *mdev, u8 *update);
void mt76x02_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q,
struct sk_buff *skb);
void mt76x02_rx_poll_complete(struct mt76_dev *mdev, enum mt76_rxq_id q);
irqreturn_t mt76x02_irq_handler(int irq, void *dev_instance);
void mt76x02_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control,
struct sk_buff *skb);
int mt76x02_tx_prepare_skb(struct mt76_dev *mdev, void *txwi,
enum mt76_txq_id qid, struct mt76_wcid *wcid,
struct ieee80211_sta *sta,
struct mt76_tx_info *tx_info);
void mt76x02_sw_scan_complete(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
void mt76x02_sta_ps(struct mt76_dev *dev, struct ieee80211_sta *sta, bool ps);
void mt76x02_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info, u64 changed);
void mt76x02_reconfig_complete(struct ieee80211_hw *hw,
enum ieee80211_reconfig_type reconfig_type);
struct beacon_bc_data {
struct mt76x02_dev *dev;
struct sk_buff_head q;
struct sk_buff *tail[8];
};
void mt76x02_init_beacon_config(struct mt76x02_dev *dev);
void mt76x02e_init_beacon_config(struct mt76x02_dev *dev);
void mt76x02_resync_beacon_timer(struct mt76x02_dev *dev);
void mt76x02_update_beacon_iter(void *priv, u8 *mac, struct ieee80211_vif *vif);
void mt76x02_enqueue_buffered_bc(struct mt76x02_dev *dev,
struct beacon_bc_data *data,
int max_nframes);
void mt76x02_mac_start(struct mt76x02_dev *dev);
void mt76x02_init_debugfs(struct mt76x02_dev *dev);
static inline bool is_mt76x0(struct mt76x02_dev *dev)
{
return mt76_chip(&dev->mt76) == 0x7610 ||
mt76_chip(&dev->mt76) == 0x7630 ||
mt76_chip(&dev->mt76) == 0x7650;
}
static inline bool is_mt76x2(struct mt76x02_dev *dev)
{
return mt76_chip(&dev->mt76) == 0x7612 ||
mt76_chip(&dev->mt76) == 0x7632 ||
mt76_chip(&dev->mt76) == 0x7662 ||
mt76_chip(&dev->mt76) == 0x7602;
}
static inline void mt76x02_irq_enable(struct mt76x02_dev *dev, u32 mask)
{
mt76_set_irq_mask(&dev->mt76, MT_INT_MASK_CSR, 0, mask);
}
static inline void mt76x02_irq_disable(struct mt76x02_dev *dev, u32 mask)
{
mt76_set_irq_mask(&dev->mt76, MT_INT_MASK_CSR, mask, 0);
}
static inline bool
mt76x02_wait_for_txrx_idle(struct mt76_dev *dev)
{
return __mt76_poll_msec(dev, MT_MAC_STATUS,
MT_MAC_STATUS_TX | MT_MAC_STATUS_RX,
0, 100);
}
static inline struct mt76x02_sta *
mt76x02_rx_get_sta(struct mt76_dev *dev, u8 idx)
{
struct mt76_wcid *wcid;
if (idx >= MT76x02_N_WCIDS)
return NULL;
wcid = rcu_dereference(dev->wcid[idx]);
if (!wcid)
return NULL;
return container_of(wcid, struct mt76x02_sta, wcid);
}
static inline struct mt76_wcid *
mt76x02_rx_get_sta_wcid(struct mt76x02_sta *sta, bool unicast)
{
if (!sta)
return NULL;
if (unicast)
return &sta->wcid;
else
return &sta->vif->group_wcid;
}
#endif /* __MT76x02_H */

View File

@ -0,0 +1,217 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
* Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl>
*/
#include "mt76x02.h"
static void mt76x02_set_beacon_offsets(struct mt76x02_dev *dev)
{
u32 regs[4] = {};
u16 val;
int i;
for (i = 0; i < dev->beacon_ops->nslots; i++) {
val = i * dev->beacon_ops->slot_size;
regs[i / 4] |= (val / 64) << (8 * (i % 4));
}
for (i = 0; i < 4; i++)
mt76_wr(dev, MT_BCN_OFFSET(i), regs[i]);
}
static int
mt76x02_write_beacon(struct mt76x02_dev *dev, int offset, struct sk_buff *skb)
{
int beacon_len = dev->beacon_ops->slot_size;
if (WARN_ON_ONCE(beacon_len < skb->len + sizeof(struct mt76x02_txwi)))
return -ENOSPC;
/* USB devices already reserve enough skb headroom for txwi's. This
* helps to save slow copies over USB.
*/
if (mt76_is_usb(&dev->mt76)) {
struct mt76x02_txwi *txwi;
txwi = (struct mt76x02_txwi *)(skb->data - sizeof(*txwi));
mt76x02_mac_write_txwi(dev, txwi, skb, NULL, NULL, skb->len);
skb_push(skb, sizeof(*txwi));
} else {
struct mt76x02_txwi txwi;
mt76x02_mac_write_txwi(dev, &txwi, skb, NULL, NULL, skb->len);
mt76_wr_copy(dev, offset, &txwi, sizeof(txwi));
offset += sizeof(txwi);
}
mt76_wr_copy(dev, offset, skb->data, skb->len);
return 0;
}
void mt76x02_mac_set_beacon(struct mt76x02_dev *dev,
struct sk_buff *skb)
{
int bcn_len = dev->beacon_ops->slot_size;
int bcn_addr = MT_BEACON_BASE + (bcn_len * dev->beacon_data_count);
if (!mt76x02_write_beacon(dev, bcn_addr, skb)) {
if (!dev->beacon_data_count)
dev->beacon_hang_check++;
dev->beacon_data_count++;
}
dev_kfree_skb(skb);
}
EXPORT_SYMBOL_GPL(mt76x02_mac_set_beacon);
void mt76x02_mac_set_beacon_enable(struct mt76x02_dev *dev,
struct ieee80211_vif *vif, bool enable)
{
struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
u8 old_mask = dev->mt76.beacon_mask;
mt76x02_pre_tbtt_enable(dev, false);
if (!dev->mt76.beacon_mask)
dev->tbtt_count = 0;
dev->beacon_hang_check = 0;
if (enable) {
dev->mt76.beacon_mask |= BIT(mvif->idx);
} else {
dev->mt76.beacon_mask &= ~BIT(mvif->idx);
}
if (!!old_mask == !!dev->mt76.beacon_mask)
goto out;
if (dev->mt76.beacon_mask)
mt76_set(dev, MT_BEACON_TIME_CFG,
MT_BEACON_TIME_CFG_BEACON_TX |
MT_BEACON_TIME_CFG_TBTT_EN |
MT_BEACON_TIME_CFG_TIMER_EN);
else
mt76_clear(dev, MT_BEACON_TIME_CFG,
MT_BEACON_TIME_CFG_BEACON_TX |
MT_BEACON_TIME_CFG_TBTT_EN |
MT_BEACON_TIME_CFG_TIMER_EN);
mt76x02_beacon_enable(dev, !!dev->mt76.beacon_mask);
out:
mt76x02_pre_tbtt_enable(dev, true);
}
void
mt76x02_resync_beacon_timer(struct mt76x02_dev *dev)
{
u32 timer_val = dev->mt76.beacon_int << 4;
dev->tbtt_count++;
/*
* Beacon timer drifts by 1us every tick, the timer is configured
* in 1/16 TU (64us) units.
*/
if (dev->tbtt_count < 63)
return;
/*
* The updated beacon interval takes effect after two TBTT, because
* at this point the original interval has already been loaded into
* the next TBTT_TIMER value
*/
if (dev->tbtt_count == 63)
timer_val -= 1;
mt76_rmw_field(dev, MT_BEACON_TIME_CFG,
MT_BEACON_TIME_CFG_INTVAL, timer_val);
if (dev->tbtt_count >= 64)
dev->tbtt_count = 0;
}
EXPORT_SYMBOL_GPL(mt76x02_resync_beacon_timer);
void
mt76x02_update_beacon_iter(void *priv, u8 *mac, struct ieee80211_vif *vif)
{
struct mt76x02_dev *dev = (struct mt76x02_dev *)priv;
struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
struct sk_buff *skb = NULL;
if (!(dev->mt76.beacon_mask & BIT(mvif->idx)))
return;
skb = ieee80211_beacon_get(mt76_hw(dev), vif, 0);
if (!skb)
return;
mt76x02_mac_set_beacon(dev, skb);
}
EXPORT_SYMBOL_GPL(mt76x02_update_beacon_iter);
static void
mt76x02_add_buffered_bc(void *priv, u8 *mac, struct ieee80211_vif *vif)
{
struct beacon_bc_data *data = priv;
struct mt76x02_dev *dev = data->dev;
struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
struct ieee80211_tx_info *info;
struct sk_buff *skb;
if (!(dev->mt76.beacon_mask & BIT(mvif->idx)))
return;
skb = ieee80211_get_buffered_bc(mt76_hw(dev), vif);
if (!skb)
return;
info = IEEE80211_SKB_CB(skb);
info->control.vif = vif;
info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
mt76_skb_set_moredata(skb, true);
__skb_queue_tail(&data->q, skb);
data->tail[mvif->idx] = skb;
}
void
mt76x02_enqueue_buffered_bc(struct mt76x02_dev *dev,
struct beacon_bc_data *data,
int max_nframes)
{
int i, nframes;
data->dev = dev;
__skb_queue_head_init(&data->q);
do {
nframes = skb_queue_len(&data->q);
ieee80211_iterate_active_interfaces_atomic(mt76_hw(dev),
IEEE80211_IFACE_ITER_RESUME_ALL,
mt76x02_add_buffered_bc, data);
} while (nframes != skb_queue_len(&data->q) &&
skb_queue_len(&data->q) < max_nframes);
if (!skb_queue_len(&data->q))
return;
for (i = 0; i < ARRAY_SIZE(data->tail); i++) {
if (!data->tail[i])
continue;
mt76_skb_set_moredata(data->tail[i], false);
}
}
EXPORT_SYMBOL_GPL(mt76x02_enqueue_buffered_bc);
void mt76x02_init_beacon_config(struct mt76x02_dev *dev)
{
mt76_clear(dev, MT_BEACON_TIME_CFG, (MT_BEACON_TIME_CFG_TIMER_EN |
MT_BEACON_TIME_CFG_TBTT_EN |
MT_BEACON_TIME_CFG_BEACON_TX));
mt76_set(dev, MT_BEACON_TIME_CFG, MT_BEACON_TIME_CFG_SYNC_MODE);
mt76_wr(dev, MT_BCN_BYPASS_MASK, 0xffff);
mt76x02_set_beacon_offsets(dev);
}
EXPORT_SYMBOL_GPL(mt76x02_init_beacon_config);

View File

@ -0,0 +1,140 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#include <linux/debugfs.h>
#include "mt76x02.h"
static int
mt76x02_ampdu_stat_show(struct seq_file *file, void *data)
{
struct mt76x02_dev *dev = file->private;
int i, j;
for (i = 0; i < 4; i++) {
seq_puts(file, "Length: ");
for (j = 0; j < 8; j++)
seq_printf(file, "%8d | ", i * 8 + j + 1);
seq_puts(file, "\n");
seq_puts(file, "Count: ");
for (j = 0; j < 8; j++)
seq_printf(file, "%8d | ",
dev->mt76.aggr_stats[i * 8 + j]);
seq_puts(file, "\n");
seq_puts(file, "--------");
for (j = 0; j < 8; j++)
seq_puts(file, "-----------");
seq_puts(file, "\n");
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(mt76x02_ampdu_stat);
static int read_txpower(struct seq_file *file, void *data)
{
struct mt76x02_dev *dev = dev_get_drvdata(file->private);
seq_printf(file, "Target power: %d\n", dev->target_power);
mt76_seq_puts_array(file, "Delta", dev->target_power_delta,
ARRAY_SIZE(dev->target_power_delta));
return 0;
}
static int
mt76x02_dfs_stat_show(struct seq_file *file, void *data)
{
struct mt76x02_dev *dev = file->private;
struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
int i;
seq_printf(file, "allocated sequences:\t%d\n",
dfs_pd->seq_stats.seq_pool_len);
seq_printf(file, "used sequences:\t\t%d\n",
dfs_pd->seq_stats.seq_len);
seq_puts(file, "\n");
for (i = 0; i < MT_DFS_NUM_ENGINES; i++) {
seq_printf(file, "engine: %d\n", i);
seq_printf(file, " hw pattern detected:\t%d\n",
dfs_pd->stats[i].hw_pattern);
seq_printf(file, " hw pulse discarded:\t%d\n",
dfs_pd->stats[i].hw_pulse_discarded);
seq_printf(file, " sw pattern detected:\t%d\n",
dfs_pd->stats[i].sw_pattern);
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(mt76x02_dfs_stat);
static int read_agc(struct seq_file *file, void *data)
{
struct mt76x02_dev *dev = dev_get_drvdata(file->private);
seq_printf(file, "avg_rssi: %d\n", dev->cal.avg_rssi_all);
seq_printf(file, "low_gain: %d\n", dev->cal.low_gain);
seq_printf(file, "false_cca: %d\n", dev->cal.false_cca);
seq_printf(file, "agc_gain_adjust: %d\n", dev->cal.agc_gain_adjust);
return 0;
}
static int
mt76_edcca_set(void *data, u64 val)
{
struct mt76x02_dev *dev = data;
enum nl80211_dfs_regions region = dev->mt76.region;
mutex_lock(&dev->mt76.mutex);
dev->ed_monitor_enabled = !!val;
dev->ed_monitor = dev->ed_monitor_enabled &&
region == NL80211_DFS_ETSI;
mt76x02_edcca_init(dev);
mutex_unlock(&dev->mt76.mutex);
return 0;
}
static int
mt76_edcca_get(void *data, u64 *val)
{
struct mt76x02_dev *dev = data;
*val = dev->ed_monitor_enabled;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fops_edcca, mt76_edcca_get, mt76_edcca_set,
"%lld\n");
void mt76x02_init_debugfs(struct mt76x02_dev *dev)
{
struct dentry *dir;
dir = mt76_register_debugfs(&dev->mt76);
if (!dir)
return;
debugfs_create_devm_seqfile(dev->mt76.dev, "xmit-queues", dir,
mt76_queues_read);
debugfs_create_u8("temperature", 0400, dir, &dev->cal.temp);
debugfs_create_bool("tpc", 0600, dir, &dev->enable_tpc);
debugfs_create_file("edcca", 0600, dir, dev, &fops_edcca);
debugfs_create_file("ampdu_stat", 0400, dir, dev, &mt76x02_ampdu_stat_fops);
debugfs_create_file("dfs_stats", 0400, dir, dev, &mt76x02_dfs_stat_fops);
debugfs_create_devm_seqfile(dev->mt76.dev, "txpower", dir,
read_txpower);
debugfs_create_devm_seqfile(dev->mt76.dev, "agc", dir, read_agc);
debugfs_create_u32("tx_hang_reset", 0400, dir, &dev->tx_hang_reset);
}
EXPORT_SYMBOL_GPL(mt76x02_init_debugfs);

View File

@ -0,0 +1,892 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include "mt76x02.h"
#define RADAR_SPEC(m, len, el, eh, wl, wh, \
w_tolerance, tl, th, t_tolerance, \
bl, bh, event_exp, power_jmp) \
{ \
.mode = m, \
.avg_len = len, \
.e_low = el, \
.e_high = eh, \
.w_low = wl, \
.w_high = wh, \
.w_margin = w_tolerance, \
.t_low = tl, \
.t_high = th, \
.t_margin = t_tolerance, \
.b_low = bl, \
.b_high = bh, \
.event_expiration = event_exp, \
.pwr_jmp = power_jmp \
}
static const struct mt76x02_radar_specs etsi_radar_specs[] = {
/* 20MHz */
RADAR_SPEC(0, 8, 2, 15, 106, 150, 10, 4900, 100096, 10, 0,
0x7fffffff, 0x155cc0, 0x19cc),
RADAR_SPEC(0, 40, 4, 59, 96, 380, 150, 4900, 100096, 40, 0,
0x7fffffff, 0x155cc0, 0x19cc),
RADAR_SPEC(3, 60, 20, 46, 300, 640, 80, 4900, 10100, 80, 0,
0x7fffffff, 0x155cc0, 0x19dd),
RADAR_SPEC(8, 8, 2, 9, 106, 150, 32, 4900, 296704, 32, 0,
0x7fffffff, 0x2191c0, 0x15cc),
/* 40MHz */
RADAR_SPEC(0, 8, 2, 15, 106, 150, 10, 4900, 100096, 10, 0,
0x7fffffff, 0x155cc0, 0x19cc),
RADAR_SPEC(0, 40, 4, 59, 96, 380, 150, 4900, 100096, 40, 0,
0x7fffffff, 0x155cc0, 0x19cc),
RADAR_SPEC(3, 60, 20, 46, 300, 640, 80, 4900, 10100, 80, 0,
0x7fffffff, 0x155cc0, 0x19dd),
RADAR_SPEC(8, 8, 2, 9, 106, 150, 32, 4900, 296704, 32, 0,
0x7fffffff, 0x2191c0, 0x15cc),
/* 80MHz */
RADAR_SPEC(0, 8, 2, 15, 106, 150, 10, 4900, 100096, 10, 0,
0x7fffffff, 0x155cc0, 0x19cc),
RADAR_SPEC(0, 40, 4, 59, 96, 380, 150, 4900, 100096, 40, 0,
0x7fffffff, 0x155cc0, 0x19cc),
RADAR_SPEC(3, 60, 20, 46, 300, 640, 80, 4900, 10100, 80, 0,
0x7fffffff, 0x155cc0, 0x19dd),
RADAR_SPEC(8, 8, 2, 9, 106, 150, 32, 4900, 296704, 32, 0,
0x7fffffff, 0x2191c0, 0x15cc)
};
static const struct mt76x02_radar_specs fcc_radar_specs[] = {
/* 20MHz */
RADAR_SPEC(0, 8, 2, 12, 106, 150, 5, 2900, 80100, 5, 0,
0x7fffffff, 0xfe808, 0x13dc),
RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0,
0x7fffffff, 0xfe808, 0x19dd),
RADAR_SPEC(0, 40, 4, 54, 96, 480, 150, 2900, 80100, 40, 0,
0x7fffffff, 0xfe808, 0x12cc),
RADAR_SPEC(2, 60, 15, 63, 640, 2080, 32, 19600, 40200, 32, 0,
0x3938700, 0x57bcf00, 0x1289),
/* 40MHz */
RADAR_SPEC(0, 8, 2, 12, 106, 150, 5, 2900, 80100, 5, 0,
0x7fffffff, 0xfe808, 0x13dc),
RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0,
0x7fffffff, 0xfe808, 0x19dd),
RADAR_SPEC(0, 40, 4, 54, 96, 480, 150, 2900, 80100, 40, 0,
0x7fffffff, 0xfe808, 0x12cc),
RADAR_SPEC(2, 60, 15, 63, 640, 2080, 32, 19600, 40200, 32, 0,
0x3938700, 0x57bcf00, 0x1289),
/* 80MHz */
RADAR_SPEC(0, 8, 2, 14, 106, 150, 15, 2900, 80100, 15, 0,
0x7fffffff, 0xfe808, 0x16cc),
RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0,
0x7fffffff, 0xfe808, 0x19dd),
RADAR_SPEC(0, 40, 4, 54, 96, 480, 150, 2900, 80100, 40, 0,
0x7fffffff, 0xfe808, 0x12cc),
RADAR_SPEC(2, 60, 15, 63, 640, 2080, 32, 19600, 40200, 32, 0,
0x3938700, 0x57bcf00, 0x1289)
};
static const struct mt76x02_radar_specs jp_w56_radar_specs[] = {
/* 20MHz */
RADAR_SPEC(0, 8, 2, 7, 106, 150, 5, 2900, 80100, 5, 0,
0x7fffffff, 0x14c080, 0x13dc),
RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0,
0x7fffffff, 0x14c080, 0x19dd),
RADAR_SPEC(0, 40, 4, 44, 96, 480, 150, 2900, 80100, 40, 0,
0x7fffffff, 0x14c080, 0x12cc),
RADAR_SPEC(2, 60, 15, 48, 940, 2080, 32, 19600, 40200, 32, 0,
0x3938700, 0X57bcf00, 0x1289),
/* 40MHz */
RADAR_SPEC(0, 8, 2, 7, 106, 150, 5, 2900, 80100, 5, 0,
0x7fffffff, 0x14c080, 0x13dc),
RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0,
0x7fffffff, 0x14c080, 0x19dd),
RADAR_SPEC(0, 40, 4, 44, 96, 480, 150, 2900, 80100, 40, 0,
0x7fffffff, 0x14c080, 0x12cc),
RADAR_SPEC(2, 60, 15, 48, 940, 2080, 32, 19600, 40200, 32, 0,
0x3938700, 0X57bcf00, 0x1289),
/* 80MHz */
RADAR_SPEC(0, 8, 2, 9, 106, 150, 15, 2900, 80100, 15, 0,
0x7fffffff, 0x14c080, 0x16cc),
RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0,
0x7fffffff, 0x14c080, 0x19dd),
RADAR_SPEC(0, 40, 4, 44, 96, 480, 150, 2900, 80100, 40, 0,
0x7fffffff, 0x14c080, 0x12cc),
RADAR_SPEC(2, 60, 15, 48, 940, 2080, 32, 19600, 40200, 32, 0,
0x3938700, 0X57bcf00, 0x1289)
};
static const struct mt76x02_radar_specs jp_w53_radar_specs[] = {
/* 20MHz */
RADAR_SPEC(0, 8, 2, 9, 106, 150, 20, 28400, 77000, 20, 0,
0x7fffffff, 0x14c080, 0x16cc),
{ 0 },
RADAR_SPEC(0, 40, 4, 44, 96, 200, 150, 28400, 77000, 60, 0,
0x7fffffff, 0x14c080, 0x16cc),
{ 0 },
/* 40MHz */
RADAR_SPEC(0, 8, 2, 9, 106, 150, 20, 28400, 77000, 20, 0,
0x7fffffff, 0x14c080, 0x16cc),
{ 0 },
RADAR_SPEC(0, 40, 4, 44, 96, 200, 150, 28400, 77000, 60, 0,
0x7fffffff, 0x14c080, 0x16cc),
{ 0 },
/* 80MHz */
RADAR_SPEC(0, 8, 2, 9, 106, 150, 20, 28400, 77000, 20, 0,
0x7fffffff, 0x14c080, 0x16cc),
{ 0 },
RADAR_SPEC(0, 40, 4, 44, 96, 200, 150, 28400, 77000, 60, 0,
0x7fffffff, 0x14c080, 0x16cc),
{ 0 }
};
static void
mt76x02_dfs_set_capture_mode_ctrl(struct mt76x02_dev *dev, u8 enable)
{
u32 data;
data = (1 << 1) | enable;
mt76_wr(dev, MT_BBP(DFS, 36), data);
}
static void mt76x02_dfs_seq_pool_put(struct mt76x02_dev *dev,
struct mt76x02_dfs_sequence *seq)
{
struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
list_add(&seq->head, &dfs_pd->seq_pool);
dfs_pd->seq_stats.seq_pool_len++;
dfs_pd->seq_stats.seq_len--;
}
static struct mt76x02_dfs_sequence *
mt76x02_dfs_seq_pool_get(struct mt76x02_dev *dev)
{
struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
struct mt76x02_dfs_sequence *seq;
if (list_empty(&dfs_pd->seq_pool)) {
seq = devm_kzalloc(dev->mt76.dev, sizeof(*seq), GFP_ATOMIC);
} else {
seq = list_first_entry(&dfs_pd->seq_pool,
struct mt76x02_dfs_sequence,
head);
list_del(&seq->head);
dfs_pd->seq_stats.seq_pool_len--;
}
if (seq)
dfs_pd->seq_stats.seq_len++;
return seq;
}
static int mt76x02_dfs_get_multiple(int val, int frac, int margin)
{
int remainder, factor;
if (!frac)
return 0;
if (abs(val - frac) <= margin)
return 1;
factor = val / frac;
remainder = val % frac;
if (remainder > margin) {
if ((frac - remainder) <= margin)
factor++;
else
factor = 0;
}
return factor;
}
static void mt76x02_dfs_detector_reset(struct mt76x02_dev *dev)
{
struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
struct mt76x02_dfs_sequence *seq, *tmp_seq;
int i;
/* reset hw detector */
mt76_wr(dev, MT_BBP(DFS, 1), 0xf);
/* reset sw detector */
for (i = 0; i < ARRAY_SIZE(dfs_pd->event_rb); i++) {
dfs_pd->event_rb[i].h_rb = 0;
dfs_pd->event_rb[i].t_rb = 0;
}
list_for_each_entry_safe(seq, tmp_seq, &dfs_pd->sequences, head) {
list_del_init(&seq->head);
mt76x02_dfs_seq_pool_put(dev, seq);
}
}
static bool mt76x02_dfs_check_chirp(struct mt76x02_dev *dev)
{
bool ret = false;
u32 current_ts, delta_ts;
struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
current_ts = mt76_rr(dev, MT_PBF_LIFE_TIMER);
delta_ts = current_ts - dfs_pd->chirp_pulse_ts;
dfs_pd->chirp_pulse_ts = current_ts;
/* 12 sec */
if (delta_ts <= (12 * (1 << 20))) {
if (++dfs_pd->chirp_pulse_cnt > 8)
ret = true;
} else {
dfs_pd->chirp_pulse_cnt = 1;
}
return ret;
}
static void mt76x02_dfs_get_hw_pulse(struct mt76x02_dev *dev,
struct mt76x02_dfs_hw_pulse *pulse)
{
u32 data;
/* select channel */
data = (MT_DFS_CH_EN << 16) | pulse->engine;
mt76_wr(dev, MT_BBP(DFS, 0), data);
/* reported period */
pulse->period = mt76_rr(dev, MT_BBP(DFS, 19));
/* reported width */
pulse->w1 = mt76_rr(dev, MT_BBP(DFS, 20));
pulse->w2 = mt76_rr(dev, MT_BBP(DFS, 23));
/* reported burst number */
pulse->burst = mt76_rr(dev, MT_BBP(DFS, 22));
}
static bool mt76x02_dfs_check_hw_pulse(struct mt76x02_dev *dev,
struct mt76x02_dfs_hw_pulse *pulse)
{
bool ret = false;
if (!pulse->period || !pulse->w1)
return false;
switch (dev->mt76.region) {
case NL80211_DFS_FCC:
if (pulse->engine > 3)
break;
if (pulse->engine == 3) {
ret = mt76x02_dfs_check_chirp(dev);
break;
}
/* check short pulse*/
if (pulse->w1 < 120)
ret = (pulse->period >= 2900 &&
(pulse->period <= 4700 ||
pulse->period >= 6400) &&
(pulse->period <= 6800 ||
pulse->period >= 10200) &&
pulse->period <= 61600);
else if (pulse->w1 < 130) /* 120 - 130 */
ret = (pulse->period >= 2900 &&
pulse->period <= 61600);
else
ret = (pulse->period >= 3500 &&
pulse->period <= 10100);
break;
case NL80211_DFS_ETSI:
if (pulse->engine >= 3)
break;
ret = (pulse->period >= 4900 &&
(pulse->period <= 10200 ||
pulse->period >= 12400) &&
pulse->period <= 100100);
break;
case NL80211_DFS_JP:
if (dev->mphy.chandef.chan->center_freq >= 5250 &&
dev->mphy.chandef.chan->center_freq <= 5350) {
/* JPW53 */
if (pulse->w1 <= 130)
ret = (pulse->period >= 28360 &&
(pulse->period <= 28700 ||
pulse->period >= 76900) &&
pulse->period <= 76940);
break;
}
if (pulse->engine > 3)
break;
if (pulse->engine == 3) {
ret = mt76x02_dfs_check_chirp(dev);
break;
}
/* check short pulse*/
if (pulse->w1 < 120)
ret = (pulse->period >= 2900 &&
(pulse->period <= 4700 ||
pulse->period >= 6400) &&
(pulse->period <= 6800 ||
pulse->period >= 27560) &&
(pulse->period <= 27960 ||
pulse->period >= 28360) &&
(pulse->period <= 28700 ||
pulse->period >= 79900) &&
pulse->period <= 80100);
else if (pulse->w1 < 130) /* 120 - 130 */
ret = (pulse->period >= 2900 &&
(pulse->period <= 10100 ||
pulse->period >= 27560) &&
(pulse->period <= 27960 ||
pulse->period >= 28360) &&
(pulse->period <= 28700 ||
pulse->period >= 79900) &&
pulse->period <= 80100);
else
ret = (pulse->period >= 3900 &&
pulse->period <= 10100);
break;
case NL80211_DFS_UNSET:
default:
return false;
}
return ret;
}
static bool mt76x02_dfs_fetch_event(struct mt76x02_dev *dev,
struct mt76x02_dfs_event *event)
{
u32 data;
/* 1st: DFS_R37[31]: 0 (engine 0) - 1 (engine 2)
* 2nd: DFS_R37[21:0]: pulse time
* 3rd: DFS_R37[11:0]: pulse width
* 3rd: DFS_R37[25:16]: phase
* 4th: DFS_R37[12:0]: current pwr
* 4th: DFS_R37[21:16]: pwr stable counter
*
* 1st: DFS_R37[31:0] set to 0xffffffff means no event detected
*/
data = mt76_rr(dev, MT_BBP(DFS, 37));
if (!MT_DFS_CHECK_EVENT(data))
return false;
event->engine = MT_DFS_EVENT_ENGINE(data);
data = mt76_rr(dev, MT_BBP(DFS, 37));
event->ts = MT_DFS_EVENT_TIMESTAMP(data);
data = mt76_rr(dev, MT_BBP(DFS, 37));
event->width = MT_DFS_EVENT_WIDTH(data);
return true;
}
static bool mt76x02_dfs_check_event(struct mt76x02_dev *dev,
struct mt76x02_dfs_event *event)
{
if (event->engine == 2) {
struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
struct mt76x02_dfs_event_rb *event_buff = &dfs_pd->event_rb[1];
u16 last_event_idx;
u32 delta_ts;
last_event_idx = mt76_decr(event_buff->t_rb,
MT_DFS_EVENT_BUFLEN);
delta_ts = event->ts - event_buff->data[last_event_idx].ts;
if (delta_ts < MT_DFS_EVENT_TIME_MARGIN &&
event_buff->data[last_event_idx].width >= 200)
return false;
}
return true;
}
static void mt76x02_dfs_queue_event(struct mt76x02_dev *dev,
struct mt76x02_dfs_event *event)
{
struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
struct mt76x02_dfs_event_rb *event_buff;
/* add radar event to ring buffer */
event_buff = event->engine == 2 ? &dfs_pd->event_rb[1]
: &dfs_pd->event_rb[0];
event_buff->data[event_buff->t_rb] = *event;
event_buff->data[event_buff->t_rb].fetch_ts = jiffies;
event_buff->t_rb = mt76_incr(event_buff->t_rb, MT_DFS_EVENT_BUFLEN);
if (event_buff->t_rb == event_buff->h_rb)
event_buff->h_rb = mt76_incr(event_buff->h_rb,
MT_DFS_EVENT_BUFLEN);
}
static int mt76x02_dfs_create_sequence(struct mt76x02_dev *dev,
struct mt76x02_dfs_event *event,
u16 cur_len)
{
struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
struct mt76x02_dfs_sw_detector_params *sw_params;
u32 width_delta, with_sum;
struct mt76x02_dfs_sequence seq, *seq_p;
struct mt76x02_dfs_event_rb *event_rb;
struct mt76x02_dfs_event *cur_event;
int i, j, end, pri, factor, cur_pri;
event_rb = event->engine == 2 ? &dfs_pd->event_rb[1]
: &dfs_pd->event_rb[0];
i = mt76_decr(event_rb->t_rb, MT_DFS_EVENT_BUFLEN);
end = mt76_decr(event_rb->h_rb, MT_DFS_EVENT_BUFLEN);
while (i != end) {
cur_event = &event_rb->data[i];
with_sum = event->width + cur_event->width;
sw_params = &dfs_pd->sw_dpd_params;
switch (dev->mt76.region) {
case NL80211_DFS_FCC:
case NL80211_DFS_JP:
if (with_sum < 600)
width_delta = 8;
else
width_delta = with_sum >> 3;
break;
case NL80211_DFS_ETSI:
if (event->engine == 2)
width_delta = with_sum >> 6;
else if (with_sum < 620)
width_delta = 24;
else
width_delta = 8;
break;
case NL80211_DFS_UNSET:
default:
return -EINVAL;
}
pri = event->ts - cur_event->ts;
if (abs(event->width - cur_event->width) > width_delta ||
pri < sw_params->min_pri)
goto next;
if (pri > sw_params->max_pri)
break;
seq.pri = event->ts - cur_event->ts;
seq.first_ts = cur_event->ts;
seq.last_ts = event->ts;
seq.engine = event->engine;
seq.count = 2;
j = mt76_decr(i, MT_DFS_EVENT_BUFLEN);
while (j != end) {
cur_event = &event_rb->data[j];
cur_pri = event->ts - cur_event->ts;
factor = mt76x02_dfs_get_multiple(cur_pri, seq.pri,
sw_params->pri_margin);
if (factor > 0) {
seq.first_ts = cur_event->ts;
seq.count++;
}
j = mt76_decr(j, MT_DFS_EVENT_BUFLEN);
}
if (seq.count <= cur_len)
goto next;
seq_p = mt76x02_dfs_seq_pool_get(dev);
if (!seq_p)
return -ENOMEM;
*seq_p = seq;
INIT_LIST_HEAD(&seq_p->head);
list_add(&seq_p->head, &dfs_pd->sequences);
next:
i = mt76_decr(i, MT_DFS_EVENT_BUFLEN);
}
return 0;
}
static u16 mt76x02_dfs_add_event_to_sequence(struct mt76x02_dev *dev,
struct mt76x02_dfs_event *event)
{
struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
struct mt76x02_dfs_sw_detector_params *sw_params;
struct mt76x02_dfs_sequence *seq, *tmp_seq;
u16 max_seq_len = 0;
int factor, pri;
sw_params = &dfs_pd->sw_dpd_params;
list_for_each_entry_safe(seq, tmp_seq, &dfs_pd->sequences, head) {
if (event->ts > seq->first_ts + MT_DFS_SEQUENCE_WINDOW) {
list_del_init(&seq->head);
mt76x02_dfs_seq_pool_put(dev, seq);
continue;
}
if (event->engine != seq->engine)
continue;
pri = event->ts - seq->last_ts;
factor = mt76x02_dfs_get_multiple(pri, seq->pri,
sw_params->pri_margin);
if (factor > 0) {
seq->last_ts = event->ts;
seq->count++;
max_seq_len = max_t(u16, max_seq_len, seq->count);
}
}
return max_seq_len;
}
static bool mt76x02_dfs_check_detection(struct mt76x02_dev *dev)
{
struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
struct mt76x02_dfs_sequence *seq;
if (list_empty(&dfs_pd->sequences))
return false;
list_for_each_entry(seq, &dfs_pd->sequences, head) {
if (seq->count > MT_DFS_SEQUENCE_TH) {
dfs_pd->stats[seq->engine].sw_pattern++;
return true;
}
}
return false;
}
static void mt76x02_dfs_add_events(struct mt76x02_dev *dev)
{
struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
struct mt76x02_dfs_event event;
int i, seq_len;
/* disable debug mode */
mt76x02_dfs_set_capture_mode_ctrl(dev, false);
for (i = 0; i < MT_DFS_EVENT_LOOP; i++) {
if (!mt76x02_dfs_fetch_event(dev, &event))
break;
if (dfs_pd->last_event_ts > event.ts)
mt76x02_dfs_detector_reset(dev);
dfs_pd->last_event_ts = event.ts;
if (!mt76x02_dfs_check_event(dev, &event))
continue;
seq_len = mt76x02_dfs_add_event_to_sequence(dev, &event);
mt76x02_dfs_create_sequence(dev, &event, seq_len);
mt76x02_dfs_queue_event(dev, &event);
}
mt76x02_dfs_set_capture_mode_ctrl(dev, true);
}
static void mt76x02_dfs_check_event_window(struct mt76x02_dev *dev)
{
struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
struct mt76x02_dfs_event_rb *event_buff;
struct mt76x02_dfs_event *event;
int i;
for (i = 0; i < ARRAY_SIZE(dfs_pd->event_rb); i++) {
event_buff = &dfs_pd->event_rb[i];
while (event_buff->h_rb != event_buff->t_rb) {
event = &event_buff->data[event_buff->h_rb];
/* sorted list */
if (time_is_after_jiffies(event->fetch_ts +
MT_DFS_EVENT_WINDOW))
break;
event_buff->h_rb = mt76_incr(event_buff->h_rb,
MT_DFS_EVENT_BUFLEN);
}
}
}
static void mt76x02_dfs_tasklet(struct tasklet_struct *t)
{
struct mt76x02_dfs_pattern_detector *dfs_pd = from_tasklet(dfs_pd, t,
dfs_tasklet);
struct mt76x02_dev *dev = container_of(dfs_pd, typeof(*dev), dfs_pd);
u32 engine_mask;
int i;
if (test_bit(MT76_SCANNING, &dev->mphy.state))
goto out;
if (time_is_before_jiffies(dfs_pd->last_sw_check +
MT_DFS_SW_TIMEOUT)) {
bool radar_detected;
dfs_pd->last_sw_check = jiffies;
mt76x02_dfs_add_events(dev);
radar_detected = mt76x02_dfs_check_detection(dev);
if (radar_detected) {
/* sw detector rx radar pattern */
ieee80211_radar_detected(dev->mt76.hw);
mt76x02_dfs_detector_reset(dev);
return;
}
mt76x02_dfs_check_event_window(dev);
}
engine_mask = mt76_rr(dev, MT_BBP(DFS, 1));
if (!(engine_mask & 0xf))
goto out;
for (i = 0; i < MT_DFS_NUM_ENGINES; i++) {
struct mt76x02_dfs_hw_pulse pulse;
if (!(engine_mask & (1 << i)))
continue;
pulse.engine = i;
mt76x02_dfs_get_hw_pulse(dev, &pulse);
if (!mt76x02_dfs_check_hw_pulse(dev, &pulse)) {
dfs_pd->stats[i].hw_pulse_discarded++;
continue;
}
/* hw detector rx radar pattern */
dfs_pd->stats[i].hw_pattern++;
ieee80211_radar_detected(dev->mt76.hw);
mt76x02_dfs_detector_reset(dev);
return;
}
/* reset hw detector */
mt76_wr(dev, MT_BBP(DFS, 1), 0xf);
out:
mt76x02_irq_enable(dev, MT_INT_GPTIMER);
}
static void mt76x02_dfs_init_sw_detector(struct mt76x02_dev *dev)
{
struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
switch (dev->mt76.region) {
case NL80211_DFS_FCC:
dfs_pd->sw_dpd_params.max_pri = MT_DFS_FCC_MAX_PRI;
dfs_pd->sw_dpd_params.min_pri = MT_DFS_FCC_MIN_PRI;
dfs_pd->sw_dpd_params.pri_margin = MT_DFS_PRI_MARGIN;
break;
case NL80211_DFS_ETSI:
dfs_pd->sw_dpd_params.max_pri = MT_DFS_ETSI_MAX_PRI;
dfs_pd->sw_dpd_params.min_pri = MT_DFS_ETSI_MIN_PRI;
dfs_pd->sw_dpd_params.pri_margin = MT_DFS_PRI_MARGIN << 2;
break;
case NL80211_DFS_JP:
dfs_pd->sw_dpd_params.max_pri = MT_DFS_JP_MAX_PRI;
dfs_pd->sw_dpd_params.min_pri = MT_DFS_JP_MIN_PRI;
dfs_pd->sw_dpd_params.pri_margin = MT_DFS_PRI_MARGIN;
break;
case NL80211_DFS_UNSET:
default:
break;
}
}
static void mt76x02_dfs_set_bbp_params(struct mt76x02_dev *dev)
{
const struct mt76x02_radar_specs *radar_specs;
u8 i, shift;
u32 data;
switch (dev->mphy.chandef.width) {
case NL80211_CHAN_WIDTH_40:
shift = MT_DFS_NUM_ENGINES;
break;
case NL80211_CHAN_WIDTH_80:
shift = 2 * MT_DFS_NUM_ENGINES;
break;
default:
shift = 0;
break;
}
switch (dev->mt76.region) {
case NL80211_DFS_FCC:
radar_specs = &fcc_radar_specs[shift];
break;
case NL80211_DFS_ETSI:
radar_specs = &etsi_radar_specs[shift];
break;
case NL80211_DFS_JP:
if (dev->mphy.chandef.chan->center_freq >= 5250 &&
dev->mphy.chandef.chan->center_freq <= 5350)
radar_specs = &jp_w53_radar_specs[shift];
else
radar_specs = &jp_w56_radar_specs[shift];
break;
case NL80211_DFS_UNSET:
default:
return;
}
data = (MT_DFS_VGA_MASK << 16) |
(MT_DFS_PWR_GAIN_OFFSET << 12) |
(MT_DFS_PWR_DOWN_TIME << 8) |
(MT_DFS_SYM_ROUND << 4) |
(MT_DFS_DELTA_DELAY & 0xf);
mt76_wr(dev, MT_BBP(DFS, 2), data);
data = (MT_DFS_RX_PE_MASK << 16) | MT_DFS_PKT_END_MASK;
mt76_wr(dev, MT_BBP(DFS, 3), data);
for (i = 0; i < MT_DFS_NUM_ENGINES; i++) {
/* configure engine */
mt76_wr(dev, MT_BBP(DFS, 0), i);
/* detection mode + avg_len */
data = ((radar_specs[i].avg_len & 0x1ff) << 16) |
(radar_specs[i].mode & 0xf);
mt76_wr(dev, MT_BBP(DFS, 4), data);
/* dfs energy */
data = ((radar_specs[i].e_high & 0x0fff) << 16) |
(radar_specs[i].e_low & 0x0fff);
mt76_wr(dev, MT_BBP(DFS, 5), data);
/* dfs period */
mt76_wr(dev, MT_BBP(DFS, 7), radar_specs[i].t_low);
mt76_wr(dev, MT_BBP(DFS, 9), radar_specs[i].t_high);
/* dfs burst */
mt76_wr(dev, MT_BBP(DFS, 11), radar_specs[i].b_low);
mt76_wr(dev, MT_BBP(DFS, 13), radar_specs[i].b_high);
/* dfs width */
data = ((radar_specs[i].w_high & 0x0fff) << 16) |
(radar_specs[i].w_low & 0x0fff);
mt76_wr(dev, MT_BBP(DFS, 14), data);
/* dfs margins */
data = (radar_specs[i].w_margin << 16) |
radar_specs[i].t_margin;
mt76_wr(dev, MT_BBP(DFS, 15), data);
/* dfs event expiration */
mt76_wr(dev, MT_BBP(DFS, 17), radar_specs[i].event_expiration);
/* dfs pwr adj */
mt76_wr(dev, MT_BBP(DFS, 30), radar_specs[i].pwr_jmp);
}
/* reset status */
mt76_wr(dev, MT_BBP(DFS, 1), 0xf);
mt76_wr(dev, MT_BBP(DFS, 36), 0x3);
/* enable detection*/
mt76_wr(dev, MT_BBP(DFS, 0), MT_DFS_CH_EN << 16);
mt76_wr(dev, MT_BBP(IBI, 11), 0x0c350001);
}
void mt76x02_phy_dfs_adjust_agc(struct mt76x02_dev *dev)
{
u32 agc_r8, agc_r4, val_r8, val_r4, dfs_r31;
agc_r8 = mt76_rr(dev, MT_BBP(AGC, 8));
agc_r4 = mt76_rr(dev, MT_BBP(AGC, 4));
val_r8 = (agc_r8 & 0x00007e00) >> 9;
val_r4 = agc_r4 & ~0x1f000000;
val_r4 += (((val_r8 + 1) >> 1) << 24);
mt76_wr(dev, MT_BBP(AGC, 4), val_r4);
dfs_r31 = FIELD_GET(MT_BBP_AGC_LNA_HIGH_GAIN, val_r4);
dfs_r31 += val_r8;
dfs_r31 -= (agc_r8 & 0x00000038) >> 3;
dfs_r31 = (dfs_r31 << 16) | 0x00000307;
mt76_wr(dev, MT_BBP(DFS, 31), dfs_r31);
if (is_mt76x2(dev)) {
mt76_wr(dev, MT_BBP(DFS, 32), 0x00040071);
} else {
/* disable hw detector */
mt76_wr(dev, MT_BBP(DFS, 0), 0);
/* enable hw detector */
mt76_wr(dev, MT_BBP(DFS, 0), MT_DFS_CH_EN << 16);
}
}
EXPORT_SYMBOL_GPL(mt76x02_phy_dfs_adjust_agc);
void mt76x02_dfs_init_params(struct mt76x02_dev *dev)
{
if (mt76_phy_dfs_state(&dev->mphy) > MT_DFS_STATE_DISABLED) {
mt76x02_dfs_init_sw_detector(dev);
mt76x02_dfs_set_bbp_params(dev);
/* enable debug mode */
mt76x02_dfs_set_capture_mode_ctrl(dev, true);
mt76x02_irq_enable(dev, MT_INT_GPTIMER);
mt76_rmw_field(dev, MT_INT_TIMER_EN,
MT_INT_TIMER_EN_GP_TIMER_EN, 1);
} else {
/* disable hw detector */
mt76_wr(dev, MT_BBP(DFS, 0), 0);
/* clear detector status */
mt76_wr(dev, MT_BBP(DFS, 1), 0xf);
if (mt76_chip(&dev->mt76) == 0x7610 ||
mt76_chip(&dev->mt76) == 0x7630)
mt76_wr(dev, MT_BBP(IBI, 11), 0xfde8081);
else
mt76_wr(dev, MT_BBP(IBI, 11), 0);
mt76x02_irq_disable(dev, MT_INT_GPTIMER);
mt76_rmw_field(dev, MT_INT_TIMER_EN,
MT_INT_TIMER_EN_GP_TIMER_EN, 0);
}
}
EXPORT_SYMBOL_GPL(mt76x02_dfs_init_params);
void mt76x02_dfs_init_detector(struct mt76x02_dev *dev)
{
struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
INIT_LIST_HEAD(&dfs_pd->sequences);
INIT_LIST_HEAD(&dfs_pd->seq_pool);
dev->mt76.region = NL80211_DFS_UNSET;
dfs_pd->last_sw_check = jiffies;
tasklet_setup(&dfs_pd->dfs_tasklet, mt76x02_dfs_tasklet);
}
static void
mt76x02_dfs_set_domain(struct mt76x02_dev *dev,
enum nl80211_dfs_regions region)
{
struct mt76x02_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
mutex_lock(&dev->mt76.mutex);
if (dev->mt76.region != region) {
tasklet_disable(&dfs_pd->dfs_tasklet);
dev->ed_monitor = dev->ed_monitor_enabled &&
region == NL80211_DFS_ETSI;
mt76x02_edcca_init(dev);
dev->mt76.region = region;
mt76x02_dfs_init_params(dev);
tasklet_enable(&dfs_pd->dfs_tasklet);
}
mutex_unlock(&dev->mt76.mutex);
}
void mt76x02_regd_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct mt76x02_dev *dev = hw->priv;
mt76x02_dfs_set_domain(dev, request->dfs_region);
}

