Update llvm and clang to release_38 branch r258549.

This commit is contained in:
Dimitry Andric 2016-01-22 21:50:08 +00:00
commit 8c24ff90c4
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/projects/clang380-import/; revision=294609
22 changed files with 723 additions and 275 deletions

View File

@ -295,7 +295,7 @@ class MachineFunction {
}
/// Should we be emitting segmented stack stuff for the function
bool shouldSplitStack();
bool shouldSplitStack() const;
/// getNumBlockIDs - Return the number of MBB ID's allocated.
///

View File

@ -369,6 +369,18 @@ struct SDNodeFlags {
(UnsafeAlgebra << 3) | (NoNaNs << 4) | (NoInfs << 5) |
(NoSignedZeros << 6) | (AllowReciprocal << 7);
}
/// Clear any flags in this flag set that aren't also set in Flags.
void intersectWith(const SDNodeFlags *Flags) {
NoUnsignedWrap &= Flags->NoUnsignedWrap;
NoSignedWrap &= Flags->NoSignedWrap;
Exact &= Flags->Exact;
UnsafeAlgebra &= Flags->UnsafeAlgebra;
NoNaNs &= Flags->NoNaNs;
NoInfs &= Flags->NoInfs;
NoSignedZeros &= Flags->NoSignedZeros;
AllowReciprocal &= Flags->AllowReciprocal;
}
};
/// Represents one node in the SelectionDAG.
@ -682,6 +694,9 @@ class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
/// and directly, but it is not to avoid creating a vtable for this class.
const SDNodeFlags *getFlags() const;
/// Clear any flags in this node that aren't also set in Flags.
void intersectFlagsWith(const SDNodeFlags *Flags);
/// Return the number of values defined/returned by this operator.
unsigned getNumValues() const { return NumValues; }

View File

@ -331,6 +331,25 @@ unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
/// during lowering by the GC infrastructure.
bool callsGCLeafFunction(ImmutableCallSite CS);
//===----------------------------------------------------------------------===//
// Intrinsic pattern matching
//
/// Try and match a bitreverse or bswap idiom.
///
/// If an idiom is matched, an intrinsic call is inserted before \c I. Any added
/// instructions are returned in \c InsertedInsts. They will all have been added
/// to a basic block.
///
/// A bitreverse idiom normally requires around 2*BW nodes to be searched (where
/// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up
/// to BW / 4 nodes to be searched, so is significantly faster.
///
/// This function returns true on a successful match or false otherwise.
bool recognizeBitReverseOrBSwapIdiom(
Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
SmallVectorImpl<Instruction *> &InsertedInsts);
} // End llvm namespace
#endif

View File

@ -125,8 +125,6 @@ class LibCallSimplifier {
Value *optimizeStringMemoryLibCall(CallInst *CI, IRBuilder<> &B);
// Math Library Optimizations
Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, bool CheckRetType);
Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B);
Value *optimizeCos(CallInst *CI, IRBuilder<> &B);
Value *optimizePow(CallInst *CI, IRBuilder<> &B);
Value *optimizeExp2(CallInst *CI, IRBuilder<> &B);

View File

@ -5211,6 +5211,24 @@ bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) {
return false;
}
/// Given an OR instruction, check to see if this is a bitreverse
/// idiom. If so, insert the new intrinsic and return true.
static bool makeBitReverse(Instruction &I, const DataLayout &DL,
const TargetLowering &TLI) {
if (!I.getType()->isIntegerTy() ||
!TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
TLI.getValueType(DL, I.getType(), true)))
return false;
SmallVector<Instruction*, 4> Insts;
if (!recognizeBitReverseOrBSwapIdiom(&I, false, true, Insts))
return false;
Instruction *LastInst = Insts.back();
I.replaceAllUsesWith(LastInst);
RecursivelyDeleteTriviallyDeadInstructions(&I);
return true;
}
// In this pass we look for GEP and cast instructions that are used
// across basic blocks and rewrite them to improve basic-block-at-a-time
// selection.
@ -5224,8 +5242,19 @@ bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) {
if (ModifiedDT)
return true;
}
MadeChange |= dupRetToEnableTailCallOpts(&BB);
bool MadeBitReverse = true;
while (TLI && MadeBitReverse) {
MadeBitReverse = false;
for (auto &I : reverse(BB)) {
if (makeBitReverse(I, *DL, *TLI)) {
MadeBitReverse = MadeChange = true;
break;
}
}
}
MadeChange |= dupRetToEnableTailCallOpts(&BB);
return MadeChange;
}

