Illumos 5987 - zfs prefetch code needs work

5987 zfs prefetch code needs work
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Approved by: Gordon Ross <gordon.ross@nexenta.com>

References:
  https://www.illumos.org/issues/5987 zfs prefetch code needs work
  illumos/illumos-gate@cf6106c 5987 zfs prefetch code needs work

Porting notes:
- [module/zfs/dbuf.c]
  - 5f6d0b6 Handle block pointers with a corrupt logical size
- [module/zfs/dmu_zfetch.c]
  - c65aa5b Fix gcc missing parenthesis warnings
  - 428870f Update core ZFS code from build 121 to build 141.
  - 79c76d5 Change KM_PUSHPAGE -> KM_SLEEP
  - b8d06fc Switch KM_SLEEP to KM_PUSHPAGE
  - Account for ISO C90 - mixed declarations and code - warnings
  - Module parameters (new/changed):
    - Replaced zfetch_block_cap with zfetch_max_distance
      (Max bytes to prefetch per stream (default 8MB; 8 * 1024 * 1024))
    - Preserved zfs_prefetch_disable as 'int' for consistency with
      existing Linux module options.
- [include/sys/trace_arc.h]
  - Added new tracepoints
    - DEFINE_ARC_BUF_HDR_EVENT(zfs_arc__sync__wait__for__async);
    - DEFINE_ARC_BUF_HDR_EVENT(zfs_arc__demand__hit__predictive__prefetch);
- [man/man5/zfs-module-parameters.5]
  - Updated man page

Ported-by: kernelOfTruth kerneloftruth@gmail.com
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This commit is contained in:
Matthew Ahrens 2015-12-26 22:10:31 +01:00 committed by Brian Behlendorf
parent ab5cbbd107
commit 7f60329a26
10 changed files with 285 additions and 663 deletions

View File

@ -84,27 +84,31 @@ typedef enum arc_flags
ARC_FLAG_CACHED = 1 << 4, /* I/O was in cache */
ARC_FLAG_L2CACHE = 1 << 5, /* cache in L2ARC */
ARC_FLAG_L2COMPRESS = 1 << 6, /* compress in L2ARC */
ARC_FLAG_PREDICTIVE_PREFETCH = 1 << 7, /* I/O from zfetch */
/*
* Private ARC flags. These flags are private ARC only flags that
* will show up in b_flags in the arc_hdr_buf_t. These flags should
* only be set by ARC code.
*/
ARC_FLAG_IN_HASH_TABLE = 1 << 7, /* buffer is hashed */
ARC_FLAG_IO_IN_PROGRESS = 1 << 8, /* I/O in progress */
ARC_FLAG_IO_ERROR = 1 << 9, /* I/O failed for buf */
ARC_FLAG_FREED_IN_READ = 1 << 10, /* freed during read */
ARC_FLAG_BUF_AVAILABLE = 1 << 11, /* block not in use */
ARC_FLAG_INDIRECT = 1 << 12, /* indirect block */
ARC_FLAG_L2_WRITING = 1 << 13, /* write in progress */
ARC_FLAG_L2_EVICTED = 1 << 14, /* evicted during I/O */
ARC_FLAG_L2_WRITE_HEAD = 1 << 15, /* head of write list */
ARC_FLAG_IN_HASH_TABLE = 1 << 8, /* buffer is hashed */
ARC_FLAG_IO_IN_PROGRESS = 1 << 9, /* I/O in progress */
ARC_FLAG_IO_ERROR = 1 << 10, /* I/O failed for buf */
ARC_FLAG_FREED_IN_READ = 1 << 11, /* freed during read */
ARC_FLAG_BUF_AVAILABLE = 1 << 12, /* block not in use */
ARC_FLAG_INDIRECT = 1 << 13, /* indirect block */
/* Indicates that block was read with ASYNC priority. */
ARC_FLAG_PRIO_ASYNC_READ = 1 << 14,
ARC_FLAG_L2_WRITING = 1 << 15, /* write in progress */
ARC_FLAG_L2_EVICTED = 1 << 16, /* evicted during I/O */
ARC_FLAG_L2_WRITE_HEAD = 1 << 17, /* head of write list */
/* indicates that the buffer contains metadata (otherwise, data) */
ARC_FLAG_BUFC_METADATA = 1 << 16,
ARC_FLAG_BUFC_METADATA = 1 << 18,
/* Flags specifying whether optional hdr struct fields are defined */
ARC_FLAG_HAS_L1HDR = 1 << 17,
ARC_FLAG_HAS_L2HDR = 1 << 18,
ARC_FLAG_HAS_L1HDR = 1 << 19,
ARC_FLAG_HAS_L2HDR = 1 << 20,
} arc_flags_t;
struct arc_buf {

View File

@ -487,7 +487,8 @@ uint64_t dmu_buf_refcount(dmu_buf_t *db);
* individually with dmu_buf_rele.
*/
int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp);
uint64_t length, boolean_t read, void *tag,
int *numbufsp, dmu_buf_t ***dbpp);
void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
typedef void dmu_buf_evict_func_t(void *user_ptr);