View File

@ -0,0 +1,132 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2016 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#ifndef __MT76x02_DFS_H
#define __MT76x02_DFS_H
#include <linux/types.h>
#include <linux/nl80211.h>
#define MT_DFS_GP_INTERVAL (10 << 4) /* 64 us unit */
#define MT_DFS_NUM_ENGINES 4
/* bbp params */
#define MT_DFS_SYM_ROUND 0
#define MT_DFS_DELTA_DELAY 2
#define MT_DFS_VGA_MASK 0
#define MT_DFS_PWR_GAIN_OFFSET 3
#define MT_DFS_PWR_DOWN_TIME 0xf
#define MT_DFS_RX_PE_MASK 0xff
#define MT_DFS_PKT_END_MASK 0
#define MT_DFS_CH_EN 0xf
/* sw detector params */
#define MT_DFS_EVENT_LOOP 64
#define MT_DFS_SW_TIMEOUT (HZ / 20)
#define MT_DFS_EVENT_WINDOW (HZ / 5)
#define MT_DFS_SEQUENCE_WINDOW (200 * (1 << 20))
#define MT_DFS_EVENT_TIME_MARGIN 2000
#define MT_DFS_PRI_MARGIN 4
#define MT_DFS_SEQUENCE_TH 6
#define MT_DFS_FCC_MAX_PRI ((28570 << 1) + 1000)
#define MT_DFS_FCC_MIN_PRI (3000 - 2)
#define MT_DFS_JP_MAX_PRI ((80000 << 1) + 1000)
#define MT_DFS_JP_MIN_PRI (28500 - 2)
#define MT_DFS_ETSI_MAX_PRI (133333 + 125000 + 117647 + 1000)
#define MT_DFS_ETSI_MIN_PRI (4500 - 20)
struct mt76x02_radar_specs {
u8 mode;
u16 avg_len;
u16 e_low;
u16 e_high;
u16 w_low;
u16 w_high;
u16 w_margin;
u32 t_low;
u32 t_high;
u16 t_margin;
u32 b_low;
u32 b_high;
u32 event_expiration;
u16 pwr_jmp;
};
#define MT_DFS_CHECK_EVENT(x) ((x) != GENMASK(31, 0))
#define MT_DFS_EVENT_ENGINE(x) (((x) & BIT(31)) ? 2 : 0)
#define MT_DFS_EVENT_TIMESTAMP(x) ((x) & GENMASK(21, 0))
#define MT_DFS_EVENT_WIDTH(x) ((x) & GENMASK(11, 0))
struct mt76x02_dfs_event {
unsigned long fetch_ts;
u32 ts;
u16 width;
u8 engine;
};
#define MT_DFS_EVENT_BUFLEN 256
struct mt76x02_dfs_event_rb {
struct mt76x02_dfs_event data[MT_DFS_EVENT_BUFLEN];
int h_rb, t_rb;
};
struct mt76x02_dfs_sequence {
struct list_head head;
u32 first_ts;
u32 last_ts;
u32 pri;
u16 count;
u8 engine;
};
struct mt76x02_dfs_hw_pulse {
u8 engine;
u32 period;
u32 w1;
u32 w2;
u32 burst;
};
struct mt76x02_dfs_sw_detector_params {
u32 min_pri;
u32 max_pri;
u32 pri_margin;
};
struct mt76x02_dfs_engine_stats {
u32 hw_pattern;
u32 hw_pulse_discarded;
u32 sw_pattern;
};
struct mt76x02_dfs_seq_stats {
u32 seq_pool_len;
u32 seq_len;
};
struct mt76x02_dfs_pattern_detector {
u8 chirp_pulse_cnt;
u32 chirp_pulse_ts;
struct mt76x02_dfs_sw_detector_params sw_dpd_params;
struct mt76x02_dfs_event_rb event_rb[2];
struct list_head sequences;
struct list_head seq_pool;
struct mt76x02_dfs_seq_stats seq_stats;
unsigned long last_sw_check;
u32 last_event_ts;
struct mt76x02_dfs_engine_stats stats[MT_DFS_NUM_ENGINES];
struct tasklet_struct dfs_tasklet;
};
void mt76x02_dfs_init_params(struct mt76x02_dev *dev);
void mt76x02_dfs_init_detector(struct mt76x02_dev *dev);
void mt76x02_regd_notifier(struct wiphy *wiphy,
struct regulatory_request *request);
void mt76x02_phy_dfs_adjust_agc(struct mt76x02_dev *dev);
#endif /* __MT76x02_DFS_H */

View File

@ -0,0 +1,65 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#ifndef __MT76x02_DMA_H
#define __MT76x02_DMA_H
#include "mt76x02.h"
#include "dma.h"
#define MT_TXD_INFO_LEN GENMASK(15, 0)
#define MT_TXD_INFO_NEXT_VLD BIT(16)
#define MT_TXD_INFO_TX_BURST BIT(17)
#define MT_TXD_INFO_80211 BIT(19)
#define MT_TXD_INFO_TSO BIT(20)
#define MT_TXD_INFO_CSO BIT(21)
#define MT_TXD_INFO_WIV BIT(24)
#define MT_TXD_INFO_QSEL GENMASK(26, 25)
#define MT_TXD_INFO_DPORT GENMASK(29, 27)
#define MT_TXD_INFO_TYPE GENMASK(31, 30)
#define MT_RX_FCE_INFO_LEN GENMASK(13, 0)
#define MT_RX_FCE_INFO_SELF_GEN BIT(15)
#define MT_RX_FCE_INFO_CMD_SEQ GENMASK(19, 16)
#define MT_RX_FCE_INFO_EVT_TYPE GENMASK(23, 20)
#define MT_RX_FCE_INFO_PCIE_INTR BIT(24)
#define MT_RX_FCE_INFO_QSEL GENMASK(26, 25)
#define MT_RX_FCE_INFO_D_PORT GENMASK(29, 27)
#define MT_RX_FCE_INFO_TYPE GENMASK(31, 30)
/* MCU request message header */
#define MT_MCU_MSG_LEN GENMASK(15, 0)
#define MT_MCU_MSG_CMD_SEQ GENMASK(19, 16)
#define MT_MCU_MSG_CMD_TYPE GENMASK(26, 20)
#define MT_MCU_MSG_PORT GENMASK(29, 27)
#define MT_MCU_MSG_TYPE GENMASK(31, 30)
#define MT_MCU_MSG_TYPE_CMD BIT(30)
#define MT_RX_HEADROOM 32
#define MT76X02_RX_RING_SIZE 256
enum dma_msg_port {
WLAN_PORT,
CPU_RX_PORT,
CPU_TX_PORT,
HOST_PORT,
VIRTUAL_CPU_RX_PORT,
VIRTUAL_CPU_TX_PORT,
DISCARD,
};
static inline bool
mt76x02_wait_for_wpdma(struct mt76_dev *dev, int timeout)
{
return __mt76_poll(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
MT_WPDMA_GLO_CFG_RX_DMA_BUSY,
0, timeout);
}
int mt76x02_dma_init(struct mt76x02_dev *dev);
void mt76x02_dma_disable(struct mt76x02_dev *dev);
#endif /* __MT76x02_DMA_H */

View File

@ -0,0 +1,154 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include <asm/unaligned.h>
#include "mt76x02_eeprom.h"
static int
mt76x02_efuse_read(struct mt76x02_dev *dev, u16 addr, u8 *data,
enum mt76x02_eeprom_modes mode)
{
u32 val;
int i;
val = mt76_rr(dev, MT_EFUSE_CTRL);
val &= ~(MT_EFUSE_CTRL_AIN |
MT_EFUSE_CTRL_MODE);
val |= FIELD_PREP(MT_EFUSE_CTRL_AIN, addr & ~0xf);
val |= FIELD_PREP(MT_EFUSE_CTRL_MODE, mode);
val |= MT_EFUSE_CTRL_KICK;
mt76_wr(dev, MT_EFUSE_CTRL, val);
if (!mt76_poll_msec(dev, MT_EFUSE_CTRL, MT_EFUSE_CTRL_KICK, 0, 1000))
return -ETIMEDOUT;
udelay(2);
val = mt76_rr(dev, MT_EFUSE_CTRL);
if ((val & MT_EFUSE_CTRL_AOUT) == MT_EFUSE_CTRL_AOUT) {
memset(data, 0xff, 16);
return 0;
}
for (i = 0; i < 4; i++) {
val = mt76_rr(dev, MT_EFUSE_DATA(i));
put_unaligned_le32(val, data + 4 * i);
}
return 0;
}
int mt76x02_eeprom_copy(struct mt76x02_dev *dev,
enum mt76x02_eeprom_field field,
void *dest, int len)
{
if (field + len > dev->mt76.eeprom.size)
return -1;
memcpy(dest, dev->mt76.eeprom.data + field, len);
return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_eeprom_copy);
int mt76x02_get_efuse_data(struct mt76x02_dev *dev, u16 base, void *buf,
int len, enum mt76x02_eeprom_modes mode)
{
int ret, i;
for (i = 0; i + 16 <= len; i += 16) {
ret = mt76x02_efuse_read(dev, base + i, buf + i, mode);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_get_efuse_data);
void mt76x02_eeprom_parse_hw_cap(struct mt76x02_dev *dev)
{
u16 val = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_0);
switch (FIELD_GET(MT_EE_NIC_CONF_0_BOARD_TYPE, val)) {
case BOARD_TYPE_5GHZ:
dev->mphy.cap.has_5ghz = true;
break;
case BOARD_TYPE_2GHZ:
dev->mphy.cap.has_2ghz = true;
break;
default:
dev->mphy.cap.has_2ghz = true;
dev->mphy.cap.has_5ghz = true;
break;
}
}
EXPORT_SYMBOL_GPL(mt76x02_eeprom_parse_hw_cap);
bool mt76x02_ext_pa_enabled(struct mt76x02_dev *dev, enum nl80211_band band)
{
u16 conf0 = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_0);
if (band == NL80211_BAND_5GHZ)
return !(conf0 & MT_EE_NIC_CONF_0_PA_INT_5G);
else
return !(conf0 & MT_EE_NIC_CONF_0_PA_INT_2G);
}
EXPORT_SYMBOL_GPL(mt76x02_ext_pa_enabled);
void mt76x02_get_rx_gain(struct mt76x02_dev *dev, enum nl80211_band band,
u16 *rssi_offset, s8 *lna_2g, s8 *lna_5g)
{
u16 val;
val = mt76x02_eeprom_get(dev, MT_EE_LNA_GAIN);
*lna_2g = val & 0xff;
lna_5g[0] = val >> 8;
val = mt76x02_eeprom_get(dev, MT_EE_RSSI_OFFSET_2G_1);
lna_5g[1] = val >> 8;
val = mt76x02_eeprom_get(dev, MT_EE_RSSI_OFFSET_5G_1);
lna_5g[2] = val >> 8;
if (!mt76x02_field_valid(lna_5g[1]))
lna_5g[1] = lna_5g[0];
if (!mt76x02_field_valid(lna_5g[2]))
lna_5g[2] = lna_5g[0];
if (band == NL80211_BAND_2GHZ)
*rssi_offset = mt76x02_eeprom_get(dev, MT_EE_RSSI_OFFSET_2G_0);
else
*rssi_offset = mt76x02_eeprom_get(dev, MT_EE_RSSI_OFFSET_5G_0);
}
EXPORT_SYMBOL_GPL(mt76x02_get_rx_gain);
u8 mt76x02_get_lna_gain(struct mt76x02_dev *dev,
s8 *lna_2g, s8 *lna_5g,
struct ieee80211_channel *chan)
{
u16 val;
u8 lna;
val = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_1);
if (val & MT_EE_NIC_CONF_1_LNA_EXT_2G)
*lna_2g = 0;
if (val & MT_EE_NIC_CONF_1_LNA_EXT_5G)
memset(lna_5g, 0, sizeof(s8) * 3);
if (chan->band == NL80211_BAND_2GHZ)
lna = *lna_2g;
else if (chan->hw_value <= 64)
lna = lna_5g[0];
else if (chan->hw_value <= 128)
lna = lna_5g[1];
else
lna = lna_5g[2];
return lna != 0xff ? lna : 0;
}
EXPORT_SYMBOL_GPL(mt76x02_get_lna_gain);

View File

@ -0,0 +1,187 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#ifndef __MT76x02_EEPROM_H
#define __MT76x02_EEPROM_H
#include "mt76x02.h"
enum mt76x02_eeprom_field {
MT_EE_CHIP_ID = 0x000,
MT_EE_VERSION = 0x002,
MT_EE_MAC_ADDR = 0x004,
MT_EE_PCI_ID = 0x00A,
MT_EE_ANTENNA = 0x022,
MT_EE_CFG1_INIT = 0x024,
MT_EE_NIC_CONF_0 = 0x034,
MT_EE_NIC_CONF_1 = 0x036,
MT_EE_COUNTRY_REGION_5GHZ = 0x038,
MT_EE_COUNTRY_REGION_2GHZ = 0x039,
MT_EE_FREQ_OFFSET = 0x03a,
MT_EE_NIC_CONF_2 = 0x042,
MT_EE_XTAL_TRIM_1 = 0x03a,
MT_EE_XTAL_TRIM_2 = 0x09e,
MT_EE_LNA_GAIN = 0x044,
MT_EE_RSSI_OFFSET_2G_0 = 0x046,
MT_EE_RSSI_OFFSET_2G_1 = 0x048,
MT_EE_LNA_GAIN_5GHZ_1 = 0x049,
MT_EE_RSSI_OFFSET_5G_0 = 0x04a,
MT_EE_RSSI_OFFSET_5G_1 = 0x04c,
MT_EE_LNA_GAIN_5GHZ_2 = 0x04d,
MT_EE_TX_POWER_DELTA_BW40 = 0x050,
MT_EE_TX_POWER_DELTA_BW80 = 0x052,
MT_EE_TX_POWER_EXT_PA_5G = 0x054,
MT_EE_TX_POWER_0_START_2G = 0x056,
MT_EE_TX_POWER_1_START_2G = 0x05c,
/* used as byte arrays */
#define MT_TX_POWER_GROUP_SIZE_5G 5
#define MT_TX_POWER_GROUPS_5G 6
MT_EE_TX_POWER_0_START_5G = 0x062,
MT_EE_TSSI_SLOPE_2G = 0x06e,
MT_EE_TX_POWER_0_GRP3_TX_POWER_DELTA = 0x074,
MT_EE_TX_POWER_0_GRP4_TSSI_SLOPE = 0x076,
MT_EE_TX_POWER_1_START_5G = 0x080,
MT_EE_TX_POWER_CCK = 0x0a0,
MT_EE_TX_POWER_OFDM_2G_6M = 0x0a2,
MT_EE_TX_POWER_OFDM_2G_24M = 0x0a4,
MT_EE_TX_POWER_OFDM_5G_6M = 0x0b2,
MT_EE_TX_POWER_OFDM_5G_24M = 0x0b4,
MT_EE_TX_POWER_HT_MCS0 = 0x0a6,
MT_EE_TX_POWER_HT_MCS4 = 0x0a8,
MT_EE_TX_POWER_HT_MCS8 = 0x0aa,
MT_EE_TX_POWER_HT_MCS12 = 0x0ac,
MT_EE_TX_POWER_VHT_MCS0 = 0x0ba,
MT_EE_TX_POWER_VHT_MCS4 = 0x0bc,
MT_EE_TX_POWER_VHT_MCS8 = 0x0be,
MT_EE_2G_TARGET_POWER = 0x0d0,
MT_EE_TEMP_OFFSET = 0x0d1,
MT_EE_5G_TARGET_POWER = 0x0d2,
MT_EE_TSSI_BOUND1 = 0x0d4,
MT_EE_TSSI_BOUND2 = 0x0d6,
MT_EE_TSSI_BOUND3 = 0x0d8,
MT_EE_TSSI_BOUND4 = 0x0da,
MT_EE_FREQ_OFFSET_COMPENSATION = 0x0db,
MT_EE_TSSI_BOUND5 = 0x0dc,
MT_EE_TX_POWER_BYRATE_BASE = 0x0de,
MT_EE_TSSI_SLOPE_5G = 0x0f0,
MT_EE_RF_TEMP_COMP_SLOPE_5G = 0x0f2,
MT_EE_RF_TEMP_COMP_SLOPE_2G = 0x0f4,
MT_EE_RF_2G_TSSI_OFF_TXPOWER = 0x0f6,
MT_EE_RF_2G_RX_HIGH_GAIN = 0x0f8,
MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN = 0x0fa,
MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN = 0x0fc,
MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN = 0x0fe,
MT_EE_BT_RCAL_RESULT = 0x138,
MT_EE_BT_VCDL_CALIBRATION = 0x13c,
MT_EE_BT_PMUCFG = 0x13e,
MT_EE_USAGE_MAP_START = 0x1e0,
MT_EE_USAGE_MAP_END = 0x1fc,
__MT_EE_MAX
};
#define MT_EE_ANTENNA_DUAL BIT(15)
#define MT_EE_NIC_CONF_0_RX_PATH GENMASK(3, 0)
#define MT_EE_NIC_CONF_0_TX_PATH GENMASK(7, 4)
#define MT_EE_NIC_CONF_0_PA_TYPE GENMASK(9, 8)
#define MT_EE_NIC_CONF_0_PA_INT_2G BIT(8)
#define MT_EE_NIC_CONF_0_PA_INT_5G BIT(9)
#define MT_EE_NIC_CONF_0_PA_IO_CURRENT BIT(10)
#define MT_EE_NIC_CONF_0_BOARD_TYPE GENMASK(13, 12)
#define MT_EE_NIC_CONF_1_HW_RF_CTRL BIT(0)
#define MT_EE_NIC_CONF_1_TEMP_TX_ALC BIT(1)
#define MT_EE_NIC_CONF_1_LNA_EXT_2G BIT(2)
#define MT_EE_NIC_CONF_1_LNA_EXT_5G BIT(3)
#define MT_EE_NIC_CONF_1_TX_ALC_EN BIT(13)
#define MT_EE_NIC_CONF_2_ANT_OPT BIT(3)
#define MT_EE_NIC_CONF_2_ANT_DIV BIT(4)
#define MT_EE_NIC_CONF_2_XTAL_OPTION GENMASK(10, 9)
#define MT_EFUSE_USAGE_MAP_SIZE (MT_EE_USAGE_MAP_END - \
MT_EE_USAGE_MAP_START + 1)
enum mt76x02_eeprom_modes {
MT_EE_READ,
MT_EE_PHYSICAL_READ,
};
enum mt76x02_board_type {
BOARD_TYPE_2GHZ = 1,
BOARD_TYPE_5GHZ = 2,
};
static inline bool mt76x02_field_valid(u8 val)
{
return val != 0 && val != 0xff;
}
static inline int
mt76x02_sign_extend(u32 val, unsigned int size)
{
bool sign = val & BIT(size - 1);
val &= BIT(size - 1) - 1;
return sign ? val : -val;
}
static inline int
mt76x02_sign_extend_optional(u32 val, unsigned int size)
{
bool enable = val & BIT(size);
return enable ? mt76x02_sign_extend(val, size) : 0;
}
static inline s8 mt76x02_rate_power_val(u8 val)
{
if (!mt76x02_field_valid(val))
return 0;
return mt76x02_sign_extend_optional(val, 7);
}
static inline int
mt76x02_eeprom_get(struct mt76x02_dev *dev,
enum mt76x02_eeprom_field field)
{
if ((field & 1) || field >= __MT_EE_MAX)
return -1;
return get_unaligned_le16(dev->mt76.eeprom.data + field);
}
bool mt76x02_ext_pa_enabled(struct mt76x02_dev *dev, enum nl80211_band band);
int mt76x02_get_efuse_data(struct mt76x02_dev *dev, u16 base, void *buf,
int len, enum mt76x02_eeprom_modes mode);
void mt76x02_get_rx_gain(struct mt76x02_dev *dev, enum nl80211_band band,
u16 *rssi_offset, s8 *lna_2g, s8 *lna_5g);
u8 mt76x02_get_lna_gain(struct mt76x02_dev *dev,
s8 *lna_2g, s8 *lna_5g,
struct ieee80211_channel *chan);
void mt76x02_eeprom_parse_hw_cap(struct mt76x02_dev *dev);
int mt76x02_eeprom_copy(struct mt76x02_dev *dev,
enum mt76x02_eeprom_field field,
void *dest, int len);
#endif /* __MT76x02_EEPROM_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,208 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl>
*/
#ifndef __MT76X02_MAC_H
#define __MT76X02_MAC_H
struct mt76x02_dev;
struct mt76x02_tx_status {
u8 valid:1;
u8 success:1;
u8 aggr:1;
u8 ack_req:1;
u8 wcid;
u8 pktid;
u8 retry;
u16 rate;
} __packed __aligned(2);
#define MT_VIF_WCID(_n) (254 - ((_n) & 7))
#define MT_MAX_VIFS 8
#define MT_PKTID_RATE GENMASK(4, 0)
#define MT_PKTID_AC GENMASK(6, 5)
struct mt76x02_vif {
struct mt76_wcid group_wcid; /* must be first */
u8 idx;
};
DECLARE_EWMA(pktlen, 8, 8);
struct mt76x02_sta {
struct mt76_wcid wcid; /* must be first */
struct mt76x02_vif *vif;
struct mt76x02_tx_status status;
int n_frames;
struct ewma_pktlen pktlen;
};
#define MT_RXINFO_BA BIT(0)
#define MT_RXINFO_DATA BIT(1)
#define MT_RXINFO_NULL BIT(2)
#define MT_RXINFO_FRAG BIT(3)
#define MT_RXINFO_UNICAST BIT(4)
#define MT_RXINFO_MULTICAST BIT(5)
#define MT_RXINFO_BROADCAST BIT(6)
#define MT_RXINFO_MYBSS BIT(7)
#define MT_RXINFO_CRCERR BIT(8)
#define MT_RXINFO_ICVERR BIT(9)
#define MT_RXINFO_MICERR BIT(10)
#define MT_RXINFO_AMSDU BIT(11)
#define MT_RXINFO_HTC BIT(12)
#define MT_RXINFO_RSSI BIT(13)
#define MT_RXINFO_L2PAD BIT(14)
#define MT_RXINFO_AMPDU BIT(15)
#define MT_RXINFO_DECRYPT BIT(16)
#define MT_RXINFO_BSSIDX3 BIT(17)
#define MT_RXINFO_WAPI_KEY BIT(18)
#define MT_RXINFO_PN_LEN GENMASK(21, 19)
#define MT_RXINFO_SW_FTYPE0 BIT(22)
#define MT_RXINFO_SW_FTYPE1 BIT(23)
#define MT_RXINFO_PROBE_RESP BIT(24)
#define MT_RXINFO_BEACON BIT(25)
#define MT_RXINFO_DISASSOC BIT(26)
#define MT_RXINFO_DEAUTH BIT(27)
#define MT_RXINFO_ACTION BIT(28)
#define MT_RXINFO_TCP_SUM_ERR BIT(30)
#define MT_RXINFO_IP_SUM_ERR BIT(31)
#define MT_RXWI_CTL_WCID GENMASK(7, 0)
#define MT_RXWI_CTL_KEY_IDX GENMASK(9, 8)
#define MT_RXWI_CTL_BSS_IDX GENMASK(12, 10)
#define MT_RXWI_CTL_UDF GENMASK(15, 13)
#define MT_RXWI_CTL_MPDU_LEN GENMASK(29, 16)
#define MT_RXWI_CTL_EOF BIT(31)
#define MT_RXWI_TID GENMASK(3, 0)
#define MT_RXWI_SN GENMASK(15, 4)
#define MT_RXWI_RATE_INDEX GENMASK(5, 0)
#define MT_RXWI_RATE_LDPC BIT(6)
#define MT_RXWI_RATE_BW GENMASK(8, 7)
#define MT_RXWI_RATE_SGI BIT(9)
#define MT_RXWI_RATE_STBC BIT(10)
#define MT_RXWI_RATE_LDPC_EXSYM BIT(11)
#define MT_RXWI_RATE_PHY GENMASK(15, 13)
#define MT_RATE_INDEX_VHT_IDX GENMASK(3, 0)
#define MT_RATE_INDEX_VHT_NSS GENMASK(5, 4)
struct mt76x02_rxwi {
__le32 rxinfo;
__le32 ctl;
__le16 tid_sn;
__le16 rate;
u8 rssi[4];
__le32 bbp_rxinfo[4];
};
#define MT_TX_PWR_ADJ GENMASK(3, 0)
enum mt76x2_phy_bandwidth {
MT_PHY_BW_20,
MT_PHY_BW_40,
MT_PHY_BW_80,
};
#define MT_TXWI_FLAGS_FRAG BIT(0)
#define MT_TXWI_FLAGS_MMPS BIT(1)
#define MT_TXWI_FLAGS_CFACK BIT(2)
#define MT_TXWI_FLAGS_TS BIT(3)
#define MT_TXWI_FLAGS_AMPDU BIT(4)
#define MT_TXWI_FLAGS_MPDU_DENSITY GENMASK(7, 5)
#define MT_TXWI_FLAGS_TXOP GENMASK(9, 8)
#define MT_TXWI_FLAGS_NDPS BIT(10)
#define MT_TXWI_FLAGS_RTSBWSIG BIT(11)
#define MT_TXWI_FLAGS_NDP_BW GENMASK(13, 12)
#define MT_TXWI_FLAGS_SOUND BIT(14)
#define MT_TXWI_FLAGS_TX_RATE_LUT BIT(15)
#define MT_TXWI_ACK_CTL_REQ BIT(0)
#define MT_TXWI_ACK_CTL_NSEQ BIT(1)
#define MT_TXWI_ACK_CTL_BA_WINDOW GENMASK(7, 2)
struct mt76x02_txwi {
__le16 flags;
__le16 rate;
u8 ack_ctl;
u8 wcid;
__le16 len_ctl;
__le32 iv;
__le32 eiv;
u8 aid;
u8 txstream;
u8 ctl2;
u8 pktid;
} __packed __aligned(4);
static inline bool mt76x02_wait_for_mac(struct mt76_dev *dev)
{
const u32 MAC_CSR0 = 0x1000;
int i;
for (i = 0; i < 500; i++) {
if (test_bit(MT76_REMOVED, &dev->phy.state))
return false;
switch (dev->bus->rr(dev, MAC_CSR0)) {
case 0:
case ~0:
break;
default:
return true;
}
usleep_range(5000, 10000);
}
return false;
}
void mt76x02_mac_reset_counters(struct mt76x02_dev *dev);
void mt76x02_mac_set_short_preamble(struct mt76x02_dev *dev, bool enable);
int mt76x02_mac_shared_key_setup(struct mt76x02_dev *dev, u8 vif_idx,
u8 key_idx, struct ieee80211_key_conf *key);
int mt76x02_mac_wcid_set_key(struct mt76x02_dev *dev, u8 idx,
struct ieee80211_key_conf *key);
void mt76x02_mac_wcid_sync_pn(struct mt76x02_dev *dev, u8 idx,
struct ieee80211_key_conf *key);
void mt76x02_mac_wcid_setup(struct mt76x02_dev *dev, u8 idx, u8 vif_idx,
u8 *mac);
void mt76x02_mac_wcid_set_drop(struct mt76x02_dev *dev, u8 idx, bool drop);
void mt76x02_mac_wcid_set_rate(struct mt76x02_dev *dev, struct mt76_wcid *wcid,
const struct ieee80211_tx_rate *rate);
bool mt76x02_mac_load_tx_status(struct mt76x02_dev *dev,
struct mt76x02_tx_status *stat);
void mt76x02_send_tx_status(struct mt76x02_dev *dev,
struct mt76x02_tx_status *stat, u8 *update);
int mt76x02_mac_process_rx(struct mt76x02_dev *dev, struct sk_buff *skb,
void *rxi);
void mt76x02_mac_set_tx_protection(struct mt76x02_dev *dev, bool legacy_prot,
int ht_mode);
void mt76x02_mac_set_rts_thresh(struct mt76x02_dev *dev, u32 val);
void mt76x02_mac_setaddr(struct mt76x02_dev *dev, const u8 *addr);
void mt76x02_mac_write_txwi(struct mt76x02_dev *dev, struct mt76x02_txwi *txwi,
struct sk_buff *skb, struct mt76_wcid *wcid,
struct ieee80211_sta *sta, int len);
void mt76x02_mac_poll_tx_status(struct mt76x02_dev *dev, bool irq);
void mt76x02_tx_complete_skb(struct mt76_dev *mdev, struct mt76_queue_entry *e);
void mt76x02_update_channel(struct mt76_phy *mphy);
void mt76x02_mac_work(struct work_struct *work);
void mt76x02_mac_cc_reset(struct mt76x02_dev *dev);
void mt76x02_mac_set_bssid(struct mt76x02_dev *dev, u8 idx, const u8 *addr);
void mt76x02_mac_set_beacon(struct mt76x02_dev *dev, struct sk_buff *skb);
void mt76x02_mac_set_beacon_enable(struct mt76x02_dev *dev,
struct ieee80211_vif *vif, bool enable);
void mt76x02_edcca_init(struct mt76x02_dev *dev);
#endif

View File

@ -0,0 +1,171 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include <linux/kernel.h>
#include <linux/firmware.h>
#include <linux/delay.h>
#include "mt76x02_mcu.h"
int mt76x02_mcu_parse_response(struct mt76_dev *mdev, int cmd,
struct sk_buff *skb, int seq)
{
struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
u32 *rxfce;
if (!skb) {
dev_err(mdev->dev, "MCU message %02x (seq %d) timed out\n",
abs(cmd), seq);
dev->mcu_timeout = 1;
return -ETIMEDOUT;
}
rxfce = (u32 *)skb->cb;
if (seq != FIELD_GET(MT_RX_FCE_INFO_CMD_SEQ, *rxfce))
return -EAGAIN;
return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_mcu_parse_response);
int mt76x02_mcu_msg_send(struct mt76_dev *mdev, int cmd, const void *data,
int len, bool wait_resp)
{
struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
unsigned long expires = jiffies + HZ;
struct sk_buff *skb;
u32 tx_info;
int ret;
u8 seq;
if (dev->mcu_timeout)
return -EIO;
skb = mt76_mcu_msg_alloc(mdev, data, len);
if (!skb)
return -ENOMEM;
mutex_lock(&mdev->mcu.mutex);
seq = ++mdev->mcu.msg_seq & 0xf;
if (!seq)
seq = ++mdev->mcu.msg_seq & 0xf;
tx_info = MT_MCU_MSG_TYPE_CMD |
FIELD_PREP(MT_MCU_MSG_CMD_TYPE, cmd) |
FIELD_PREP(MT_MCU_MSG_CMD_SEQ, seq) |
FIELD_PREP(MT_MCU_MSG_PORT, CPU_TX_PORT) |
FIELD_PREP(MT_MCU_MSG_LEN, skb->len);
ret = mt76_tx_queue_skb_raw(dev, mdev->q_mcu[MT_MCUQ_WM], skb, tx_info);
if (ret)
goto out;
while (wait_resp) {
skb = mt76_mcu_get_response(&dev->mt76, expires);
ret = mt76x02_mcu_parse_response(mdev, cmd, skb, seq);
dev_kfree_skb(skb);
if (ret != -EAGAIN)
break;
}
out:
mutex_unlock(&mdev->mcu.mutex);
return ret;
}
EXPORT_SYMBOL_GPL(mt76x02_mcu_msg_send);
int mt76x02_mcu_function_select(struct mt76x02_dev *dev, enum mcu_function func,
u32 val)
{
struct {
__le32 id;
__le32 value;
} __packed __aligned(4) msg = {
.id = cpu_to_le32(func),
.value = cpu_to_le32(val),
};
bool wait = false;
if (func != Q_SELECT)
wait = true;
return mt76_mcu_send_msg(&dev->mt76, CMD_FUN_SET_OP, &msg,
sizeof(msg), wait);
}
EXPORT_SYMBOL_GPL(mt76x02_mcu_function_select);
int mt76x02_mcu_set_radio_state(struct mt76x02_dev *dev, bool on)
{
struct {
__le32 mode;
__le32 level;
} __packed __aligned(4) msg = {
.mode = cpu_to_le32(on ? RADIO_ON : RADIO_OFF),
.level = cpu_to_le32(0),
};
return mt76_mcu_send_msg(&dev->mt76, CMD_POWER_SAVING_OP, &msg,
sizeof(msg), false);
}
EXPORT_SYMBOL_GPL(mt76x02_mcu_set_radio_state);
int mt76x02_mcu_calibrate(struct mt76x02_dev *dev, int type, u32 param)
{
struct {
__le32 id;
__le32 value;
} __packed __aligned(4) msg = {
.id = cpu_to_le32(type),
.value = cpu_to_le32(param),
};
bool is_mt76x2e = mt76_is_mmio(&dev->mt76) && is_mt76x2(dev);
int ret;
if (is_mt76x2e)
mt76_rmw(dev, MT_MCU_COM_REG0, BIT(31), 0);
ret = mt76_mcu_send_msg(&dev->mt76, CMD_CALIBRATION_OP, &msg,
sizeof(msg), true);
if (ret)
return ret;
if (is_mt76x2e &&
WARN_ON(!mt76_poll_msec(dev, MT_MCU_COM_REG0,
BIT(31), BIT(31), 100)))
return -ETIMEDOUT;
return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_mcu_calibrate);
int mt76x02_mcu_cleanup(struct mt76x02_dev *dev)
{
struct sk_buff *skb;
mt76_wr(dev, MT_MCU_INT_LEVEL, 1);
usleep_range(20000, 30000);
while ((skb = skb_dequeue(&dev->mt76.mcu.res_q)) != NULL)
dev_kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_mcu_cleanup);
void mt76x02_set_ethtool_fwver(struct mt76x02_dev *dev,
const struct mt76x02_fw_header *h)
{
u16 bld = le16_to_cpu(h->build_ver);
u16 ver = le16_to_cpu(h->fw_ver);
snprintf(dev->mt76.hw->wiphy->fw_version,
sizeof(dev->mt76.hw->wiphy->fw_version),
"%d.%d.%02d-b%x",
(ver >> 12) & 0xf, (ver >> 8) & 0xf, ver & 0xf, bld);
}
EXPORT_SYMBOL_GPL(mt76x02_set_ethtool_fwver);