View File

@ -163,7 +163,7 @@ getOrCreateJumpTableInfo(unsigned EntryKind) {
}
/// Should we be emitting segmented stack stuff for the function
bool MachineFunction::shouldSplitStack() {
bool MachineFunction::shouldSplitStack() const {
return getFunction()->hasFnAttribute("split-stack");
}

View File

@ -377,22 +377,6 @@ static void AddNodeIDOperands(FoldingSetNodeID &ID,
}
}
/// Add logical or fast math flag values to FoldingSetNodeID value.
static void AddNodeIDFlags(FoldingSetNodeID &ID, unsigned Opcode,
const SDNodeFlags *Flags) {
if (!isBinOpWithFlags(Opcode))
return;
unsigned RawFlags = 0;
if (Flags)
RawFlags = Flags->getRawFlags();
ID.AddInteger(RawFlags);
}
static void AddNodeIDFlags(FoldingSetNodeID &ID, const SDNode *N) {
AddNodeIDFlags(ID, N->getOpcode(), N->getFlags());
}
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
SDVTList VTList, ArrayRef<SDValue> OpList) {
AddNodeIDOpcode(ID, OpC);
@ -528,8 +512,6 @@ static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
}
} // end switch (N->getOpcode())
AddNodeIDFlags(ID, N);
// Target specific memory nodes could also have address spaces to check.
if (N->isTargetMemoryOpcode())
ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
@ -851,6 +833,9 @@ SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
AddNodeIDCustom(ID, N);
SDNode *Node = FindNodeOrInsertPos(ID, N->getDebugLoc(), InsertPos);
if (Node)
if (const SDNodeFlags *Flags = N->getFlags())
Node->intersectFlagsWith(Flags);
return Node;
}
@ -869,6 +854,9 @@ SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
AddNodeIDCustom(ID, N);
SDNode *Node = FindNodeOrInsertPos(ID, N->getDebugLoc(), InsertPos);
if (Node)
if (const SDNodeFlags *Flags = N->getFlags())
Node->intersectFlagsWith(Flags);
return Node;
}
@ -886,6 +874,9 @@ SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
AddNodeIDCustom(ID, N);
SDNode *Node = FindNodeOrInsertPos(ID, N->getDebugLoc(), InsertPos);
if (Node)
if (const SDNodeFlags *Flags = N->getFlags())
Node->intersectFlagsWith(Flags);
return Node;
}
@ -3892,10 +3883,12 @@ SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1,
SDValue Ops[] = {N1, N2};
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops);
AddNodeIDFlags(ID, Opcode, Flags);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP))
if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP)) {
if (Flags)
E->intersectFlagsWith(Flags);
return SDValue(E, 0);
}
N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags);
@ -6249,10 +6242,12 @@ SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops);
AddNodeIDFlags(ID, Opcode, Flags);
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, DebugLoc(), IP))
if (SDNode *E = FindNodeOrInsertPos(ID, DebugLoc(), IP)) {
if (Flags)
E->intersectFlagsWith(Flags);
return E;
}
}
return nullptr;
}
@ -6948,6 +6943,11 @@ const SDNodeFlags *SDNode::getFlags() const {
return nullptr;
}
void SDNode::intersectFlagsWith(const SDNodeFlags *Flags) {
if (auto *FlagsNode = dyn_cast<BinaryWithFlagsSDNode>(this))
FlagsNode->Flags.intersectWith(Flags);
}
SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
assert(N->getNumValues() == 1 &&
"Can't unroll a vector with multiple results!");