View File

@ -23,8 +23,12 @@
* Use is subject to license terms.
*/
#ifndef _DFETCH_H
#define _DFETCH_H
/*
* Copyright (c) 2014 by Delphix. All rights reserved.
*/
#ifndef _DMU_ZFETCH_H
#define _DMU_ZFETCH_H
#include <sys/zfs_context.h>
@ -36,41 +40,30 @@ extern unsigned long zfetch_array_rd_sz;
struct dnode; /* so we can reference dnode */
typedef enum zfetch_dirn {
ZFETCH_FORWARD = 1, /* prefetch increasing block numbers */
ZFETCH_BACKWARD = -1 /* prefetch decreasing block numbers */
} zfetch_dirn_t;
typedef struct zstream {
uint64_t zst_offset; /* offset of starting block in range */
uint64_t zst_len; /* length of range, in blocks */
zfetch_dirn_t zst_direction; /* direction of prefetch */
uint64_t zst_stride; /* length of stride, in blocks */
uint64_t zst_ph_offset; /* prefetch offset, in blocks */
uint64_t zst_cap; /* prefetch limit (cap), in blocks */
kmutex_t zst_lock; /* protects stream */
clock_t zst_last; /* lbolt of last prefetch */
list_node_t zst_node; /* next zstream here */
uint64_t zs_blkid; /* expect next access at this blkid */
uint64_t zs_pf_blkid; /* next block to prefetch */
kmutex_t zs_lock; /* protects stream */
hrtime_t zs_atime; /* time last prefetch issued */
list_node_t zs_node; /* link for zf_stream */
} zstream_t;
typedef struct zfetch {
krwlock_t zf_rwlock; /* protects zfetch structure */
list_t zf_stream; /* AVL tree of zstream_t's */
list_t zf_stream; /* list of zstream_t's */
struct dnode *zf_dnode; /* dnode that owns this zfetch */
uint32_t zf_stream_cnt; /* # of active streams */
uint64_t zf_alloc_fail; /* # of failed attempts to alloc strm */
} zfetch_t;
void zfetch_init(void);
void zfetch_fini(void);
void dmu_zfetch_init(zfetch_t *, struct dnode *);
void dmu_zfetch_rele(zfetch_t *);
void dmu_zfetch(zfetch_t *, uint64_t, uint64_t, int);
void dmu_zfetch_fini(zfetch_t *);
void dmu_zfetch(zfetch_t *, uint64_t, uint64_t);
#ifdef __cplusplus
}
#endif
#endif /* _DFETCH_H */
#endif /* _DMU_ZFETCH_H */

View File

@ -102,6 +102,8 @@ DEFINE_ARC_BUF_HDR_EVENT(zfs_arc__evict);
DEFINE_ARC_BUF_HDR_EVENT(zfs_arc__delete);
DEFINE_ARC_BUF_HDR_EVENT(zfs_new_state__mru);
DEFINE_ARC_BUF_HDR_EVENT(zfs_new_state__mfu);
DEFINE_ARC_BUF_HDR_EVENT(zfs_arc__sync__wait__for__async);
DEFINE_ARC_BUF_HDR_EVENT(zfs_arc__demand__hit__predictive__prefetch);
DEFINE_ARC_BUF_HDR_EVENT(zfs_l2arc__hit);
DEFINE_ARC_BUF_HDR_EVENT(zfs_l2arc__miss);

View File

@ -331,12 +331,12 @@ Default value: \fB1,048,576\fR.
.sp
.ne 2
.na
\fBzfetch_block_cap\fR (uint)
\fBzfetch_max_distance\fR (uint)
.ad
.RS 12n
Max number of blocks to prefetch at a time
Max bytes to prefetch per stream (default 8MB).
.sp
Default value: \fB256\fR.
Default value: \fB8,388,608\fR.
.RE
.sp
@ -1246,7 +1246,10 @@ Default value: \fB52,428,800\fR.
\fBzfs_prefetch_disable\fR (int)
.ad
.RS 12n
Disable all ZFS prefetching
This tunable disables predictive prefetch. Note that it leaves "prescient"
prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
prescient prefetch never issues i/os that end up not being needed, so it
can't hurt performance.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

View File

@ -474,6 +474,8 @@ typedef struct arc_stats {
kstat_named_t arcstat_meta_limit;
kstat_named_t arcstat_meta_max;
kstat_named_t arcstat_meta_min;
kstat_named_t arcstat_sync_wait_for_async;
kstat_named_t arcstat_demand_hit_predictive_prefetch;
kstat_named_t arcstat_need_free;
kstat_named_t arcstat_sys_free;
} arc_stats_t;
@ -568,6 +570,8 @@ static arc_stats_t arc_stats = {
{ "arc_meta_limit", KSTAT_DATA_UINT64 },
{ "arc_meta_max", KSTAT_DATA_UINT64 },
{ "arc_meta_min", KSTAT_DATA_UINT64 },
{ "sync_wait_for_async", KSTAT_DATA_UINT64 },
{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
{ "arc_need_free", KSTAT_DATA_UINT64 },
{ "arc_sys_free", KSTAT_DATA_UINT64 }
};
@ -4244,6 +4248,36 @@ arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
if (HDR_IO_IN_PROGRESS(hdr)) {
if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
priority == ZIO_PRIORITY_SYNC_READ) {
/*
* This sync read must wait for an
* in-progress async read (e.g. a predictive
* prefetch). Async reads are queued
* separately at the vdev_queue layer, so
* this is a form of priority inversion.
* Ideally, we would "inherit" the demand
* i/o's priority by moving the i/o from
* the async queue to the synchronous queue,
* but there is currently no mechanism to do
* so. Track this so that we can evaluate
* the magnitude of this potential performance
* problem.
*
* Note that if the prefetch i/o is already
* active (has been issued to the device),
* the prefetch improved performance, because
* we issued it sooner than we would have
* without the prefetch.
*/
DTRACE_PROBE1(arc__sync__wait__for__async,
arc_buf_hdr_t *, hdr);
ARCSTAT_BUMP(arcstat_sync_wait_for_async);
}
if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
}
if (*arc_flags & ARC_FLAG_WAIT) {
cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
mutex_exit(hash_lock);
@ -4252,7 +4286,7 @@ arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
if (done) {
arc_callback_t *acb = NULL;
arc_callback_t *acb = NULL;
acb = kmem_zalloc(sizeof (arc_callback_t),
KM_SLEEP);
@ -4277,6 +4311,19 @@ arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
hdr->b_l1hdr.b_state == arc_mfu);
if (done) {
if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
/*
* This is a demand read which does not have to
* wait for i/o because we did a predictive
* prefetch i/o for it, which has completed.
*/
DTRACE_PROBE1(
arc__demand__hit__predictive__prefetch,
arc_buf_hdr_t *, hdr);
ARCSTAT_BUMP(
arcstat_demand_hit_predictive_prefetch);
hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
}
add_reference(hdr, hash_lock, private);
/*
* If this block is already in use, create a new
@ -4349,12 +4396,16 @@ arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
goto top; /* restart the IO request */
}
/* if this is a prefetch, we don't have a reference */
if (*arc_flags & ARC_FLAG_PREFETCH) {
/*
* If there is a callback, we pass our reference to
* it; otherwise we remove our reference.
*/
if (done == NULL) {
(void) remove_reference(hdr, hash_lock,
private);
hdr->b_flags |= ARC_FLAG_PREFETCH;
}
if (*arc_flags & ARC_FLAG_PREFETCH)
hdr->b_flags |= ARC_FLAG_PREFETCH;
if (*arc_flags & ARC_FLAG_L2CACHE)
hdr->b_flags |= ARC_FLAG_L2CACHE;
if (*arc_flags & ARC_FLAG_L2COMPRESS)
@ -4377,11 +4428,13 @@ arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
/* if this is a prefetch, we don't have a reference */
/*
* If there is a callback, we pass a reference to it.
*/
if (done != NULL)
add_reference(hdr, hash_lock, private);
if (*arc_flags & ARC_FLAG_PREFETCH)
hdr->b_flags |= ARC_FLAG_PREFETCH;
else
add_reference(hdr, hash_lock, private);
if (*arc_flags & ARC_FLAG_L2CACHE)
hdr->b_flags |= ARC_FLAG_L2CACHE;
if (*arc_flags & ARC_FLAG_L2COMPRESS)
@ -4399,6 +4452,8 @@ arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
arc_access(hdr, hash_lock);
}
if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
hdr->b_flags |= ARC_FLAG_PREDICTIVE_PREFETCH;
ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
@ -4438,6 +4493,11 @@ arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
data, metadata, misses);
if (priority == ZIO_PRIORITY_ASYNC_READ)
hdr->b_flags |= ARC_FLAG_PRIO_ASYNC_READ;
else
hdr->b_flags &= ~ARC_FLAG_PRIO_ASYNC_READ;
if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
/*
* Read from the L2ARC if the following are true:

View File

@ -676,7 +676,7 @@ dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
}
static int
dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
{
dnode_t *dn;
zbookmark_phys_t zb;
@ -723,7 +723,6 @@ dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
db->db.db_size, db, type));
bzero(db->db.db_data, db->db.db_size);
db->db_state = DB_CACHED;
*flags |= DB_RF_CACHED;
mutex_exit(&db->db_mtx);
return (0);
}
@ -746,10 +745,8 @@ dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
(*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
(flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
&aflags, &zb);
if (aflags & ARC_FLAG_CACHED)
*flags |= DB_RF_CACHED;
return (SET_ERROR(err));
}
@ -784,8 +781,7 @@ dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
if (db->db_state == DB_CACHED) {
mutex_exit(&db->db_mtx);
if (prefetch)
dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
db->db.db_size, TRUE);
dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
if ((flags & DB_RF_HAVESTRUCT) == 0)
rw_exit(&dn->dn_struct_rwlock);
DB_DNODE_EXIT(db);
@ -795,13 +791,12 @@ dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
if (zio == NULL)
zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
err = dbuf_read_impl(db, zio, &flags);
err = dbuf_read_impl(db, zio, flags);
/* dbuf_read_impl has dropped db_mtx for us */
if (!err && prefetch)
dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
db->db.db_size, flags & DB_RF_CACHED);
dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
if ((flags & DB_RF_HAVESTRUCT) == 0)
rw_exit(&dn->dn_struct_rwlock);
@ -820,8 +815,7 @@ dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
*/
mutex_exit(&db->db_mtx);
if (prefetch)
dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
db->db.db_size, TRUE);
dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
if ((flags & DB_RF_HAVESTRUCT) == 0)
rw_exit(&dn->dn_struct_rwlock);
DB_DNODE_EXIT(db);
@ -2143,6 +2137,9 @@ dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
ASSERT(blkid != DMU_BONUS_BLKID);
ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
if (blkid > dn->dn_maxblkid)
return;
if (dnode_block_freed(dn, blkid))
return;

View File

@ -20,7 +20,7 @@
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2014 by Delphix. All rights reserved.
* Copyright (c) 2011, 2015 by Delphix. All rights reserved.
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2015 by Chunwei Chen. All rights reserved.
@ -386,7 +386,7 @@ dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
*/
static int
dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
{
dmu_buf_t **dbp;
uint64_t blkid, nblks, i;
@ -396,15 +396,19 @@ dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
ASSERT(length <= DMU_MAX_ACCESS);
dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
dbuf_flags |= DB_RF_NOPREFETCH;
/*
* Note: We directly notify the prefetch code of this read, so that
* we can tell it about the multi-block read. dbuf_read() only knows
* about the one block it is accessing.
*/
dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
DB_RF_NOPREFETCH;
rw_enter(&dn->dn_struct_rwlock, RW_READER);
if (dn->dn_datablkshift) {
int blkshift = dn->dn_datablkshift;
nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
} else {
if (offset + length > dn->dn_datablksz) {
zfs_panic_recover("zfs: accessing past end of object "
@ -423,19 +427,24 @@ dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
blkid = dbuf_whichblock(dn, 0, offset);
for (i = 0; i < nblks; i++) {
dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
if (db == NULL) {
rw_exit(&dn->dn_struct_rwlock);
dmu_buf_rele_array(dbp, nblks, tag);
zio_nowait(zio);
return (SET_ERROR(EIO));
}
/* initiate async i/o */
if (read) {
if (read)
(void) dbuf_read(db, zio, dbuf_flags);
}
dbp[i] = &db->db;
}
if ((flags & DMU_READ_NO_PREFETCH) == 0 && read &&
length < zfetch_array_rd_sz) {
dmu_zfetch(&dn->dn_zfetch, blkid, nblks);
}
rw_exit(&dn->dn_struct_rwlock);
/* wait for async i/o */
@ -489,7 +498,8 @@ dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
int
dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
uint64_t length, boolean_t read, void *tag, int *numbufsp,
dmu_buf_t ***dbpp)
{
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
dnode_t *dn;
@ -537,9 +547,6 @@ dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
uint64_t blkid;
int nblks, err;
if (zfs_prefetch_disable)
return;
if (len == 0) { /* they're interested in the bonus buffer */
dn = DMU_META_DNODE(os);