View File

@ -0,0 +1,100 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#ifndef __MT76x02_MCU_H
#define __MT76x02_MCU_H
#include "mt76x02.h"
#define MT_MCU_RESET_CTL 0x070C
#define MT_MCU_INT_LEVEL 0x0718
#define MT_MCU_COM_REG0 0x0730
#define MT_MCU_COM_REG1 0x0734
#define MT_MCU_COM_REG2 0x0738
#define MT_MCU_COM_REG3 0x073C
#define MT_INBAND_PACKET_MAX_LEN 192
#define MT_MCU_MEMMAP_WLAN 0x410000
#define MT_MCU_PCIE_REMAP_BASE4 0x074C
#define MT_MCU_SEMAPHORE_00 0x07B0
#define MT_MCU_SEMAPHORE_01 0x07B4
#define MT_MCU_SEMAPHORE_02 0x07B8
#define MT_MCU_SEMAPHORE_03 0x07BC
#define MT_MCU_ILM_ADDR 0x80000
enum mcu_cmd {
CMD_FUN_SET_OP = 1,
CMD_LOAD_CR = 2,
CMD_INIT_GAIN_OP = 3,
CMD_DYNC_VGA_OP = 6,
CMD_TDLS_CH_SW = 7,
CMD_BURST_WRITE = 8,
CMD_READ_MODIFY_WRITE = 9,
CMD_RANDOM_READ = 10,
CMD_BURST_READ = 11,
CMD_RANDOM_WRITE = 12,
CMD_LED_MODE_OP = 16,
CMD_POWER_SAVING_OP = 20,
CMD_WOW_CONFIG = 21,
CMD_WOW_QUERY = 22,
CMD_WOW_FEATURE = 24,
CMD_CARRIER_DETECT_OP = 28,
CMD_RADOR_DETECT_OP = 29,
CMD_SWITCH_CHANNEL_OP = 30,
CMD_CALIBRATION_OP = 31,
CMD_BEACON_OP = 32,
CMD_ANTENNA_OP = 33,
};
enum mcu_power_mode {
RADIO_OFF = 0x30,
RADIO_ON = 0x31,
RADIO_OFF_AUTO_WAKEUP = 0x32,
RADIO_OFF_ADVANCE = 0x33,
RADIO_ON_ADVANCE = 0x34,
};
enum mcu_function {
Q_SELECT = 1,
BW_SETTING = 2,
USB2_SW_DISCONNECT = 2,
USB3_SW_DISCONNECT = 3,
LOG_FW_DEBUG_MSG = 4,
GET_FW_VERSION = 5,
};
struct mt76x02_fw_header {
__le32 ilm_len;
__le32 dlm_len;
__le16 build_ver;
__le16 fw_ver;
u8 pad[4];
char build_time[16];
};
struct mt76x02_patch_header {
char build_time[16];
char platform[4];
char hw_version[4];
char patch_version[4];
u8 pad[2];
};
int mt76x02_mcu_cleanup(struct mt76x02_dev *dev);
int mt76x02_mcu_calibrate(struct mt76x02_dev *dev, int type, u32 param);
int mt76x02_mcu_msg_send(struct mt76_dev *mdev, int cmd, const void *data,
int len, bool wait_resp);
int mt76x02_mcu_parse_response(struct mt76_dev *mdev, int cmd,
struct sk_buff *skb, int seq);
int mt76x02_mcu_function_select(struct mt76x02_dev *dev, enum mcu_function func,
u32 val);
int mt76x02_mcu_set_radio_state(struct mt76x02_dev *dev, bool on);
void mt76x02_set_ethtool_fwver(struct mt76x02_dev *dev,
const struct mt76x02_fw_header *h);
#endif /* __MT76x02_MCU_H */

View File

@ -0,0 +1,556 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include <linux/kernel.h>
#include <linux/irq.h>
#include "mt76x02.h"
#include "mt76x02_mcu.h"
#include "trace.h"
static void mt76x02_pre_tbtt_tasklet(struct tasklet_struct *t)
{
struct mt76x02_dev *dev = from_tasklet(dev, t, mt76.pre_tbtt_tasklet);
struct mt76_dev *mdev = &dev->mt76;
struct mt76_queue *q = dev->mphy.q_tx[MT_TXQ_PSD];
struct beacon_bc_data data = {};
struct sk_buff *skb;
int i;
if (mt76_hw(dev)->conf.flags & IEEE80211_CONF_OFFCHANNEL)
return;
mt76x02_resync_beacon_timer(dev);
/* Prevent corrupt transmissions during update */
mt76_set(dev, MT_BCN_BYPASS_MASK, 0xffff);
dev->beacon_data_count = 0;
ieee80211_iterate_active_interfaces_atomic(mt76_hw(dev),
IEEE80211_IFACE_ITER_RESUME_ALL,
mt76x02_update_beacon_iter, dev);
mt76_wr(dev, MT_BCN_BYPASS_MASK,
0xff00 | ~(0xff00 >> dev->beacon_data_count));
mt76_csa_check(mdev);
if (mdev->csa_complete)
return;
mt76x02_enqueue_buffered_bc(dev, &data, 8);
if (!skb_queue_len(&data.q))
return;
for (i = 0; i < ARRAY_SIZE(data.tail); i++) {
if (!data.tail[i])
continue;
mt76_skb_set_moredata(data.tail[i], false);
}
spin_lock(&q->lock);
while ((skb = __skb_dequeue(&data.q)) != NULL) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_vif *vif = info->control.vif;
struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
mt76_tx_queue_skb(dev, q, MT_TXQ_PSD, skb, &mvif->group_wcid,
NULL);
}
spin_unlock(&q->lock);
}
static void mt76x02e_pre_tbtt_enable(struct mt76x02_dev *dev, bool en)
{
if (en)
tasklet_enable(&dev->mt76.pre_tbtt_tasklet);
else
tasklet_disable(&dev->mt76.pre_tbtt_tasklet);
}
static void mt76x02e_beacon_enable(struct mt76x02_dev *dev, bool en)
{
mt76_rmw_field(dev, MT_INT_TIMER_EN, MT_INT_TIMER_EN_PRE_TBTT_EN, en);
if (en)
mt76x02_irq_enable(dev, MT_INT_PRE_TBTT | MT_INT_TBTT);
else
mt76x02_irq_disable(dev, MT_INT_PRE_TBTT | MT_INT_TBTT);
}
void mt76x02e_init_beacon_config(struct mt76x02_dev *dev)
{
static const struct mt76x02_beacon_ops beacon_ops = {
.nslots = 8,
.slot_size = 1024,
.pre_tbtt_enable = mt76x02e_pre_tbtt_enable,
.beacon_enable = mt76x02e_beacon_enable,
};
dev->beacon_ops = &beacon_ops;
/* Fire a pre-TBTT interrupt 8 ms before TBTT */
mt76_rmw_field(dev, MT_INT_TIMER_CFG, MT_INT_TIMER_CFG_PRE_TBTT,
8 << 4);
mt76_rmw_field(dev, MT_INT_TIMER_CFG, MT_INT_TIMER_CFG_GP_TIMER,
MT_DFS_GP_INTERVAL);
mt76_wr(dev, MT_INT_TIMER_EN, 0);
mt76x02_init_beacon_config(dev);
}
EXPORT_SYMBOL_GPL(mt76x02e_init_beacon_config);
static int
mt76x02_init_rx_queue(struct mt76x02_dev *dev, struct mt76_queue *q,
int idx, int n_desc, int bufsize)
{
int err;
err = mt76_queue_alloc(dev, q, idx, n_desc, bufsize,
MT_RX_RING_BASE);
if (err < 0)
return err;
mt76x02_irq_enable(dev, MT_INT_RX_DONE(idx));
return 0;
}
static void mt76x02_process_tx_status_fifo(struct mt76x02_dev *dev)
{
struct mt76x02_tx_status stat;
u8 update = 1;
while (kfifo_get(&dev->txstatus_fifo, &stat))
mt76x02_send_tx_status(dev, &stat, &update);
}
static void mt76x02_tx_worker(struct mt76_worker *w)
{
struct mt76x02_dev *dev;
dev = container_of(w, struct mt76x02_dev, mt76.tx_worker);
mt76x02_mac_poll_tx_status(dev, false);
mt76x02_process_tx_status_fifo(dev);
mt76_txq_schedule_all(&dev->mphy);
}
static int mt76x02_poll_tx(struct napi_struct *napi, int budget)
{
struct mt76x02_dev *dev = container_of(napi, struct mt76x02_dev,
mt76.tx_napi);
int i;
mt76x02_mac_poll_tx_status(dev, false);
mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_WM], false);
for (i = MT_TXQ_PSD; i >= 0; i--)
mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], false);
if (napi_complete_done(napi, 0))
mt76x02_irq_enable(dev, MT_INT_TX_DONE_ALL);
mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_WM], false);
for (i = MT_TXQ_PSD; i >= 0; i--)
mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], false);
mt76_worker_schedule(&dev->mt76.tx_worker);
return 0;
}
int mt76x02_dma_init(struct mt76x02_dev *dev)
{
struct mt76_txwi_cache __maybe_unused *t;
int i, ret, fifo_size;
struct mt76_queue *q;
void *status_fifo;
BUILD_BUG_ON(sizeof(struct mt76x02_rxwi) > MT_RX_HEADROOM);
fifo_size = roundup_pow_of_two(32 * sizeof(struct mt76x02_tx_status));
status_fifo = devm_kzalloc(dev->mt76.dev, fifo_size, GFP_KERNEL);
if (!status_fifo)
return -ENOMEM;
dev->mt76.tx_worker.fn = mt76x02_tx_worker;
tasklet_setup(&dev->mt76.pre_tbtt_tasklet, mt76x02_pre_tbtt_tasklet);
spin_lock_init(&dev->txstatus_fifo_lock);
kfifo_init(&dev->txstatus_fifo, status_fifo, fifo_size);
mt76_dma_attach(&dev->mt76);
mt76_wr(dev, MT_WPDMA_RST_IDX, ~0);
for (i = 0; i < IEEE80211_NUM_ACS; i++) {
ret = mt76_init_tx_queue(&dev->mphy, i, mt76_ac_to_hwq(i),
MT76x02_TX_RING_SIZE,
MT_TX_RING_BASE, 0);
if (ret)
return ret;
}
ret = mt76_init_tx_queue(&dev->mphy, MT_TXQ_PSD, MT_TX_HW_QUEUE_MGMT,
MT76x02_PSD_RING_SIZE, MT_TX_RING_BASE, 0);
if (ret)
return ret;
ret = mt76_init_mcu_queue(&dev->mt76, MT_MCUQ_WM, MT_TX_HW_QUEUE_MCU,
MT_MCU_RING_SIZE, MT_TX_RING_BASE);
if (ret)
return ret;
mt76x02_irq_enable(dev,
MT_INT_TX_DONE(IEEE80211_AC_VO) |
MT_INT_TX_DONE(IEEE80211_AC_VI) |
MT_INT_TX_DONE(IEEE80211_AC_BE) |
MT_INT_TX_DONE(IEEE80211_AC_BK) |
MT_INT_TX_DONE(MT_TX_HW_QUEUE_MGMT) |
MT_INT_TX_DONE(MT_TX_HW_QUEUE_MCU));
ret = mt76x02_init_rx_queue(dev, &dev->mt76.q_rx[MT_RXQ_MCU], 1,
MT_MCU_RING_SIZE, MT_RX_BUF_SIZE);
if (ret)
return ret;
q = &dev->mt76.q_rx[MT_RXQ_MAIN];
q->buf_offset = MT_RX_HEADROOM - sizeof(struct mt76x02_rxwi);
ret = mt76x02_init_rx_queue(dev, q, 0, MT76X02_RX_RING_SIZE,
MT_RX_BUF_SIZE);
if (ret)
return ret;
ret = mt76_init_queues(dev, mt76_dma_rx_poll);
if (ret)
return ret;
netif_napi_add_tx(&dev->mt76.tx_napi_dev, &dev->mt76.tx_napi,
mt76x02_poll_tx);
napi_enable(&dev->mt76.tx_napi);
return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_dma_init);
void mt76x02_rx_poll_complete(struct mt76_dev *mdev, enum mt76_rxq_id q)
{
struct mt76x02_dev *dev;
dev = container_of(mdev, struct mt76x02_dev, mt76);
mt76x02_irq_enable(dev, MT_INT_RX_DONE(q));
}
EXPORT_SYMBOL_GPL(mt76x02_rx_poll_complete);
irqreturn_t mt76x02_irq_handler(int irq, void *dev_instance)
{
struct mt76x02_dev *dev = dev_instance;
u32 intr, mask;
intr = mt76_rr(dev, MT_INT_SOURCE_CSR);
intr &= dev->mt76.mmio.irqmask;
mt76_wr(dev, MT_INT_SOURCE_CSR, intr);
if (!test_bit(MT76_STATE_INITIALIZED, &dev->mphy.state))
return IRQ_NONE;
trace_dev_irq(&dev->mt76, intr, dev->mt76.mmio.irqmask);
mask = intr & (MT_INT_RX_DONE_ALL | MT_INT_GPTIMER);
if (intr & (MT_INT_TX_DONE_ALL | MT_INT_TX_STAT))
mask |= MT_INT_TX_DONE_ALL;
mt76x02_irq_disable(dev, mask);
if (intr & MT_INT_RX_DONE(0))
napi_schedule(&dev->mt76.napi[0]);
if (intr & MT_INT_RX_DONE(1))
napi_schedule(&dev->mt76.napi[1]);
if (intr & MT_INT_PRE_TBTT)
tasklet_schedule(&dev->mt76.pre_tbtt_tasklet);
/* send buffered multicast frames now */
if (intr & MT_INT_TBTT) {
if (dev->mt76.csa_complete)
mt76_csa_finish(&dev->mt76);
else
mt76_queue_kick(dev, dev->mphy.q_tx[MT_TXQ_PSD]);
}
if (intr & MT_INT_TX_STAT)
mt76x02_mac_poll_tx_status(dev, true);
if (intr & (MT_INT_TX_STAT | MT_INT_TX_DONE_ALL))
napi_schedule(&dev->mt76.tx_napi);
if (intr & MT_INT_GPTIMER)
tasklet_schedule(&dev->dfs_pd.dfs_tasklet);
return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(mt76x02_irq_handler);
static void mt76x02_dma_enable(struct mt76x02_dev *dev)
{
u32 val;
mt76_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_TX);
mt76x02_wait_for_wpdma(&dev->mt76, 1000);
usleep_range(50, 100);
val = FIELD_PREP(MT_WPDMA_GLO_CFG_DMA_BURST_SIZE, 3) |
MT_WPDMA_GLO_CFG_TX_DMA_EN |
MT_WPDMA_GLO_CFG_RX_DMA_EN;
mt76_set(dev, MT_WPDMA_GLO_CFG, val);
mt76_clear(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE);
}
void mt76x02_dma_disable(struct mt76x02_dev *dev)
{
u32 val = mt76_rr(dev, MT_WPDMA_GLO_CFG);
val &= MT_WPDMA_GLO_CFG_DMA_BURST_SIZE |
MT_WPDMA_GLO_CFG_BIG_ENDIAN |
MT_WPDMA_GLO_CFG_HDR_SEG_LEN;
val |= MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE;
mt76_wr(dev, MT_WPDMA_GLO_CFG, val);
}
EXPORT_SYMBOL_GPL(mt76x02_dma_disable);
void mt76x02_mac_start(struct mt76x02_dev *dev)
{
mt76x02_mac_reset_counters(dev);
mt76x02_dma_enable(dev);
mt76_wr(dev, MT_RX_FILTR_CFG, dev->mt76.rxfilter);
mt76_wr(dev, MT_MAC_SYS_CTRL,
MT_MAC_SYS_CTRL_ENABLE_TX |
MT_MAC_SYS_CTRL_ENABLE_RX);
mt76x02_irq_enable(dev,
MT_INT_RX_DONE_ALL | MT_INT_TX_DONE_ALL |
MT_INT_TX_STAT);
}
EXPORT_SYMBOL_GPL(mt76x02_mac_start);
static bool mt76x02_tx_hang(struct mt76x02_dev *dev)
{
u32 dma_idx, prev_dma_idx;
struct mt76_queue *q;
int i;
for (i = 0; i < 4; i++) {
q = dev->mphy.q_tx[i];
prev_dma_idx = dev->mt76.tx_dma_idx[i];
dma_idx = readl(&q->regs->dma_idx);
dev->mt76.tx_dma_idx[i] = dma_idx;
if (!q->queued || prev_dma_idx != dma_idx) {
dev->tx_hang_check[i] = 0;
continue;
}
if (++dev->tx_hang_check[i] >= MT_TX_HANG_TH)
return true;
}
return false;
}
static void mt76x02_key_sync(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key, void *data)
{
struct mt76x02_dev *dev = hw->priv;
struct mt76_wcid *wcid;
if (!sta)
return;
wcid = (struct mt76_wcid *)sta->drv_priv;
if (wcid->hw_key_idx != key->keyidx || wcid->sw_iv)
return;
mt76x02_mac_wcid_sync_pn(dev, wcid->idx, key);
}
static void mt76x02_reset_state(struct mt76x02_dev *dev)
{
int i;
lockdep_assert_held(&dev->mt76.mutex);
clear_bit(MT76_STATE_RUNNING, &dev->mphy.state);
rcu_read_lock();
ieee80211_iter_keys_rcu(dev->mt76.hw, NULL, mt76x02_key_sync, NULL);
rcu_read_unlock();
for (i = 0; i < MT76x02_N_WCIDS; i++) {
struct ieee80211_sta *sta;
struct ieee80211_vif *vif;
struct mt76x02_sta *msta;
struct mt76_wcid *wcid;
void *priv;
wcid = rcu_dereference_protected(dev->mt76.wcid[i],
lockdep_is_held(&dev->mt76.mutex));
if (!wcid)
continue;
rcu_assign_pointer(dev->mt76.wcid[i], NULL);
priv = msta = container_of(wcid, struct mt76x02_sta, wcid);
sta = container_of(priv, struct ieee80211_sta, drv_priv);
priv = msta->vif;
vif = container_of(priv, struct ieee80211_vif, drv_priv);
__mt76_sta_remove(&dev->mt76, vif, sta);
memset(msta, 0, sizeof(*msta));
}
dev->mt76.vif_mask = 0;
dev->mt76.beacon_mask = 0;
}
static void mt76x02_watchdog_reset(struct mt76x02_dev *dev)
{
u32 mask = dev->mt76.mmio.irqmask;
bool restart = dev->mt76.mcu_ops->mcu_restart;
int i;
ieee80211_stop_queues(dev->mt76.hw);
set_bit(MT76_RESET, &dev->mphy.state);
tasklet_disable(&dev->mt76.pre_tbtt_tasklet);
mt76_worker_disable(&dev->mt76.tx_worker);
napi_disable(&dev->mt76.tx_napi);
mt76_for_each_q_rx(&dev->mt76, i) {
napi_disable(&dev->mt76.napi[i]);
}
mutex_lock(&dev->mt76.mutex);
dev->mcu_timeout = 0;
if (restart)
mt76x02_reset_state(dev);
if (dev->mt76.beacon_mask)
mt76_clear(dev, MT_BEACON_TIME_CFG,
MT_BEACON_TIME_CFG_BEACON_TX |
MT_BEACON_TIME_CFG_TBTT_EN);
mt76x02_irq_disable(dev, mask);
/* perform device reset */
mt76_clear(dev, MT_TXOP_CTRL_CFG, MT_TXOP_ED_CCA_EN);
mt76_wr(dev, MT_MAC_SYS_CTRL, 0);
mt76_clear(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_TX_DMA_EN | MT_WPDMA_GLO_CFG_RX_DMA_EN);
usleep_range(5000, 10000);
mt76_wr(dev, MT_INT_SOURCE_CSR, 0xffffffff);
/* let fw reset DMA */
mt76_set(dev, 0x734, 0x3);
if (restart)
mt76_mcu_restart(dev);
mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_WM], true);
for (i = 0; i < __MT_TXQ_MAX; i++)
mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], true);
mt76_for_each_q_rx(&dev->mt76, i) {
mt76_queue_rx_reset(dev, i);
}
mt76_tx_status_check(&dev->mt76, true);
mt76x02_mac_start(dev);
if (dev->ed_monitor)
mt76_set(dev, MT_TXOP_CTRL_CFG, MT_TXOP_ED_CCA_EN);
if (dev->mt76.beacon_mask && !restart)
mt76_set(dev, MT_BEACON_TIME_CFG,
MT_BEACON_TIME_CFG_BEACON_TX |
MT_BEACON_TIME_CFG_TBTT_EN);
mt76x02_irq_enable(dev, mask);
mutex_unlock(&dev->mt76.mutex);
clear_bit(MT76_RESET, &dev->mphy.state);
mt76_worker_enable(&dev->mt76.tx_worker);
tasklet_enable(&dev->mt76.pre_tbtt_tasklet);
local_bh_disable();
napi_enable(&dev->mt76.tx_napi);
napi_schedule(&dev->mt76.tx_napi);
mt76_for_each_q_rx(&dev->mt76, i) {
napi_enable(&dev->mt76.napi[i]);
napi_schedule(&dev->mt76.napi[i]);
}
local_bh_enable();
if (restart) {
set_bit(MT76_RESTART, &dev->mphy.state);
mt76x02_mcu_function_select(dev, Q_SELECT, 1);
ieee80211_restart_hw(dev->mt76.hw);
} else {
ieee80211_wake_queues(dev->mt76.hw);
mt76_txq_schedule_all(&dev->mphy);
}
}
void mt76x02_reconfig_complete(struct ieee80211_hw *hw,
enum ieee80211_reconfig_type reconfig_type)
{
struct mt76x02_dev *dev = hw->priv;
if (reconfig_type != IEEE80211_RECONFIG_TYPE_RESTART)
return;
clear_bit(MT76_RESTART, &dev->mphy.state);
}
EXPORT_SYMBOL_GPL(mt76x02_reconfig_complete);
static void mt76x02_check_tx_hang(struct mt76x02_dev *dev)
{
if (test_bit(MT76_RESTART, &dev->mphy.state))
return;
if (!mt76x02_tx_hang(dev) && !dev->mcu_timeout)
return;
mt76x02_watchdog_reset(dev);
dev->tx_hang_reset++;
memset(dev->tx_hang_check, 0, sizeof(dev->tx_hang_check));
memset(dev->mt76.tx_dma_idx, 0xff,
sizeof(dev->mt76.tx_dma_idx));
}
void mt76x02_wdt_work(struct work_struct *work)
{
struct mt76x02_dev *dev = container_of(work, struct mt76x02_dev,
wdt_work.work);
mt76x02_check_tx_hang(dev);
ieee80211_queue_delayed_work(mt76_hw(dev), &dev->wdt_work,
MT_WATCHDOG_TIME);
}

View File

@ -0,0 +1,204 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include <linux/kernel.h>
#include "mt76x02.h"
#include "mt76x02_phy.h"
void mt76x02_phy_set_rxpath(struct mt76x02_dev *dev)
{
u32 val;
val = mt76_rr(dev, MT_BBP(AGC, 0));
val &= ~BIT(4);
switch (dev->mphy.chainmask & 0xf) {
case 2:
val |= BIT(3);
break;
default:
val &= ~BIT(3);
break;
}
mt76_wr(dev, MT_BBP(AGC, 0), val);
mb();
val = mt76_rr(dev, MT_BBP(AGC, 0));
}
EXPORT_SYMBOL_GPL(mt76x02_phy_set_rxpath);
void mt76x02_phy_set_txdac(struct mt76x02_dev *dev)
{
int txpath;
txpath = (dev->mphy.chainmask >> 8) & 0xf;
switch (txpath) {
case 2:
mt76_set(dev, MT_BBP(TXBE, 5), 0x3);
break;
default:
mt76_clear(dev, MT_BBP(TXBE, 5), 0x3);
break;
}
}
EXPORT_SYMBOL_GPL(mt76x02_phy_set_txdac);
static u32
mt76x02_tx_power_mask(u8 v1, u8 v2, u8 v3, u8 v4)
{
u32 val = 0;
val |= (v1 & (BIT(6) - 1)) << 0;
val |= (v2 & (BIT(6) - 1)) << 8;
val |= (v3 & (BIT(6) - 1)) << 16;
val |= (v4 & (BIT(6) - 1)) << 24;
return val;
}
int mt76x02_get_max_rate_power(struct mt76_rate_power *r)
{
s8 ret = 0;
int i;
for (i = 0; i < sizeof(r->all); i++)
ret = max(ret, r->all[i]);
return ret;
}
EXPORT_SYMBOL_GPL(mt76x02_get_max_rate_power);
void mt76x02_limit_rate_power(struct mt76_rate_power *r, int limit)
{
int i;
for (i = 0; i < sizeof(r->all); i++)
if (r->all[i] > limit)
r->all[i] = limit;
}
EXPORT_SYMBOL_GPL(mt76x02_limit_rate_power);
void mt76x02_add_rate_power_offset(struct mt76_rate_power *r, int offset)
{
int i;
for (i = 0; i < sizeof(r->all); i++)
r->all[i] += offset;
}
EXPORT_SYMBOL_GPL(mt76x02_add_rate_power_offset);
void mt76x02_phy_set_txpower(struct mt76x02_dev *dev, int txp_0, int txp_1)
{
struct mt76_rate_power *t = &dev->mt76.rate_power;
mt76_rmw_field(dev, MT_TX_ALC_CFG_0, MT_TX_ALC_CFG_0_CH_INIT_0, txp_0);
mt76_rmw_field(dev, MT_TX_ALC_CFG_0, MT_TX_ALC_CFG_0_CH_INIT_1, txp_1);
mt76_wr(dev, MT_TX_PWR_CFG_0,
mt76x02_tx_power_mask(t->cck[0], t->cck[2], t->ofdm[0],
t->ofdm[2]));
mt76_wr(dev, MT_TX_PWR_CFG_1,
mt76x02_tx_power_mask(t->ofdm[4], t->ofdm[6], t->ht[0],
t->ht[2]));
mt76_wr(dev, MT_TX_PWR_CFG_2,
mt76x02_tx_power_mask(t->ht[4], t->ht[6], t->ht[8],
t->ht[10]));
mt76_wr(dev, MT_TX_PWR_CFG_3,
mt76x02_tx_power_mask(t->ht[12], t->ht[14], t->stbc[0],
t->stbc[2]));
mt76_wr(dev, MT_TX_PWR_CFG_4,
mt76x02_tx_power_mask(t->stbc[4], t->stbc[6], 0, 0));
mt76_wr(dev, MT_TX_PWR_CFG_7,
mt76x02_tx_power_mask(t->ofdm[7], t->vht[8], t->ht[7],
t->vht[9]));
mt76_wr(dev, MT_TX_PWR_CFG_8,
mt76x02_tx_power_mask(t->ht[14], 0, t->vht[8], t->vht[9]));
mt76_wr(dev, MT_TX_PWR_CFG_9,
mt76x02_tx_power_mask(t->ht[7], 0, t->stbc[8], t->stbc[9]));
}
EXPORT_SYMBOL_GPL(mt76x02_phy_set_txpower);
void mt76x02_phy_set_bw(struct mt76x02_dev *dev, int width, u8 ctrl)
{
int core_val, agc_val;
switch (width) {
case NL80211_CHAN_WIDTH_80:
core_val = 3;
agc_val = 7;
break;
case NL80211_CHAN_WIDTH_40:
core_val = 2;
agc_val = 3;
break;
default:
core_val = 0;
agc_val = 1;
break;
}
mt76_rmw_field(dev, MT_BBP(CORE, 1), MT_BBP_CORE_R1_BW, core_val);
mt76_rmw_field(dev, MT_BBP(AGC, 0), MT_BBP_AGC_R0_BW, agc_val);
mt76_rmw_field(dev, MT_BBP(AGC, 0), MT_BBP_AGC_R0_CTRL_CHAN, ctrl);
mt76_rmw_field(dev, MT_BBP(TXBE, 0), MT_BBP_TXBE_R0_CTRL_CHAN, ctrl);
}
EXPORT_SYMBOL_GPL(mt76x02_phy_set_bw);
void mt76x02_phy_set_band(struct mt76x02_dev *dev, int band,
bool primary_upper)
{
switch (band) {
case NL80211_BAND_2GHZ:
mt76_set(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_2G);
mt76_clear(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_5G);
break;
case NL80211_BAND_5GHZ:
mt76_clear(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_2G);
mt76_set(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_5G);
break;
}
mt76_rmw_field(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_UPPER_40M,
primary_upper);
}
EXPORT_SYMBOL_GPL(mt76x02_phy_set_band);
bool mt76x02_phy_adjust_vga_gain(struct mt76x02_dev *dev)
{
u8 limit = dev->cal.low_gain > 0 ? 16 : 4;
bool ret = false;
u32 false_cca;
false_cca = FIELD_GET(MT_RX_STAT_1_CCA_ERRORS,
mt76_rr(dev, MT_RX_STAT_1));
dev->cal.false_cca = false_cca;
if (false_cca > 800 && dev->cal.agc_gain_adjust < limit) {
dev->cal.agc_gain_adjust += 2;
ret = true;
} else if ((false_cca < 10 && dev->cal.agc_gain_adjust > 0) ||
(dev->cal.agc_gain_adjust >= limit && false_cca < 500)) {
dev->cal.agc_gain_adjust -= 2;
ret = true;
}
dev->cal.agc_lowest_gain = dev->cal.agc_gain_adjust >= limit;
return ret;
}
EXPORT_SYMBOL_GPL(mt76x02_phy_adjust_vga_gain);
void mt76x02_init_agc_gain(struct mt76x02_dev *dev)
{
dev->cal.agc_gain_init[0] = mt76_get_field(dev, MT_BBP(AGC, 8),
MT_BBP_AGC_GAIN);
dev->cal.agc_gain_init[1] = mt76_get_field(dev, MT_BBP(AGC, 9),
MT_BBP_AGC_GAIN);
memcpy(dev->cal.agc_gain_cur, dev->cal.agc_gain_init,
sizeof(dev->cal.agc_gain_cur));
dev->cal.low_gain = -1;
dev->cal.gain_init_done = true;
}
EXPORT_SYMBOL_GPL(mt76x02_init_agc_gain);

View File

@ -0,0 +1,49 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#ifndef __MT76x02_PHY_H
#define __MT76x02_PHY_H
#include "mt76x02_regs.h"
static inline int
mt76x02_get_rssi_gain_thresh(struct mt76x02_dev *dev)
{
switch (dev->mphy.chandef.width) {
case NL80211_CHAN_WIDTH_80:
return -62;
case NL80211_CHAN_WIDTH_40:
return -65;
default:
return -68;
}
}
static inline int
mt76x02_get_low_rssi_gain_thresh(struct mt76x02_dev *dev)
{
switch (dev->mphy.chandef.width) {
case NL80211_CHAN_WIDTH_80:
return -76;
case NL80211_CHAN_WIDTH_40:
return -79;
default:
return -82;
}
}
void mt76x02_add_rate_power_offset(struct mt76_rate_power *r, int offset);
void mt76x02_phy_set_txpower(struct mt76x02_dev *dev, int txp_0, int txp_2);
void mt76x02_limit_rate_power(struct mt76_rate_power *r, int limit);
int mt76x02_get_max_rate_power(struct mt76_rate_power *r);
void mt76x02_phy_set_rxpath(struct mt76x02_dev *dev);
void mt76x02_phy_set_txdac(struct mt76x02_dev *dev);
void mt76x02_phy_set_bw(struct mt76x02_dev *dev, int width, u8 ctrl);
void mt76x02_phy_set_band(struct mt76x02_dev *dev, int band,
bool primary_upper);
bool mt76x02_phy_adjust_vga_gain(struct mt76x02_dev *dev);
void mt76x02_init_agc_gain(struct mt76x02_dev *dev);
#endif /* __MT76x02_PHY_H */