View File

@ -10133,6 +10133,7 @@ void AArch64TargetLowering::insertCopiesSplitCSR(
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
MachineBasicBlock::iterator MBBI = Entry->begin();
for (const MCPhysReg *I = IStart; *I; ++I) {
const TargetRegisterClass *RC = nullptr;
if (AArch64::GPR64RegClass.contains(*I))
@ -10152,13 +10153,13 @@ void AArch64TargetLowering::insertCopiesSplitCSR(
Attribute::NoUnwind) &&
"Function should be nounwind in insertCopiesSplitCSR!");
Entry->addLiveIn(*I);
BuildMI(*Entry, Entry->begin(), DebugLoc(), TII->get(TargetOpcode::COPY),
NewVR)
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
.addReg(*I);
// Insert the copy-back instructions right before the terminator.
for (auto *Exit : Exits)
BuildMI(*Exit, Exit->begin(), DebugLoc(), TII->get(TargetOpcode::COPY),
*I)
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::COPY), *I)
.addReg(NewVR);
}
}

View File

@ -112,9 +112,21 @@ class AArch64ELFStreamer : public MCELFStreamer {
MCELFStreamer::EmitInstruction(Inst, STI);
}
/// Emit a 32-bit value as an instruction. This is only used for the .inst
/// directive, EmitInstruction should be used in other cases.
void emitInst(uint32_t Inst) {
char Buffer[4];
// We can't just use EmitIntValue here, as that will emit a data mapping
// symbol, and swap the endianness on big-endian systems (instructions are
// always little-endian).
for (unsigned I = 0; I < 4; ++I) {
Buffer[I] = uint8_t(Inst);
Inst >>= 8;
}
EmitA64MappingSymbol();
MCELFStreamer::EmitIntValue(Inst, 4);
MCELFStreamer::EmitBytes(StringRef(Buffer, 4));
}
/// This is one of the functions used to emit data into an ELF section, so the

View File

@ -12423,6 +12423,7 @@ void ARMTargetLowering::insertCopiesSplitCSR(
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
MachineBasicBlock::iterator MBBI = Entry->begin();
for (const MCPhysReg *I = IStart; *I; ++I) {
const TargetRegisterClass *RC = nullptr;
if (ARM::GPRRegClass.contains(*I))
@ -12442,13 +12443,13 @@ void ARMTargetLowering::insertCopiesSplitCSR(
Attribute::NoUnwind) &&
"Function should be nounwind in insertCopiesSplitCSR!");
Entry->addLiveIn(*I);
BuildMI(*Entry, Entry->begin(), DebugLoc(), TII->get(TargetOpcode::COPY),
NewVR)
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
.addReg(*I);
// Insert the copy-back instructions right before the terminator.
for (auto *Exit : Exits)
BuildMI(*Exit, Exit->begin(), DebugLoc(), TII->get(TargetOpcode::COPY),
*I)
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::COPY), *I)
.addReg(NewVR);
}
}

View File

@ -832,10 +832,10 @@ def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
R8, R9, R10, R11)>;
// CSRs that are handled by prologue, epilogue.
def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add)>;
def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
// CSRs that are handled explicitly via copies.
def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(add CSR_64_TLS_Darwin)>;
def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
// All GPRs - except r11
def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,

View File

@ -2031,6 +2031,10 @@ void X86FrameLowering::adjustForSegmentedStacks(
unsigned TlsReg, TlsOffset;
DebugLoc DL;
// To support shrink-wrapping we would need to insert the new blocks
// at the right place and update the branches to PrologueMBB.
assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
"Scratch register is live-in");
@ -2271,6 +2275,11 @@ void X86FrameLowering::adjustForHiPEPrologue(
MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
MachineFrameInfo *MFI = MF.getFrameInfo();
DebugLoc DL;
// To support shrink-wrapping we would need to insert the new blocks
// at the right place and update the branches to PrologueMBB.
assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
// HiPE-specific values
const unsigned HipeLeafWords = 24;
const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
@ -2584,7 +2593,14 @@ bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
// If we may need to emit frameless compact unwind information, give
// up as this is currently broken: PR25614.
return MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF);
return (MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
// The lowering of segmented stack and HiPE only support entry blocks
// as prologue blocks: PR26107.
// This limitation may be lifted if we fix:
// - adjustForSegmentedStacks
// - adjustForHiPEPrologue
MF.getFunction()->getCallingConv() != CallingConv::HiPE &&
!MF.shouldSplitStack();
}
MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(