View File

@ -24,7 +24,7 @@
*/
/*
* Copyright (c) 2013 by Delphix. All rights reserved.
* Copyright (c) 2013, 2014 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
@ -36,209 +36,43 @@
#include <sys/kstat.h>
/*
* I'm against tune-ables, but these should probably exist as tweakable globals
* until we can get this working the way we want it to.
* This tunable disables predictive prefetch. Note that it leaves "prescient"
* prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
* prescient prefetch never issues i/os that end up not being needed,
* so it can't hurt performance.
*/
int zfs_prefetch_disable = 0;
int zfs_prefetch_disable = B_FALSE;
/* max # of streams per zfetch */
unsigned int zfetch_max_streams = 8;
/* min time before stream reclaim */
unsigned int zfetch_min_sec_reap = 2;
/* max number of blocks to fetch at a time */
unsigned int zfetch_block_cap = 256;
/* number of bytes in a array_read at which we stop prefetching (1Mb) */
/* max bytes to prefetch per stream (default 8MB) */
unsigned int zfetch_max_distance = 8 * 1024 * 1024;
/* number of bytes in a array_read at which we stop prefetching (1MB) */
unsigned long zfetch_array_rd_sz = 1024 * 1024;
/* forward decls for static routines */
static boolean_t dmu_zfetch_colinear(zfetch_t *, zstream_t *);
static void dmu_zfetch_dofetch(zfetch_t *, zstream_t *);
static uint64_t dmu_zfetch_fetch(dnode_t *, uint64_t, uint64_t);
static uint64_t dmu_zfetch_fetchsz(dnode_t *, uint64_t, uint64_t);
static boolean_t dmu_zfetch_find(zfetch_t *, zstream_t *, int);
static int dmu_zfetch_stream_insert(zfetch_t *, zstream_t *);
static zstream_t *dmu_zfetch_stream_reclaim(zfetch_t *);
static void dmu_zfetch_stream_remove(zfetch_t *, zstream_t *);
static int dmu_zfetch_streams_equal(zstream_t *, zstream_t *);
typedef struct zfetch_stats {
kstat_named_t zfetchstat_hits;
kstat_named_t zfetchstat_misses;
kstat_named_t zfetchstat_colinear_hits;
kstat_named_t zfetchstat_colinear_misses;
kstat_named_t zfetchstat_stride_hits;
kstat_named_t zfetchstat_stride_misses;
kstat_named_t zfetchstat_reclaim_successes;
kstat_named_t zfetchstat_reclaim_failures;
kstat_named_t zfetchstat_stream_resets;
kstat_named_t zfetchstat_stream_noresets;
kstat_named_t zfetchstat_bogus_streams;
kstat_named_t zfetchstat_max_streams;
} zfetch_stats_t;
static zfetch_stats_t zfetch_stats = {
{ "hits", KSTAT_DATA_UINT64 },
{ "misses", KSTAT_DATA_UINT64 },
{ "colinear_hits", KSTAT_DATA_UINT64 },
{ "colinear_misses", KSTAT_DATA_UINT64 },
{ "stride_hits", KSTAT_DATA_UINT64 },
{ "stride_misses", KSTAT_DATA_UINT64 },
{ "reclaim_successes", KSTAT_DATA_UINT64 },
{ "reclaim_failures", KSTAT_DATA_UINT64 },
{ "streams_resets", KSTAT_DATA_UINT64 },
{ "streams_noresets", KSTAT_DATA_UINT64 },
{ "bogus_streams", KSTAT_DATA_UINT64 },
{ "max_streams", KSTAT_DATA_UINT64 },
};
#define ZFETCHSTAT_INCR(stat, val) \
atomic_add_64(&zfetch_stats.stat.value.ui64, (val));
#define ZFETCHSTAT_BUMP(stat) ZFETCHSTAT_INCR(stat, 1);
#define ZFETCHSTAT_BUMP(stat) \
atomic_inc_64(&zfetch_stats.stat.value.ui64);
kstat_t *zfetch_ksp;
/*
* Given a zfetch structure and a zstream structure, determine whether the
* blocks to be read are part of a co-linear pair of existing prefetch
* streams. If a set is found, coalesce the streams, removing one, and
* configure the prefetch so it looks for a strided access pattern.
*
* In other words: if we find two sequential access streams that are
* the same length and distance N appart, and this read is N from the
* last stream, then we are probably in a strided access pattern. So
* combine the two sequential streams into a single strided stream.
*
* Returns whether co-linear streams were found.
*/
static boolean_t
dmu_zfetch_colinear(zfetch_t *zf, zstream_t *zh)
{
zstream_t *z_walk;
zstream_t *z_comp;
if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
return (0);
if (zh == NULL) {
rw_exit(&zf->zf_rwlock);
return (0);
}
for (z_walk = list_head(&zf->zf_stream); z_walk;
z_walk = list_next(&zf->zf_stream, z_walk)) {
for (z_comp = list_next(&zf->zf_stream, z_walk); z_comp;
z_comp = list_next(&zf->zf_stream, z_comp)) {
int64_t diff;
if (z_walk->zst_len != z_walk->zst_stride ||
z_comp->zst_len != z_comp->zst_stride) {
continue;
}
diff = z_comp->zst_offset - z_walk->zst_offset;
if (z_comp->zst_offset + diff == zh->zst_offset) {
z_walk->zst_offset = zh->zst_offset;
z_walk->zst_direction = diff < 0 ?
ZFETCH_BACKWARD : ZFETCH_FORWARD;
z_walk->zst_stride =
diff * z_walk->zst_direction;
z_walk->zst_ph_offset =
zh->zst_offset + z_walk->zst_stride;