View File

@ -0,0 +1,708 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#ifndef __MT76X02_REGS_H
#define __MT76X02_REGS_H
#define MT_ASIC_VERSION 0x0000
#define MT76XX_REV_E3 0x22
#define MT76XX_REV_E4 0x33
#define MT_CMB_CTRL 0x0020
#define MT_CMB_CTRL_XTAL_RDY BIT(22)
#define MT_CMB_CTRL_PLL_LD BIT(23)
#define MT_EFUSE_CTRL 0x0024
#define MT_EFUSE_CTRL_AOUT GENMASK(5, 0)
#define MT_EFUSE_CTRL_MODE GENMASK(7, 6)
#define MT_EFUSE_CTRL_LDO_OFF_TIME GENMASK(13, 8)
#define MT_EFUSE_CTRL_LDO_ON_TIME GENMASK(15, 14)
#define MT_EFUSE_CTRL_AIN GENMASK(25, 16)
#define MT_EFUSE_CTRL_KICK BIT(30)
#define MT_EFUSE_CTRL_SEL BIT(31)
#define MT_EFUSE_DATA_BASE 0x0028
#define MT_EFUSE_DATA(_n) (MT_EFUSE_DATA_BASE + ((_n) << 2))
#define MT_COEXCFG0 0x0040
#define MT_COEXCFG0_COEX_EN BIT(0)
#define MT_WLAN_FUN_CTRL 0x0080
#define MT_WLAN_FUN_CTRL_WLAN_EN BIT(0)
#define MT_WLAN_FUN_CTRL_WLAN_CLK_EN BIT(1)
#define MT_WLAN_FUN_CTRL_WLAN_RESET_RF BIT(2)
#define MT_COEXCFG3 0x004c
#define MT_LDO_CTRL_0 0x006c
#define MT_LDO_CTRL_1 0x0070
#define MT_WLAN_FUN_CTRL_WLAN_RESET BIT(3) /* MT76x0 */
#define MT_WLAN_FUN_CTRL_CSR_F20M_CKEN BIT(3) /* MT76x2 */
#define MT_WLAN_FUN_CTRL_PCIE_CLK_REQ BIT(4)
#define MT_WLAN_FUN_CTRL_FRC_WL_ANT_SEL BIT(5)
#define MT_WLAN_FUN_CTRL_INV_ANT_SEL BIT(6)
#define MT_WLAN_FUN_CTRL_WAKE_HOST BIT(7)
#define MT_WLAN_FUN_CTRL_THERM_RST BIT(8) /* MT76x2 */
#define MT_WLAN_FUN_CTRL_THERM_CKEN BIT(9) /* MT76x2 */
#define MT_WLAN_FUN_CTRL_GPIO_IN GENMASK(15, 8) /* MT76x0 */
#define MT_WLAN_FUN_CTRL_GPIO_OUT GENMASK(23, 16) /* MT76x0 */
#define MT_WLAN_FUN_CTRL_GPIO_OUT_EN GENMASK(31, 24) /* MT76x0 */
/* MT76x0 */
#define MT_CSR_EE_CFG1 0x0104
#define MT_XO_CTRL0 0x0100
#define MT_XO_CTRL1 0x0104
#define MT_XO_CTRL2 0x0108
#define MT_XO_CTRL3 0x010c
#define MT_XO_CTRL4 0x0110
#define MT_XO_CTRL5 0x0114
#define MT_XO_CTRL5_C2_VAL GENMASK(14, 8)
#define MT_XO_CTRL6 0x0118
#define MT_XO_CTRL6_C2_CTRL GENMASK(14, 8)
#define MT_XO_CTRL7 0x011c
#define MT_IOCFG_6 0x0124
#define MT_USB_U3DMA_CFG 0x9018
#define MT_USB_DMA_CFG_RX_BULK_AGG_TOUT GENMASK(7, 0)
#define MT_USB_DMA_CFG_RX_BULK_AGG_LMT GENMASK(15, 8)
#define MT_USB_DMA_CFG_UDMA_TX_WL_DROP BIT(16)
#define MT_USB_DMA_CFG_WAKE_UP_EN BIT(17)
#define MT_USB_DMA_CFG_RX_DROP_OR_PAD BIT(18)
#define MT_USB_DMA_CFG_TX_CLR BIT(19)
#define MT_USB_DMA_CFG_TXOP_HALT BIT(20)
#define MT_USB_DMA_CFG_RX_BULK_AGG_EN BIT(21)
#define MT_USB_DMA_CFG_RX_BULK_EN BIT(22)
#define MT_USB_DMA_CFG_TX_BULK_EN BIT(23)
#define MT_USB_DMA_CFG_EP_OUT_VALID GENMASK(29, 24)
#define MT_USB_DMA_CFG_RX_BUSY BIT(30)
#define MT_USB_DMA_CFG_TX_BUSY BIT(31)
#define MT_WLAN_MTC_CTRL 0x10148
#define MT_WLAN_MTC_CTRL_MTCMOS_PWR_UP BIT(0)
#define MT_WLAN_MTC_CTRL_PWR_ACK BIT(12)
#define MT_WLAN_MTC_CTRL_PWR_ACK_S BIT(13)
#define MT_WLAN_MTC_CTRL_BBP_MEM_PD GENMASK(19, 16)
#define MT_WLAN_MTC_CTRL_PBF_MEM_PD BIT(20)
#define MT_WLAN_MTC_CTRL_FCE_MEM_PD BIT(21)
#define MT_WLAN_MTC_CTRL_TSO_MEM_PD BIT(22)
#define MT_WLAN_MTC_CTRL_BBP_MEM_RB BIT(24)
#define MT_WLAN_MTC_CTRL_PBF_MEM_RB BIT(25)
#define MT_WLAN_MTC_CTRL_FCE_MEM_RB BIT(26)
#define MT_WLAN_MTC_CTRL_TSO_MEM_RB BIT(27)
#define MT_WLAN_MTC_CTRL_STATE_UP BIT(28)
#define MT_INT_SOURCE_CSR 0x0200
#define MT_INT_MASK_CSR 0x0204
#define MT_INT_RX_DONE(_n) BIT(_n)
#define MT_INT_RX_DONE_ALL GENMASK(1, 0)
#define MT_INT_TX_DONE_ALL GENMASK(13, 4)
#define MT_INT_TX_DONE(_n) BIT((_n) + 4)
#define MT_INT_RX_COHERENT BIT(16)
#define MT_INT_TX_COHERENT BIT(17)
#define MT_INT_ANY_COHERENT BIT(18)
#define MT_INT_MCU_CMD BIT(19)
#define MT_INT_TBTT BIT(20)
#define MT_INT_PRE_TBTT BIT(21)
#define MT_INT_TX_STAT BIT(22)
#define MT_INT_AUTO_WAKEUP BIT(23)
#define MT_INT_GPTIMER BIT(24)
#define MT_INT_RXDELAYINT BIT(26)
#define MT_INT_TXDELAYINT BIT(27)
#define MT_WPDMA_GLO_CFG 0x0208
#define MT_WPDMA_GLO_CFG_TX_DMA_EN BIT(0)
#define MT_WPDMA_GLO_CFG_TX_DMA_BUSY BIT(1)
#define MT_WPDMA_GLO_CFG_RX_DMA_EN BIT(2)
#define MT_WPDMA_GLO_CFG_RX_DMA_BUSY BIT(3)
#define MT_WPDMA_GLO_CFG_DMA_BURST_SIZE GENMASK(5, 4)
#define MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE BIT(6)
#define MT_WPDMA_GLO_CFG_BIG_ENDIAN BIT(7)
#define MT_WPDMA_GLO_CFG_HDR_SEG_LEN GENMASK(15, 8)
#define MT_WPDMA_GLO_CFG_CLK_GATE_DIS BIT(30)
#define MT_WPDMA_GLO_CFG_RX_2B_OFFSET BIT(31)
#define MT_WPDMA_RST_IDX 0x020c
#define MT_WPDMA_DELAY_INT_CFG 0x0210
#define MT_WMM_AIFSN 0x0214
#define MT_WMM_AIFSN_MASK GENMASK(3, 0)
#define MT_WMM_AIFSN_SHIFT(_n) ((_n) * 4)
#define MT_WMM_CWMIN 0x0218
#define MT_WMM_CWMIN_MASK GENMASK(3, 0)
#define MT_WMM_CWMIN_SHIFT(_n) ((_n) * 4)
#define MT_WMM_CWMAX 0x021c
#define MT_WMM_CWMAX_MASK GENMASK(3, 0)
#define MT_WMM_CWMAX_SHIFT(_n) ((_n) * 4)
#define MT_WMM_TXOP_BASE 0x0220
#define MT_WMM_TXOP(_n) (MT_WMM_TXOP_BASE + (((_n) / 2) << 2))
#define MT_WMM_TXOP_SHIFT(_n) (((_n) & 1) * 16)
#define MT_WMM_TXOP_MASK GENMASK(15, 0)
#define MT_WMM_CTRL 0x0230 /* MT76x0 */
#define MT_FCE_DMA_ADDR 0x0230
#define MT_FCE_DMA_LEN 0x0234
#define MT_USB_DMA_CFG 0x0238
#define MT_TSO_CTRL 0x0250
#define MT_HEADER_TRANS_CTRL_REG 0x0260
#define MT_US_CYC_CFG 0x02a4
#define MT_US_CYC_CNT GENMASK(7, 0)
#define MT_TX_RING_BASE 0x0300
#define MT_RX_RING_BASE 0x03c0
#define MT_TX_HW_QUEUE_MCU 8
#define MT_TX_HW_QUEUE_MGMT 9
#define MT_PBF_SYS_CTRL 0x0400
#define MT_PBF_SYS_CTRL_MCU_RESET BIT(0)
#define MT_PBF_SYS_CTRL_DMA_RESET BIT(1)
#define MT_PBF_SYS_CTRL_MAC_RESET BIT(2)
#define MT_PBF_SYS_CTRL_PBF_RESET BIT(3)
#define MT_PBF_SYS_CTRL_ASY_RESET BIT(4)
#define MT_PBF_CFG 0x0404
#define MT_PBF_CFG_TX0Q_EN BIT(0)
#define MT_PBF_CFG_TX1Q_EN BIT(1)
#define MT_PBF_CFG_TX2Q_EN BIT(2)
#define MT_PBF_CFG_TX3Q_EN BIT(3)
#define MT_PBF_CFG_RX0Q_EN BIT(4)
#define MT_PBF_CFG_RX_DROP_EN BIT(8)
#define MT_PBF_TX_MAX_PCNT 0x0408
#define MT_PBF_RX_MAX_PCNT 0x040c
#define MT_BCN_OFFSET_BASE 0x041c
#define MT_BCN_OFFSET(_n) (MT_BCN_OFFSET_BASE + ((_n) << 2))
#define MT_RXQ_STA 0x0430
#define MT_TXQ_STA 0x0434
#define MT_RF_CSR_CFG 0x0500
#define MT_RF_CSR_CFG_DATA GENMASK(7, 0)
#define MT_RF_CSR_CFG_REG_ID GENMASK(14, 8)
#define MT_RF_CSR_CFG_REG_BANK GENMASK(17, 15)
#define MT_RF_CSR_CFG_WR BIT(30)
#define MT_RF_CSR_CFG_KICK BIT(31)
#define MT_RF_BYPASS_0 0x0504
#define MT_RF_BYPASS_1 0x0508
#define MT_RF_SETTING_0 0x050c
#define MT_RF_MISC 0x0518
#define MT_RF_DATA_WRITE 0x0524
#define MT_RF_CTRL 0x0528
#define MT_RF_CTRL_ADDR GENMASK(11, 0)
#define MT_RF_CTRL_WRITE BIT(12)
#define MT_RF_CTRL_BUSY BIT(13)
#define MT_RF_CTRL_IDX BIT(16)
#define MT_RF_DATA_READ 0x052c
#define MT_COM_REG0 0x0730
#define MT_COM_REG1 0x0734
#define MT_COM_REG2 0x0738
#define MT_COM_REG3 0x073C
#define MT_LED_CTRL 0x0770
#define MT_LED_CTRL_REPLAY(_n) BIT(0 + (8 * (_n)))
#define MT_LED_CTRL_POLARITY(_n) BIT(1 + (8 * (_n)))
#define MT_LED_CTRL_TX_BLINK_MODE(_n) BIT(2 + (8 * (_n)))
#define MT_LED_CTRL_KICK(_n) BIT(7 + (8 * (_n)))
#define MT_LED_TX_BLINK_0 0x0774
#define MT_LED_TX_BLINK_1 0x0778
#define MT_LED_S0_BASE 0x077C
#define MT_LED_S0(_n) (MT_LED_S0_BASE + 8 * (_n))
#define MT_LED_S1_BASE 0x0780
#define MT_LED_S1(_n) (MT_LED_S1_BASE + 8 * (_n))
#define MT_LED_STATUS_OFF GENMASK(31, 24)
#define MT_LED_STATUS_ON GENMASK(23, 16)
#define MT_LED_STATUS_DURATION GENMASK(15, 8)
#define MT_FCE_PSE_CTRL 0x0800
#define MT_FCE_PARAMETERS 0x0804
#define MT_FCE_CSO 0x0808
#define MT_FCE_L2_STUFF 0x080c
#define MT_FCE_L2_STUFF_HT_L2_EN BIT(0)
#define MT_FCE_L2_STUFF_QOS_L2_EN BIT(1)
#define MT_FCE_L2_STUFF_RX_STUFF_EN BIT(2)
#define MT_FCE_L2_STUFF_TX_STUFF_EN BIT(3)
#define MT_FCE_L2_STUFF_WR_MPDU_LEN_EN BIT(4)
#define MT_FCE_L2_STUFF_MVINV_BSWAP BIT(5)
#define MT_FCE_L2_STUFF_TS_CMD_QSEL_EN GENMASK(15, 8)
#define MT_FCE_L2_STUFF_TS_LEN_EN GENMASK(23, 16)
#define MT_FCE_L2_STUFF_OTHER_PORT GENMASK(25, 24)
#define MT_FCE_WLAN_FLOW_CONTROL1 0x0824
#define MT_TX_CPU_FROM_FCE_BASE_PTR 0x09a0
#define MT_TX_CPU_FROM_FCE_MAX_COUNT 0x09a4
#define MT_TX_CPU_FROM_FCE_CPU_DESC_IDX 0x09a8
#define MT_FCE_PDMA_GLOBAL_CONF 0x09c4
#define MT_FCE_SKIP_FS 0x0a6c
#define MT_PAUSE_ENABLE_CONTROL1 0x0a38
#define MT_MAC_CSR0 0x1000
#define MT_MAC_SYS_CTRL 0x1004
#define MT_MAC_SYS_CTRL_RESET_CSR BIT(0)
#define MT_MAC_SYS_CTRL_RESET_BBP BIT(1)
#define MT_MAC_SYS_CTRL_ENABLE_TX BIT(2)
#define MT_MAC_SYS_CTRL_ENABLE_RX BIT(3)
#define MT_MAC_ADDR_DW0 0x1008
#define MT_MAC_ADDR_DW1 0x100c
#define MT_MAC_ADDR_DW1_U2ME_MASK GENMASK(23, 16)
#define MT_MAC_BSSID_DW0 0x1010
#define MT_MAC_BSSID_DW1 0x1014
#define MT_MAC_BSSID_DW1_ADDR GENMASK(15, 0)
#define MT_MAC_BSSID_DW1_MBSS_MODE GENMASK(17, 16)
#define MT_MAC_BSSID_DW1_MBEACON_N GENMASK(20, 18)
#define MT_MAC_BSSID_DW1_MBSS_LOCAL_BIT BIT(21)
#define MT_MAC_BSSID_DW1_MBSS_MODE_B2 BIT(22)
#define MT_MAC_BSSID_DW1_MBEACON_N_B3 BIT(23)
#define MT_MAC_BSSID_DW1_MBSS_IDX_BYTE GENMASK(26, 24)
#define MT_MAX_LEN_CFG 0x1018
#define MT_MAX_LEN_CFG_AMPDU GENMASK(13, 12)
#define MT_LED_CFG 0x102c
#define MT_AMPDU_MAX_LEN_20M1S 0x1030
#define MT_AMPDU_MAX_LEN_20M2S 0x1034
#define MT_AMPDU_MAX_LEN_40M1S 0x1038
#define MT_AMPDU_MAX_LEN_40M2S 0x103c
#define MT_AMPDU_MAX_LEN 0x1040
#define MT_WCID_DROP_BASE 0x106c
#define MT_WCID_DROP(_n) (MT_WCID_DROP_BASE + ((_n) >> 5) * 4)
#define MT_WCID_DROP_MASK(_n) BIT((_n) % 32)
#define MT_BCN_BYPASS_MASK 0x108c
#define MT_MAC_APC_BSSID_BASE 0x1090
#define MT_MAC_APC_BSSID_L(_n) (MT_MAC_APC_BSSID_BASE + ((_n) * 8))
#define MT_MAC_APC_BSSID_H(_n) (MT_MAC_APC_BSSID_BASE + ((_n) * 8 + 4))
#define MT_MAC_APC_BSSID_H_ADDR GENMASK(15, 0)
#define MT_MAC_APC_BSSID0_H_EN BIT(16)
#define MT_XIFS_TIME_CFG 0x1100
#define MT_XIFS_TIME_CFG_CCK_SIFS GENMASK(7, 0)
#define MT_XIFS_TIME_CFG_OFDM_SIFS GENMASK(15, 8)
#define MT_XIFS_TIME_CFG_OFDM_XIFS GENMASK(19, 16)
#define MT_XIFS_TIME_CFG_EIFS GENMASK(28, 20)
#define MT_XIFS_TIME_CFG_BB_RXEND_EN BIT(29)
#define MT_BKOFF_SLOT_CFG 0x1104
#define MT_BKOFF_SLOT_CFG_SLOTTIME GENMASK(7, 0)
#define MT_BKOFF_SLOT_CFG_CC_DELAY GENMASK(11, 8)
#define MT_CH_TIME_CFG 0x110c
#define MT_CH_TIME_CFG_TIMER_EN BIT(0)
#define MT_CH_TIME_CFG_TX_AS_BUSY BIT(1)
#define MT_CH_TIME_CFG_RX_AS_BUSY BIT(2)
#define MT_CH_TIME_CFG_NAV_AS_BUSY BIT(3)
#define MT_CH_TIME_CFG_EIFS_AS_BUSY BIT(4)
#define MT_CH_TIME_CFG_MDRDY_CNT_EN BIT(5)
#define MT_CH_CCA_RC_EN BIT(6)
#define MT_CH_TIME_CFG_CH_TIMER_CLR GENMASK(9, 8)
#define MT_CH_TIME_CFG_MDRDY_CLR GENMASK(11, 10)
#define MT_PBF_LIFE_TIMER 0x1110
#define MT_BEACON_TIME_CFG 0x1114
#define MT_BEACON_TIME_CFG_INTVAL GENMASK(15, 0)
#define MT_BEACON_TIME_CFG_TIMER_EN BIT(16)
#define MT_BEACON_TIME_CFG_SYNC_MODE GENMASK(18, 17)
#define MT_BEACON_TIME_CFG_TBTT_EN BIT(19)
#define MT_BEACON_TIME_CFG_BEACON_TX BIT(20)
#define MT_BEACON_TIME_CFG_TSF_COMP GENMASK(31, 24)
#define MT_TBTT_SYNC_CFG 0x1118
#define MT_TSF_TIMER_DW0 0x111c
#define MT_TSF_TIMER_DW1 0x1120
#define MT_TBTT_TIMER 0x1124
#define MT_TBTT_TIMER_VAL GENMASK(16, 0)
#define MT_INT_TIMER_CFG 0x1128
#define MT_INT_TIMER_CFG_PRE_TBTT GENMASK(15, 0)
#define MT_INT_TIMER_CFG_GP_TIMER GENMASK(31, 16)
#define MT_INT_TIMER_EN 0x112c
#define MT_INT_TIMER_EN_PRE_TBTT_EN BIT(0)
#define MT_INT_TIMER_EN_GP_TIMER_EN BIT(1)
#define MT_CH_IDLE 0x1130
#define MT_CH_BUSY 0x1134
#define MT_EXT_CH_BUSY 0x1138
#define MT_ED_CCA_TIMER 0x1140
#define MT_MAC_STATUS 0x1200
#define MT_MAC_STATUS_TX BIT(0)
#define MT_MAC_STATUS_RX BIT(1)
#define MT_PWR_PIN_CFG 0x1204
#define MT_AUX_CLK_CFG 0x120c
#define MT_BB_PA_MODE_CFG0 0x1214
#define MT_BB_PA_MODE_CFG1 0x1218
#define MT_RF_PA_MODE_CFG0 0x121c
#define MT_RF_PA_MODE_CFG1 0x1220
#define MT_RF_PA_MODE_ADJ0 0x1228
#define MT_RF_PA_MODE_ADJ1 0x122c
#define MT_DACCLK_EN_DLY_CFG 0x1264
#define MT_EDCA_CFG_BASE 0x1300
#define MT_EDCA_CFG_AC(_n) (MT_EDCA_CFG_BASE + ((_n) << 2))
#define MT_EDCA_CFG_TXOP GENMASK(7, 0)
#define MT_EDCA_CFG_AIFSN GENMASK(11, 8)
#define MT_EDCA_CFG_CWMIN GENMASK(15, 12)
#define MT_EDCA_CFG_CWMAX GENMASK(19, 16)
#define MT_TX_PWR_CFG_0 0x1314
#define MT_TX_PWR_CFG_1 0x1318
#define MT_TX_PWR_CFG_2 0x131c
#define MT_TX_PWR_CFG_3 0x1320
#define MT_TX_PWR_CFG_4 0x1324
#define MT_TX_PIN_CFG 0x1328
#define MT_TX_PIN_CFG_TXANT GENMASK(3, 0)
#define MT_TX_PIN_CFG_RXANT GENMASK(11, 8)
#define MT_TX_PIN_RFTR_EN BIT(16)
#define MT_TX_PIN_TRSW_EN BIT(18)
#define MT_TX_BAND_CFG 0x132c
#define MT_TX_BAND_CFG_UPPER_40M BIT(0)
#define MT_TX_BAND_CFG_5G BIT(1)
#define MT_TX_BAND_CFG_2G BIT(2)
#define MT_HT_FBK_TO_LEGACY 0x1384
#define MT_TX_MPDU_ADJ_INT 0x1388
#define MT_TX_PWR_CFG_7 0x13d4
#define MT_TX_PWR_CFG_8 0x13d8
#define MT_TX_PWR_CFG_9 0x13dc
#define MT_TX_SW_CFG0 0x1330
#define MT_TX_SW_CFG1 0x1334
#define MT_TX_SW_CFG2 0x1338
#define MT_TXOP_CTRL_CFG 0x1340
#define MT_TXOP_TRUN_EN GENMASK(5, 0)
#define MT_TXOP_EXT_CCA_DLY GENMASK(15, 8)
#define MT_TXOP_ED_CCA_EN BIT(20)
#define MT_TX_RTS_CFG 0x1344
#define MT_TX_RTS_CFG_RETRY_LIMIT GENMASK(7, 0)
#define MT_TX_RTS_CFG_THRESH GENMASK(23, 8)
#define MT_TX_RTS_FALLBACK BIT(24)
#define MT_TX_TIMEOUT_CFG 0x1348
#define MT_TX_TIMEOUT_CFG_ACKTO GENMASK(15, 8)
#define MT_TX_RETRY_CFG 0x134c
#define MT_TX_LINK_CFG 0x1350
#define MT_TX_CFACK_EN BIT(12)
#define MT_VHT_HT_FBK_CFG0 0x1354
#define MT_VHT_HT_FBK_CFG1 0x1358
#define MT_LG_FBK_CFG0 0x135c
#define MT_LG_FBK_CFG1 0x1360
#define MT_PROT_CFG_RATE GENMASK(15, 0)
#define MT_PROT_CFG_CTRL GENMASK(17, 16)
#define MT_PROT_CFG_NAV GENMASK(19, 18)
#define MT_PROT_CFG_TXOP_ALLOW GENMASK(25, 20)
#define MT_PROT_CFG_RTS_THRESH BIT(26)
#define MT_CCK_PROT_CFG 0x1364
#define MT_OFDM_PROT_CFG 0x1368
#define MT_MM20_PROT_CFG 0x136c
#define MT_MM40_PROT_CFG 0x1370
#define MT_GF20_PROT_CFG 0x1374
#define MT_GF40_PROT_CFG 0x1378
#define MT_PROT_RATE GENMASK(15, 0)
#define MT_PROT_CTRL_RTS_CTS BIT(16)
#define MT_PROT_CTRL_CTS2SELF BIT(17)
#define MT_PROT_NAV_SHORT BIT(18)
#define MT_PROT_NAV_LONG BIT(19)
#define MT_PROT_TXOP_ALLOW_CCK BIT(20)
#define MT_PROT_TXOP_ALLOW_OFDM BIT(21)
#define MT_PROT_TXOP_ALLOW_MM20 BIT(22)
#define MT_PROT_TXOP_ALLOW_MM40 BIT(23)
#define MT_PROT_TXOP_ALLOW_GF20 BIT(24)
#define MT_PROT_TXOP_ALLOW_GF40 BIT(25)
#define MT_PROT_RTS_THR_EN BIT(26)
#define MT_PROT_RATE_CCK_11 0x0003
#define MT_PROT_RATE_OFDM_6 0x2000
#define MT_PROT_RATE_OFDM_24 0x2004
#define MT_PROT_RATE_DUP_OFDM_24 0x2084
#define MT_PROT_RATE_SGI_OFDM_24 0x2104
#define MT_PROT_TXOP_ALLOW_ALL GENMASK(25, 20)
#define MT_PROT_TXOP_ALLOW_BW20 (MT_PROT_TXOP_ALLOW_ALL & \
~MT_PROT_TXOP_ALLOW_MM40 & \
~MT_PROT_TXOP_ALLOW_GF40)
#define MT_EXP_ACK_TIME 0x1380
#define MT_TX_PWR_CFG_0_EXT 0x1390
#define MT_TX_PWR_CFG_1_EXT 0x1394
#define MT_TX_FBK_LIMIT 0x1398
#define MT_TX_FBK_LIMIT_MPDU_FBK GENMASK(7, 0)
#define MT_TX_FBK_LIMIT_AMPDU_FBK GENMASK(15, 8)
#define MT_TX_FBK_LIMIT_MPDU_UP_CLEAR BIT(16)
#define MT_TX_FBK_LIMIT_AMPDU_UP_CLEAR BIT(17)
#define MT_TX_FBK_LIMIT_RATE_LUT BIT(18)
#define MT_TX0_RF_GAIN_CORR 0x13a0
#define MT_TX1_RF_GAIN_CORR 0x13a4
#define MT_TX0_RF_GAIN_ATTEN 0x13a8
#define MT_TX0_RF_GAIN_ATTEN 0x13a8 /* MT76x0 */
#define MT_TX_ALC_CFG_0 0x13b0
#define MT_TX_ALC_CFG_0_CH_INIT_0 GENMASK(5, 0)
#define MT_TX_ALC_CFG_0_CH_INIT_1 GENMASK(13, 8)
#define MT_TX_ALC_CFG_0_LIMIT_0 GENMASK(21, 16)
#define MT_TX_ALC_CFG_0_LIMIT_1 GENMASK(29, 24)
#define MT_TX_ALC_CFG_1 0x13b4
#define MT_TX_ALC_CFG_1_TEMP_COMP GENMASK(5, 0)
#define MT_TX_ALC_CFG_2 0x13a8
#define MT_TX_ALC_CFG_2_TEMP_COMP GENMASK(5, 0)
#define MT_TX_ALC_CFG_3 0x13ac
#define MT_TX_ALC_CFG_4 0x13c0
#define MT_TX_ALC_CFG_4_LOWGAIN_CH_EN BIT(31)
#define MT_TX0_BB_GAIN_ATTEN 0x13c0 /* MT76x0 */
#define MT_TX_ALC_VGA3 0x13c8
#define MT_TX_PROT_CFG6 0x13e0
#define MT_TX_PROT_CFG7 0x13e4
#define MT_TX_PROT_CFG8 0x13e8
#define MT_PIFS_TX_CFG 0x13ec
#define MT_RX_FILTR_CFG 0x1400
#define MT_RX_FILTR_CFG_CRC_ERR BIT(0)
#define MT_RX_FILTR_CFG_PHY_ERR BIT(1)
#define MT_RX_FILTR_CFG_PROMISC BIT(2)
#define MT_RX_FILTR_CFG_OTHER_BSS BIT(3)
#define MT_RX_FILTR_CFG_VER_ERR BIT(4)
#define MT_RX_FILTR_CFG_MCAST BIT(5)
#define MT_RX_FILTR_CFG_BCAST BIT(6)
#define MT_RX_FILTR_CFG_DUP BIT(7)
#define MT_RX_FILTR_CFG_CFACK BIT(8)
#define MT_RX_FILTR_CFG_CFEND BIT(9)
#define MT_RX_FILTR_CFG_ACK BIT(10)
#define MT_RX_FILTR_CFG_CTS BIT(11)
#define MT_RX_FILTR_CFG_RTS BIT(12)
#define MT_RX_FILTR_CFG_PSPOLL BIT(13)
#define MT_RX_FILTR_CFG_BA BIT(14)
#define MT_RX_FILTR_CFG_BAR BIT(15)
#define MT_RX_FILTR_CFG_CTRL_RSV BIT(16)
#define MT_AUTO_RSP_CFG 0x1404
#define MT_AUTO_RSP_EN BIT(0)
#define MT_AUTO_RSP_PREAMB_SHORT BIT(4)
#define MT_LEGACY_BASIC_RATE 0x1408
#define MT_HT_BASIC_RATE 0x140c
#define MT_HT_CTRL_CFG 0x1410
#define MT_RX_PARSER_CFG 0x1418
#define MT_RX_PARSER_RX_SET_NAV_ALL BIT(0)
#define MT_EXT_CCA_CFG 0x141c
#define MT_EXT_CCA_CFG_CCA0 GENMASK(1, 0)
#define MT_EXT_CCA_CFG_CCA1 GENMASK(3, 2)
#define MT_EXT_CCA_CFG_CCA2 GENMASK(5, 4)
#define MT_EXT_CCA_CFG_CCA3 GENMASK(7, 6)
#define MT_EXT_CCA_CFG_CCA_MASK GENMASK(11, 8)
#define MT_EXT_CCA_CFG_ED_CCA_MASK GENMASK(15, 12)
#define MT_TX_SW_CFG3 0x1478
#define MT_PN_PAD_MODE 0x150c
#define MT_TXOP_HLDR_ET 0x1608
#define MT_TXOP_HLDR_TX40M_BLK_EN BIT(1)
#define MT_PROT_AUTO_TX_CFG 0x1648
#define MT_PROT_AUTO_TX_CFG_PROT_PADJ GENMASK(11, 8)
#define MT_PROT_AUTO_TX_CFG_AUTO_PADJ GENMASK(27, 24)
#define MT_RX_STAT_0 0x1700
#define MT_RX_STAT_0_CRC_ERRORS GENMASK(15, 0)
#define MT_RX_STAT_0_PHY_ERRORS GENMASK(31, 16)
#define MT_RX_STAT_1 0x1704
#define MT_RX_STAT_1_CCA_ERRORS GENMASK(15, 0)
#define MT_RX_STAT_1_PLCP_ERRORS GENMASK(31, 16)
#define MT_RX_STAT_2 0x1708
#define MT_RX_STAT_2_DUP_ERRORS GENMASK(15, 0)
#define MT_RX_STAT_2_OVERFLOW_ERRORS GENMASK(31, 16)
#define MT_TX_STA_0 0x170c
#define MT_TX_STA_0_BEACONS GENMASK(31, 16)
#define MT_TX_STA_1 0x1710
#define MT_TX_STA_2 0x1714
#define MT_TX_STAT_FIFO 0x1718
#define MT_TX_STAT_FIFO_VALID BIT(0)
#define MT_TX_STAT_FIFO_SUCCESS BIT(5)
#define MT_TX_STAT_FIFO_AGGR BIT(6)
#define MT_TX_STAT_FIFO_ACKREQ BIT(7)
#define MT_TX_STAT_FIFO_WCID GENMASK(15, 8)
#define MT_TX_STAT_FIFO_RATE GENMASK(31, 16)
#define MT_TX_AGG_STAT 0x171c
#define MT_TX_AGG_CNT_BASE0 0x1720
#define MT_MPDU_DENSITY_CNT 0x1740
#define MT_TX_AGG_CNT_BASE1 0x174c
#define MT_TX_AGG_CNT(_id) ((_id) < 8 ? \
MT_TX_AGG_CNT_BASE0 + ((_id) << 2) : \
MT_TX_AGG_CNT_BASE1 + (((_id) - 8) << 2))
#define MT_TX_STAT_FIFO_EXT 0x1798
#define MT_TX_STAT_FIFO_EXT_RETRY GENMASK(7, 0)
#define MT_TX_STAT_FIFO_EXT_PKTID GENMASK(15, 8)
#define MT_WCID_TX_RATE_BASE 0x1c00
#define MT_WCID_TX_RATE(_i) (MT_WCID_TX_RATE_BASE + ((_i) << 3))
#define MT_BBP_CORE_BASE 0x2000
#define MT_BBP_IBI_BASE 0x2100
#define MT_BBP_AGC_BASE 0x2300
#define MT_BBP_TXC_BASE 0x2400
#define MT_BBP_RXC_BASE 0x2500
#define MT_BBP_TXO_BASE 0x2600
#define MT_BBP_TXBE_BASE 0x2700
#define MT_BBP_RXFE_BASE 0x2800
#define MT_BBP_RXO_BASE 0x2900
#define MT_BBP_DFS_BASE 0x2a00
#define MT_BBP_TR_BASE 0x2b00
#define MT_BBP_CAL_BASE 0x2c00
#define MT_BBP_DSC_BASE 0x2e00
#define MT_BBP_PFMU_BASE 0x2f00
#define MT_BBP(_type, _n) (MT_BBP_##_type##_BASE + ((_n) << 2))
#define MT_BBP_CORE_R1_BW GENMASK(4, 3)
#define MT_BBP_AGC_R0_CTRL_CHAN GENMASK(9, 8)
#define MT_BBP_AGC_R0_BW GENMASK(14, 12)
/* AGC, R4/R5 */
#define MT_BBP_AGC_LNA_HIGH_GAIN GENMASK(21, 16)
#define MT_BBP_AGC_LNA_MID_GAIN GENMASK(13, 8)
#define MT_BBP_AGC_LNA_LOW_GAIN GENMASK(5, 0)
/* AGC, R6/R7 */
#define MT_BBP_AGC_LNA_ULOW_GAIN GENMASK(5, 0)
/* AGC, R8/R9 */
#define MT_BBP_AGC_LNA_GAIN_MODE GENMASK(7, 6)
#define MT_BBP_AGC_GAIN GENMASK(14, 8)
#define MT_BBP_AGC20_RSSI0 GENMASK(7, 0)
#define MT_BBP_AGC20_RSSI1 GENMASK(15, 8)
#define MT_BBP_TXBE_R0_CTRL_CHAN GENMASK(1, 0)
#define MT_WCID_ADDR_BASE 0x1800
#define MT_WCID_ADDR(_n) (MT_WCID_ADDR_BASE + (_n) * 8)
#define MT_SRAM_BASE 0x4000
#define MT_WCID_KEY_BASE 0x8000
#define MT_WCID_KEY(_n) (MT_WCID_KEY_BASE + (_n) * 32)
#define MT_WCID_IV_BASE 0xa000
#define MT_WCID_IV(_n) (MT_WCID_IV_BASE + (_n) * 8)
#define MT_WCID_ATTR_BASE 0xa800
#define MT_WCID_ATTR(_n) (MT_WCID_ATTR_BASE + (_n) * 4)
#define MT_WCID_ATTR_PAIRWISE BIT(0)
#define MT_WCID_ATTR_PKEY_MODE GENMASK(3, 1)
#define MT_WCID_ATTR_BSS_IDX GENMASK(6, 4)
#define MT_WCID_ATTR_RXWI_UDF GENMASK(9, 7)
#define MT_WCID_ATTR_PKEY_MODE_EXT BIT(10)
#define MT_WCID_ATTR_BSS_IDX_EXT BIT(11)
#define MT_WCID_ATTR_WAPI_MCBC BIT(15)
#define MT_WCID_ATTR_WAPI_KEYID GENMASK(31, 24)
#define MT_SKEY_BASE_0 0xac00
#define MT_SKEY_BASE_1 0xb400
#define MT_SKEY_0(_bss, _idx) (MT_SKEY_BASE_0 + (4 * (_bss) + (_idx)) * 32)
#define MT_SKEY_1(_bss, _idx) (MT_SKEY_BASE_1 + (4 * ((_bss) & 7) + (_idx)) * 32)
#define MT_SKEY(_bss, _idx) (((_bss) & 8) ? MT_SKEY_1(_bss, _idx) : MT_SKEY_0(_bss, _idx))
#define MT_SKEY_MODE_BASE_0 0xb000
#define MT_SKEY_MODE_BASE_1 0xb3f0
#define MT_SKEY_MODE_0(_bss) (MT_SKEY_MODE_BASE_0 + (((_bss) / 2) << 2))
#define MT_SKEY_MODE_1(_bss) (MT_SKEY_MODE_BASE_1 + ((((_bss) & 7) / 2) << 2))
#define MT_SKEY_MODE(_bss) (((_bss) & 8) ? MT_SKEY_MODE_1(_bss) : MT_SKEY_MODE_0(_bss))
#define MT_SKEY_MODE_MASK GENMASK(3, 0)
#define MT_SKEY_MODE_SHIFT(_bss, _idx) (4 * ((_idx) + 4 * ((_bss) & 1)))
#define MT_BEACON_BASE 0xc000
#define MT_TEMP_SENSOR 0x1d000
#define MT_TEMP_SENSOR_VAL GENMASK(6, 0)
struct mt76_wcid_addr {
u8 macaddr[6];
__le16 ba_mask;
} __packed __aligned(4);
struct mt76_wcid_key {
u8 key[16];
u8 tx_mic[8];
u8 rx_mic[8];
} __packed __aligned(4);
enum mt76x02_cipher_type {
MT76X02_CIPHER_NONE,
MT76X02_CIPHER_WEP40,
MT76X02_CIPHER_WEP104,
MT76X02_CIPHER_TKIP,
MT76X02_CIPHER_AES_CCMP,
MT76X02_CIPHER_CKIP40,
MT76X02_CIPHER_CKIP104,
MT76X02_CIPHER_CKIP128,
MT76X02_CIPHER_WAPI,
};
#endif

View File

@ -0,0 +1,12 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#include <linux/module.h>
#ifndef __CHECKER__
#define CREATE_TRACE_POINTS
#include "mt76x02_trace.h"
#endif

View File

@ -0,0 +1,87 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#if !defined(__MT76x02_TRACE_H) || defined(TRACE_HEADER_MULTI_READ)
#define __MT76x02_TRACE_H
#include <linux/tracepoint.h>
#include "mt76x02.h"
#undef TRACE_SYSTEM
#define TRACE_SYSTEM mt76x02
#define MAXNAME 32
#define DEV_ENTRY __array(char, wiphy_name, 32)
#define DEV_ASSIGN strlcpy(__entry->wiphy_name, \
wiphy_name(mt76_hw(dev)->wiphy), MAXNAME)
#define DEV_PR_FMT "%s"
#define DEV_PR_ARG __entry->wiphy_name
#define TXID_ENTRY __field(u8, wcid) __field(u8, pktid)
#define TXID_PR_FMT " [%d:%d]"
#define TXID_PR_ARG __entry->wcid, __entry->pktid
DECLARE_EVENT_CLASS(dev_evt,
TP_PROTO(struct mt76x02_dev *dev),
TP_ARGS(dev),
TP_STRUCT__entry(
DEV_ENTRY
),
TP_fast_assign(
DEV_ASSIGN;
),
TP_printk(DEV_PR_FMT, DEV_PR_ARG)
);
DEFINE_EVENT(dev_evt, mac_txstat_poll,
TP_PROTO(struct mt76x02_dev *dev),
TP_ARGS(dev)
);
TRACE_EVENT(mac_txstat_fetch,
TP_PROTO(struct mt76x02_dev *dev,
struct mt76x02_tx_status *stat),
TP_ARGS(dev, stat),
TP_STRUCT__entry(
DEV_ENTRY
TXID_ENTRY
__field(bool, success)
__field(bool, aggr)
__field(bool, ack_req)
__field(u16, rate)
__field(u8, retry)
),
TP_fast_assign(
DEV_ASSIGN;
__entry->success = stat->success;
__entry->aggr = stat->aggr;
__entry->ack_req = stat->ack_req;
__entry->wcid = stat->wcid;
__entry->pktid = stat->pktid;
__entry->rate = stat->rate;
__entry->retry = stat->retry;
),
TP_printk(
DEV_PR_FMT TXID_PR_FMT
" success:%d aggr:%d ack_req:%d"
" rate:%04x retry:%d",
DEV_PR_ARG, TXID_PR_ARG,
__entry->success, __entry->aggr, __entry->ack_req,
__entry->rate, __entry->retry
)
);
#endif
#undef TRACE_INCLUDE_PATH
#define TRACE_INCLUDE_PATH .
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_FILE mt76x02_trace
#include <trace/define_trace.h>

View File

@ -0,0 +1,183 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include <linux/kernel.h>
#include "mt76x02.h"
void mt76x02_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct mt76x02_dev *dev = hw->priv;
struct ieee80211_vif *vif = info->control.vif;
struct mt76_wcid *wcid = &dev->mt76.global_wcid;
if (control->sta) {
struct mt76x02_sta *msta;
msta = (struct mt76x02_sta *)control->sta->drv_priv;
wcid = &msta->wcid;
} else if (vif) {
struct mt76x02_vif *mvif;
mvif = (struct mt76x02_vif *)vif->drv_priv;
wcid = &mvif->group_wcid;
}
mt76_tx(&dev->mphy, control->sta, wcid, skb);
}
EXPORT_SYMBOL_GPL(mt76x02_tx);
void mt76x02_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q,
struct sk_buff *skb)
{
struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
void *rxwi = skb->data;
if (q == MT_RXQ_MCU) {
mt76_mcu_rx_event(&dev->mt76, skb);
return;
}
skb_pull(skb, sizeof(struct mt76x02_rxwi));
if (mt76x02_mac_process_rx(dev, skb, rxwi)) {
dev_kfree_skb(skb);
return;
}
mt76_rx(mdev, q, skb);
}
EXPORT_SYMBOL_GPL(mt76x02_queue_rx_skb);
s8 mt76x02_tx_get_max_txpwr_adj(struct mt76x02_dev *dev,
const struct ieee80211_tx_rate *rate)
{
s8 max_txpwr;
if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
u8 mcs = ieee80211_rate_get_vht_mcs(rate);
if (mcs == 8 || mcs == 9) {
max_txpwr = dev->mt76.rate_power.vht[8];
} else {
u8 nss, idx;
nss = ieee80211_rate_get_vht_nss(rate);
idx = ((nss - 1) << 3) + mcs;
max_txpwr = dev->mt76.rate_power.ht[idx & 0xf];
}
} else if (rate->flags & IEEE80211_TX_RC_MCS) {
max_txpwr = dev->mt76.rate_power.ht[rate->idx & 0xf];
} else {
enum nl80211_band band = dev->mphy.chandef.chan->band;
if (band == NL80211_BAND_2GHZ) {
const struct ieee80211_rate *r;
struct wiphy *wiphy = dev->mt76.hw->wiphy;
struct mt76_rate_power *rp = &dev->mt76.rate_power;
r = &wiphy->bands[band]->bitrates[rate->idx];
if (r->flags & IEEE80211_RATE_SHORT_PREAMBLE)
max_txpwr = rp->cck[r->hw_value & 0x3];
else
max_txpwr = rp->ofdm[r->hw_value & 0x7];
} else {
max_txpwr = dev->mt76.rate_power.ofdm[rate->idx & 0x7];
}
}
return max_txpwr;
}
s8 mt76x02_tx_get_txpwr_adj(struct mt76x02_dev *dev, s8 txpwr, s8 max_txpwr_adj)
{
txpwr = min_t(s8, txpwr, dev->txpower_conf);
txpwr -= (dev->target_power + dev->target_power_delta[0]);
txpwr = min_t(s8, txpwr, max_txpwr_adj);
if (!dev->enable_tpc)
return 0;
else if (txpwr >= 0)
return min_t(s8, txpwr, 7);
else
return (txpwr < -16) ? 8 : (txpwr + 32) / 2;
}
void mt76x02_tx_set_txpwr_auto(struct mt76x02_dev *dev, s8 txpwr)
{
s8 txpwr_adj;
txpwr_adj = mt76x02_tx_get_txpwr_adj(dev, txpwr,
dev->mt76.rate_power.ofdm[4]);
mt76_rmw_field(dev, MT_PROT_AUTO_TX_CFG,
MT_PROT_AUTO_TX_CFG_PROT_PADJ, txpwr_adj);
mt76_rmw_field(dev, MT_PROT_AUTO_TX_CFG,
MT_PROT_AUTO_TX_CFG_AUTO_PADJ, txpwr_adj);
}
EXPORT_SYMBOL_GPL(mt76x02_tx_set_txpwr_auto);
bool mt76x02_tx_status_data(struct mt76_dev *mdev, u8 *update)
{
struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
struct mt76x02_tx_status stat;
if (!mt76x02_mac_load_tx_status(dev, &stat))
return false;
mt76x02_send_tx_status(dev, &stat, update);
return true;
}
EXPORT_SYMBOL_GPL(mt76x02_tx_status_data);
int mt76x02_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr,
enum mt76_txq_id qid, struct mt76_wcid *wcid,
struct ieee80211_sta *sta,
struct mt76_tx_info *tx_info)
{
struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx_info->skb->data;
struct mt76x02_txwi *txwi = txwi_ptr;
bool ampdu = IEEE80211_SKB_CB(tx_info->skb)->flags & IEEE80211_TX_CTL_AMPDU;
int hdrlen, len, pid, qsel = MT_QSEL_EDCA;
if (qid == MT_TXQ_PSD && wcid && wcid->idx < 128)
mt76x02_mac_wcid_set_drop(dev, wcid->idx, false);
hdrlen = ieee80211_hdrlen(hdr->frame_control);
len = tx_info->skb->len - (hdrlen & 2);
mt76x02_mac_write_txwi(dev, txwi, tx_info->skb, wcid, sta, len);
pid = mt76_tx_status_skb_add(mdev, wcid, tx_info->skb);
/* encode packet rate for no-skb packet id to fix up status reporting */
if (pid == MT_PACKET_ID_NO_SKB)
pid = MT_PACKET_ID_HAS_RATE |
(le16_to_cpu(txwi->rate) & MT_RXWI_RATE_INDEX) |
FIELD_PREP(MT_PKTID_AC,
skb_get_queue_mapping(tx_info->skb));
txwi->pktid = pid;
if (mt76_is_skb_pktid(pid) && ampdu)
qsel = MT_QSEL_MGMT;
tx_info->info = FIELD_PREP(MT_TXD_INFO_QSEL, qsel) |
MT_TXD_INFO_80211;
if (!wcid || wcid->hw_key_idx == 0xff || wcid->sw_iv)
tx_info->info |= MT_TXD_INFO_WIV;
if (sta) {
struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
ewma_pktlen_add(&msta->pktlen, tx_info->skb->len);
}
return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_tx_prepare_skb);