dmu_zfetch_stream_remove(zf, z_comp);
mutex_destroy(&z_comp->zst_lock);
kmem_free(z_comp, sizeof (zstream_t));
dmu_zfetch_dofetch(zf, z_walk);
rw_exit(&zf->zf_rwlock);
return (1);
}
diff = z_walk->zst_offset - z_comp->zst_offset;
if (z_walk->zst_offset + diff == zh->zst_offset) {
z_walk->zst_offset = zh->zst_offset;
z_walk->zst_direction = diff < 0 ?
ZFETCH_BACKWARD : ZFETCH_FORWARD;
z_walk->zst_stride =
diff * z_walk->zst_direction;
z_walk->zst_ph_offset =
zh->zst_offset + z_walk->zst_stride;
dmu_zfetch_stream_remove(zf, z_comp);
mutex_destroy(&z_comp->zst_lock);
kmem_free(z_comp, sizeof (zstream_t));
dmu_zfetch_dofetch(zf, z_walk);
rw_exit(&zf->zf_rwlock);
return (1);
}
}
}
rw_exit(&zf->zf_rwlock);
return (0);
}
/*
* Given a zstream_t, determine the bounds of the prefetch. Then call the
* routine that actually prefetches the individual blocks.
*/
static void
dmu_zfetch_dofetch(zfetch_t *zf, zstream_t *zs)
{
uint64_t prefetch_tail;
uint64_t prefetch_limit;
uint64_t prefetch_ofst;
uint64_t prefetch_len;
uint64_t blocks_fetched;
zs->zst_stride = MAX((int64_t)zs->zst_stride, zs->zst_len);
zs->zst_cap = MIN(zfetch_block_cap, 2 * zs->zst_cap);
prefetch_tail = MAX((int64_t)zs->zst_ph_offset,
(int64_t)(zs->zst_offset + zs->zst_stride));
/*
* XXX: use a faster division method?
*/
prefetch_limit = zs->zst_offset + zs->zst_len +
(zs->zst_cap * zs->zst_stride) / zs->zst_len;
while (prefetch_tail < prefetch_limit) {
prefetch_ofst = zs->zst_offset + zs->zst_direction *
(prefetch_tail - zs->zst_offset);
prefetch_len = zs->zst_len;
/*
* Don't prefetch beyond the end of the file, if working
* backwards.
*/
if ((zs->zst_direction == ZFETCH_BACKWARD) &&
(prefetch_ofst > prefetch_tail)) {
prefetch_len += prefetch_ofst;
prefetch_ofst = 0;
}
/* don't prefetch more than we're supposed to */
if (prefetch_len > zs->zst_len)
break;
blocks_fetched = dmu_zfetch_fetch(zf->zf_dnode,
prefetch_ofst, zs->zst_len);
prefetch_tail += zs->zst_stride;
/* stop if we've run out of stuff to prefetch */
if (blocks_fetched < zs->zst_len)
break;
}
zs->zst_ph_offset = prefetch_tail;
zs->zst_last = ddi_get_lbolt();
}
void
zfetch_init(void)
{
zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL);
@ -266,273 +100,41 @@ zfetch_fini(void)
void
dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
{
if (zf == NULL) {
if (zf == NULL)
return;
}
zf->zf_dnode = dno;
zf->zf_stream_cnt = 0;
zf->zf_alloc_fail = 0;
list_create(&zf->zf_stream, sizeof (zstream_t),
offsetof(zstream_t, zst_node));
offsetof(zstream_t, zs_node));
rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
}
/*
* This function computes the actual size, in blocks, that can be prefetched,
* and fetches it.
*/
static uint64_t
dmu_zfetch_fetch(dnode_t *dn, uint64_t blkid, uint64_t nblks)
static void
dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
{
uint64_t fetchsz;
uint64_t i;
fetchsz = dmu_zfetch_fetchsz(dn, blkid, nblks);
for (i = 0; i < fetchsz; i++) {
dbuf_prefetch(dn, 0, blkid + i, ZIO_PRIORITY_ASYNC_READ,
ARC_FLAG_PREFETCH);
}
return (fetchsz);
ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
list_remove(&zf->zf_stream, zs);
mutex_destroy(&zs->zs_lock);
kmem_free(zs, sizeof (*zs));
}
/*
* this function returns the number of blocks that would be prefetched, based
* upon the supplied dnode, blockid, and nblks. This is used so that we can
* update streams in place, and then prefetch with their old value after the
* fact. This way, we can delay the prefetch, but subsequent accesses to the
* stream won't result in the same data being prefetched multiple times.
*/
static uint64_t
dmu_zfetch_fetchsz(dnode_t *dn, uint64_t blkid, uint64_t nblks)
{
uint64_t fetchsz;
if (blkid > dn->dn_maxblkid) {
return (0);
}
/* compute fetch size */
if (blkid + nblks + 1 > dn->dn_maxblkid) {
fetchsz = (dn->dn_maxblkid - blkid) + 1;
ASSERT(blkid + fetchsz - 1 <= dn->dn_maxblkid);
} else {
fetchsz = nblks;
}
return (fetchsz);
}
/*
* given a zfetch and a zstream structure, see if there is an associated zstream
* for this block read. If so, it starts a prefetch for the stream it
* located and returns true, otherwise it returns false
*/
static boolean_t
dmu_zfetch_find(zfetch_t *zf, zstream_t *zh, int prefetched)
{
zstream_t *zs;
int64_t diff;
int reset = !prefetched;
int rc = 0;
if (zh == NULL)
return (0);
/*
* XXX: This locking strategy is a bit coarse; however, it's impact has
* yet to be tested. If this turns out to be an issue, it can be
* modified in a number of different ways.
*/
rw_enter(&zf->zf_rwlock, RW_READER);