View File

@ -0,0 +1,25 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#ifndef __MT76x02_USB_H
#define __MT76x02_USB_H
#include "mt76x02.h"
int mt76x02u_mac_start(struct mt76x02_dev *dev);
void mt76x02u_init_mcu(struct mt76_dev *dev);
void mt76x02u_mcu_fw_reset(struct mt76x02_dev *dev);
int mt76x02u_mcu_fw_send_data(struct mt76x02_dev *dev, const void *data,
int data_len, u32 max_payload, u32 offset);
int mt76x02u_skb_dma_info(struct sk_buff *skb, int port, u32 flags);
int mt76x02u_tx_prepare_skb(struct mt76_dev *mdev, void *data,
enum mt76_txq_id qid, struct mt76_wcid *wcid,
struct ieee80211_sta *sta,
struct mt76_tx_info *tx_info);
void mt76x02u_tx_complete_skb(struct mt76_dev *mdev, struct mt76_queue_entry *e);
void mt76x02u_init_beacon_config(struct mt76x02_dev *dev);
void mt76x02u_exit_beacon_config(struct mt76x02_dev *dev);
#endif /* __MT76x02_USB_H */

View File

@ -0,0 +1,282 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include "mt76x02_usb.h"
static void mt76x02u_remove_dma_hdr(struct sk_buff *skb)
{
int hdr_len;
skb_pull(skb, sizeof(struct mt76x02_txwi) + MT_DMA_HDR_LEN);
hdr_len = ieee80211_get_hdrlen_from_skb(skb);
if (hdr_len % 4)
mt76x02_remove_hdr_pad(skb, 2);
}
void mt76x02u_tx_complete_skb(struct mt76_dev *mdev, struct mt76_queue_entry *e)
{
mt76x02u_remove_dma_hdr(e->skb);
mt76_tx_complete_skb(mdev, e->wcid, e->skb);
}
EXPORT_SYMBOL_GPL(mt76x02u_tx_complete_skb);
int mt76x02u_mac_start(struct mt76x02_dev *dev)
{
mt76x02_mac_reset_counters(dev);
mt76_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_TX);
if (!mt76x02_wait_for_wpdma(&dev->mt76, 200000))
return -ETIMEDOUT;
mt76_wr(dev, MT_RX_FILTR_CFG, dev->mt76.rxfilter);
mt76_wr(dev, MT_MAC_SYS_CTRL,
MT_MAC_SYS_CTRL_ENABLE_TX |
MT_MAC_SYS_CTRL_ENABLE_RX);
if (!mt76x02_wait_for_wpdma(&dev->mt76, 50))
return -ETIMEDOUT;
return 0;
}
EXPORT_SYMBOL_GPL(mt76x02u_mac_start);
int mt76x02u_skb_dma_info(struct sk_buff *skb, int port, u32 flags)
{
u32 info, pad;
/* Buffer layout:
* | 4B | xfer len | pad | 4B |
* | TXINFO | pkt/cmd | zero pad to 4B | zero |
*
* length field of TXINFO should be set to 'xfer len'.
*/
info = FIELD_PREP(MT_TXD_INFO_LEN, round_up(skb->len, 4)) |
FIELD_PREP(MT_TXD_INFO_DPORT, port) | flags;
put_unaligned_le32(info, skb_push(skb, sizeof(info)));
pad = round_up(skb->len, 4) + 4 - skb->len;
return mt76_skb_adjust_pad(skb, pad);
}
int mt76x02u_tx_prepare_skb(struct mt76_dev *mdev, void *data,
enum mt76_txq_id qid, struct mt76_wcid *wcid,
struct ieee80211_sta *sta,
struct mt76_tx_info *tx_info)
{
struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
int pid, len = tx_info->skb->len, ep = q2ep(dev->mphy.q_tx[qid]->hw_idx);
struct mt76x02_txwi *txwi;
bool ampdu = IEEE80211_SKB_CB(tx_info->skb)->flags & IEEE80211_TX_CTL_AMPDU;
enum mt76_qsel qsel;
u32 flags;
int err;
mt76_insert_hdr_pad(tx_info->skb);
txwi = (struct mt76x02_txwi *)(tx_info->skb->data - sizeof(*txwi));
mt76x02_mac_write_txwi(dev, txwi, tx_info->skb, wcid, sta, len);
skb_push(tx_info->skb, sizeof(*txwi));
pid = mt76_tx_status_skb_add(mdev, wcid, tx_info->skb);
/* encode packet rate for no-skb packet id to fix up status reporting */
if (pid == MT_PACKET_ID_NO_SKB)
pid = MT_PACKET_ID_HAS_RATE |
(le16_to_cpu(txwi->rate) & MT_PKTID_RATE) |
FIELD_PREP(MT_PKTID_AC,
skb_get_queue_mapping(tx_info->skb));
txwi->pktid = pid;
if ((mt76_is_skb_pktid(pid) && ampdu) || ep == MT_EP_OUT_HCCA)
qsel = MT_QSEL_MGMT;
else
qsel = MT_QSEL_EDCA;
flags = FIELD_PREP(MT_TXD_INFO_QSEL, qsel) |
MT_TXD_INFO_80211;
if (!wcid || wcid->hw_key_idx == 0xff || wcid->sw_iv)
flags |= MT_TXD_INFO_WIV;
if (sta) {
struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
ewma_pktlen_add(&msta->pktlen, tx_info->skb->len);
}
err = mt76x02u_skb_dma_info(tx_info->skb, WLAN_PORT, flags);
if (err && wcid)
/* Release pktid in case of error. */
idr_remove(&wcid->pktid, pid);
return err;
}
EXPORT_SYMBOL_GPL(mt76x02u_tx_prepare_skb);
/* Trigger pre-TBTT event 8 ms before TBTT */
#define PRE_TBTT_USEC 8000
/* Beacon SRAM memory is limited to 8kB. We need to send PS buffered frames
* (which can be 1500 bytes big) via beacon memory. That make limit of number
* of slots to 5. TODO: dynamically calculate offsets in beacon SRAM.
*/
#define N_BCN_SLOTS 5
static void mt76x02u_start_pre_tbtt_timer(struct mt76x02_dev *dev)
{
u64 time;
u32 tbtt;
/* Get remaining TBTT in usec */
tbtt = mt76_get_field(dev, MT_TBTT_TIMER, MT_TBTT_TIMER_VAL);
tbtt *= 32;
if (tbtt <= PRE_TBTT_USEC) {
queue_work(system_highpri_wq, &dev->pre_tbtt_work);
return;
}
time = (tbtt - PRE_TBTT_USEC) * 1000ull;
hrtimer_start(&dev->pre_tbtt_timer, time, HRTIMER_MODE_REL);
}
static void mt76x02u_restart_pre_tbtt_timer(struct mt76x02_dev *dev)
{
u32 tbtt, dw0, dw1;
u64 tsf, time;
/* Get remaining TBTT in usec */
tbtt = mt76_get_field(dev, MT_TBTT_TIMER, MT_TBTT_TIMER_VAL);
tbtt *= 32;
dw0 = mt76_rr(dev, MT_TSF_TIMER_DW0);
dw1 = mt76_rr(dev, MT_TSF_TIMER_DW1);
tsf = (u64)dw0 << 32 | dw1;
dev_dbg(dev->mt76.dev, "TSF: %llu us TBTT %u us\n", tsf, tbtt);
/* Convert beacon interval in TU (1024 usec) to nsec */
time = ((1000000000ull * dev->mt76.beacon_int) >> 10);
/* Adjust time to trigger hrtimer 8ms before TBTT */
if (tbtt < PRE_TBTT_USEC)
time -= (PRE_TBTT_USEC - tbtt) * 1000ull;
else
time += (tbtt - PRE_TBTT_USEC) * 1000ull;
hrtimer_start(&dev->pre_tbtt_timer, time, HRTIMER_MODE_REL);
}
static void mt76x02u_stop_pre_tbtt_timer(struct mt76x02_dev *dev)
{
do {
hrtimer_cancel(&dev->pre_tbtt_timer);
cancel_work_sync(&dev->pre_tbtt_work);
/* Timer can be rearmed by work. */
} while (hrtimer_active(&dev->pre_tbtt_timer));
}
static void mt76x02u_pre_tbtt_work(struct work_struct *work)
{
struct mt76x02_dev *dev =
container_of(work, struct mt76x02_dev, pre_tbtt_work);
struct beacon_bc_data data = {};
struct sk_buff *skb;
int nbeacons;
if (!dev->mt76.beacon_mask)
return;
if (mt76_hw(dev)->conf.flags & IEEE80211_CONF_OFFCHANNEL)
return;
mt76x02_resync_beacon_timer(dev);
/* Prevent corrupt transmissions during update */
mt76_set(dev, MT_BCN_BYPASS_MASK, 0xffff);
dev->beacon_data_count = 0;
ieee80211_iterate_active_interfaces(mt76_hw(dev),
IEEE80211_IFACE_ITER_RESUME_ALL,
mt76x02_update_beacon_iter, dev);
mt76_csa_check(&dev->mt76);
if (dev->mt76.csa_complete) {
mt76_csa_finish(&dev->mt76);
goto out;
}
nbeacons = hweight8(dev->mt76.beacon_mask);
mt76x02_enqueue_buffered_bc(dev, &data, N_BCN_SLOTS - nbeacons);
while ((skb = __skb_dequeue(&data.q)) != NULL)
mt76x02_mac_set_beacon(dev, skb);
out:
mt76_wr(dev, MT_BCN_BYPASS_MASK,
0xff00 | ~(0xff00 >> dev->beacon_data_count));
mt76x02u_restart_pre_tbtt_timer(dev);
}
static enum hrtimer_restart mt76x02u_pre_tbtt_interrupt(struct hrtimer *timer)
{
struct mt76x02_dev *dev =
container_of(timer, struct mt76x02_dev, pre_tbtt_timer);
queue_work(system_highpri_wq, &dev->pre_tbtt_work);
return HRTIMER_NORESTART;
}
static void mt76x02u_pre_tbtt_enable(struct mt76x02_dev *dev, bool en)
{
if (en && dev->mt76.beacon_mask &&
!hrtimer_active(&dev->pre_tbtt_timer))
mt76x02u_start_pre_tbtt_timer(dev);
if (!en)
mt76x02u_stop_pre_tbtt_timer(dev);
}
static void mt76x02u_beacon_enable(struct mt76x02_dev *dev, bool en)
{
if (WARN_ON_ONCE(!dev->mt76.beacon_int))
return;
if (en)
mt76x02u_start_pre_tbtt_timer(dev);
}
void mt76x02u_init_beacon_config(struct mt76x02_dev *dev)
{
static const struct mt76x02_beacon_ops beacon_ops = {
.nslots = N_BCN_SLOTS,
.slot_size = (8192 / N_BCN_SLOTS) & ~63,
.pre_tbtt_enable = mt76x02u_pre_tbtt_enable,
.beacon_enable = mt76x02u_beacon_enable,
};
dev->beacon_ops = &beacon_ops;
hrtimer_init(&dev->pre_tbtt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
dev->pre_tbtt_timer.function = mt76x02u_pre_tbtt_interrupt;
INIT_WORK(&dev->pre_tbtt_work, mt76x02u_pre_tbtt_work);
mt76x02_init_beacon_config(dev);
}
EXPORT_SYMBOL_GPL(mt76x02u_init_beacon_config);
void mt76x02u_exit_beacon_config(struct mt76x02_dev *dev)
{
if (!test_bit(MT76_REMOVED, &dev->mphy.state))
mt76_clear(dev, MT_BEACON_TIME_CFG,
MT_BEACON_TIME_CFG_TIMER_EN |
MT_BEACON_TIME_CFG_SYNC_MODE |
MT_BEACON_TIME_CFG_TBTT_EN |
MT_BEACON_TIME_CFG_BEACON_TX);
mt76x02u_stop_pre_tbtt_timer(dev);
}
EXPORT_SYMBOL_GPL(mt76x02u_exit_beacon_config);

View File

@ -0,0 +1,296 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include <linux/module.h>
#include <linux/firmware.h>
#include "mt76x02.h"
#include "mt76x02_mcu.h"
#include "mt76x02_usb.h"
#define MT_CMD_HDR_LEN 4
#define MT_FCE_DMA_ADDR 0x0230
#define MT_FCE_DMA_LEN 0x0234
#define MT_TX_CPU_FROM_FCE_CPU_DESC_IDX 0x09a8
static void
mt76x02u_multiple_mcu_reads(struct mt76_dev *dev, u8 *data, int len)
{
struct mt76_usb *usb = &dev->usb;
int i;
WARN_ON_ONCE(len / 8 != usb->mcu.rp_len);
for (i = 0; i < usb->mcu.rp_len; i++) {
u32 reg = get_unaligned_le32(data + 8 * i) - usb->mcu.base;
u32 val = get_unaligned_le32(data + 8 * i + 4);
WARN_ON_ONCE(usb->mcu.rp[i].reg != reg);
usb->mcu.rp[i].value = val;
}
}
static int mt76x02u_mcu_wait_resp(struct mt76_dev *dev, u8 seq)
{
struct mt76_usb *usb = &dev->usb;
u8 *data = usb->mcu.data;
int i, len, ret;
u32 rxfce;
for (i = 0; i < 5; i++) {
ret = mt76u_bulk_msg(dev, data, MCU_RESP_URB_SIZE, &len,
300, MT_EP_IN_CMD_RESP);
if (ret == -ETIMEDOUT)
continue;
if (ret)
goto out;
if (usb->mcu.rp)
mt76x02u_multiple_mcu_reads(dev, data + 4, len - 8);
rxfce = get_unaligned_le32(data);
if (seq == FIELD_GET(MT_RX_FCE_INFO_CMD_SEQ, rxfce) &&
FIELD_GET(MT_RX_FCE_INFO_EVT_TYPE, rxfce) == EVT_CMD_DONE)
return 0;
dev_err(dev->dev, "error: MCU resp evt:%lx seq:%hhx-%lx\n",
FIELD_GET(MT_RX_FCE_INFO_EVT_TYPE, rxfce),
seq, FIELD_GET(MT_RX_FCE_INFO_CMD_SEQ, rxfce));
}
out:
dev_err(dev->dev, "error: %s failed with %d\n", __func__, ret);
return ret;
}
static int
__mt76x02u_mcu_send_msg(struct mt76_dev *dev, struct sk_buff *skb,
int cmd, bool wait_resp)
{
u8 seq = 0;
u32 info;
int ret;
if (test_bit(MT76_REMOVED, &dev->phy.state)) {
ret = 0;
goto out;
}
if (wait_resp) {
seq = ++dev->mcu.msg_seq & 0xf;
if (!seq)
seq = ++dev->mcu.msg_seq & 0xf;
}
info = FIELD_PREP(MT_MCU_MSG_CMD_SEQ, seq) |
FIELD_PREP(MT_MCU_MSG_CMD_TYPE, cmd) |
MT_MCU_MSG_TYPE_CMD;
ret = mt76x02u_skb_dma_info(skb, CPU_TX_PORT, info);
if (ret)
return ret;
ret = mt76u_bulk_msg(dev, skb->data, skb->len, NULL, 500,
MT_EP_OUT_INBAND_CMD);
if (ret)
goto out;
if (wait_resp)
ret = mt76x02u_mcu_wait_resp(dev, seq);
out:
consume_skb(skb);
return ret;
}
static int
mt76x02u_mcu_send_msg(struct mt76_dev *dev, int cmd, const void *data,
int len, bool wait_resp)
{
struct sk_buff *skb;
int err;
skb = mt76_mcu_msg_alloc(dev, data, len);
if (!skb)
return -ENOMEM;
mutex_lock(&dev->mcu.mutex);
err = __mt76x02u_mcu_send_msg(dev, skb, cmd, wait_resp);
mutex_unlock(&dev->mcu.mutex);
return err;
}
static inline void skb_put_le32(struct sk_buff *skb, u32 val)
{
put_unaligned_le32(val, skb_put(skb, 4));
}
static int
mt76x02u_mcu_wr_rp(struct mt76_dev *dev, u32 base,
const struct mt76_reg_pair *data, int n)
{
const int max_vals_per_cmd = MT_INBAND_PACKET_MAX_LEN / 8;
const int CMD_RANDOM_WRITE = 12;
struct sk_buff *skb;
int cnt, i, ret;
if (!n)
return 0;
cnt = min(max_vals_per_cmd, n);
skb = alloc_skb(cnt * 8 + MT_DMA_HDR_LEN + 4, GFP_KERNEL);
if (!skb)
return -ENOMEM;
skb_reserve(skb, MT_DMA_HDR_LEN);
for (i = 0; i < cnt; i++) {
skb_put_le32(skb, base + data[i].reg);
skb_put_le32(skb, data[i].value);
}
mutex_lock(&dev->mcu.mutex);
ret = __mt76x02u_mcu_send_msg(dev, skb, CMD_RANDOM_WRITE, cnt == n);
mutex_unlock(&dev->mcu.mutex);
if (ret)
return ret;
return mt76x02u_mcu_wr_rp(dev, base, data + cnt, n - cnt);
}
static int
mt76x02u_mcu_rd_rp(struct mt76_dev *dev, u32 base,
struct mt76_reg_pair *data, int n)
{
const int CMD_RANDOM_READ = 10;
const int max_vals_per_cmd = MT_INBAND_PACKET_MAX_LEN / 8;
struct mt76_usb *usb = &dev->usb;
struct sk_buff *skb;
int cnt, i, ret;
if (!n)
return 0;
cnt = min(max_vals_per_cmd, n);
if (cnt != n)
return -EINVAL;
skb = alloc_skb(cnt * 8 + MT_DMA_HDR_LEN + 4, GFP_KERNEL);
if (!skb)
return -ENOMEM;
skb_reserve(skb, MT_DMA_HDR_LEN);
for (i = 0; i < cnt; i++) {
skb_put_le32(skb, base + data[i].reg);
skb_put_le32(skb, data[i].value);
}
mutex_lock(&dev->mcu.mutex);
usb->mcu.rp = data;
usb->mcu.rp_len = n;
usb->mcu.base = base;
ret = __mt76x02u_mcu_send_msg(dev, skb, CMD_RANDOM_READ, true);
usb->mcu.rp = NULL;
mutex_unlock(&dev->mcu.mutex);
return ret;
}
void mt76x02u_mcu_fw_reset(struct mt76x02_dev *dev)
{
mt76u_vendor_request(&dev->mt76, MT_VEND_DEV_MODE,
USB_DIR_OUT | USB_TYPE_VENDOR,
0x1, 0, NULL, 0);
}
EXPORT_SYMBOL_GPL(mt76x02u_mcu_fw_reset);
static int
__mt76x02u_mcu_fw_send_data(struct mt76x02_dev *dev, u8 *data,
const void *fw_data, int len, u32 dst_addr)
{
__le32 info;
u32 val;
int err, data_len;
info = cpu_to_le32(FIELD_PREP(MT_MCU_MSG_PORT, CPU_TX_PORT) |
FIELD_PREP(MT_MCU_MSG_LEN, len) |
MT_MCU_MSG_TYPE_CMD);
memcpy(data, &info, sizeof(info));
memcpy(data + sizeof(info), fw_data, len);
memset(data + sizeof(info) + len, 0, 4);
mt76u_single_wr(&dev->mt76, MT_VEND_WRITE_FCE,
MT_FCE_DMA_ADDR, dst_addr);
len = roundup(len, 4);
mt76u_single_wr(&dev->mt76, MT_VEND_WRITE_FCE,
MT_FCE_DMA_LEN, len << 16);
data_len = MT_CMD_HDR_LEN + len + sizeof(info);
err = mt76u_bulk_msg(&dev->mt76, data, data_len, NULL, 1000,
MT_EP_OUT_INBAND_CMD);
if (err) {
dev_err(dev->mt76.dev, "firmware upload failed: %d\n", err);
return err;
}
val = mt76_rr(dev, MT_TX_CPU_FROM_FCE_CPU_DESC_IDX);
val++;
mt76_wr(dev, MT_TX_CPU_FROM_FCE_CPU_DESC_IDX, val);
return 0;
}
int mt76x02u_mcu_fw_send_data(struct mt76x02_dev *dev, const void *data,
int data_len, u32 max_payload, u32 offset)
{
int len, err = 0, pos = 0, max_len = max_payload - 8;
u8 *buf;
buf = kmalloc(max_payload, GFP_KERNEL);
if (!buf)
return -ENOMEM;
while (data_len > 0) {
len = min_t(int, data_len, max_len);
err = __mt76x02u_mcu_fw_send_data(dev, buf, data + pos,
len, offset + pos);
if (err < 0)
break;
data_len -= len;
pos += len;
usleep_range(5000, 10000);
}
kfree(buf);
return err;
}
EXPORT_SYMBOL_GPL(mt76x02u_mcu_fw_send_data);
void mt76x02u_init_mcu(struct mt76_dev *dev)
{
static const struct mt76_mcu_ops mt76x02u_mcu_ops = {
.headroom = MT_CMD_HDR_LEN,
.tailroom = 8,
.mcu_send_msg = mt76x02u_mcu_send_msg,
.mcu_parse_response = mt76x02_mcu_parse_response,
.mcu_wr_rp = mt76x02u_mcu_wr_rp,
.mcu_rd_rp = mt76x02u_mcu_rd_rp,
};
dev->mcu_ops = &mt76x02u_mcu_ops;
}
EXPORT_SYMBOL_GPL(mt76x02u_init_mcu);
MODULE_AUTHOR("Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>");
MODULE_LICENSE("Dual BSD/GPL");

View File

@ -0,0 +1,700 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl>
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#include <linux/module.h>
#include "mt76x02.h"
#define MT76x02_CCK_RATE(_idx, _rate) { \
.bitrate = _rate, \
.flags = IEEE80211_RATE_SHORT_PREAMBLE, \
.hw_value = (MT_PHY_TYPE_CCK << 8) | (_idx), \
.hw_value_short = (MT_PHY_TYPE_CCK << 8) | (8 + (_idx)), \
}
struct ieee80211_rate mt76x02_rates[] = {
MT76x02_CCK_RATE(0, 10),
MT76x02_CCK_RATE(1, 20),
MT76x02_CCK_RATE(2, 55),
MT76x02_CCK_RATE(3, 110),
OFDM_RATE(0, 60),
OFDM_RATE(1, 90),
OFDM_RATE(2, 120),
OFDM_RATE(3, 180),
OFDM_RATE(4, 240),
OFDM_RATE(5, 360),
OFDM_RATE(6, 480),
OFDM_RATE(7, 540),
};
EXPORT_SYMBOL_GPL(mt76x02_rates);
static const struct ieee80211_iface_limit mt76x02_if_limits[] = {
{
.max = 1,
.types = BIT(NL80211_IFTYPE_ADHOC)
}, {
.max = 8,
.types = BIT(NL80211_IFTYPE_STATION) |
#ifdef CONFIG_MAC80211_MESH
BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO) |
BIT(NL80211_IFTYPE_AP)
},
};
static const struct ieee80211_iface_limit mt76x02u_if_limits[] = {
{
.max = 1,
.types = BIT(NL80211_IFTYPE_ADHOC)
}, {
.max = 2,
.types = BIT(NL80211_IFTYPE_STATION) |
#ifdef CONFIG_MAC80211_MESH
BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_P2P_GO) |
BIT(NL80211_IFTYPE_AP)
},
};
static const struct ieee80211_iface_combination mt76x02_if_comb[] = {
{
.limits = mt76x02_if_limits,
.n_limits = ARRAY_SIZE(mt76x02_if_limits),
.max_interfaces = 8,
.num_different_channels = 1,
.beacon_int_infra_match = true,
.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
BIT(NL80211_CHAN_WIDTH_20) |
BIT(NL80211_CHAN_WIDTH_40) |
BIT(NL80211_CHAN_WIDTH_80),
}
};
static const struct ieee80211_iface_combination mt76x02u_if_comb[] = {
{
.limits = mt76x02u_if_limits,
.n_limits = ARRAY_SIZE(mt76x02u_if_limits),
.max_interfaces = 2,
.num_different_channels = 1,
.beacon_int_infra_match = true,
}
};
static void
mt76x02_led_set_config(struct mt76_dev *mdev, u8 delay_on,
u8 delay_off)
{
struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev,
mt76);
u32 val;
val = FIELD_PREP(MT_LED_STATUS_DURATION, 0xff) |
FIELD_PREP(MT_LED_STATUS_OFF, delay_off) |
FIELD_PREP(MT_LED_STATUS_ON, delay_on);
mt76_wr(dev, MT_LED_S0(mdev->led_pin), val);
mt76_wr(dev, MT_LED_S1(mdev->led_pin), val);
val = MT_LED_CTRL_REPLAY(mdev->led_pin) |
MT_LED_CTRL_KICK(mdev->led_pin);
if (mdev->led_al)
val |= MT_LED_CTRL_POLARITY(mdev->led_pin);
mt76_wr(dev, MT_LED_CTRL, val);
}
static int
mt76x02_led_set_blink(struct led_classdev *led_cdev,
unsigned long *delay_on,
unsigned long *delay_off)
{
struct mt76_dev *mdev = container_of(led_cdev, struct mt76_dev,
led_cdev);
u8 delta_on, delta_off;
delta_off = max_t(u8, *delay_off / 10, 1);
delta_on = max_t(u8, *delay_on / 10, 1);
mt76x02_led_set_config(mdev, delta_on, delta_off);
return 0;
}
static void
mt76x02_led_set_brightness(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct mt76_dev *mdev = container_of(led_cdev, struct mt76_dev,
led_cdev);
if (!brightness)
mt76x02_led_set_config(mdev, 0, 0xff);
else
mt76x02_led_set_config(mdev, 0xff, 0);
}
int mt76x02_init_device(struct mt76x02_dev *dev)
{
struct ieee80211_hw *hw = mt76_hw(dev);
struct wiphy *wiphy = hw->wiphy;
INIT_DELAYED_WORK(&dev->mphy.mac_work, mt76x02_mac_work);
hw->queues = 4;
hw->max_rates = 1;
hw->max_report_rates = 7;
hw->max_rate_tries = 1;
hw->extra_tx_headroom = 2;
if (mt76_is_usb(&dev->mt76)) {
hw->extra_tx_headroom += sizeof(struct mt76x02_txwi) +
MT_DMA_HDR_LEN;
wiphy->iface_combinations = mt76x02u_if_comb;
wiphy->n_iface_combinations = ARRAY_SIZE(mt76x02u_if_comb);
} else {
INIT_DELAYED_WORK(&dev->wdt_work, mt76x02_wdt_work);
mt76x02_dfs_init_detector(dev);
wiphy->reg_notifier = mt76x02_regd_notifier;
wiphy->iface_combinations = mt76x02_if_comb;
wiphy->n_iface_combinations = ARRAY_SIZE(mt76x02_if_comb);
/* init led callbacks */
if (IS_ENABLED(CONFIG_MT76_LEDS)) {
dev->mt76.led_cdev.brightness_set =
mt76x02_led_set_brightness;
dev->mt76.led_cdev.blink_set = mt76x02_led_set_blink;
}
}
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
hw->sta_data_size = sizeof(struct mt76x02_sta);
hw->vif_data_size = sizeof(struct mt76x02_vif);
ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES);
ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
ieee80211_hw_set(hw, NEEDS_UNIQUE_STA_ADDR);
dev->mt76.global_wcid.idx = 255;
dev->mt76.global_wcid.hw_key_idx = -1;
dev->slottime = 9;
if (is_mt76x2(dev)) {
dev->mphy.sband_2g.sband.ht_cap.cap |=
IEEE80211_HT_CAP_LDPC_CODING;
dev->mphy.sband_5g.sband.ht_cap.cap |=
IEEE80211_HT_CAP_LDPC_CODING;
dev->mphy.chainmask = 0x202;
dev->mphy.antenna_mask = 3;
} else {
dev->mphy.chainmask = 0x101;
dev->mphy.antenna_mask = 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_init_device);
void mt76x02_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags, u64 multicast)
{
struct mt76x02_dev *dev = hw->priv;
u32 flags = 0;
#define MT76_FILTER(_flag, _hw) do { \
flags |= *total_flags & FIF_##_flag; \
dev->mt76.rxfilter &= ~(_hw); \
dev->mt76.rxfilter |= !(flags & FIF_##_flag) * (_hw); \
} while (0)
mutex_lock(&dev->mt76.mutex);
dev->mt76.rxfilter &= ~MT_RX_FILTR_CFG_OTHER_BSS;
MT76_FILTER(FCSFAIL, MT_RX_FILTR_CFG_CRC_ERR);
MT76_FILTER(PLCPFAIL, MT_RX_FILTR_CFG_PHY_ERR);
MT76_FILTER(CONTROL, MT_RX_FILTR_CFG_ACK |
MT_RX_FILTR_CFG_CTS |
MT_RX_FILTR_CFG_CFEND |
MT_RX_FILTR_CFG_CFACK |
MT_RX_FILTR_CFG_BA |
MT_RX_FILTR_CFG_CTRL_RSV);
MT76_FILTER(PSPOLL, MT_RX_FILTR_CFG_PSPOLL);
*total_flags = flags;
mt76_wr(dev, MT_RX_FILTR_CFG, dev->mt76.rxfilter);
mutex_unlock(&dev->mt76.mutex);
}
EXPORT_SYMBOL_GPL(mt76x02_configure_filter);
int mt76x02_sta_add(struct mt76_dev *mdev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
int idx = 0;
memset(msta, 0, sizeof(*msta));
idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT76x02_N_WCIDS);
if (idx < 0)
return -ENOSPC;
msta->vif = mvif;
msta->wcid.sta = 1;
msta->wcid.idx = idx;
msta->wcid.hw_key_idx = -1;
mt76x02_mac_wcid_setup(dev, idx, mvif->idx, sta->addr);
mt76x02_mac_wcid_set_drop(dev, idx, false);
ewma_pktlen_init(&msta->pktlen);
if (vif->type == NL80211_IFTYPE_AP)
set_bit(MT_WCID_FLAG_CHECK_PS, &msta->wcid.flags);
return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_sta_add);
void mt76x02_sta_remove(struct mt76_dev *mdev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv;
int idx = wcid->idx;
mt76x02_mac_wcid_set_drop(dev, idx, true);
mt76x02_mac_wcid_setup(dev, idx, 0, NULL);
}
EXPORT_SYMBOL_GPL(mt76x02_sta_remove);
static void
mt76x02_vif_init(struct mt76x02_dev *dev, struct ieee80211_vif *vif,
unsigned int idx)
{
struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
struct mt76_txq *mtxq;
memset(mvif, 0, sizeof(*mvif));
mvif->idx = idx;
mvif->group_wcid.idx = MT_VIF_WCID(idx);
mvif->group_wcid.hw_key_idx = -1;
mt76_packet_id_init(&mvif->group_wcid);
mtxq = (struct mt76_txq *)vif->txq->drv_priv;
rcu_assign_pointer(dev->mt76.wcid[MT_VIF_WCID(idx)], &mvif->group_wcid);
mtxq->wcid = MT_VIF_WCID(idx);
}
int
mt76x02_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
struct mt76x02_dev *dev = hw->priv;
unsigned int idx = 0;
/* Allow to change address in HW if we create first interface. */
if (!dev->mt76.vif_mask &&
(((vif->addr[0] ^ dev->mphy.macaddr[0]) & ~GENMASK(4, 1)) ||
memcmp(vif->addr + 1, dev->mphy.macaddr + 1, ETH_ALEN - 1)))
mt76x02_mac_setaddr(dev, vif->addr);
if (vif->addr[0] & BIT(1))
idx = 1 + (((dev->mphy.macaddr[0] ^ vif->addr[0]) >> 2) & 7);
/*
* Client mode typically only has one configurable BSSID register,
* which is used for bssidx=0. This is linked to the MAC address.
* Since mac80211 allows changing interface types, and we cannot
* force the use of the primary MAC address for a station mode
* interface, we need some other way of configuring a per-interface
* remote BSSID.
* The hardware provides an AP-Client feature, where bssidx 0-7 are
* used for AP mode and bssidx 8-15 for client mode.
* We shift the station interface bss index by 8 to force the
* hardware to recognize the BSSID.
* The resulting bssidx mismatch for unicast frames is ignored by hw.
*/
if (vif->type == NL80211_IFTYPE_STATION)
idx += 8;
/* vif is already set or idx is 8 for AP/Mesh/... */
if (dev->mt76.vif_mask & BIT_ULL(idx) ||
(vif->type != NL80211_IFTYPE_STATION && idx > 7))
return -EBUSY;
dev->mt76.vif_mask |= BIT_ULL(idx);
mt76x02_vif_init(dev, vif, idx);
return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_add_interface);
void mt76x02_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mt76x02_dev *dev = hw->priv;
struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
dev->mt76.vif_mask &= ~BIT_ULL(mvif->idx);
rcu_assign_pointer(dev->mt76.wcid[mvif->group_wcid.idx], NULL);
mt76_packet_id_flush(&dev->mt76, &mvif->group_wcid);
}
EXPORT_SYMBOL_GPL(mt76x02_remove_interface);
int mt76x02_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_ampdu_params *params)
{
enum ieee80211_ampdu_mlme_action action = params->action;
struct ieee80211_sta *sta = params->sta;
struct mt76x02_dev *dev = hw->priv;
struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
struct ieee80211_txq *txq = sta->txq[params->tid];
u16 tid = params->tid;
u16 ssn = params->ssn;
struct mt76_txq *mtxq;
int ret = 0;
if (!txq)
return -EINVAL;
mtxq = (struct mt76_txq *)txq->drv_priv;
mutex_lock(&dev->mt76.mutex);
switch (action) {
case IEEE80211_AMPDU_RX_START:
mt76_rx_aggr_start(&dev->mt76, &msta->wcid, tid,
ssn, params->buf_size);
mt76_set(dev, MT_WCID_ADDR(msta->wcid.idx) + 4, BIT(16 + tid));
break;
case IEEE80211_AMPDU_RX_STOP:
mt76_rx_aggr_stop(&dev->mt76, &msta->wcid, tid);
mt76_clear(dev, MT_WCID_ADDR(msta->wcid.idx) + 4,
BIT(16 + tid));
break;
case IEEE80211_AMPDU_TX_OPERATIONAL:
mtxq->aggr = true;
mtxq->send_bar = false;
ieee80211_send_bar(vif, sta->addr, tid, mtxq->agg_ssn);
break;
case IEEE80211_AMPDU_TX_STOP_FLUSH:
case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
mtxq->aggr = false;
break;
case IEEE80211_AMPDU_TX_START:
mtxq->agg_ssn = IEEE80211_SN_TO_SEQ(ssn);
ret = IEEE80211_AMPDU_TX_START_IMMEDIATE;
break;
case IEEE80211_AMPDU_TX_STOP_CONT:
mtxq->aggr = false;
ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
}
mutex_unlock(&dev->mt76.mutex);
return ret;
}
EXPORT_SYMBOL_GPL(mt76x02_ampdu_action);
int mt76x02_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct mt76x02_dev *dev = hw->priv;
struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
struct mt76x02_sta *msta;
struct mt76_wcid *wcid;
int idx = key->keyidx;
int ret;
/* fall back to sw encryption for unsupported ciphers */
switch (key->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
case WLAN_CIPHER_SUITE_TKIP:
case WLAN_CIPHER_SUITE_CCMP:
break;
default:
return -EOPNOTSUPP;
}
/*
* The hardware does not support per-STA RX GTK, fall back
* to software mode for these.
*/
if ((vif->type == NL80211_IFTYPE_ADHOC ||
vif->type == NL80211_IFTYPE_MESH_POINT) &&
(key->cipher == WLAN_CIPHER_SUITE_TKIP ||
key->cipher == WLAN_CIPHER_SUITE_CCMP) &&
!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
return -EOPNOTSUPP;
/*
* In USB AP mode, broadcast/multicast frames are setup in beacon
* data registers and sent via HW beacons engine, they require to
* be already encrypted.
*/
if (mt76_is_usb(&dev->mt76) &&
vif->type == NL80211_IFTYPE_AP &&
!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
return -EOPNOTSUPP;
/* MT76x0 GTK offloading does not work with more than one VIF */
if (is_mt76x0(dev) && !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
return -EOPNOTSUPP;
msta = sta ? (struct mt76x02_sta *)sta->drv_priv : NULL;
wcid = msta ? &msta->wcid : &mvif->group_wcid;
if (cmd == SET_KEY) {
key->hw_key_idx = wcid->idx;
wcid->hw_key_idx = idx;
if (key->flags & IEEE80211_KEY_FLAG_RX_MGMT) {
key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX;
wcid->sw_iv = true;
}
} else {
if (idx == wcid->hw_key_idx) {
wcid->hw_key_idx = -1;
wcid->sw_iv = false;
}
key = NULL;
}
mt76_wcid_key_setup(&dev->mt76, wcid, key);
if (!msta) {
if (key || wcid->hw_key_idx == idx) {
ret = mt76x02_mac_wcid_set_key(dev, wcid->idx, key);
if (ret)
return ret;
}
return mt76x02_mac_shared_key_setup(dev, mvif->idx, idx, key);
}
return mt76x02_mac_wcid_set_key(dev, msta->wcid.idx, key);
}
EXPORT_SYMBOL_GPL(mt76x02_set_key);
int mt76x02_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
unsigned int link_id, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct mt76x02_dev *dev = hw->priv;
u8 cw_min = 5, cw_max = 10, qid;
u32 val;
qid = dev->mphy.q_tx[queue]->hw_idx;
if (params->cw_min)
cw_min = fls(params->cw_min);
if (params->cw_max)
cw_max = fls(params->cw_max);
val = FIELD_PREP(MT_EDCA_CFG_TXOP, params->txop) |
FIELD_PREP(MT_EDCA_CFG_AIFSN, params->aifs) |
FIELD_PREP(MT_EDCA_CFG_CWMIN, cw_min) |
FIELD_PREP(MT_EDCA_CFG_CWMAX, cw_max);
mt76_wr(dev, MT_EDCA_CFG_AC(qid), val);
val = mt76_rr(dev, MT_WMM_TXOP(qid));
val &= ~(MT_WMM_TXOP_MASK << MT_WMM_TXOP_SHIFT(qid));
val |= params->txop << MT_WMM_TXOP_SHIFT(qid);
mt76_wr(dev, MT_WMM_TXOP(qid), val);
val = mt76_rr(dev, MT_WMM_AIFSN);
val &= ~(MT_WMM_AIFSN_MASK << MT_WMM_AIFSN_SHIFT(qid));
val |= params->aifs << MT_WMM_AIFSN_SHIFT(qid);
mt76_wr(dev, MT_WMM_AIFSN, val);
val = mt76_rr(dev, MT_WMM_CWMIN);
val &= ~(MT_WMM_CWMIN_MASK << MT_WMM_CWMIN_SHIFT(qid));
val |= cw_min << MT_WMM_CWMIN_SHIFT(qid);
mt76_wr(dev, MT_WMM_CWMIN, val);
val = mt76_rr(dev, MT_WMM_CWMAX);
val &= ~(MT_WMM_CWMAX_MASK << MT_WMM_CWMAX_SHIFT(qid));
val |= cw_max << MT_WMM_CWMAX_SHIFT(qid);
mt76_wr(dev, MT_WMM_CWMAX, val);
return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_conf_tx);
void mt76x02_set_tx_ackto(struct mt76x02_dev *dev)
{
u8 ackto, sifs, slottime = dev->slottime;
/* As defined by IEEE 802.11-2007 17.3.8.6 */
slottime += 3 * dev->coverage_class;
mt76_rmw_field(dev, MT_BKOFF_SLOT_CFG,
MT_BKOFF_SLOT_CFG_SLOTTIME, slottime);
sifs = mt76_get_field(dev, MT_XIFS_TIME_CFG,
MT_XIFS_TIME_CFG_OFDM_SIFS);
ackto = slottime + sifs;
mt76_rmw_field(dev, MT_TX_TIMEOUT_CFG,
MT_TX_TIMEOUT_CFG_ACKTO, ackto);
}
EXPORT_SYMBOL_GPL(mt76x02_set_tx_ackto);
void mt76x02_set_coverage_class(struct ieee80211_hw *hw,
s16 coverage_class)
{
struct mt76x02_dev *dev = hw->priv;
mutex_lock(&dev->mt76.mutex);
dev->coverage_class = max_t(s16, coverage_class, 0);
mt76x02_set_tx_ackto(dev);
mutex_unlock(&dev->mt76.mutex);
}
EXPORT_SYMBOL_GPL(mt76x02_set_coverage_class);
int mt76x02_set_rts_threshold(struct ieee80211_hw *hw, u32 val)
{
struct mt76x02_dev *dev = hw->priv;
if (val != ~0 && val > 0xffff)
return -EINVAL;
mutex_lock(&dev->mt76.mutex);
mt76x02_mac_set_rts_thresh(dev, val);
mutex_unlock(&dev->mt76.mutex);
return 0;
}
EXPORT_SYMBOL_GPL(mt76x02_set_rts_threshold);
void mt76x02_sta_rate_tbl_update(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct mt76x02_dev *dev = hw->priv;
struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
struct ieee80211_sta_rates *rates = rcu_dereference(sta->rates);
struct ieee80211_tx_rate rate = {};
if (!rates)
return;
rate.idx = rates->rate[0].idx;
rate.flags = rates->rate[0].flags;
mt76x02_mac_wcid_set_rate(dev, &msta->wcid, &rate);
}
EXPORT_SYMBOL_GPL(mt76x02_sta_rate_tbl_update);
void mt76x02_remove_hdr_pad(struct sk_buff *skb, int len)
{
int hdrlen;
if (!len)
return;
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
memmove(skb->data + len, skb->data, hdrlen);
skb_pull(skb, len);
}
EXPORT_SYMBOL_GPL(mt76x02_remove_hdr_pad);
void mt76x02_sw_scan_complete(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mt76x02_dev *dev = hw->priv;
clear_bit(MT76_SCANNING, &dev->mphy.state);
if (dev->cal.gain_init_done) {
/* Restore AGC gain and resume calibration after scanning. */
dev->cal.low_gain = -1;
ieee80211_queue_delayed_work(hw, &dev->cal_work, 0);
}
}
EXPORT_SYMBOL_GPL(mt76x02_sw_scan_complete);
void mt76x02_sta_ps(struct mt76_dev *mdev, struct ieee80211_sta *sta,
bool ps)
{
struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
int idx = msta->wcid.idx;
mt76_stop_tx_queues(&dev->mphy, sta, true);
if (mt76_is_mmio(mdev))
mt76x02_mac_wcid_set_drop(dev, idx, ps);
}
EXPORT_SYMBOL_GPL(mt76x02_sta_ps);
void mt76x02_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u64 changed)
{
struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
struct mt76x02_dev *dev = hw->priv;
mutex_lock(&dev->mt76.mutex);
if (changed & BSS_CHANGED_BSSID)
mt76x02_mac_set_bssid(dev, mvif->idx, info->bssid);
if (changed & BSS_CHANGED_HT || changed & BSS_CHANGED_ERP_CTS_PROT)
mt76x02_mac_set_tx_protection(dev, info->use_cts_prot,
info->ht_operation_mode);
if (changed & BSS_CHANGED_BEACON_INT) {
mt76_rmw_field(dev, MT_BEACON_TIME_CFG,
MT_BEACON_TIME_CFG_INTVAL,
info->beacon_int << 4);
dev->mt76.beacon_int = info->beacon_int;
}
if (changed & BSS_CHANGED_BEACON_ENABLED)
mt76x02_mac_set_beacon_enable(dev, vif, info->enable_beacon);
if (changed & BSS_CHANGED_ERP_PREAMBLE)
mt76x02_mac_set_short_preamble(dev, info->use_short_preamble);
if (changed & BSS_CHANGED_ERP_SLOT) {
int slottime = info->use_short_slot ? 9 : 20;
dev->slottime = slottime;
mt76x02_set_tx_ackto(dev);
}
mutex_unlock(&dev->mt76.mutex);
}
EXPORT_SYMBOL_GPL(mt76x02_bss_info_changed);
void mt76x02_config_mac_addr_list(struct mt76x02_dev *dev)
{
struct ieee80211_hw *hw = mt76_hw(dev);
struct wiphy *wiphy = hw->wiphy;
int i;
for (i = 0; i < ARRAY_SIZE(dev->macaddr_list); i++) {
u8 *addr = dev->macaddr_list[i].addr;
memcpy(addr, dev->mphy.macaddr, ETH_ALEN);
if (!i)
continue;
addr[0] |= BIT(1);
addr[0] ^= ((i - 1) << 2);
}
wiphy->addresses = dev->macaddr_list;
wiphy->n_addresses = ARRAY_SIZE(dev->macaddr_list);
}
EXPORT_SYMBOL_GPL(mt76x02_config_mac_addr_list);
MODULE_LICENSE("Dual BSD/GPL");