top:
for (zs = list_head(&zf->zf_stream); zs;
zs = list_next(&zf->zf_stream, zs)) {
/*
* XXX - should this be an assert?
*/
if (zs->zst_len == 0) {
/* bogus stream */
ZFETCHSTAT_BUMP(zfetchstat_bogus_streams);
continue;
}
/*
* We hit this case when we are in a strided prefetch stream:
* we will read "len" blocks before "striding".
*/
if (zh->zst_offset >= zs->zst_offset &&
zh->zst_offset < zs->zst_offset + zs->zst_len) {
if (prefetched) {
/* already fetched */
ZFETCHSTAT_BUMP(zfetchstat_stride_hits);
rc = 1;
goto out;
} else {
ZFETCHSTAT_BUMP(zfetchstat_stride_misses);
}
}
/*
* This is the forward sequential read case: we increment
* len by one each time we hit here, so we will enter this
* case on every read.
*/
if (zh->zst_offset == zs->zst_offset + zs->zst_len) {
reset = !prefetched && zs->zst_len > 1;
mutex_enter(&zs->zst_lock);
if (zh->zst_offset != zs->zst_offset + zs->zst_len) {
mutex_exit(&zs->zst_lock);
goto top;
}
zs->zst_len += zh->zst_len;
diff = zs->zst_len - zfetch_block_cap;
if (diff > 0) {
zs->zst_offset += diff;
zs->zst_len = zs->zst_len > diff ?
zs->zst_len - diff : 0;
}
zs->zst_direction = ZFETCH_FORWARD;
break;
/*
* Same as above, but reading backwards through the file.
*/
} else if (zh->zst_offset == zs->zst_offset - zh->zst_len) {
/* backwards sequential access */
reset = !prefetched && zs->zst_len > 1;
mutex_enter(&zs->zst_lock);
if (zh->zst_offset != zs->zst_offset - zh->zst_len) {
mutex_exit(&zs->zst_lock);
goto top;
}
zs->zst_offset = zs->zst_offset > zh->zst_len ?
zs->zst_offset - zh->zst_len : 0;
zs->zst_ph_offset = zs->zst_ph_offset > zh->zst_len ?
zs->zst_ph_offset - zh->zst_len : 0;
zs->zst_len += zh->zst_len;
diff = zs->zst_len - zfetch_block_cap;
if (diff > 0) {
zs->zst_ph_offset = zs->zst_ph_offset > diff ?
zs->zst_ph_offset - diff : 0;
zs->zst_len = zs->zst_len > diff ?
zs->zst_len - diff : zs->zst_len;
}
zs->zst_direction = ZFETCH_BACKWARD;
break;
} else if ((zh->zst_offset - zs->zst_offset - zs->zst_stride <
zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
/* strided forward access */
mutex_enter(&zs->zst_lock);
if ((zh->zst_offset - zs->zst_offset - zs->zst_stride >=
zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
mutex_exit(&zs->zst_lock);
goto top;
}
zs->zst_offset += zs->zst_stride;
zs->zst_direction = ZFETCH_FORWARD;
break;
} else if ((zh->zst_offset - zs->zst_offset + zs->zst_stride <
zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
/* strided reverse access */
mutex_enter(&zs->zst_lock);
if ((zh->zst_offset - zs->zst_offset + zs->zst_stride >=
zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
mutex_exit(&zs->zst_lock);
goto top;
}
zs->zst_offset = zs->zst_offset > zs->zst_stride ?
zs->zst_offset - zs->zst_stride : 0;
zs->zst_ph_offset = (zs->zst_ph_offset >
(2 * zs->zst_stride)) ?
(zs->zst_ph_offset - (2 * zs->zst_stride)) : 0;
zs->zst_direction = ZFETCH_BACKWARD;
break;
}
}
if (zs) {
if (reset) {
zstream_t *remove = zs;
ZFETCHSTAT_BUMP(zfetchstat_stream_resets);
rc = 0;
mutex_exit(&zs->zst_lock);
rw_exit(&zf->zf_rwlock);
rw_enter(&zf->zf_rwlock, RW_WRITER);
/*
* Relocate the stream, in case someone removes
* it while we were acquiring the WRITER lock.
*/
for (zs = list_head(&zf->zf_stream); zs;
zs = list_next(&zf->zf_stream, zs)) {
if (zs == remove) {
dmu_zfetch_stream_remove(zf, zs);
mutex_destroy(&zs->zst_lock);
kmem_free(zs, sizeof (zstream_t));
break;
}
}
} else {
ZFETCHSTAT_BUMP(zfetchstat_stream_noresets);
rc = 1;
dmu_zfetch_dofetch(zf, zs);
mutex_exit(&zs->zst_lock);
}
}
out:
rw_exit(&zf->zf_rwlock);
return (rc);
}
/*
* Clean-up state associated with a zfetch structure. This frees allocated
* structure members, empties the zf_stream tree, and generally makes things
* nice. This doesn't free the zfetch_t itself, that's left to the caller.
* Clean-up state associated with a zfetch structure (e.g. destroy the
* streams). This doesn't free the zfetch_t itself, that's left to the caller.
*/
void
dmu_zfetch_rele(zfetch_t *zf)
dmu_zfetch_fini(zfetch_t *zf)
{
zstream_t *zs;
zstream_t *zs_next;
zstream_t *zs;
ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
for (zs = list_head(&zf->zf_stream); zs; zs = zs_next) {
zs_next = list_next(&zf->zf_stream, zs);
list_remove(&zf->zf_stream, zs);
mutex_destroy(&zs->zst_lock);
kmem_free(zs, sizeof (zstream_t));
}
rw_enter(&zf->zf_rwlock, RW_WRITER);
while ((zs = list_head(&zf->zf_stream)) != NULL)
dmu_zfetch_stream_remove(zf, zs);
rw_exit(&zf->zf_rwlock);
list_destroy(&zf->zf_stream);
rw_destroy(&zf->zf_rwlock);
@ -540,101 +142,57 @@ dmu_zfetch_rele(zfetch_t *zf)
}
/*
* Given a zfetch and zstream structure, insert the zstream structure into the
* AVL tree contained within the zfetch structure. Peform the appropriate
* book-keeping. It is possible that another thread has inserted a stream which
* matches one that we are about to insert, so we must be sure to check for this
* case. If one is found, return failure, and let the caller cleanup the
* duplicates.
*/
static int
dmu_zfetch_stream_insert(zfetch_t *zf, zstream_t *zs)
{
zstream_t *zs_walk;
zstream_t *zs_next;
ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
for (zs_walk = list_head(&zf->zf_stream); zs_walk; zs_walk = zs_next) {
zs_next = list_next(&zf->zf_stream, zs_walk);
if (dmu_zfetch_streams_equal(zs_walk, zs)) {
return (0);
}
}
list_insert_head(&zf->zf_stream, zs);
zf->zf_stream_cnt++;
return (1);
}
/*
* Walk the list of zstreams in the given zfetch, find an old one (by time), and
* reclaim it for use by the caller.
*/
static zstream_t *
dmu_zfetch_stream_reclaim(zfetch_t *zf)
{
zstream_t *zs;
if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
return (0);
for (zs = list_head(&zf->zf_stream); zs;
zs = list_next(&zf->zf_stream, zs)) {
if (((ddi_get_lbolt() - zs->zst_last)/hz) > zfetch_min_sec_reap)
break;
}
if (zs) {
dmu_zfetch_stream_remove(zf, zs);
mutex_destroy(&zs->zst_lock);
bzero(zs, sizeof (zstream_t));
} else {
zf->zf_alloc_fail++;
}
rw_exit(&zf->zf_rwlock);
return (zs);
}
/*
* Given a zfetch and zstream structure, remove the zstream structure from its
* container in the zfetch structure. Perform the appropriate book-keeping.
* If there aren't too many streams already, create a new stream.
* The "blkid" argument is the next block that we expect this stream to access.
* While we're here, clean up old streams (which haven't been
* accessed for at least zfetch_min_sec_reap seconds).
*/
static void
dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
{
zstream_t *zs;
zstream_t *zs_next;
int numstreams = 0;
uint32_t max_streams;
ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
list_remove(&zf->zf_stream, zs);
zf->zf_stream_cnt--;
}
/*
* Clean up old streams.
*/
for (zs = list_head(&zf->zf_stream);
zs != NULL; zs = zs_next) {
zs_next = list_next(&zf->zf_stream, zs);
if (((gethrtime() - zs->zs_atime) / NANOSEC) >
zfetch_min_sec_reap)
dmu_zfetch_stream_remove(zf, zs);
else
numstreams++;
}
static int
dmu_zfetch_streams_equal(zstream_t *zs1, zstream_t *zs2)
{
if (zs1->zst_offset != zs2->zst_offset)
return (0);
/*
* The maximum number of streams is normally zfetch_max_streams,
* but for small files we lower it such that it's at least possible
* for all the streams to be non-overlapping.
*
* If we are already at the maximum number of streams for this file,
* even after removing old streams, then don't create this stream.
*/
max_streams = MAX(1, MIN(zfetch_max_streams,
zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
zfetch_max_distance));
if (numstreams >= max_streams) {
ZFETCHSTAT_BUMP(zfetchstat_max_streams);
return;
}
if (zs1->zst_len != zs2->zst_len)
return (0);
zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
zs->zs_blkid = blkid;
zs->zs_pf_blkid = blkid;
zs->zs_atime = gethrtime();
mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
if (zs1->zst_stride != zs2->zst_stride)
return (0);
if (zs1->zst_ph_offset != zs2->zst_ph_offset)
return (0);
if (zs1->zst_cap != zs2->zst_cap)
return (0);
if (zs1->zst_direction != zs2->zst_direction)
return (0);
return (1);
list_insert_head(&zf->zf_stream, zs);
}
/*
@ -642,93 +200,91 @@ dmu_zfetch_streams_equal(zstream_t *zs1, zstream_t *zs2)
* routines to create, delete, find, or operate upon prefetch streams.
*/
void
dmu_zfetch(zfetch_t *zf, uint64_t offset, uint64_t size, int prefetched)
dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks)
{
zstream_t zst;
zstream_t *newstream;
boolean_t fetched;
int inserted;
unsigned int blkshft;
uint64_t blksz;
zstream_t *zs;
int64_t pf_start;
int pf_nblks;
int i;
if (zfs_prefetch_disable)
return;
/* files that aren't ln2 blocksz are only one block -- nothing to do */
if (!zf->zf_dnode->dn_datablkshift)
/*
* As a fast path for small (single-block) files, ignore access
* to the first block.
*/
if (blkid == 0)
return;
/* convert offset and size, into blockid and nblocks */
blkshft = zf->zf_dnode->dn_datablkshift;
blksz = (1 << blkshft);
rw_enter(&zf->zf_rwlock, RW_READER);
bzero(&zst, sizeof (zstream_t));
zst.zst_offset = offset >> blkshft;
zst.zst_len = (P2ROUNDUP(offset + size, blksz) -