View File

@ -0,0 +1,512 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#include <linux/module.h>
#include <linux/of.h>
#include <asm/unaligned.h>
#include "mt76x2.h"
#include "eeprom.h"
#define EE_FIELD(_name, _value) [MT_EE_##_name] = (_value) | 1
static int
mt76x2_eeprom_get_macaddr(struct mt76x02_dev *dev)
{
void *src = dev->mt76.eeprom.data + MT_EE_MAC_ADDR;
memcpy(dev->mphy.macaddr, src, ETH_ALEN);
return 0;
}
static bool
mt76x2_has_cal_free_data(struct mt76x02_dev *dev, u8 *efuse)
{
u16 *efuse_w = (u16 *)efuse;
if (efuse_w[MT_EE_NIC_CONF_0] != 0)
return false;
if (efuse_w[MT_EE_XTAL_TRIM_1] == 0xffff)
return false;
if (efuse_w[MT_EE_TX_POWER_DELTA_BW40] != 0)
return false;
if (efuse_w[MT_EE_TX_POWER_0_START_2G] == 0xffff)
return false;
if (efuse_w[MT_EE_TX_POWER_0_GRP3_TX_POWER_DELTA] != 0)
return false;
if (efuse_w[MT_EE_TX_POWER_0_GRP4_TSSI_SLOPE] == 0xffff)
return false;
return true;
}
static void
mt76x2_apply_cal_free_data(struct mt76x02_dev *dev, u8 *efuse)
{
#define GROUP_5G(_id) \
MT_EE_TX_POWER_0_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id), \
MT_EE_TX_POWER_0_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id) + 1, \
MT_EE_TX_POWER_1_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id), \
MT_EE_TX_POWER_1_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id) + 1
static const u8 cal_free_bytes[] = {
MT_EE_XTAL_TRIM_1,
MT_EE_TX_POWER_EXT_PA_5G + 1,
MT_EE_TX_POWER_0_START_2G,
MT_EE_TX_POWER_0_START_2G + 1,
MT_EE_TX_POWER_1_START_2G,
MT_EE_TX_POWER_1_START_2G + 1,
GROUP_5G(0),
GROUP_5G(1),
GROUP_5G(2),
GROUP_5G(3),
GROUP_5G(4),
GROUP_5G(5),
MT_EE_RF_2G_TSSI_OFF_TXPOWER,
MT_EE_RF_2G_RX_HIGH_GAIN + 1,
MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN,
MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN + 1,
MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN,
MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN + 1,
MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN,
MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN + 1,
};
struct device_node *np = dev->mt76.dev->of_node;
u8 *eeprom = dev->mt76.eeprom.data;
u8 prev_grp0[4] = {
eeprom[MT_EE_TX_POWER_0_START_5G],
eeprom[MT_EE_TX_POWER_0_START_5G + 1],
eeprom[MT_EE_TX_POWER_1_START_5G],
eeprom[MT_EE_TX_POWER_1_START_5G + 1]
};
u16 val;
int i;
if (!np || !of_property_read_bool(np, "mediatek,eeprom-merge-otp"))
return;
if (!mt76x2_has_cal_free_data(dev, efuse))
return;
for (i = 0; i < ARRAY_SIZE(cal_free_bytes); i++) {
int offset = cal_free_bytes[i];
eeprom[offset] = efuse[offset];
}
if (!(efuse[MT_EE_TX_POWER_0_START_5G] |
efuse[MT_EE_TX_POWER_0_START_5G + 1]))
memcpy(eeprom + MT_EE_TX_POWER_0_START_5G, prev_grp0, 2);
if (!(efuse[MT_EE_TX_POWER_1_START_5G] |
efuse[MT_EE_TX_POWER_1_START_5G + 1]))
memcpy(eeprom + MT_EE_TX_POWER_1_START_5G, prev_grp0 + 2, 2);
val = get_unaligned_le16(efuse + MT_EE_BT_RCAL_RESULT);
if (val != 0xffff)
eeprom[MT_EE_BT_RCAL_RESULT] = val & 0xff;
val = get_unaligned_le16(efuse + MT_EE_BT_VCDL_CALIBRATION);
if (val != 0xffff)
eeprom[MT_EE_BT_VCDL_CALIBRATION + 1] = val >> 8;
val = get_unaligned_le16(efuse + MT_EE_BT_PMUCFG);
if (val != 0xffff)
eeprom[MT_EE_BT_PMUCFG] = val & 0xff;
}
static int mt76x2_check_eeprom(struct mt76x02_dev *dev)
{
u16 val = get_unaligned_le16(dev->mt76.eeprom.data);
if (!val)
val = get_unaligned_le16(dev->mt76.eeprom.data + MT_EE_PCI_ID);
switch (val) {
case 0x7662:
case 0x7612:
return 0;
default:
dev_err(dev->mt76.dev, "EEPROM data check failed: %04x\n", val);
return -EINVAL;
}
}
static int
mt76x2_eeprom_load(struct mt76x02_dev *dev)
{
void *efuse;
bool found;
int ret;
ret = mt76_eeprom_init(&dev->mt76, MT7662_EEPROM_SIZE);
if (ret < 0)
return ret;
found = ret;
if (found)
found = !mt76x2_check_eeprom(dev);
dev->mt76.otp.data = devm_kzalloc(dev->mt76.dev, MT7662_EEPROM_SIZE,
GFP_KERNEL);
dev->mt76.otp.size = MT7662_EEPROM_SIZE;
if (!dev->mt76.otp.data)
return -ENOMEM;
efuse = dev->mt76.otp.data;
if (mt76x02_get_efuse_data(dev, 0, efuse, MT7662_EEPROM_SIZE,
MT_EE_READ))
goto out;
if (found) {
mt76x2_apply_cal_free_data(dev, efuse);
} else {
/* FIXME: check if efuse data is complete */
found = true;
memcpy(dev->mt76.eeprom.data, efuse, MT7662_EEPROM_SIZE);
}
out:
if (!found)
return -ENOENT;
return 0;
}
static void
mt76x2_set_rx_gain_group(struct mt76x02_dev *dev, u8 val)
{
s8 *dest = dev->cal.rx.high_gain;
if (!mt76x02_field_valid(val)) {
dest[0] = 0;
dest[1] = 0;
return;
}
dest[0] = mt76x02_sign_extend(val, 4);
dest[1] = mt76x02_sign_extend(val >> 4, 4);
}
static void
mt76x2_set_rssi_offset(struct mt76x02_dev *dev, int chain, u8 val)
{
s8 *dest = dev->cal.rx.rssi_offset;
if (!mt76x02_field_valid(val)) {
dest[chain] = 0;
return;
}
dest[chain] = mt76x02_sign_extend_optional(val, 7);
}
static enum mt76x2_cal_channel_group
mt76x2_get_cal_channel_group(int channel)
{
if (channel >= 184 && channel <= 196)
return MT_CH_5G_JAPAN;
if (channel <= 48)
return MT_CH_5G_UNII_1;
if (channel <= 64)
return MT_CH_5G_UNII_2;
if (channel <= 114)
return MT_CH_5G_UNII_2E_1;
if (channel <= 144)
return MT_CH_5G_UNII_2E_2;
return MT_CH_5G_UNII_3;
}
static u8
mt76x2_get_5g_rx_gain(struct mt76x02_dev *dev, u8 channel)
{
enum mt76x2_cal_channel_group group;
group = mt76x2_get_cal_channel_group(channel);
switch (group) {
case MT_CH_5G_JAPAN:
return mt76x02_eeprom_get(dev,
MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN);
case MT_CH_5G_UNII_1:
return mt76x02_eeprom_get(dev,
MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN) >> 8;
case MT_CH_5G_UNII_2:
return mt76x02_eeprom_get(dev,
MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN);
case MT_CH_5G_UNII_2E_1:
return mt76x02_eeprom_get(dev,
MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN) >> 8;
case MT_CH_5G_UNII_2E_2:
return mt76x02_eeprom_get(dev,
MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN);
default:
return mt76x02_eeprom_get(dev,
MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN) >> 8;
}
}
void mt76x2_read_rx_gain(struct mt76x02_dev *dev)
{
struct ieee80211_channel *chan = dev->mphy.chandef.chan;
int channel = chan->hw_value;
s8 lna_5g[3], lna_2g;
u8 lna;
u16 val;
if (chan->band == NL80211_BAND_2GHZ)
val = mt76x02_eeprom_get(dev, MT_EE_RF_2G_RX_HIGH_GAIN) >> 8;
else
val = mt76x2_get_5g_rx_gain(dev, channel);
mt76x2_set_rx_gain_group(dev, val);
mt76x02_get_rx_gain(dev, chan->band, &val, &lna_2g, lna_5g);
mt76x2_set_rssi_offset(dev, 0, val);
mt76x2_set_rssi_offset(dev, 1, val >> 8);
dev->cal.rx.mcu_gain = (lna_2g & 0xff);
dev->cal.rx.mcu_gain |= (lna_5g[0] & 0xff) << 8;
dev->cal.rx.mcu_gain |= (lna_5g[1] & 0xff) << 16;
dev->cal.rx.mcu_gain |= (lna_5g[2] & 0xff) << 24;
lna = mt76x02_get_lna_gain(dev, &lna_2g, lna_5g, chan);
dev->cal.rx.lna_gain = mt76x02_sign_extend(lna, 8);
}
EXPORT_SYMBOL_GPL(mt76x2_read_rx_gain);
void mt76x2_get_rate_power(struct mt76x02_dev *dev, struct mt76_rate_power *t,
struct ieee80211_channel *chan)
{
bool is_5ghz;
u16 val;
is_5ghz = chan->band == NL80211_BAND_5GHZ;
memset(t, 0, sizeof(*t));
val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_CCK);
t->cck[0] = t->cck[1] = mt76x02_rate_power_val(val);
t->cck[2] = t->cck[3] = mt76x02_rate_power_val(val >> 8);
if (is_5ghz)
val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_OFDM_5G_6M);
else
val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_OFDM_2G_6M);
t->ofdm[0] = t->ofdm[1] = mt76x02_rate_power_val(val);
t->ofdm[2] = t->ofdm[3] = mt76x02_rate_power_val(val >> 8);
if (is_5ghz)
val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_OFDM_5G_24M);
else
val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_OFDM_2G_24M);
t->ofdm[4] = t->ofdm[5] = mt76x02_rate_power_val(val);
t->ofdm[6] = t->ofdm[7] = mt76x02_rate_power_val(val >> 8);
val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS0);
t->ht[0] = t->ht[1] = mt76x02_rate_power_val(val);
t->ht[2] = t->ht[3] = mt76x02_rate_power_val(val >> 8);
val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS4);
t->ht[4] = t->ht[5] = mt76x02_rate_power_val(val);
t->ht[6] = t->ht[7] = mt76x02_rate_power_val(val >> 8);
val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS8);
t->ht[8] = t->ht[9] = mt76x02_rate_power_val(val);
t->ht[10] = t->ht[11] = mt76x02_rate_power_val(val >> 8);
val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS12);
t->ht[12] = t->ht[13] = mt76x02_rate_power_val(val);
t->ht[14] = t->ht[15] = mt76x02_rate_power_val(val >> 8);
val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_VHT_MCS0);
t->vht[0] = t->vht[1] = mt76x02_rate_power_val(val);
t->vht[2] = t->vht[3] = mt76x02_rate_power_val(val >> 8);
val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_VHT_MCS4);
t->vht[4] = t->vht[5] = mt76x02_rate_power_val(val);
t->vht[6] = t->vht[7] = mt76x02_rate_power_val(val >> 8);
val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_VHT_MCS8);
if (!is_5ghz)
val >>= 8;
t->vht[8] = t->vht[9] = mt76x02_rate_power_val(val >> 8);
memcpy(t->stbc, t->ht, sizeof(t->stbc[0]) * 8);
t->stbc[8] = t->vht[8];
t->stbc[9] = t->vht[9];
}
EXPORT_SYMBOL_GPL(mt76x2_get_rate_power);
static void
mt76x2_get_power_info_2g(struct mt76x02_dev *dev,
struct mt76x2_tx_power_info *t,
struct ieee80211_channel *chan,
int chain, int offset)
{
int channel = chan->hw_value;
int delta_idx;
u8 data[6];
u16 val;
if (channel < 6)
delta_idx = 3;
else if (channel < 11)
delta_idx = 4;
else
delta_idx = 5;
mt76x02_eeprom_copy(dev, offset, data, sizeof(data));
t->chain[chain].tssi_slope = data[0];
t->chain[chain].tssi_offset = data[1];
t->chain[chain].target_power = data[2];
t->chain[chain].delta =
mt76x02_sign_extend_optional(data[delta_idx], 7);
val = mt76x02_eeprom_get(dev, MT_EE_RF_2G_TSSI_OFF_TXPOWER);
t->target_power = val >> 8;
}
static void
mt76x2_get_power_info_5g(struct mt76x02_dev *dev,
struct mt76x2_tx_power_info *t,
struct ieee80211_channel *chan,
int chain, int offset)
{
int channel = chan->hw_value;
enum mt76x2_cal_channel_group group;
int delta_idx;
u16 val;
u8 data[5];
group = mt76x2_get_cal_channel_group(channel);
offset += group * MT_TX_POWER_GROUP_SIZE_5G;
if (channel >= 192)
delta_idx = 4;
else if (channel >= 184)
delta_idx = 3;
else if (channel < 44)
delta_idx = 3;
else if (channel < 52)
delta_idx = 4;
else if (channel < 58)
delta_idx = 3;
else if (channel < 98)
delta_idx = 4;
else if (channel < 106)
delta_idx = 3;
else if (channel < 116)
delta_idx = 4;
else if (channel < 130)
delta_idx = 3;
else if (channel < 149)
delta_idx = 4;
else if (channel < 157)
delta_idx = 3;
else
delta_idx = 4;
mt76x02_eeprom_copy(dev, offset, data, sizeof(data));
t->chain[chain].tssi_slope = data[0];
t->chain[chain].tssi_offset = data[1];
t->chain[chain].target_power = data[2];
t->chain[chain].delta =
mt76x02_sign_extend_optional(data[delta_idx], 7);
val = mt76x02_eeprom_get(dev, MT_EE_RF_2G_RX_HIGH_GAIN);
t->target_power = val & 0xff;
}
void mt76x2_get_power_info(struct mt76x02_dev *dev,
struct mt76x2_tx_power_info *t,
struct ieee80211_channel *chan)
{
u16 bw40, bw80;
memset(t, 0, sizeof(*t));
bw40 = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW40);
bw80 = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW80);
if (chan->band == NL80211_BAND_5GHZ) {
bw40 >>= 8;
mt76x2_get_power_info_5g(dev, t, chan, 0,
MT_EE_TX_POWER_0_START_5G);
mt76x2_get_power_info_5g(dev, t, chan, 1,
MT_EE_TX_POWER_1_START_5G);
} else {
mt76x2_get_power_info_2g(dev, t, chan, 0,
MT_EE_TX_POWER_0_START_2G);
mt76x2_get_power_info_2g(dev, t, chan, 1,
MT_EE_TX_POWER_1_START_2G);
}
if (mt76x2_tssi_enabled(dev) ||
!mt76x02_field_valid(t->target_power))
t->target_power = t->chain[0].target_power;
t->delta_bw40 = mt76x02_rate_power_val(bw40);
t->delta_bw80 = mt76x02_rate_power_val(bw80);
}
EXPORT_SYMBOL_GPL(mt76x2_get_power_info);
int mt76x2_get_temp_comp(struct mt76x02_dev *dev, struct mt76x2_temp_comp *t)
{
enum nl80211_band band = dev->mphy.chandef.chan->band;
u16 val, slope;
u8 bounds;
memset(t, 0, sizeof(*t));
if (!mt76x2_temp_tx_alc_enabled(dev))
return -EINVAL;
if (!mt76x02_ext_pa_enabled(dev, band))
return -EINVAL;
val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_EXT_PA_5G) >> 8;
t->temp_25_ref = val & 0x7f;
if (band == NL80211_BAND_5GHZ) {
slope = mt76x02_eeprom_get(dev, MT_EE_RF_TEMP_COMP_SLOPE_5G);
bounds = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_EXT_PA_5G);
} else {
slope = mt76x02_eeprom_get(dev, MT_EE_RF_TEMP_COMP_SLOPE_2G);
bounds = mt76x02_eeprom_get(dev,
MT_EE_TX_POWER_DELTA_BW80) >> 8;
}
t->high_slope = slope & 0xff;
t->low_slope = slope >> 8;
t->lower_bound = 0 - (bounds & 0xf);
t->upper_bound = (bounds >> 4) & 0xf;
return 0;
}
EXPORT_SYMBOL_GPL(mt76x2_get_temp_comp);
int mt76x2_eeprom_init(struct mt76x02_dev *dev)
{
int ret;
ret = mt76x2_eeprom_load(dev);
if (ret)
return ret;
mt76x02_eeprom_parse_hw_cap(dev);
mt76x2_eeprom_get_macaddr(dev);
mt76_eeprom_override(&dev->mphy);
dev->mphy.macaddr[0] &= ~BIT(1);
return 0;
}
EXPORT_SYMBOL_GPL(mt76x2_eeprom_init);
MODULE_LICENSE("Dual BSD/GPL");

View File

@ -0,0 +1,83 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#ifndef __MT76x2_EEPROM_H
#define __MT76x2_EEPROM_H
#include "../mt76x02_eeprom.h"
enum mt76x2_cal_channel_group {
MT_CH_5G_JAPAN,
MT_CH_5G_UNII_1,
MT_CH_5G_UNII_2,
MT_CH_5G_UNII_2E_1,
MT_CH_5G_UNII_2E_2,
MT_CH_5G_UNII_3,
__MT_CH_MAX
};
struct mt76x2_tx_power_info {
u8 target_power;
s8 delta_bw40;
s8 delta_bw80;
struct {
s8 tssi_slope;
s8 tssi_offset;
s8 target_power;
s8 delta;
} chain[MT_MAX_CHAINS];
};
struct mt76x2_temp_comp {
u8 temp_25_ref;
int lower_bound; /* J */
int upper_bound; /* J */
unsigned int high_slope; /* J / dB */
unsigned int low_slope; /* J / dB */
};
void mt76x2_get_rate_power(struct mt76x02_dev *dev, struct mt76_rate_power *t,
struct ieee80211_channel *chan);
void mt76x2_get_power_info(struct mt76x02_dev *dev,
struct mt76x2_tx_power_info *t,
struct ieee80211_channel *chan);
int mt76x2_get_temp_comp(struct mt76x02_dev *dev, struct mt76x2_temp_comp *t);
void mt76x2_read_rx_gain(struct mt76x02_dev *dev);
static inline bool
mt76x2_has_ext_lna(struct mt76x02_dev *dev)
{
u32 val = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_1);
if (dev->mphy.chandef.chan->band == NL80211_BAND_2GHZ)
return val & MT_EE_NIC_CONF_1_LNA_EXT_2G;
else
return val & MT_EE_NIC_CONF_1_LNA_EXT_5G;
}
static inline bool
mt76x2_temp_tx_alc_enabled(struct mt76x02_dev *dev)
{
u16 val;
val = mt76x02_eeprom_get(dev, MT_EE_TX_POWER_EXT_PA_5G);
if (!(val & BIT(15)))
return false;
return mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_1) &
MT_EE_NIC_CONF_1_TEMP_TX_ALC;
}
static inline bool
mt76x2_tssi_enabled(struct mt76x02_dev *dev)
{
return !mt76x2_temp_tx_alc_enabled(dev) &&
(mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_1) &
MT_EE_NIC_CONF_1_TX_ALC_EN);
}
#endif

View File

@ -0,0 +1,204 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include "mt76x2.h"
#include "eeprom.h"
#include "../mt76x02_phy.h"
int mt76x2_set_sar_specs(struct ieee80211_hw *hw,
const struct cfg80211_sar_specs *sar)
{
int err = -EINVAL, power = hw->conf.power_level * 2;
struct mt76x02_dev *dev = hw->priv;
struct mt76_phy *mphy = &dev->mphy;
mutex_lock(&dev->mt76.mutex);
if (!cfg80211_chandef_valid(&mphy->chandef))
goto out;
err = mt76_init_sar_power(hw, sar);
if (err)
goto out;
dev->txpower_conf = mt76_get_sar_power(mphy, mphy->chandef.chan,
power);
/* convert to per-chain power for 2x2 devices */
dev->txpower_conf -= 6;
if (test_bit(MT76_STATE_RUNNING, &mphy->state))
mt76x2_phy_set_txpower(dev);
out:
mutex_unlock(&dev->mt76.mutex);
return err;
}
EXPORT_SYMBOL_GPL(mt76x2_set_sar_specs);
static void
mt76x2_set_wlan_state(struct mt76x02_dev *dev, bool enable)
{
u32 val = mt76_rr(dev, MT_WLAN_FUN_CTRL);
if (enable)
val |= (MT_WLAN_FUN_CTRL_WLAN_EN |
MT_WLAN_FUN_CTRL_WLAN_CLK_EN);
else
val &= ~(MT_WLAN_FUN_CTRL_WLAN_EN |
MT_WLAN_FUN_CTRL_WLAN_CLK_EN);
mt76_wr(dev, MT_WLAN_FUN_CTRL, val);
udelay(20);
}
void mt76x2_reset_wlan(struct mt76x02_dev *dev, bool enable)
{
u32 val;
if (!enable)
goto out;
val = mt76_rr(dev, MT_WLAN_FUN_CTRL);
val &= ~MT_WLAN_FUN_CTRL_FRC_WL_ANT_SEL;
if (val & MT_WLAN_FUN_CTRL_WLAN_EN) {
val |= MT_WLAN_FUN_CTRL_WLAN_RESET_RF;
mt76_wr(dev, MT_WLAN_FUN_CTRL, val);
udelay(20);
val &= ~MT_WLAN_FUN_CTRL_WLAN_RESET_RF;
}
mt76_wr(dev, MT_WLAN_FUN_CTRL, val);
udelay(20);
out:
mt76x2_set_wlan_state(dev, enable);
}
EXPORT_SYMBOL_GPL(mt76x2_reset_wlan);
void mt76_write_mac_initvals(struct mt76x02_dev *dev)
{
#define DEFAULT_PROT_CFG_CCK \
(FIELD_PREP(MT_PROT_CFG_RATE, 0x3) | \
FIELD_PREP(MT_PROT_CFG_NAV, 1) | \
FIELD_PREP(MT_PROT_CFG_TXOP_ALLOW, 0x3f) | \
MT_PROT_CFG_RTS_THRESH)
#define DEFAULT_PROT_CFG_OFDM \
(FIELD_PREP(MT_PROT_CFG_RATE, 0x2004) | \
FIELD_PREP(MT_PROT_CFG_NAV, 1) | \
FIELD_PREP(MT_PROT_CFG_TXOP_ALLOW, 0x3f) | \
MT_PROT_CFG_RTS_THRESH)
#define DEFAULT_PROT_CFG_20 \
(FIELD_PREP(MT_PROT_CFG_RATE, 0x2004) | \
FIELD_PREP(MT_PROT_CFG_CTRL, 1) | \
FIELD_PREP(MT_PROT_CFG_NAV, 1) | \
FIELD_PREP(MT_PROT_CFG_TXOP_ALLOW, 0x17))
#define DEFAULT_PROT_CFG_40 \
(FIELD_PREP(MT_PROT_CFG_RATE, 0x2084) | \
FIELD_PREP(MT_PROT_CFG_CTRL, 1) | \
FIELD_PREP(MT_PROT_CFG_NAV, 1) | \
FIELD_PREP(MT_PROT_CFG_TXOP_ALLOW, 0x3f))
static const struct mt76_reg_pair vals[] = {
/* Copied from MediaTek reference source */
{ MT_PBF_SYS_CTRL, 0x00080c00 },
{ MT_PBF_CFG, 0x1efebcff },
{ MT_FCE_PSE_CTRL, 0x00000001 },
{ MT_MAC_SYS_CTRL, 0x00000000 },
{ MT_MAX_LEN_CFG, 0x003e3f00 },
{ MT_AMPDU_MAX_LEN_20M1S, 0xaaa99887 },
{ MT_AMPDU_MAX_LEN_20M2S, 0x000000aa },
{ MT_XIFS_TIME_CFG, 0x33a40d0a },
{ MT_BKOFF_SLOT_CFG, 0x00000209 },
{ MT_TBTT_SYNC_CFG, 0x00422010 },
{ MT_PWR_PIN_CFG, 0x00000000 },
{ 0x1238, 0x001700c8 },
{ MT_TX_SW_CFG0, 0x00101001 },
{ MT_TX_SW_CFG1, 0x00010000 },
{ MT_TX_SW_CFG2, 0x00000000 },
{ MT_TXOP_CTRL_CFG, 0x0400583f },
{ MT_TX_RTS_CFG, 0x00ffff20 },
{ MT_TX_TIMEOUT_CFG, 0x000a2290 },
{ MT_TX_RETRY_CFG, 0x47f01f0f },
{ MT_EXP_ACK_TIME, 0x002c00dc },
{ MT_TX_PROT_CFG6, 0xe3f42004 },
{ MT_TX_PROT_CFG7, 0xe3f42084 },
{ MT_TX_PROT_CFG8, 0xe3f42104 },
{ MT_PIFS_TX_CFG, 0x00060fff },
{ MT_RX_FILTR_CFG, 0x00015f97 },
{ MT_LEGACY_BASIC_RATE, 0x0000017f },
{ MT_HT_BASIC_RATE, 0x00004003 },
{ MT_PN_PAD_MODE, 0x00000003 },
{ MT_TXOP_HLDR_ET, 0x00000002 },
{ 0xa44, 0x00000000 },
{ MT_HEADER_TRANS_CTRL_REG, 0x00000000 },
{ MT_TSO_CTRL, 0x00000000 },
{ MT_AUX_CLK_CFG, 0x00000000 },
{ MT_DACCLK_EN_DLY_CFG, 0x00000000 },
{ MT_TX_ALC_CFG_4, 0x00000000 },
{ MT_TX_ALC_VGA3, 0x00000000 },
{ MT_TX_PWR_CFG_0, 0x3a3a3a3a },
{ MT_TX_PWR_CFG_1, 0x3a3a3a3a },
{ MT_TX_PWR_CFG_2, 0x3a3a3a3a },
{ MT_TX_PWR_CFG_3, 0x3a3a3a3a },
{ MT_TX_PWR_CFG_4, 0x3a3a3a3a },
{ MT_TX_PWR_CFG_7, 0x3a3a3a3a },
{ MT_TX_PWR_CFG_8, 0x0000003a },
{ MT_TX_PWR_CFG_9, 0x0000003a },
{ MT_EFUSE_CTRL, 0x0000d000 },
{ MT_PAUSE_ENABLE_CONTROL1, 0x0000000a },
{ MT_FCE_WLAN_FLOW_CONTROL1, 0x60401c18 },
{ MT_WPDMA_DELAY_INT_CFG, 0x94ff0000 },
{ MT_TX_SW_CFG3, 0x00000004 },
{ MT_HT_FBK_TO_LEGACY, 0x00001818 },
{ MT_VHT_HT_FBK_CFG1, 0xedcba980 },
{ MT_PROT_AUTO_TX_CFG, 0x00830083 },
{ MT_HT_CTRL_CFG, 0x000001ff },
{ MT_TX_LINK_CFG, 0x00001020 },
};
struct mt76_reg_pair prot_vals[] = {
{ MT_CCK_PROT_CFG, DEFAULT_PROT_CFG_CCK },
{ MT_OFDM_PROT_CFG, DEFAULT_PROT_CFG_OFDM },
{ MT_MM20_PROT_CFG, DEFAULT_PROT_CFG_20 },
{ MT_MM40_PROT_CFG, DEFAULT_PROT_CFG_40 },
{ MT_GF20_PROT_CFG, DEFAULT_PROT_CFG_20 },
{ MT_GF40_PROT_CFG, DEFAULT_PROT_CFG_40 },
};
mt76_wr_rp(dev, 0, vals, ARRAY_SIZE(vals));
mt76_wr_rp(dev, 0, prot_vals, ARRAY_SIZE(prot_vals));
}
EXPORT_SYMBOL_GPL(mt76_write_mac_initvals);
void mt76x2_init_txpower(struct mt76x02_dev *dev,
struct ieee80211_supported_band *sband)
{
struct ieee80211_channel *chan;
struct mt76x2_tx_power_info txp;
struct mt76_rate_power t = {};
int i;
for (i = 0; i < sband->n_channels; i++) {
chan = &sband->channels[i];
mt76x2_get_power_info(dev, &txp, chan);
mt76x2_get_rate_power(dev, &t, chan);
chan->orig_mpwr = mt76x02_get_max_rate_power(&t) +
txp.target_power;
chan->orig_mpwr = DIV_ROUND_UP(chan->orig_mpwr, 2);
/* convert to combined output power on 2x2 devices */
chan->orig_mpwr += 3;
chan->max_power = min_t(int, chan->max_reg_power,
chan->orig_mpwr);
}
}
EXPORT_SYMBOL_GPL(mt76x2_init_txpower);

View File

@ -0,0 +1,46 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include "mt76x2.h"
void mt76x2_mac_stop(struct mt76x02_dev *dev, bool force)
{
bool stopped = false;
u32 rts_cfg;
int i;
mt76_clear(dev, MT_TXOP_CTRL_CFG, MT_TXOP_ED_CCA_EN);
mt76_clear(dev, MT_TXOP_HLDR_ET, MT_TXOP_HLDR_TX40M_BLK_EN);
mt76_wr(dev, MT_MAC_SYS_CTRL, 0);
rts_cfg = mt76_rr(dev, MT_TX_RTS_CFG);
mt76_wr(dev, MT_TX_RTS_CFG, rts_cfg & ~MT_TX_RTS_CFG_RETRY_LIMIT);
/* Wait for MAC to become idle */
for (i = 0; i < 300; i++) {
if ((mt76_rr(dev, MT_MAC_STATUS) &
(MT_MAC_STATUS_RX | MT_MAC_STATUS_TX)) ||
mt76_rr(dev, MT_BBP(IBI, 12))) {
udelay(1);
continue;
}
stopped = true;
break;
}
if (force && !stopped) {
mt76_set(dev, MT_BBP(CORE, 4), BIT(1));
mt76_clear(dev, MT_BBP(CORE, 4), BIT(1));
mt76_set(dev, MT_BBP(CORE, 4), BIT(0));
mt76_clear(dev, MT_BBP(CORE, 4), BIT(0));
}
mt76_wr(dev, MT_TX_RTS_CFG, rts_cfg);
}
EXPORT_SYMBOL_GPL(mt76x2_mac_stop);

View File

@ -0,0 +1,24 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#ifndef __MT76x2_MAC_H
#define __MT76x2_MAC_H
#include "mt76x2.h"
struct mt76x02_dev;
struct mt76x2_sta;
struct mt76x02_vif;
void mt76x2_mac_stop(struct mt76x02_dev *dev, bool force);
static inline void mt76x2_mac_resume(struct mt76x02_dev *dev)
{
mt76_wr(dev, MT_MAC_SYS_CTRL,
MT_MAC_SYS_CTRL_ENABLE_TX |
MT_MAC_SYS_CTRL_ENABLE_RX);
}
#endif

View File

@ -0,0 +1,108 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include <linux/kernel.h>
#include <linux/firmware.h>
#include <linux/delay.h>
#include "mt76x2.h"
#include "mcu.h"
#include "eeprom.h"
int mt76x2_mcu_set_channel(struct mt76x02_dev *dev, u8 channel, u8 bw,
u8 bw_index, bool scan)
{
struct {
u8 idx;
u8 scan;
u8 bw;
u8 _pad0;
__le16 chainmask;
u8 ext_chan;
u8 _pad1;
} __packed __aligned(4) msg = {
.idx = channel,
.scan = scan,
.bw = bw,
.chainmask = cpu_to_le16(dev->mphy.chainmask),
};
/* first set the channel without the extension channel info */
mt76_mcu_send_msg(&dev->mt76, CMD_SWITCH_CHANNEL_OP, &msg,
sizeof(msg), true);
usleep_range(5000, 10000);
msg.ext_chan = 0xe0 + bw_index;
return mt76_mcu_send_msg(&dev->mt76, CMD_SWITCH_CHANNEL_OP, &msg,
sizeof(msg), true);
}
EXPORT_SYMBOL_GPL(mt76x2_mcu_set_channel);
int mt76x2_mcu_load_cr(struct mt76x02_dev *dev, u8 type, u8 temp_level,
u8 channel)
{
struct {
u8 cr_mode;
u8 temp;
u8 ch;
u8 _pad0;
__le32 cfg;
} __packed __aligned(4) msg = {
.cr_mode = type,
.temp = temp_level,
.ch = channel,
};
u32 val;
val = BIT(31);
val |= (mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_0) >> 8) & 0x00ff;
val |= (mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_1) << 8) & 0xff00;
msg.cfg = cpu_to_le32(val);
/* first set the channel without the extension channel info */
return mt76_mcu_send_msg(&dev->mt76, CMD_LOAD_CR, &msg, sizeof(msg),
true);
}
EXPORT_SYMBOL_GPL(mt76x2_mcu_load_cr);
int mt76x2_mcu_init_gain(struct mt76x02_dev *dev, u8 channel, u32 gain,
bool force)
{
struct {
__le32 channel;
__le32 gain_val;
} __packed __aligned(4) msg = {
.channel = cpu_to_le32(channel),
.gain_val = cpu_to_le32(gain),
};
if (force)
msg.channel |= cpu_to_le32(BIT(31));
return mt76_mcu_send_msg(&dev->mt76, CMD_INIT_GAIN_OP, &msg,
sizeof(msg), true);
}
EXPORT_SYMBOL_GPL(mt76x2_mcu_init_gain);
int mt76x2_mcu_tssi_comp(struct mt76x02_dev *dev,
struct mt76x2_tssi_comp *tssi_data)
{
struct {
__le32 id;
struct mt76x2_tssi_comp data;
} __packed __aligned(4) msg = {
.id = cpu_to_le32(MCU_CAL_TSSI_COMP),
.data = *tssi_data,
};
return mt76_mcu_send_msg(&dev->mt76, CMD_CALIBRATION_OP, &msg,
sizeof(msg), true);
}
EXPORT_SYMBOL_GPL(mt76x2_mcu_tssi_comp);

View File

@ -0,0 +1,68 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#ifndef __MT76x2_MCU_H
#define __MT76x2_MCU_H
#include "../mt76x02_mcu.h"
/* Register definitions */
#define MT_MCU_CPU_CTL 0x0704
#define MT_MCU_CLOCK_CTL 0x0708
#define MT_MCU_PCIE_REMAP_BASE1 0x0740
#define MT_MCU_PCIE_REMAP_BASE2 0x0744
#define MT_MCU_PCIE_REMAP_BASE3 0x0748
#define MT_MCU_ROM_PATCH_OFFSET 0x80000
#define MT_MCU_ROM_PATCH_ADDR 0x90000
#define MT_MCU_ILM_OFFSET 0x80000
#define MT_MCU_DLM_OFFSET 0x100000
#define MT_MCU_DLM_ADDR 0x90000
#define MT_MCU_DLM_ADDR_E3 0x90800
enum mcu_calibration {
MCU_CAL_R = 1,
MCU_CAL_TEMP_SENSOR,
MCU_CAL_RXDCOC,
MCU_CAL_RC,
MCU_CAL_SX_LOGEN,
MCU_CAL_LC,
MCU_CAL_TX_LOFT,
MCU_CAL_TXIQ,
MCU_CAL_TSSI,
MCU_CAL_TSSI_COMP,
MCU_CAL_DPD,
MCU_CAL_RXIQC_FI,
MCU_CAL_RXIQC_FD,
MCU_CAL_PWRON,
MCU_CAL_TX_SHAPING,
};
enum mt76x2_mcu_cr_mode {
MT_RF_CR,
MT_BBP_CR,
MT_RF_BBP_CR,
MT_HL_TEMP_CR_UPDATE,
};
struct mt76x2_tssi_comp {
u8 pa_mode;
u8 cal_mode;
u16 pad;
u8 slope0;
u8 slope1;
u8 offset0;
u8 offset1;
} __packed __aligned(4);
int mt76x2_mcu_tssi_comp(struct mt76x02_dev *dev,
struct mt76x2_tssi_comp *tssi_data);
int mt76x2_mcu_init_gain(struct mt76x02_dev *dev, u8 channel, u32 gain,
bool force);
#endif

View File

@ -0,0 +1,80 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#ifndef __MT76x2_H
#define __MT76x2_H
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/spinlock.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/bitops.h>
#define MT7662_FIRMWARE "mt7662.bin"
#define MT7662_ROM_PATCH "mt7662_rom_patch.bin"
#define MT7662_EEPROM_SIZE 512
#include "../mt76x02.h"
#include "mac.h"
static inline bool is_mt7612(struct mt76x02_dev *dev)
{
return mt76_chip(&dev->mt76) == 0x7612;
}
static inline bool mt76x2_channel_silent(struct mt76x02_dev *dev)
{
struct ieee80211_channel *chan = dev->mphy.chandef.chan;
return ((chan->flags & IEEE80211_CHAN_RADAR) &&
chan->dfs_state != NL80211_DFS_AVAILABLE);
}
extern const struct ieee80211_ops mt76x2_ops;
int mt76x2_register_device(struct mt76x02_dev *dev);
int mt76x2_resume_device(struct mt76x02_dev *dev);
int mt76x2_set_sar_specs(struct ieee80211_hw *hw,
const struct cfg80211_sar_specs *sar);
void mt76x2_phy_power_on(struct mt76x02_dev *dev);
void mt76x2_stop_hardware(struct mt76x02_dev *dev);
int mt76x2_eeprom_init(struct mt76x02_dev *dev);
int mt76x2_apply_calibration_data(struct mt76x02_dev *dev, int channel);
void mt76x2_phy_set_antenna(struct mt76x02_dev *dev);
int mt76x2_phy_start(struct mt76x02_dev *dev);
int mt76x2_phy_set_channel(struct mt76x02_dev *dev,
struct cfg80211_chan_def *chandef);
void mt76x2_phy_calibrate(struct work_struct *work);
void mt76x2_phy_set_txpower(struct mt76x02_dev *dev);
int mt76x2_mcu_init(struct mt76x02_dev *dev);
int mt76x2_mcu_set_channel(struct mt76x02_dev *dev, u8 channel, u8 bw,
u8 bw_index, bool scan);
int mt76x2_mcu_load_cr(struct mt76x02_dev *dev, u8 type, u8 temp_level,
u8 channel);
void mt76x2_cleanup(struct mt76x02_dev *dev);
int mt76x2_mac_reset(struct mt76x02_dev *dev, bool hard);
void mt76x2_reset_wlan(struct mt76x02_dev *dev, bool enable);
void mt76x2_init_txpower(struct mt76x02_dev *dev,
struct ieee80211_supported_band *sband);
void mt76_write_mac_initvals(struct mt76x02_dev *dev);
void mt76x2_phy_tssi_compensate(struct mt76x02_dev *dev);
void mt76x2_phy_set_txpower_regs(struct mt76x02_dev *dev,
enum nl80211_band band);
void mt76x2_configure_tx_delay(struct mt76x02_dev *dev,
enum nl80211_band band, u8 bw);
void mt76x2_apply_gain_adj(struct mt76x02_dev *dev);
void mt76x2_phy_update_channel_gain(struct mt76x02_dev *dev);
#endif

View File

@ -0,0 +1,43 @@
/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#ifndef __MT76x2U_H
#define __MT76x2U_H
#include <linux/device.h>
#include "mt76x2.h"
#include "mcu.h"
#define MT7612U_EEPROM_SIZE 512
#define MT_USB_AGGR_SIZE_LIMIT 21 /* 1024B unit */
#define MT_USB_AGGR_TIMEOUT 0x80 /* 33ns unit */
extern const struct ieee80211_ops mt76x2u_ops;
int mt76x2u_register_device(struct mt76x02_dev *dev);
int mt76x2u_init_hardware(struct mt76x02_dev *dev);
void mt76x2u_cleanup(struct mt76x02_dev *dev);
void mt76x2u_stop_hw(struct mt76x02_dev *dev);
int mt76x2u_mac_reset(struct mt76x02_dev *dev);
int mt76x2u_mac_stop(struct mt76x02_dev *dev);
int mt76x2u_phy_set_channel(struct mt76x02_dev *dev,
struct cfg80211_chan_def *chandef);
void mt76x2u_phy_calibrate(struct work_struct *work);
void mt76x2u_mcu_complete_urb(struct urb *urb);
int mt76x2u_mcu_init(struct mt76x02_dev *dev);
int mt76x2u_mcu_fw_init(struct mt76x02_dev *dev);
int mt76x2u_alloc_queues(struct mt76x02_dev *dev);
void mt76x2u_queues_deinit(struct mt76x02_dev *dev);
void mt76x2u_stop_queues(struct mt76x02_dev *dev);
int mt76x2u_skb_dma_info(struct sk_buff *skb, enum dma_msg_port port,
u32 flags);
#endif /* __MT76x2U_H */

View File

@ -0,0 +1,181 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include "mt76x2.h"
static const struct pci_device_id mt76x2e_device_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7662) },
{ PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7612) },
{ PCI_DEVICE(PCI_VENDOR_ID_MEDIATEK, 0x7602) },
{ },
};
static int
mt76x2e_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
static const struct mt76_driver_ops drv_ops = {
.txwi_size = sizeof(struct mt76x02_txwi),
.drv_flags = MT_DRV_TX_ALIGNED4_SKBS |
MT_DRV_SW_RX_AIRTIME,
.survey_flags = SURVEY_INFO_TIME_TX,
.update_survey = mt76x02_update_channel,
.tx_prepare_skb = mt76x02_tx_prepare_skb,
.tx_complete_skb = mt76x02_tx_complete_skb,
.rx_skb = mt76x02_queue_rx_skb,
.rx_poll_complete = mt76x02_rx_poll_complete,
.sta_ps = mt76x02_sta_ps,
.sta_add = mt76x02_sta_add,
.sta_remove = mt76x02_sta_remove,
};
struct mt76x02_dev *dev;
struct mt76_dev *mdev;
int ret;
ret = pcim_enable_device(pdev);
if (ret)
return ret;
ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
if (ret)
return ret;
pci_set_master(pdev);
ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
if (ret)
return ret;
mdev = mt76_alloc_device(&pdev->dev, sizeof(*dev), &mt76x2_ops,
&drv_ops);
if (!mdev)
return -ENOMEM;
dev = container_of(mdev, struct mt76x02_dev, mt76);
mt76_mmio_init(mdev, pcim_iomap_table(pdev)[0]);
mt76x2_reset_wlan(dev, false);
mdev->rev = mt76_rr(dev, MT_ASIC_VERSION);
dev_info(mdev->dev, "ASIC revision: %08x\n", mdev->rev);
mt76_wr(dev, MT_INT_MASK_CSR, 0);
ret = devm_request_irq(mdev->dev, pdev->irq, mt76x02_irq_handler,
IRQF_SHARED, KBUILD_MODNAME, dev);
if (ret)
goto error;
ret = mt76x2_register_device(dev);
if (ret)
goto error;
/* Fix up ASPM configuration */
/* RG_SSUSB_G1_CDR_BIR_LTR = 0x9 */
mt76_rmw_field(dev, 0x15a10, 0x1f << 16, 0x9);
/* RG_SSUSB_G1_CDR_BIC_LTR = 0xf */
mt76_rmw_field(dev, 0x15a0c, 0xfU << 28, 0xf);
/* RG_SSUSB_CDR_BR_PE1D = 0x3 */
mt76_rmw_field(dev, 0x15c58, 0x3 << 6, 0x3);
mt76_pci_disable_aspm(pdev);
return 0;
error:
mt76_free_device(&dev->mt76);
return ret;
}
static void
mt76x2e_remove(struct pci_dev *pdev)
{
struct mt76_dev *mdev = pci_get_drvdata(pdev);
struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
mt76_unregister_device(mdev);
mt76x2_cleanup(dev);
mt76_free_device(mdev);
}
static int __maybe_unused
mt76x2e_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct mt76_dev *mdev = pci_get_drvdata(pdev);
int i, err;
napi_disable(&mdev->tx_napi);
tasklet_kill(&mdev->pre_tbtt_tasklet);
mt76_worker_disable(&mdev->tx_worker);
mt76_for_each_q_rx(mdev, i)
napi_disable(&mdev->napi[i]);
pci_enable_wake(pdev, pci_choose_state(pdev, state), true);
pci_save_state(pdev);
err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
if (err)
goto restore;
return 0;
restore:
mt76_for_each_q_rx(mdev, i)
napi_enable(&mdev->napi[i]);
napi_enable(&mdev->tx_napi);
return err;
}
static int __maybe_unused
mt76x2e_resume(struct pci_dev *pdev)
{
struct mt76_dev *mdev = pci_get_drvdata(pdev);
struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
int i, err;
err = pci_set_power_state(pdev, PCI_D0);
if (err)
return err;
pci_restore_state(pdev);
mt76_worker_enable(&mdev->tx_worker);
local_bh_disable();
mt76_for_each_q_rx(mdev, i) {
napi_enable(&mdev->napi[i]);
napi_schedule(&mdev->napi[i]);
}
napi_enable(&mdev->tx_napi);
napi_schedule(&mdev->tx_napi);
local_bh_enable();
return mt76x2_resume_device(dev);
}
MODULE_DEVICE_TABLE(pci, mt76x2e_device_table);
MODULE_FIRMWARE(MT7662_FIRMWARE);
MODULE_FIRMWARE(MT7662_ROM_PATCH);
MODULE_LICENSE("Dual BSD/GPL");
static struct pci_driver mt76pci_driver = {
.name = KBUILD_MODNAME,
.id_table = mt76x2e_device_table,
.probe = mt76x2e_probe,
.remove = mt76x2e_remove,
#ifdef CONFIG_PM
.suspend = mt76x2e_suspend,
.resume = mt76x2e_resume,
#endif /* CONFIG_PM */
};
module_pci_driver(mt76pci_driver);

View File

@ -0,0 +1,320 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#include <linux/delay.h>
#include "mt76x2.h"
#include "eeprom.h"
#include "mcu.h"
#include "../mt76x02_mac.h"
static void
mt76x2_mac_pbf_init(struct mt76x02_dev *dev)
{
u32 val;
val = MT_PBF_SYS_CTRL_MCU_RESET |
MT_PBF_SYS_CTRL_DMA_RESET |
MT_PBF_SYS_CTRL_MAC_RESET |
MT_PBF_SYS_CTRL_PBF_RESET |
MT_PBF_SYS_CTRL_ASY_RESET;
mt76_set(dev, MT_PBF_SYS_CTRL, val);
mt76_clear(dev, MT_PBF_SYS_CTRL, val);
mt76_wr(dev, MT_PBF_TX_MAX_PCNT, 0xefef3f1f);
mt76_wr(dev, MT_PBF_RX_MAX_PCNT, 0xfebf);
}
static void
mt76x2_fixup_xtal(struct mt76x02_dev *dev)
{
u16 eep_val;
s8 offset = 0;
eep_val = mt76x02_eeprom_get(dev, MT_EE_XTAL_TRIM_2);
offset = eep_val & 0x7f;
if ((eep_val & 0xff) == 0xff)
offset = 0;
else if (eep_val & 0x80)
offset = 0 - offset;
eep_val >>= 8;
if (eep_val == 0x00 || eep_val == 0xff) {
eep_val = mt76x02_eeprom_get(dev, MT_EE_XTAL_TRIM_1);
eep_val &= 0xff;
if (eep_val == 0x00 || eep_val == 0xff)
eep_val = 0x14;
}
eep_val &= 0x7f;
mt76_rmw_field(dev, MT_XO_CTRL5, MT_XO_CTRL5_C2_VAL, eep_val + offset);
mt76_set(dev, MT_XO_CTRL6, MT_XO_CTRL6_C2_CTRL);
eep_val = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_2);
switch (FIELD_GET(MT_EE_NIC_CONF_2_XTAL_OPTION, eep_val)) {
case 0:
mt76_wr(dev, MT_XO_CTRL7, 0x5c1fee80);
break;
case 1:
mt76_wr(dev, MT_XO_CTRL7, 0x5c1feed0);
break;
default:
break;
}
}
int mt76x2_mac_reset(struct mt76x02_dev *dev, bool hard)
{
const u8 *macaddr = dev->mphy.macaddr;
u32 val;
int i, k;
if (!mt76x02_wait_for_mac(&dev->mt76))
return -ETIMEDOUT;
val = mt76_rr(dev, MT_WPDMA_GLO_CFG);
val &= ~(MT_WPDMA_GLO_CFG_TX_DMA_EN |
MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
MT_WPDMA_GLO_CFG_RX_DMA_EN |
MT_WPDMA_GLO_CFG_RX_DMA_BUSY |
MT_WPDMA_GLO_CFG_DMA_BURST_SIZE);
val |= FIELD_PREP(MT_WPDMA_GLO_CFG_DMA_BURST_SIZE, 3);
mt76_wr(dev, MT_WPDMA_GLO_CFG, val);
mt76x2_mac_pbf_init(dev);
mt76_write_mac_initvals(dev);
mt76x2_fixup_xtal(dev);
mt76_clear(dev, MT_MAC_SYS_CTRL,
MT_MAC_SYS_CTRL_RESET_CSR |
MT_MAC_SYS_CTRL_RESET_BBP);
if (is_mt7612(dev))
mt76_clear(dev, MT_COEXCFG0, MT_COEXCFG0_COEX_EN);
mt76_set(dev, MT_EXT_CCA_CFG, 0x0000f000);
mt76_clear(dev, MT_TX_ALC_CFG_4, BIT(31));
mt76_wr(dev, MT_RF_BYPASS_0, 0x06000000);
mt76_wr(dev, MT_RF_SETTING_0, 0x08800000);
usleep_range(5000, 10000);
mt76_wr(dev, MT_RF_BYPASS_0, 0x00000000);
mt76_wr(dev, MT_MCU_CLOCK_CTL, 0x1401);
mt76_clear(dev, MT_FCE_L2_STUFF, MT_FCE_L2_STUFF_WR_MPDU_LEN_EN);
mt76x02_mac_setaddr(dev, macaddr);
mt76x02e_init_beacon_config(dev);
if (!hard)
return 0;
for (i = 0; i < 256 / 32; i++)
mt76_wr(dev, MT_WCID_DROP_BASE + i * 4, 0);
for (i = 0; i < 256; i++) {
mt76x02_mac_wcid_setup(dev, i, 0, NULL);
mt76_wr(dev, MT_WCID_TX_RATE(i), 0);
mt76_wr(dev, MT_WCID_TX_RATE(i) + 4, 0);
}
for (i = 0; i < MT_MAX_VIFS; i++)
mt76x02_mac_wcid_setup(dev, MT_VIF_WCID(i), i, NULL);
for (i = 0; i < 16; i++)
for (k = 0; k < 4; k++)
mt76x02_mac_shared_key_setup(dev, i, k, NULL);
for (i = 0; i < 16; i++)
mt76_rr(dev, MT_TX_STAT_FIFO);
mt76x02_set_tx_ackto(dev);
return 0;
}
static void
mt76x2_power_on_rf_patch(struct mt76x02_dev *dev)
{
mt76_set(dev, 0x10130, BIT(0) | BIT(16));
udelay(1);
mt76_clear(dev, 0x1001c, 0xff);
mt76_set(dev, 0x1001c, 0x30);
mt76_wr(dev, 0x10014, 0x484f);
udelay(1);
mt76_set(dev, 0x10130, BIT(17));
udelay(125);
mt76_clear(dev, 0x10130, BIT(16));
udelay(50);
mt76_set(dev, 0x1014c, BIT(19) | BIT(20));
}
static void
mt76x2_power_on_rf(struct mt76x02_dev *dev, int unit)
{
int shift = unit ? 8 : 0;
/* Enable RF BG */
mt76_set(dev, 0x10130, BIT(0) << shift);
udelay(10);
/* Enable RFDIG LDO/AFE/ABB/ADDA */
mt76_set(dev, 0x10130, (BIT(1) | BIT(3) | BIT(4) | BIT(5)) << shift);
udelay(10);
/* Switch RFDIG power to internal LDO */
mt76_clear(dev, 0x10130, BIT(2) << shift);
udelay(10);
mt76x2_power_on_rf_patch(dev);
mt76_set(dev, 0x530, 0xf);
}
static void
mt76x2_power_on(struct mt76x02_dev *dev)
{
u32 val;
/* Turn on WL MTCMOS */
mt76_set(dev, MT_WLAN_MTC_CTRL, MT_WLAN_MTC_CTRL_MTCMOS_PWR_UP);
val = MT_WLAN_MTC_CTRL_STATE_UP |
MT_WLAN_MTC_CTRL_PWR_ACK |
MT_WLAN_MTC_CTRL_PWR_ACK_S;
mt76_poll(dev, MT_WLAN_MTC_CTRL, val, val, 1000);
mt76_clear(dev, MT_WLAN_MTC_CTRL, 0x7f << 16);
udelay(10);
mt76_clear(dev, MT_WLAN_MTC_CTRL, 0xf << 24);
udelay(10);
mt76_set(dev, MT_WLAN_MTC_CTRL, 0xf << 24);
mt76_clear(dev, MT_WLAN_MTC_CTRL, 0xfff);
/* Turn on AD/DA power down */
mt76_clear(dev, 0x11204, BIT(3));
/* WLAN function enable */
mt76_set(dev, 0x10080, BIT(0));
/* Release BBP software reset */
mt76_clear(dev, 0x10064, BIT(18));
mt76x2_power_on_rf(dev, 0);
mt76x2_power_on_rf(dev, 1);
}
int mt76x2_resume_device(struct mt76x02_dev *dev)
{
int err;
mt76x02_dma_disable(dev);
mt76x2_reset_wlan(dev, true);
mt76x2_power_on(dev);
err = mt76x2_mac_reset(dev, true);
if (err)
return err;
mt76x02_mac_start(dev);
return mt76x2_mcu_init(dev);
}
static int mt76x2_init_hardware(struct mt76x02_dev *dev)
{
int ret;
mt76x02_dma_disable(dev);
mt76x2_reset_wlan(dev, true);
mt76x2_power_on(dev);
ret = mt76x2_eeprom_init(dev);
if (ret)
return ret;
ret = mt76x2_mac_reset(dev, true);
if (ret)
return ret;
dev->mt76.rxfilter = mt76_rr(dev, MT_RX_FILTR_CFG);
ret = mt76x02_dma_init(dev);
if (ret)
return ret;
set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state);
mt76x02_mac_start(dev);
ret = mt76x2_mcu_init(dev);
if (ret)
return ret;
mt76x2_mac_stop(dev, false);
return 0;
}
void mt76x2_stop_hardware(struct mt76x02_dev *dev)
{
cancel_delayed_work_sync(&dev->cal_work);
cancel_delayed_work_sync(&dev->mphy.mac_work);
cancel_delayed_work_sync(&dev->wdt_work);
clear_bit(MT76_RESTART, &dev->mphy.state);
mt76x02_mcu_set_radio_state(dev, false);
mt76x2_mac_stop(dev, false);
}
void mt76x2_cleanup(struct mt76x02_dev *dev)
{
tasklet_disable(&dev->dfs_pd.dfs_tasklet);
tasklet_disable(&dev->mt76.pre_tbtt_tasklet);
mt76x2_stop_hardware(dev);
mt76_dma_cleanup(&dev->mt76);
mt76x02_mcu_cleanup(dev);
}
int mt76x2_register_device(struct mt76x02_dev *dev)
{
int ret;
INIT_DELAYED_WORK(&dev->cal_work, mt76x2_phy_calibrate);
ret = mt76x02_init_device(dev);
if (ret)
return ret;
ret = mt76x2_init_hardware(dev);
if (ret)
return ret;
mt76x02_config_mac_addr_list(dev);
ret = mt76_register_device(&dev->mt76, true, mt76x02_rates,
ARRAY_SIZE(mt76x02_rates));
if (ret)
goto fail;
mt76x02_init_debugfs(dev);
mt76x2_init_txpower(dev, &dev->mphy.sband_2g.sband);
mt76x2_init_txpower(dev, &dev->mphy.sband_5g.sband);
return 0;
fail:
mt76x2_stop_hardware(dev);
return ret;
}

View File

@ -0,0 +1,164 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#include "mt76x2.h"
#include "../mt76x02_mac.h"
static int
mt76x2_start(struct ieee80211_hw *hw)
{
struct mt76x02_dev *dev = hw->priv;
mt76x02_mac_start(dev);
mt76x2_phy_start(dev);
ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work,
MT_MAC_WORK_INTERVAL);
ieee80211_queue_delayed_work(mt76_hw(dev), &dev->wdt_work,
MT_WATCHDOG_TIME);
set_bit(MT76_STATE_RUNNING, &dev->mphy.state);
return 0;
}
static void
mt76x2_stop(struct ieee80211_hw *hw)
{
struct mt76x02_dev *dev = hw->priv;
clear_bit(MT76_STATE_RUNNING, &dev->mphy.state);
mt76x2_stop_hardware(dev);
}
static void
mt76x2_set_channel(struct mt76x02_dev *dev, struct cfg80211_chan_def *chandef)
{
cancel_delayed_work_sync(&dev->cal_work);
tasklet_disable(&dev->mt76.pre_tbtt_tasklet);
tasklet_disable(&dev->dfs_pd.dfs_tasklet);
mutex_lock(&dev->mt76.mutex);
set_bit(MT76_RESET, &dev->mphy.state);
mt76_set_channel(&dev->mphy);
mt76x2_mac_stop(dev, true);
mt76x2_phy_set_channel(dev, chandef);
mt76x02_mac_cc_reset(dev);
mt76x02_dfs_init_params(dev);
mt76x2_mac_resume(dev);
clear_bit(MT76_RESET, &dev->mphy.state);
mutex_unlock(&dev->mt76.mutex);
tasklet_enable(&dev->dfs_pd.dfs_tasklet);
tasklet_enable(&dev->mt76.pre_tbtt_tasklet);
mt76_txq_schedule_all(&dev->mphy);
}
static int
mt76x2_config(struct ieee80211_hw *hw, u32 changed)
{
struct mt76x02_dev *dev = hw->priv;
mutex_lock(&dev->mt76.mutex);
if (changed & IEEE80211_CONF_CHANGE_MONITOR) {
if (!(hw->conf.flags & IEEE80211_CONF_MONITOR))
dev->mt76.rxfilter |= MT_RX_FILTR_CFG_PROMISC;
else
dev->mt76.rxfilter &= ~MT_RX_FILTR_CFG_PROMISC;
mt76_wr(dev, MT_RX_FILTR_CFG, dev->mt76.rxfilter);
}
if (changed & IEEE80211_CONF_CHANGE_POWER) {
struct mt76_phy *mphy = &dev->mphy;
dev->txpower_conf = hw->conf.power_level * 2;
dev->txpower_conf = mt76_get_sar_power(mphy,
mphy->chandef.chan,
dev->txpower_conf);
/* convert to per-chain power for 2x2 devices */
dev->txpower_conf -= 6;
if (test_bit(MT76_STATE_RUNNING, &dev->mphy.state)) {
mt76x2_phy_set_txpower(dev);
mt76x02_tx_set_txpwr_auto(dev, dev->txpower_conf);
}
}
mutex_unlock(&dev->mt76.mutex);
if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
ieee80211_stop_queues(hw);
mt76x2_set_channel(dev, &hw->conf.chandef);
ieee80211_wake_queues(hw);
}
return 0;
}
static void
mt76x2_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
u32 queues, bool drop)
{
}
static int mt76x2_set_antenna(struct ieee80211_hw *hw, u32 tx_ant,
u32 rx_ant)
{
struct mt76x02_dev *dev = hw->priv;
if (!tx_ant || tx_ant > 3 || tx_ant != rx_ant)
return -EINVAL;
mutex_lock(&dev->mt76.mutex);
dev->mphy.chainmask = (tx_ant == 3) ? 0x202 : 0x101;
dev->mphy.antenna_mask = tx_ant;
mt76_set_stream_caps(&dev->mphy, true);
mt76x2_phy_set_antenna(dev);
mutex_unlock(&dev->mt76.mutex);
return 0;
}
const struct ieee80211_ops mt76x2_ops = {
.tx = mt76x02_tx,
.start = mt76x2_start,
.stop = mt76x2_stop,
.add_interface = mt76x02_add_interface,
.remove_interface = mt76x02_remove_interface,
.config = mt76x2_config,
.configure_filter = mt76x02_configure_filter,
.bss_info_changed = mt76x02_bss_info_changed,
.sta_state = mt76_sta_state,
.sta_pre_rcu_remove = mt76_sta_pre_rcu_remove,
.set_key = mt76x02_set_key,
.conf_tx = mt76x02_conf_tx,
.sw_scan_start = mt76_sw_scan,
.sw_scan_complete = mt76x02_sw_scan_complete,
.flush = mt76x2_flush,
.ampdu_action = mt76x02_ampdu_action,
.get_txpower = mt76_get_txpower,
.wake_tx_queue = mt76_wake_tx_queue,
.sta_rate_tbl_update = mt76x02_sta_rate_tbl_update,
.release_buffered_frames = mt76_release_buffered_frames,
.set_coverage_class = mt76x02_set_coverage_class,
.get_survey = mt76_get_survey,
.set_tim = mt76_set_tim,
.set_antenna = mt76x2_set_antenna,
.get_antenna = mt76_get_antenna,
.set_rts_threshold = mt76x02_set_rts_threshold,
.reconfig_complete = mt76x02_reconfig_complete,
.set_sar_specs = mt76x2_set_sar_specs,
};

View File

@ -0,0 +1,198 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#include <linux/kernel.h>
#include <linux/firmware.h>
#include <linux/delay.h>
#include "mt76x2.h"
#include "mcu.h"
#include "eeprom.h"
static int
mt76pci_load_rom_patch(struct mt76x02_dev *dev)
{
const struct firmware *fw = NULL;
struct mt76x02_patch_header *hdr;
bool rom_protect = !is_mt7612(dev);
int len, ret = 0;
__le32 *cur;
u32 patch_mask, patch_reg;
if (rom_protect && !mt76_poll(dev, MT_MCU_SEMAPHORE_03, 1, 1, 600)) {
dev_err(dev->mt76.dev,
"Could not get hardware semaphore for ROM PATCH\n");
return -ETIMEDOUT;
}
if (mt76xx_rev(dev) >= MT76XX_REV_E3) {
patch_mask = BIT(0);
patch_reg = MT_MCU_CLOCK_CTL;
} else {
patch_mask = BIT(1);
patch_reg = MT_MCU_COM_REG0;
}
if (rom_protect && (mt76_rr(dev, patch_reg) & patch_mask)) {
dev_info(dev->mt76.dev, "ROM patch already applied\n");
goto out;
}
ret = request_firmware(&fw, MT7662_ROM_PATCH, dev->mt76.dev);
if (ret)
goto out;
if (!fw || !fw->data || fw->size <= sizeof(*hdr)) {
ret = -EIO;
dev_err(dev->mt76.dev, "Failed to load firmware\n");
goto out;
}
hdr = (struct mt76x02_patch_header *)fw->data;
dev_info(dev->mt76.dev, "ROM patch build: %.15s\n", hdr->build_time);
mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, MT_MCU_ROM_PATCH_OFFSET);
cur = (__le32 *)(fw->data + sizeof(*hdr));
len = fw->size - sizeof(*hdr);
mt76_wr_copy(dev, MT_MCU_ROM_PATCH_ADDR, cur, len);
mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, 0);
/* Trigger ROM */
mt76_wr(dev, MT_MCU_INT_LEVEL, 4);
if (!mt76_poll_msec(dev, patch_reg, patch_mask, patch_mask, 2000)) {
dev_err(dev->mt76.dev, "Failed to load ROM patch\n");
ret = -ETIMEDOUT;
}
out:
/* release semaphore */
if (rom_protect)
mt76_wr(dev, MT_MCU_SEMAPHORE_03, 1);
release_firmware(fw);
return ret;
}
static int
mt76pci_load_firmware(struct mt76x02_dev *dev)
{
const struct firmware *fw;
const struct mt76x02_fw_header *hdr;
int len, ret;
__le32 *cur;
u32 offset, val;
ret = request_firmware(&fw, MT7662_FIRMWARE, dev->mt76.dev);
if (ret)
return ret;
if (!fw || !fw->data || fw->size < sizeof(*hdr))
goto error;
hdr = (const struct mt76x02_fw_header *)fw->data;
len = sizeof(*hdr);
len += le32_to_cpu(hdr->ilm_len);
len += le32_to_cpu(hdr->dlm_len);
if (fw->size != len)
goto error;
val = le16_to_cpu(hdr->fw_ver);
dev_info(dev->mt76.dev, "Firmware Version: %d.%d.%02d\n",
(val >> 12) & 0xf, (val >> 8) & 0xf, val & 0xf);
val = le16_to_cpu(hdr->build_ver);
dev_info(dev->mt76.dev, "Build: %x\n", val);
dev_info(dev->mt76.dev, "Build Time: %.16s\n", hdr->build_time);
cur = (__le32 *)(fw->data + sizeof(*hdr));
len = le32_to_cpu(hdr->ilm_len);
mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, MT_MCU_ILM_OFFSET);
mt76_wr_copy(dev, MT_MCU_ILM_ADDR, cur, len);
cur += len / sizeof(*cur);
len = le32_to_cpu(hdr->dlm_len);
if (mt76xx_rev(dev) >= MT76XX_REV_E3)
offset = MT_MCU_DLM_ADDR_E3;
else
offset = MT_MCU_DLM_ADDR;
mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, MT_MCU_DLM_OFFSET);
mt76_wr_copy(dev, offset, cur, len);
mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, 0);
val = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_2);
if (FIELD_GET(MT_EE_NIC_CONF_2_XTAL_OPTION, val) == 1)
mt76_set(dev, MT_MCU_COM_REG0, BIT(30));
/* trigger firmware */
mt76_wr(dev, MT_MCU_INT_LEVEL, 2);
if (!mt76_poll_msec(dev, MT_MCU_COM_REG0, 1, 1, 200)) {
dev_err(dev->mt76.dev, "Firmware failed to start\n");
release_firmware(fw);
return -ETIMEDOUT;
}
mt76x02_set_ethtool_fwver(dev, hdr);
dev_info(dev->mt76.dev, "Firmware running!\n");
release_firmware(fw);
return ret;
error:
dev_err(dev->mt76.dev, "Invalid firmware\n");
release_firmware(fw);
return -ENOENT;
}
static int
mt76pci_mcu_restart(struct mt76_dev *mdev)
{
struct mt76x02_dev *dev;
int ret;
dev = container_of(mdev, struct mt76x02_dev, mt76);
mt76x02_mcu_cleanup(dev);
mt76x2_mac_reset(dev, true);
ret = mt76pci_load_firmware(dev);
if (ret)
return ret;
mt76_wr(dev, MT_WPDMA_RST_IDX, ~0);
return 0;
}
int mt76x2_mcu_init(struct mt76x02_dev *dev)
{
static const struct mt76_mcu_ops mt76x2_mcu_ops = {
.mcu_restart = mt76pci_mcu_restart,
.mcu_send_msg = mt76x02_mcu_msg_send,
.mcu_parse_response = mt76x02_mcu_parse_response,
};
int ret;
dev->mt76.mcu_ops = &mt76x2_mcu_ops;
ret = mt76pci_load_rom_patch(dev);
if (ret)
return ret;
ret = mt76pci_load_firmware(dev);
if (ret)
return ret;
mt76x02_mcu_function_select(dev, Q_SELECT, 1);
return 0;
}

View File

@ -0,0 +1,311 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#include <linux/delay.h>
#include "mt76x2.h"
#include "mcu.h"
#include "eeprom.h"
#include "../mt76x02_phy.h"
static bool
mt76x2_phy_tssi_init_cal(struct mt76x02_dev *dev)
{
struct ieee80211_channel *chan = dev->mphy.chandef.chan;
u32 flag = 0;
if (!mt76x2_tssi_enabled(dev))
return false;
if (mt76x2_channel_silent(dev))
return false;
if (chan->band == NL80211_BAND_5GHZ)
flag |= BIT(0);
if (mt76x02_ext_pa_enabled(dev, chan->band))
flag |= BIT(8);
mt76x02_mcu_calibrate(dev, MCU_CAL_TSSI, flag);
dev->cal.tssi_cal_done = true;
return true;
}
static void
mt76x2_phy_channel_calibrate(struct mt76x02_dev *dev, bool mac_stopped)
{
struct ieee80211_channel *chan = dev->mphy.chandef.chan;
bool is_5ghz = chan->band == NL80211_BAND_5GHZ;
if (dev->cal.channel_cal_done)
return;
if (mt76x2_channel_silent(dev))
return;
if (!dev->cal.tssi_cal_done)
mt76x2_phy_tssi_init_cal(dev);
if (!mac_stopped)
mt76x2_mac_stop(dev, false);
if (is_5ghz)
mt76x02_mcu_calibrate(dev, MCU_CAL_LC, 0);
mt76x02_mcu_calibrate(dev, MCU_CAL_TX_LOFT, is_5ghz);
mt76x02_mcu_calibrate(dev, MCU_CAL_TXIQ, is_5ghz);
mt76x02_mcu_calibrate(dev, MCU_CAL_RXIQC_FI, is_5ghz);
mt76x02_mcu_calibrate(dev, MCU_CAL_TEMP_SENSOR, 0);
mt76x02_mcu_calibrate(dev, MCU_CAL_TX_SHAPING, 0);
if (!mac_stopped)
mt76x2_mac_resume(dev);
mt76x2_apply_gain_adj(dev);
mt76x02_edcca_init(dev);
dev->cal.channel_cal_done = true;
}
void mt76x2_phy_set_antenna(struct mt76x02_dev *dev)
{
u32 val;
val = mt76_rr(dev, MT_BBP(AGC, 0));
val &= ~(BIT(4) | BIT(1));
switch (dev->mphy.antenna_mask) {
case 1:
/* disable mac DAC control */
mt76_clear(dev, MT_BBP(IBI, 9), BIT(11));
mt76_clear(dev, MT_BBP(TXBE, 5), 3);
mt76_rmw_field(dev, MT_TX_PIN_CFG, MT_TX_PIN_CFG_TXANT, 0x3);
mt76_rmw_field(dev, MT_BBP(CORE, 32), GENMASK(21, 20), 2);
/* disable DAC 1 */
mt76_rmw_field(dev, MT_BBP(CORE, 33), GENMASK(12, 9), 4);
val &= ~(BIT(3) | BIT(0));
break;
case 2:
/* disable mac DAC control */
mt76_clear(dev, MT_BBP(IBI, 9), BIT(11));
mt76_rmw_field(dev, MT_BBP(TXBE, 5), 3, 1);
mt76_rmw_field(dev, MT_TX_PIN_CFG, MT_TX_PIN_CFG_TXANT, 0xc);
mt76_rmw_field(dev, MT_BBP(CORE, 32), GENMASK(21, 20), 1);
/* disable DAC 0 */
mt76_rmw_field(dev, MT_BBP(CORE, 33), GENMASK(12, 9), 1);
val &= ~BIT(3);
val |= BIT(0);
break;
case 3:
default:
/* enable mac DAC control */
mt76_set(dev, MT_BBP(IBI, 9), BIT(11));
mt76_set(dev, MT_BBP(TXBE, 5), 3);
mt76_rmw_field(dev, MT_TX_PIN_CFG, MT_TX_PIN_CFG_TXANT, 0xf);
mt76_clear(dev, MT_BBP(CORE, 32), GENMASK(21, 20));
mt76_clear(dev, MT_BBP(CORE, 33), GENMASK(12, 9));
val &= ~BIT(0);
val |= BIT(3);
break;
}
mt76_wr(dev, MT_BBP(AGC, 0), val);
}
int mt76x2_phy_set_channel(struct mt76x02_dev *dev,
struct cfg80211_chan_def *chandef)
{
struct ieee80211_channel *chan = chandef->chan;
bool scan = test_bit(MT76_SCANNING, &dev->mphy.state);
enum nl80211_band band = chan->band;
u8 channel;
u32 ext_cca_chan[4] = {
[0] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(0)),
[1] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(1)),
[2] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(2)),
[3] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(3)),
};
int ch_group_index;
u8 bw, bw_index;
int freq, freq1;
int ret;
dev->cal.channel_cal_done = false;
freq = chandef->chan->center_freq;
freq1 = chandef->center_freq1;
channel = chan->hw_value;
switch (chandef->width) {
case NL80211_CHAN_WIDTH_40:
bw = 1;
if (freq1 > freq) {
bw_index = 1;
ch_group_index = 0;
} else {
bw_index = 3;
ch_group_index = 1;
}
channel += 2 - ch_group_index * 4;
break;
case NL80211_CHAN_WIDTH_80:
ch_group_index = (freq - freq1 + 30) / 20;
if (WARN_ON(ch_group_index < 0 || ch_group_index > 3))
ch_group_index = 0;
bw = 2;
bw_index = ch_group_index;
channel += 6 - ch_group_index * 4;
break;
default:
bw = 0;
bw_index = 0;
ch_group_index = 0;
break;
}
mt76x2_read_rx_gain(dev);
mt76x2_phy_set_txpower_regs(dev, band);
mt76x2_configure_tx_delay(dev, band, bw);
mt76x2_phy_set_txpower(dev);
mt76x02_phy_set_band(dev, chan->band, ch_group_index & 1);
mt76x02_phy_set_bw(dev, chandef->width, ch_group_index);
mt76_rmw(dev, MT_EXT_CCA_CFG,
(MT_EXT_CCA_CFG_CCA0 |
MT_EXT_CCA_CFG_CCA1 |
MT_EXT_CCA_CFG_CCA2 |
MT_EXT_CCA_CFG_CCA3 |
MT_EXT_CCA_CFG_CCA_MASK),
ext_cca_chan[ch_group_index]);
ret = mt76x2_mcu_set_channel(dev, channel, bw, bw_index, scan);
if (ret)
return ret;
mt76x2_mcu_init_gain(dev, channel, dev->cal.rx.mcu_gain, true);
mt76x2_phy_set_antenna(dev);
/* Enable LDPC Rx */
if (mt76xx_rev(dev) >= MT76XX_REV_E3)
mt76_set(dev, MT_BBP(RXO, 13), BIT(10));
if (!dev->cal.init_cal_done) {
u8 val = mt76x02_eeprom_get(dev, MT_EE_BT_RCAL_RESULT);
if (val != 0xff)
mt76x02_mcu_calibrate(dev, MCU_CAL_R, 0);
}
mt76x02_mcu_calibrate(dev, MCU_CAL_RXDCOC, channel);
/* Rx LPF calibration */
if (!dev->cal.init_cal_done)
mt76x02_mcu_calibrate(dev, MCU_CAL_RC, 0);
dev->cal.init_cal_done = true;
mt76_wr(dev, MT_BBP(AGC, 61), 0xFF64A4E2);
mt76_wr(dev, MT_BBP(AGC, 7), 0x08081010);
mt76_wr(dev, MT_BBP(AGC, 11), 0x00000404);
mt76_wr(dev, MT_BBP(AGC, 2), 0x00007070);
mt76_wr(dev, MT_TXOP_CTRL_CFG, 0x04101B3F);
if (scan)
return 0;
mt76x2_phy_channel_calibrate(dev, true);
mt76x02_init_agc_gain(dev);
/* init default values for temp compensation */
if (mt76x2_tssi_enabled(dev)) {
mt76_rmw_field(dev, MT_TX_ALC_CFG_1, MT_TX_ALC_CFG_1_TEMP_COMP,
0x38);
mt76_rmw_field(dev, MT_TX_ALC_CFG_2, MT_TX_ALC_CFG_2_TEMP_COMP,
0x38);
}
ieee80211_queue_delayed_work(mt76_hw(dev), &dev->cal_work,
MT_CALIBRATE_INTERVAL);
return 0;
}
static void
mt76x2_phy_temp_compensate(struct mt76x02_dev *dev)
{
struct mt76x2_temp_comp t;
int temp, db_diff;
if (mt76x2_get_temp_comp(dev, &t))
return;
temp = mt76_get_field(dev, MT_TEMP_SENSOR, MT_TEMP_SENSOR_VAL);
temp -= t.temp_25_ref;
temp = (temp * 1789) / 1000 + 25;
dev->cal.temp = temp;
if (temp > 25)
db_diff = (temp - 25) / t.high_slope;
else
db_diff = (25 - temp) / t.low_slope;
db_diff = min(db_diff, t.upper_bound);
db_diff = max(db_diff, t.lower_bound);
mt76_rmw_field(dev, MT_TX_ALC_CFG_1, MT_TX_ALC_CFG_1_TEMP_COMP,
db_diff * 2);
mt76_rmw_field(dev, MT_TX_ALC_CFG_2, MT_TX_ALC_CFG_2_TEMP_COMP,
db_diff * 2);
}
void mt76x2_phy_calibrate(struct work_struct *work)
{
struct mt76x02_dev *dev;
dev = container_of(work, struct mt76x02_dev, cal_work.work);
mutex_lock(&dev->mt76.mutex);
mt76x2_phy_channel_calibrate(dev, false);
mt76x2_phy_tssi_compensate(dev);
mt76x2_phy_temp_compensate(dev);
mt76x2_phy_update_channel_gain(dev);
mutex_unlock(&dev->mt76.mutex);
ieee80211_queue_delayed_work(mt76_hw(dev), &dev->cal_work,
MT_CALIBRATE_INTERVAL);
}
int mt76x2_phy_start(struct mt76x02_dev *dev)
{
int ret;
ret = mt76x02_mcu_set_radio_state(dev, true);
if (ret)
return ret;
mt76x2_mcu_load_cr(dev, MT_RF_BBP_CR, 0, 0);
return ret;
}