P2ALIGN(offset, blksz)) >> blkshft;
fetched = dmu_zfetch_find(zf, &zst, prefetched);
if (fetched) {
ZFETCHSTAT_BUMP(zfetchstat_hits);
} else {
ZFETCHSTAT_BUMP(zfetchstat_misses);
if ((fetched = dmu_zfetch_colinear(zf, &zst))) {
ZFETCHSTAT_BUMP(zfetchstat_colinear_hits);
} else {
ZFETCHSTAT_BUMP(zfetchstat_colinear_misses);
for (zs = list_head(&zf->zf_stream); zs != NULL;
zs = list_next(&zf->zf_stream, zs)) {
if (blkid == zs->zs_blkid) {
mutex_enter(&zs->zs_lock);
/*
* zs_blkid could have changed before we
* acquired zs_lock; re-check them here.
*/
if (blkid != zs->zs_blkid) {
mutex_exit(&zs->zs_lock);
continue;
}
break;
}
}
if (!fetched) {
newstream = dmu_zfetch_stream_reclaim(zf);
if (zs == NULL) {
/*
* we still couldn't find a stream, drop the lock, and allocate
* one if possible. Otherwise, give up and go home.
* This access is not part of any existing stream. Create
* a new stream for it.
*/
if (newstream) {
ZFETCHSTAT_BUMP(zfetchstat_reclaim_successes);
} else {
uint64_t maxblocks;
uint32_t max_streams;
uint32_t cur_streams;
ZFETCHSTAT_BUMP(zfetchstat_reclaim_failures);
cur_streams = zf->zf_stream_cnt;
maxblocks = zf->zf_dnode->dn_maxblkid;
max_streams = MIN(zfetch_max_streams,
(maxblocks / zfetch_block_cap));
if (max_streams == 0) {
max_streams++;
}
if (cur_streams >= max_streams) {
return;
}
newstream =
kmem_zalloc(sizeof (zstream_t), KM_SLEEP);
}
newstream->zst_offset = zst.zst_offset;
newstream->zst_len = zst.zst_len;
newstream->zst_stride = zst.zst_len;
newstream->zst_ph_offset = zst.zst_len + zst.zst_offset;
newstream->zst_cap = zst.zst_len;
newstream->zst_direction = ZFETCH_FORWARD;
newstream->zst_last = ddi_get_lbolt();
mutex_init(&newstream->zst_lock, NULL, MUTEX_DEFAULT, NULL);
rw_enter(&zf->zf_rwlock, RW_WRITER);
inserted = dmu_zfetch_stream_insert(zf, newstream);
ZFETCHSTAT_BUMP(zfetchstat_misses);
if (rw_tryupgrade(&zf->zf_rwlock))
dmu_zfetch_stream_create(zf, blkid + nblks);
rw_exit(&zf->zf_rwlock);
if (!inserted) {
mutex_destroy(&newstream->zst_lock);
kmem_free(newstream, sizeof (zstream_t));
}
return;
}
/*
* This access was to a block that we issued a prefetch for on
* behalf of this stream. Issue further prefetches for this stream.
*
* Normally, we start prefetching where we stopped
* prefetching last (zs_pf_blkid). But when we get our first
* hit on this stream, zs_pf_blkid == zs_blkid, we don't
* want to prefetch to block we just accessed. In this case,
* start just after the block we just accessed.
*/
pf_start = MAX(zs->zs_pf_blkid, blkid + nblks);
/*
* Double our amount of prefetched data, but don't let the
* prefetch get further ahead than zfetch_max_distance.
*/
pf_nblks =
MIN((int64_t)zs->zs_pf_blkid - zs->zs_blkid + nblks,
zs->zs_blkid + nblks +
(zfetch_max_distance >> zf->zf_dnode->dn_datablkshift) - pf_start);
zs->zs_pf_blkid = pf_start + pf_nblks;
zs->zs_atime = gethrtime();
zs->zs_blkid = blkid + nblks;
/*
* dbuf_prefetch() issues the prefetch i/o
* asynchronously, but it may need to wait for an
* indirect block to be read from disk. Therefore
* we do not want to hold any locks while we call it.
*/
mutex_exit(&zs->zs_lock);
rw_exit(&zf->zf_rwlock);
for (i = 0; i < pf_nblks; i++) {
dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
}
ZFETCHSTAT_BUMP(zfetchstat_hits);
}
#if defined(_KERNEL) && defined(HAVE_SPL)
@ -741,8 +297,9 @@ MODULE_PARM_DESC(zfetch_max_streams, "Max number of streams per zfetch");
module_param(zfetch_min_sec_reap, uint, 0644);
MODULE_PARM_DESC(zfetch_min_sec_reap, "Min time before stream reclaim");
module_param(zfetch_block_cap, uint, 0644);
MODULE_PARM_DESC(zfetch_block_cap, "Max number of blocks to fetch at a time");
module_param(zfetch_max_distance, uint, 0644);
MODULE_PARM_DESC(zfetch_max_distance,
"Max bytes to prefetch per stream (default 8MB)");
module_param(zfetch_array_rd_sz, ulong, 0644);
MODULE_PARM_DESC(zfetch_array_rd_sz, "Number of bytes in a array_read");

View File

@ -524,7 +524,7 @@ dnode_destroy(dnode_t *dn)
dn->dn_id_flags = 0;
dn->dn_unlisted_l0_blkid = 0;
dmu_zfetch_rele(&dn->dn_zfetch);
dmu_zfetch_fini(&dn->dn_zfetch);
kmem_cache_free(dnode_cache, dn);
arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
@ -773,8 +773,6 @@ dnode_move_impl(dnode_t *odn, dnode_t *ndn)
dmu_zfetch_init(&ndn->dn_zfetch, NULL);
list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
ndn->dn_zfetch.zf_stream_cnt = odn->dn_zfetch.zf_stream_cnt;
ndn->dn_zfetch.zf_alloc_fail = odn->dn_zfetch.zf_alloc_fail;
/*
* Update back pointers. Updating the handle fixes the back pointer of