View File

@ -0,0 +1,349 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include "mt76x2.h"
#include "eeprom.h"
#include "mcu.h"
#include "../mt76x02_phy.h"
static void
mt76x2_adjust_high_lna_gain(struct mt76x02_dev *dev, int reg, s8 offset)
{
s8 gain;
gain = FIELD_GET(MT_BBP_AGC_LNA_HIGH_GAIN,
mt76_rr(dev, MT_BBP(AGC, reg)));
gain -= offset / 2;
mt76_rmw_field(dev, MT_BBP(AGC, reg), MT_BBP_AGC_LNA_HIGH_GAIN, gain);
}
static void
mt76x2_adjust_agc_gain(struct mt76x02_dev *dev, int reg, s8 offset)
{
s8 gain;
gain = FIELD_GET(MT_BBP_AGC_GAIN, mt76_rr(dev, MT_BBP(AGC, reg)));
gain += offset;
mt76_rmw_field(dev, MT_BBP(AGC, reg), MT_BBP_AGC_GAIN, gain);
}
void mt76x2_apply_gain_adj(struct mt76x02_dev *dev)
{
s8 *gain_adj = dev->cal.rx.high_gain;
mt76x2_adjust_high_lna_gain(dev, 4, gain_adj[0]);
mt76x2_adjust_high_lna_gain(dev, 5, gain_adj[1]);
mt76x2_adjust_agc_gain(dev, 8, gain_adj[0]);
mt76x2_adjust_agc_gain(dev, 9, gain_adj[1]);
}
EXPORT_SYMBOL_GPL(mt76x2_apply_gain_adj);
void mt76x2_phy_set_txpower_regs(struct mt76x02_dev *dev,
enum nl80211_band band)
{
u32 pa_mode[2];
u32 pa_mode_adj;
if (band == NL80211_BAND_2GHZ) {
pa_mode[0] = 0x010055ff;
pa_mode[1] = 0x00550055;
mt76_wr(dev, MT_TX_ALC_CFG_2, 0x35160a00);
mt76_wr(dev, MT_TX_ALC_CFG_3, 0x35160a06);
if (mt76x02_ext_pa_enabled(dev, band)) {
mt76_wr(dev, MT_RF_PA_MODE_ADJ0, 0x0000ec00);
mt76_wr(dev, MT_RF_PA_MODE_ADJ1, 0x0000ec00);
} else {
mt76_wr(dev, MT_RF_PA_MODE_ADJ0, 0xf4000200);
mt76_wr(dev, MT_RF_PA_MODE_ADJ1, 0xfa000200);
}
} else {
pa_mode[0] = 0x0000ffff;
pa_mode[1] = 0x00ff00ff;
if (mt76x02_ext_pa_enabled(dev, band)) {
mt76_wr(dev, MT_TX_ALC_CFG_2, 0x2f0f0400);
mt76_wr(dev, MT_TX_ALC_CFG_3, 0x2f0f0476);
} else {
mt76_wr(dev, MT_TX_ALC_CFG_2, 0x1b0f0400);
mt76_wr(dev, MT_TX_ALC_CFG_3, 0x1b0f0476);
}
if (mt76x02_ext_pa_enabled(dev, band))
pa_mode_adj = 0x04000000;
else
pa_mode_adj = 0;
mt76_wr(dev, MT_RF_PA_MODE_ADJ0, pa_mode_adj);
mt76_wr(dev, MT_RF_PA_MODE_ADJ1, pa_mode_adj);
}
mt76_wr(dev, MT_BB_PA_MODE_CFG0, pa_mode[0]);
mt76_wr(dev, MT_BB_PA_MODE_CFG1, pa_mode[1]);
mt76_wr(dev, MT_RF_PA_MODE_CFG0, pa_mode[0]);
mt76_wr(dev, MT_RF_PA_MODE_CFG1, pa_mode[1]);
if (mt76x02_ext_pa_enabled(dev, band)) {
u32 val;
if (band == NL80211_BAND_2GHZ)
val = 0x3c3c023c;
else
val = 0x363c023c;
mt76_wr(dev, MT_TX0_RF_GAIN_CORR, val);
mt76_wr(dev, MT_TX1_RF_GAIN_CORR, val);
mt76_wr(dev, MT_TX_ALC_CFG_4, 0x00001818);
} else {
if (band == NL80211_BAND_2GHZ) {
u32 val = 0x0f3c3c3c;
mt76_wr(dev, MT_TX0_RF_GAIN_CORR, val);
mt76_wr(dev, MT_TX1_RF_GAIN_CORR, val);
mt76_wr(dev, MT_TX_ALC_CFG_4, 0x00000606);
} else {
mt76_wr(dev, MT_TX0_RF_GAIN_CORR, 0x383c023c);
mt76_wr(dev, MT_TX1_RF_GAIN_CORR, 0x24282e28);
mt76_wr(dev, MT_TX_ALC_CFG_4, 0);
}
}
}
EXPORT_SYMBOL_GPL(mt76x2_phy_set_txpower_regs);
static int
mt76x2_get_min_rate_power(struct mt76_rate_power *r)
{
int i;
s8 ret = 0;
for (i = 0; i < sizeof(r->all); i++) {
if (!r->all[i])
continue;
if (ret)
ret = min(ret, r->all[i]);
else
ret = r->all[i];
}
return ret;
}
void mt76x2_phy_set_txpower(struct mt76x02_dev *dev)
{
enum nl80211_chan_width width = dev->mphy.chandef.width;
struct ieee80211_channel *chan = dev->mphy.chandef.chan;
struct mt76x2_tx_power_info txp;
int txp_0, txp_1, delta = 0;
struct mt76_rate_power t = {};
int base_power, gain;
mt76x2_get_power_info(dev, &txp, chan);
if (width == NL80211_CHAN_WIDTH_40)
delta = txp.delta_bw40;
else if (width == NL80211_CHAN_WIDTH_80)
delta = txp.delta_bw80;
mt76x2_get_rate_power(dev, &t, chan);
mt76x02_add_rate_power_offset(&t, txp.target_power + delta);
mt76x02_limit_rate_power(&t, dev->txpower_conf);
dev->mphy.txpower_cur = mt76x02_get_max_rate_power(&t);
base_power = mt76x2_get_min_rate_power(&t);
delta = base_power - txp.target_power;
txp_0 = txp.chain[0].target_power + txp.chain[0].delta + delta;
txp_1 = txp.chain[1].target_power + txp.chain[1].delta + delta;
gain = min(txp_0, txp_1);
if (gain < 0) {
base_power -= gain;
txp_0 -= gain;
txp_1 -= gain;
} else if (gain > 0x2f) {
base_power -= gain - 0x2f;
txp_0 = 0x2f;
txp_1 = 0x2f;
}
mt76x02_add_rate_power_offset(&t, -base_power);
dev->target_power = txp.target_power;
dev->target_power_delta[0] = txp_0 - txp.chain[0].target_power;
dev->target_power_delta[1] = txp_1 - txp.chain[0].target_power;
dev->mt76.rate_power = t;
mt76x02_phy_set_txpower(dev, txp_0, txp_1);
}
EXPORT_SYMBOL_GPL(mt76x2_phy_set_txpower);
void mt76x2_configure_tx_delay(struct mt76x02_dev *dev,
enum nl80211_band band, u8 bw)
{
u32 cfg0, cfg1;
if (mt76x02_ext_pa_enabled(dev, band)) {
cfg0 = bw ? 0x000b0c01 : 0x00101101;
cfg1 = 0x00011414;
} else {
cfg0 = bw ? 0x000b0b01 : 0x00101001;
cfg1 = 0x00021414;
}
mt76_wr(dev, MT_TX_SW_CFG0, cfg0);
mt76_wr(dev, MT_TX_SW_CFG1, cfg1);
mt76_rmw_field(dev, MT_XIFS_TIME_CFG, MT_XIFS_TIME_CFG_OFDM_SIFS, 15);
}
EXPORT_SYMBOL_GPL(mt76x2_configure_tx_delay);
void mt76x2_phy_tssi_compensate(struct mt76x02_dev *dev)
{
struct ieee80211_channel *chan = dev->mphy.chandef.chan;
struct mt76x2_tx_power_info txp;
struct mt76x2_tssi_comp t = {};
if (!dev->cal.tssi_cal_done)
return;
if (!dev->cal.tssi_comp_pending) {
/* TSSI trigger */
t.cal_mode = BIT(0);
mt76x2_mcu_tssi_comp(dev, &t);
dev->cal.tssi_comp_pending = true;
} else {
if (mt76_rr(dev, MT_BBP(CORE, 34)) & BIT(4))
return;
dev->cal.tssi_comp_pending = false;
mt76x2_get_power_info(dev, &txp, chan);
if (mt76x02_ext_pa_enabled(dev, chan->band))
t.pa_mode = 1;
t.cal_mode = BIT(1);
t.slope0 = txp.chain[0].tssi_slope;
t.offset0 = txp.chain[0].tssi_offset;
t.slope1 = txp.chain[1].tssi_slope;
t.offset1 = txp.chain[1].tssi_offset;
mt76x2_mcu_tssi_comp(dev, &t);
if (t.pa_mode || dev->cal.dpd_cal_done || dev->ed_tx_blocked)
return;
usleep_range(10000, 20000);
mt76x02_mcu_calibrate(dev, MCU_CAL_DPD, chan->hw_value);
dev->cal.dpd_cal_done = true;
}
}
EXPORT_SYMBOL_GPL(mt76x2_phy_tssi_compensate);
static void
mt76x2_phy_set_gain_val(struct mt76x02_dev *dev)
{
u32 val;
u8 gain_val[2];
gain_val[0] = dev->cal.agc_gain_cur[0] - dev->cal.agc_gain_adjust;
gain_val[1] = dev->cal.agc_gain_cur[1] - dev->cal.agc_gain_adjust;
val = 0x1836 << 16;
if (!mt76x2_has_ext_lna(dev) &&
dev->mphy.chandef.width >= NL80211_CHAN_WIDTH_40)
val = 0x1e42 << 16;
if (mt76x2_has_ext_lna(dev) &&
dev->mphy.chandef.chan->band == NL80211_BAND_2GHZ &&
dev->mphy.chandef.width < NL80211_CHAN_WIDTH_40)
val = 0x0f36 << 16;
val |= 0xf8;
mt76_wr(dev, MT_BBP(AGC, 8),
val | FIELD_PREP(MT_BBP_AGC_GAIN, gain_val[0]));
mt76_wr(dev, MT_BBP(AGC, 9),
val | FIELD_PREP(MT_BBP_AGC_GAIN, gain_val[1]));
if (dev->mphy.chandef.chan->flags & IEEE80211_CHAN_RADAR)
mt76x02_phy_dfs_adjust_agc(dev);
}
void mt76x2_phy_update_channel_gain(struct mt76x02_dev *dev)
{
u8 *gain = dev->cal.agc_gain_init;
u8 low_gain_delta, gain_delta;
u32 agc_35, agc_37;
bool gain_change;
int low_gain;
u32 val;
dev->cal.avg_rssi_all = mt76_get_min_avg_rssi(&dev->mt76, false);
if (!dev->cal.avg_rssi_all)
dev->cal.avg_rssi_all = -75;
low_gain = (dev->cal.avg_rssi_all > mt76x02_get_rssi_gain_thresh(dev)) +
(dev->cal.avg_rssi_all > mt76x02_get_low_rssi_gain_thresh(dev));
gain_change = dev->cal.low_gain < 0 ||
(dev->cal.low_gain & 2) ^ (low_gain & 2);
dev->cal.low_gain = low_gain;
if (!gain_change) {
if (mt76x02_phy_adjust_vga_gain(dev))
mt76x2_phy_set_gain_val(dev);
return;
}
if (dev->mphy.chandef.width == NL80211_CHAN_WIDTH_80) {
mt76_wr(dev, MT_BBP(RXO, 14), 0x00560211);
val = mt76_rr(dev, MT_BBP(AGC, 26)) & ~0xf;
if (low_gain == 2)
val |= 0x3;
else
val |= 0x5;
mt76_wr(dev, MT_BBP(AGC, 26), val);
} else {
mt76_wr(dev, MT_BBP(RXO, 14), 0x00560423);
}
if (mt76x2_has_ext_lna(dev))
low_gain_delta = 10;
else
low_gain_delta = 14;
agc_37 = 0x2121262c;
if (dev->mphy.chandef.chan->band == NL80211_BAND_2GHZ)
agc_35 = 0x11111516;
else if (low_gain == 2)
agc_35 = agc_37 = 0x08080808;
else if (dev->mphy.chandef.width == NL80211_CHAN_WIDTH_80)
agc_35 = 0x10101014;
else
agc_35 = 0x11111116;
if (low_gain == 2) {
mt76_wr(dev, MT_BBP(RXO, 18), 0xf000a990);
mt76_wr(dev, MT_BBP(AGC, 35), 0x08080808);
mt76_wr(dev, MT_BBP(AGC, 37), 0x08080808);
gain_delta = low_gain_delta;
dev->cal.agc_gain_adjust = 0;
} else {
mt76_wr(dev, MT_BBP(RXO, 18), 0xf000a991);
gain_delta = 0;
dev->cal.agc_gain_adjust = low_gain_delta;
}
mt76_wr(dev, MT_BBP(AGC, 35), agc_35);
mt76_wr(dev, MT_BBP(AGC, 37), agc_37);
dev->cal.agc_gain_cur[0] = gain[0] - gain_delta;
dev->cal.agc_gain_cur[1] = gain[1] - gain_delta;
mt76x2_phy_set_gain_val(dev);
/* clear false CCA counters */
mt76_rr(dev, MT_RX_STAT_1);
}
EXPORT_SYMBOL_GPL(mt76x2_phy_update_channel_gain);

View File

@ -0,0 +1,150 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include "../mt76x02_usb.h"
#include "mt76x2u.h"
static const struct usb_device_id mt76x2u_device_table[] = {
{ USB_DEVICE(0x0b05, 0x1833) }, /* Asus USB-AC54 */
{ USB_DEVICE(0x0b05, 0x17eb) }, /* Asus USB-AC55 */
{ USB_DEVICE(0x0b05, 0x180b) }, /* Asus USB-N53 B1 */
{ USB_DEVICE(0x0e8d, 0x7612) }, /* Aukey USBAC1200 - Alfa AWUS036ACM */
{ USB_DEVICE(0x057c, 0x8503) }, /* Avm FRITZ!WLAN AC860 */
{ USB_DEVICE(0x7392, 0xb711) }, /* Edimax EW 7722 UAC */
{ USB_DEVICE(0x0e8d, 0x7632) }, /* HC-M7662BU1 */
{ USB_DEVICE(0x2c4e, 0x0103) }, /* Mercury UD13 */
{ USB_DEVICE(0x0846, 0x9053) }, /* Netgear A6210 */
{ USB_DEVICE(0x045e, 0x02e6) }, /* XBox One Wireless Adapter */
{ USB_DEVICE(0x045e, 0x02fe) }, /* XBox One Wireless Adapter */
{ },
};
static int mt76x2u_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
static const struct mt76_driver_ops drv_ops = {
.drv_flags = MT_DRV_SW_RX_AIRTIME,
.survey_flags = SURVEY_INFO_TIME_TX,
.update_survey = mt76x02_update_channel,
.tx_prepare_skb = mt76x02u_tx_prepare_skb,
.tx_complete_skb = mt76x02u_tx_complete_skb,
.tx_status_data = mt76x02_tx_status_data,
.rx_skb = mt76x02_queue_rx_skb,
.sta_ps = mt76x02_sta_ps,
.sta_add = mt76x02_sta_add,
.sta_remove = mt76x02_sta_remove,
};
struct usb_device *udev = interface_to_usbdev(intf);
struct mt76x02_dev *dev;
struct mt76_dev *mdev;
int err;
mdev = mt76_alloc_device(&intf->dev, sizeof(*dev), &mt76x2u_ops,
&drv_ops);
if (!mdev)
return -ENOMEM;
dev = container_of(mdev, struct mt76x02_dev, mt76);
udev = usb_get_dev(udev);
usb_reset_device(udev);
usb_set_intfdata(intf, dev);
mt76x02u_init_mcu(mdev);
err = mt76u_init(mdev, intf);
if (err < 0)
goto err;
mdev->rev = mt76_rr(dev, MT_ASIC_VERSION);
dev_info(mdev->dev, "ASIC revision: %08x\n", mdev->rev);
if (!is_mt76x2(dev)) {
err = -ENODEV;
goto err;
}
err = mt76x2u_register_device(dev);
if (err < 0)
goto err;
return 0;
err:
mt76u_queues_deinit(&dev->mt76);
mt76_free_device(&dev->mt76);
usb_set_intfdata(intf, NULL);
usb_put_dev(udev);
return err;
}
static void mt76x2u_disconnect(struct usb_interface *intf)
{
struct usb_device *udev = interface_to_usbdev(intf);
struct mt76x02_dev *dev = usb_get_intfdata(intf);
struct ieee80211_hw *hw = mt76_hw(dev);
set_bit(MT76_REMOVED, &dev->mphy.state);
ieee80211_unregister_hw(hw);
mt76x2u_cleanup(dev);
mt76_free_device(&dev->mt76);
usb_set_intfdata(intf, NULL);
usb_put_dev(udev);
}
static int __maybe_unused mt76x2u_suspend(struct usb_interface *intf,
pm_message_t state)
{
struct mt76x02_dev *dev = usb_get_intfdata(intf);
mt76u_stop_rx(&dev->mt76);
return 0;
}
static int __maybe_unused mt76x2u_resume(struct usb_interface *intf)
{
struct mt76x02_dev *dev = usb_get_intfdata(intf);
int err;
err = mt76u_resume_rx(&dev->mt76);
if (err < 0)
goto err;
err = mt76x2u_init_hardware(dev);
if (err < 0)
goto err;
return 0;
err:
mt76x2u_cleanup(dev);
return err;
}
MODULE_DEVICE_TABLE(usb, mt76x2u_device_table);
MODULE_FIRMWARE(MT7662_FIRMWARE);
MODULE_FIRMWARE(MT7662_ROM_PATCH);
static struct usb_driver mt76x2u_driver = {
.name = KBUILD_MODNAME,
.id_table = mt76x2u_device_table,
.probe = mt76x2u_probe,
.disconnect = mt76x2u_disconnect,
#ifdef CONFIG_PM
.suspend = mt76x2u_suspend,
.resume = mt76x2u_resume,
.reset_resume = mt76x2u_resume,
#endif /* CONFIG_PM */
.soft_unbind = 1,
.disable_hub_initiated_lpm = 1,
};
module_usb_driver(mt76x2u_driver);
MODULE_AUTHOR("Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>");
MODULE_LICENSE("Dual BSD/GPL");

View File

@ -0,0 +1,250 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include <linux/delay.h>
#include "mt76x2u.h"
#include "eeprom.h"
#include "../mt76x02_phy.h"
#include "../mt76x02_usb.h"
static void mt76x2u_init_dma(struct mt76x02_dev *dev)
{
u32 val = mt76_rr(dev, MT_VEND_ADDR(CFG, MT_USB_U3DMA_CFG));
val |= MT_USB_DMA_CFG_RX_DROP_OR_PAD |
MT_USB_DMA_CFG_RX_BULK_EN |
MT_USB_DMA_CFG_TX_BULK_EN;
/* disable AGGR_BULK_RX in order to receive one
* frame in each rx urb and avoid copies
*/
val &= ~MT_USB_DMA_CFG_RX_BULK_AGG_EN;
mt76_wr(dev, MT_VEND_ADDR(CFG, MT_USB_U3DMA_CFG), val);
}
static void mt76x2u_power_on_rf_patch(struct mt76x02_dev *dev)
{
mt76_set(dev, MT_VEND_ADDR(CFG, 0x130), BIT(0) | BIT(16));
udelay(1);
mt76_clear(dev, MT_VEND_ADDR(CFG, 0x1c), 0xff);
mt76_set(dev, MT_VEND_ADDR(CFG, 0x1c), 0x30);
mt76_wr(dev, MT_VEND_ADDR(CFG, 0x14), 0x484f);
udelay(1);
mt76_set(dev, MT_VEND_ADDR(CFG, 0x130), BIT(17));
usleep_range(150, 200);
mt76_clear(dev, MT_VEND_ADDR(CFG, 0x130), BIT(16));
usleep_range(50, 100);
mt76_set(dev, MT_VEND_ADDR(CFG, 0x14c), BIT(19) | BIT(20));
}
static void mt76x2u_power_on_rf(struct mt76x02_dev *dev, int unit)
{
int shift = unit ? 8 : 0;
u32 val = (BIT(1) | BIT(3) | BIT(4) | BIT(5)) << shift;
/* Enable RF BG */
mt76_set(dev, MT_VEND_ADDR(CFG, 0x130), BIT(0) << shift);
usleep_range(10, 20);
/* Enable RFDIG LDO/AFE/ABB/ADDA */
mt76_set(dev, MT_VEND_ADDR(CFG, 0x130), val);
usleep_range(10, 20);
/* Switch RFDIG power to internal LDO */
mt76_clear(dev, MT_VEND_ADDR(CFG, 0x130), BIT(2) << shift);
usleep_range(10, 20);
mt76x2u_power_on_rf_patch(dev);
mt76_set(dev, 0x530, 0xf);
}
static void mt76x2u_power_on(struct mt76x02_dev *dev)
{
u32 val;
/* Turn on WL MTCMOS */
mt76_set(dev, MT_VEND_ADDR(CFG, 0x148),
MT_WLAN_MTC_CTRL_MTCMOS_PWR_UP);
val = MT_WLAN_MTC_CTRL_STATE_UP |
MT_WLAN_MTC_CTRL_PWR_ACK |
MT_WLAN_MTC_CTRL_PWR_ACK_S;
mt76_poll(dev, MT_VEND_ADDR(CFG, 0x148), val, val, 1000);
mt76_clear(dev, MT_VEND_ADDR(CFG, 0x148), 0x7f << 16);
usleep_range(10, 20);
mt76_clear(dev, MT_VEND_ADDR(CFG, 0x148), 0xf << 24);
usleep_range(10, 20);
mt76_set(dev, MT_VEND_ADDR(CFG, 0x148), 0xf << 24);
mt76_clear(dev, MT_VEND_ADDR(CFG, 0x148), 0xfff);
/* Turn on AD/DA power down */
mt76_clear(dev, MT_VEND_ADDR(CFG, 0x1204), BIT(3));
/* WLAN function enable */
mt76_set(dev, MT_VEND_ADDR(CFG, 0x80), BIT(0));
/* Release BBP software reset */
mt76_clear(dev, MT_VEND_ADDR(CFG, 0x64), BIT(18));
mt76x2u_power_on_rf(dev, 0);
mt76x2u_power_on_rf(dev, 1);
}
static int mt76x2u_init_eeprom(struct mt76x02_dev *dev)
{
u32 val, i;
dev->mt76.eeprom.data = devm_kzalloc(dev->mt76.dev,
MT7612U_EEPROM_SIZE,
GFP_KERNEL);
dev->mt76.eeprom.size = MT7612U_EEPROM_SIZE;
if (!dev->mt76.eeprom.data)
return -ENOMEM;
for (i = 0; i + 4 <= MT7612U_EEPROM_SIZE; i += 4) {
val = mt76_rr(dev, MT_VEND_ADDR(EEPROM, i));
put_unaligned_le32(val, dev->mt76.eeprom.data + i);
}
mt76x02_eeprom_parse_hw_cap(dev);
return 0;
}
int mt76x2u_init_hardware(struct mt76x02_dev *dev)
{
int i, k, err;
mt76x2_reset_wlan(dev, true);
mt76x2u_power_on(dev);
if (!mt76x02_wait_for_mac(&dev->mt76))
return -ETIMEDOUT;
err = mt76x2u_mcu_fw_init(dev);
if (err < 0)
return err;
if (!mt76_poll_msec(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
MT_WPDMA_GLO_CFG_RX_DMA_BUSY, 0, 100))
return -EIO;
/* wait for asic ready after fw load. */
if (!mt76x02_wait_for_mac(&dev->mt76))
return -ETIMEDOUT;
mt76x2u_init_dma(dev);
err = mt76x2u_mcu_init(dev);
if (err < 0)
return err;
err = mt76x2u_mac_reset(dev);
if (err < 0)
return err;
mt76x02_mac_setaddr(dev, dev->mt76.eeprom.data + MT_EE_MAC_ADDR);
dev->mt76.rxfilter = mt76_rr(dev, MT_RX_FILTR_CFG);
if (!mt76x02_wait_for_txrx_idle(&dev->mt76))
return -ETIMEDOUT;
/* reset wcid table */
for (i = 0; i < 256; i++)
mt76x02_mac_wcid_setup(dev, i, 0, NULL);
/* reset shared key table and pairwise key table */
for (i = 0; i < 16; i++) {
for (k = 0; k < 4; k++)
mt76x02_mac_shared_key_setup(dev, i, k, NULL);
}
mt76x02u_init_beacon_config(dev);
mt76_rmw(dev, MT_US_CYC_CFG, MT_US_CYC_CNT, 0x1e);
mt76_wr(dev, MT_TXOP_CTRL_CFG, 0x583f);
err = mt76x2_mcu_load_cr(dev, MT_RF_BBP_CR, 0, 0);
if (err < 0)
return err;
mt76x02_phy_set_rxpath(dev);
mt76x02_phy_set_txdac(dev);
return mt76x2u_mac_stop(dev);
}
int mt76x2u_register_device(struct mt76x02_dev *dev)
{
struct ieee80211_hw *hw = mt76_hw(dev);
struct mt76_usb *usb = &dev->mt76.usb;
int err;
INIT_DELAYED_WORK(&dev->cal_work, mt76x2u_phy_calibrate);
err = mt76x02_init_device(dev);
if (err)
return err;
err = mt76x2u_init_eeprom(dev);
if (err < 0)
return err;
usb->mcu.data = devm_kmalloc(dev->mt76.dev, MCU_RESP_URB_SIZE,
GFP_KERNEL);
if (!usb->mcu.data)
return -ENOMEM;
err = mt76u_alloc_queues(&dev->mt76);
if (err < 0)
goto fail;
err = mt76x2u_init_hardware(dev);
if (err < 0)
goto fail;
/* check hw sg support in order to enable AMSDU */
hw->max_tx_fragments = dev->mt76.usb.sg_en ? MT_TX_SG_MAX_SIZE : 1;
err = mt76_register_device(&dev->mt76, true, mt76x02_rates,
ARRAY_SIZE(mt76x02_rates));
if (err)
goto fail;
set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state);
mt76x02_init_debugfs(dev);
mt76x2_init_txpower(dev, &dev->mphy.sband_2g.sband);
mt76x2_init_txpower(dev, &dev->mphy.sband_5g.sband);
return 0;
fail:
mt76x2u_cleanup(dev);
return err;
}
void mt76x2u_stop_hw(struct mt76x02_dev *dev)
{
cancel_delayed_work_sync(&dev->cal_work);
cancel_delayed_work_sync(&dev->mphy.mac_work);
mt76x2u_mac_stop(dev);
}
void mt76x2u_cleanup(struct mt76x02_dev *dev)
{
mt76x02_mcu_set_radio_state(dev, false);
mt76x2u_stop_hw(dev);
mt76u_queues_deinit(&dev->mt76);
}

View File

@ -0,0 +1,174 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include "mt76x2u.h"
#include "eeprom.h"
static void mt76x2u_mac_fixup_xtal(struct mt76x02_dev *dev)
{
s8 offset = 0;
u16 eep_val;
eep_val = mt76x02_eeprom_get(dev, MT_EE_XTAL_TRIM_2);
offset = eep_val & 0x7f;
if ((eep_val & 0xff) == 0xff)
offset = 0;
else if (eep_val & 0x80)
offset = 0 - offset;
eep_val >>= 8;
if (eep_val == 0x00 || eep_val == 0xff) {
eep_val = mt76x02_eeprom_get(dev, MT_EE_XTAL_TRIM_1);
eep_val &= 0xff;
if (eep_val == 0x00 || eep_val == 0xff)
eep_val = 0x14;
}
eep_val &= 0x7f;
mt76_rmw_field(dev, MT_VEND_ADDR(CFG, MT_XO_CTRL5),
MT_XO_CTRL5_C2_VAL, eep_val + offset);
mt76_set(dev, MT_VEND_ADDR(CFG, MT_XO_CTRL6), MT_XO_CTRL6_C2_CTRL);
mt76_wr(dev, 0x504, 0x06000000);
mt76_wr(dev, 0x50c, 0x08800000);
mdelay(5);
mt76_wr(dev, 0x504, 0x0);
/* decrease SIFS from 16us to 13us */
mt76_rmw_field(dev, MT_XIFS_TIME_CFG,
MT_XIFS_TIME_CFG_OFDM_SIFS, 0xd);
mt76_rmw_field(dev, MT_BKOFF_SLOT_CFG, MT_BKOFF_SLOT_CFG_CC_DELAY, 1);
/* init fce */
mt76_clear(dev, MT_FCE_L2_STUFF, MT_FCE_L2_STUFF_WR_MPDU_LEN_EN);
eep_val = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_2);
switch (FIELD_GET(MT_EE_NIC_CONF_2_XTAL_OPTION, eep_val)) {
case 0:
mt76_wr(dev, MT_XO_CTRL7, 0x5c1fee80);
break;
case 1:
mt76_wr(dev, MT_XO_CTRL7, 0x5c1feed0);
break;
default:
break;
}
}
int mt76x2u_mac_reset(struct mt76x02_dev *dev)
{
mt76_wr(dev, MT_WPDMA_GLO_CFG, BIT(4) | BIT(5));
/* init pbf regs */
mt76_wr(dev, MT_PBF_TX_MAX_PCNT, 0xefef3f1f);
mt76_wr(dev, MT_PBF_RX_MAX_PCNT, 0xfebf);
mt76_write_mac_initvals(dev);
mt76_wr(dev, MT_TX_LINK_CFG, 0x1020);
mt76_wr(dev, MT_AUTO_RSP_CFG, 0x13);
mt76_wr(dev, MT_MAX_LEN_CFG, 0x2f00);
mt76_wr(dev, MT_WMM_AIFSN, 0x2273);
mt76_wr(dev, MT_WMM_CWMIN, 0x2344);
mt76_wr(dev, MT_WMM_CWMAX, 0x34aa);
mt76_clear(dev, MT_MAC_SYS_CTRL,
MT_MAC_SYS_CTRL_RESET_CSR |
MT_MAC_SYS_CTRL_RESET_BBP);
if (is_mt7612(dev))
mt76_clear(dev, MT_COEXCFG0, MT_COEXCFG0_COEX_EN);
mt76_set(dev, MT_EXT_CCA_CFG, 0xf000);
mt76_clear(dev, MT_TX_ALC_CFG_4, BIT(31));
mt76x2u_mac_fixup_xtal(dev);
return 0;
}
int mt76x2u_mac_stop(struct mt76x02_dev *dev)
{
int i, count = 0, val;
bool stopped = false;
u32 rts_cfg;
if (test_bit(MT76_REMOVED, &dev->mphy.state))
return -EIO;
rts_cfg = mt76_rr(dev, MT_TX_RTS_CFG);
mt76_wr(dev, MT_TX_RTS_CFG, rts_cfg & ~MT_TX_RTS_CFG_RETRY_LIMIT);
mt76_clear(dev, MT_TXOP_CTRL_CFG, MT_TXOP_ED_CCA_EN);
mt76_clear(dev, MT_TXOP_HLDR_ET, MT_TXOP_HLDR_TX40M_BLK_EN);
/* wait tx dma to stop */
for (i = 0; i < 2000; i++) {
val = mt76_rr(dev, MT_VEND_ADDR(CFG, MT_USB_U3DMA_CFG));
if (!(val & MT_USB_DMA_CFG_TX_BUSY) && i > 10)
break;
usleep_range(50, 100);
}
/* page count on TxQ */
for (i = 0; i < 200; i++) {
if (!(mt76_rr(dev, 0x0438) & 0xffffffff) &&
!(mt76_rr(dev, 0x0a30) & 0x000000ff) &&
!(mt76_rr(dev, 0x0a34) & 0xff00ff00))
break;
usleep_range(10, 20);
}
/* disable tx-rx */
mt76_clear(dev, MT_MAC_SYS_CTRL,
MT_MAC_SYS_CTRL_ENABLE_RX |
MT_MAC_SYS_CTRL_ENABLE_TX);
/* Wait for MAC to become idle */
for (i = 0; i < 1000; i++) {
if (!(mt76_rr(dev, MT_MAC_STATUS) & MT_MAC_STATUS_TX) &&
!mt76_rr(dev, MT_BBP(IBI, 12))) {
stopped = true;
break;
}
usleep_range(10, 20);
}
if (!stopped) {
mt76_set(dev, MT_BBP(CORE, 4), BIT(1));
mt76_clear(dev, MT_BBP(CORE, 4), BIT(1));
mt76_set(dev, MT_BBP(CORE, 4), BIT(0));
mt76_clear(dev, MT_BBP(CORE, 4), BIT(0));
}
/* page count on RxQ */
for (i = 0; i < 200; i++) {
if (!(mt76_rr(dev, 0x0430) & 0x00ff0000) &&
!(mt76_rr(dev, 0x0a30) & 0xffffffff) &&
!(mt76_rr(dev, 0x0a34) & 0xffffffff) &&
++count > 10)
break;
msleep(50);
}
if (!mt76_poll(dev, MT_MAC_STATUS, MT_MAC_STATUS_RX, 0, 2000))
dev_warn(dev->mt76.dev, "MAC RX failed to stop\n");
/* wait rx dma to stop */
for (i = 0; i < 2000; i++) {
val = mt76_rr(dev, MT_VEND_ADDR(CFG, MT_USB_U3DMA_CFG));
if (!(val & MT_USB_DMA_CFG_RX_BUSY) && i > 10)
break;
usleep_range(50, 100);
}
mt76_wr(dev, MT_TX_RTS_CFG, rts_cfg);
return 0;
}

View File

@ -0,0 +1,129 @@
// SPDX-License-Identifier: ISC
/*
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*/
#include "mt76x2u.h"
#include "../mt76x02_usb.h"
static int mt76x2u_start(struct ieee80211_hw *hw)
{
struct mt76x02_dev *dev = hw->priv;
int ret;
ret = mt76x02u_mac_start(dev);
if (ret)
return ret;
ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work,
MT_MAC_WORK_INTERVAL);
set_bit(MT76_STATE_RUNNING, &dev->mphy.state);
return 0;
}
static void mt76x2u_stop(struct ieee80211_hw *hw)
{
struct mt76x02_dev *dev = hw->priv;
clear_bit(MT76_STATE_RUNNING, &dev->mphy.state);
mt76u_stop_tx(&dev->mt76);
mt76x2u_stop_hw(dev);
}
static int
mt76x2u_set_channel(struct mt76x02_dev *dev,
struct cfg80211_chan_def *chandef)
{
int err;
cancel_delayed_work_sync(&dev->cal_work);
mt76x02_pre_tbtt_enable(dev, false);
mutex_lock(&dev->mt76.mutex);
set_bit(MT76_RESET, &dev->mphy.state);
mt76_set_channel(&dev->mphy);
mt76x2_mac_stop(dev, false);
err = mt76x2u_phy_set_channel(dev, chandef);
mt76x02_mac_cc_reset(dev);
mt76x2_mac_resume(dev);
clear_bit(MT76_RESET, &dev->mphy.state);
mutex_unlock(&dev->mt76.mutex);
mt76x02_pre_tbtt_enable(dev, true);
mt76_txq_schedule_all(&dev->mphy);
return err;
}
static int
mt76x2u_config(struct ieee80211_hw *hw, u32 changed)
{
struct mt76x02_dev *dev = hw->priv;
int err = 0;
mutex_lock(&dev->mt76.mutex);
if (changed & IEEE80211_CONF_CHANGE_MONITOR) {
if (!(hw->conf.flags & IEEE80211_CONF_MONITOR))
dev->mt76.rxfilter |= MT_RX_FILTR_CFG_PROMISC;
else
dev->mt76.rxfilter &= ~MT_RX_FILTR_CFG_PROMISC;
mt76_wr(dev, MT_RX_FILTR_CFG, dev->mt76.rxfilter);
}
if (changed & IEEE80211_CONF_CHANGE_POWER) {
struct mt76_phy *mphy = &dev->mphy;
dev->txpower_conf = hw->conf.power_level * 2;
dev->txpower_conf = mt76_get_sar_power(mphy,
mphy->chandef.chan,
dev->txpower_conf);
/* convert to per-chain power for 2x2 devices */
dev->txpower_conf -= 6;
if (test_bit(MT76_STATE_RUNNING, &mphy->state))
mt76x2_phy_set_txpower(dev);
}
mutex_unlock(&dev->mt76.mutex);
if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
ieee80211_stop_queues(hw);
err = mt76x2u_set_channel(dev, &hw->conf.chandef);
ieee80211_wake_queues(hw);
}
return err;
}
const struct ieee80211_ops mt76x2u_ops = {
.tx = mt76x02_tx,
.start = mt76x2u_start,
.stop = mt76x2u_stop,
.add_interface = mt76x02_add_interface,
.remove_interface = mt76x02_remove_interface,
.sta_state = mt76_sta_state,
.sta_pre_rcu_remove = mt76_sta_pre_rcu_remove,
.set_key = mt76x02_set_key,
.ampdu_action = mt76x02_ampdu_action,
.config = mt76x2u_config,
.wake_tx_queue = mt76_wake_tx_queue,
.bss_info_changed = mt76x02_bss_info_changed,
.configure_filter = mt76x02_configure_filter,
.conf_tx = mt76x02_conf_tx,
.sw_scan_start = mt76_sw_scan,
.sw_scan_complete = mt76x02_sw_scan_complete,
.sta_rate_tbl_update = mt76x02_sta_rate_tbl_update,
.get_txpower = mt76_get_txpower,
.get_survey = mt76_get_survey,
.set_tim = mt76_set_tim,
.release_buffered_frames = mt76_release_buffered_frames,
.get_antenna = mt76_get_antenna,
.set_sar_specs = mt76x2_set_sar_specs,
};

Some files were not shown because too many files have changed in this diff Show More