View File

@ -28908,6 +28908,7 @@ void X86TargetLowering::insertCopiesSplitCSR(
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
MachineBasicBlock::iterator MBBI = Entry->begin();
for (const MCPhysReg *I = IStart; *I; ++I) {
const TargetRegisterClass *RC = nullptr;
if (X86::GR64RegClass.contains(*I))
@ -28925,13 +28926,13 @@ void X86TargetLowering::insertCopiesSplitCSR(
Attribute::NoUnwind) &&
"Function should be nounwind in insertCopiesSplitCSR!");
Entry->addLiveIn(*I);
BuildMI(*Entry, Entry->begin(), DebugLoc(), TII->get(TargetOpcode::COPY),
NewVR)
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
.addReg(*I);
// Insert the copy-back instructions right before the terminator.
for (auto *Exit : Exits)
BuildMI(*Exit, Exit->begin(), DebugLoc(), TII->get(TargetOpcode::COPY),
*I)
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::COPY), *I)
.addReg(NewVR);
}
}

View File

@ -17,6 +17,7 @@
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;
@ -1565,190 +1566,18 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
return Changed ? &I : nullptr;
}
/// Analyze the specified subexpression and see if it is capable of providing
/// pieces of a bswap or bitreverse. The subexpression provides a potential
/// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
/// the output of the expression came from a corresponding bit in some other
/// value. This function is recursive, and the end result is a mapping of
/// (value, bitnumber) to bitnumber. It is the caller's responsibility to
/// validate that all `value`s are identical and that the bitnumber to bitnumber
/// mapping is correct for a bswap or bitreverse.
///
/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
/// that the expression deposits the low byte of %X into the high byte of the
/// result and that all other bits are zero. This expression is accepted,
/// BitValues[24-31] are set to %X and BitProvenance[24-31] are set to [0-7].
///
/// This function returns true if the match was unsuccessful and false if so.
/// On entry to the function the "OverallLeftShift" is a signed integer value
/// indicating the number of bits that the subexpression is later shifted. For
/// example, if the expression is later right shifted by 16 bits, the
/// OverallLeftShift value would be -16 on entry. This is used to specify which
/// bits of BitValues are actually being set.
///
/// Similarly, BitMask is a bitmask where a bit is clear if its corresponding
/// bit is masked to zero by a user. For example, in (X & 255), X will be
/// processed with a bytemask of 255. BitMask is always in the local
/// (OverallLeftShift) coordinate space.
///
static bool CollectBitParts(Value *V, int OverallLeftShift, APInt BitMask,
SmallVectorImpl<Value *> &BitValues,
SmallVectorImpl<int> &BitProvenance) {
if (Instruction *I = dyn_cast<Instruction>(V)) {
// If this is an or instruction, it may be an inner node of the bswap.
if (I->getOpcode() == Instruction::Or)
return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
BitValues, BitProvenance) ||
CollectBitParts(I->getOperand(1), OverallLeftShift, BitMask,
BitValues, BitProvenance);
// If this is a logical shift by a constant, recurse with OverallLeftShift
// and BitMask adjusted.
if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
unsigned ShAmt =
cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
// Ensure the shift amount is defined.
if (ShAmt > BitValues.size())
return true;
unsigned BitShift = ShAmt;
if (I->getOpcode() == Instruction::Shl) {
// X << C -> collect(X, +C)
OverallLeftShift += BitShift;
BitMask = BitMask.lshr(BitShift);
} else {
// X >>u C -> collect(X, -C)
OverallLeftShift -= BitShift;
BitMask = BitMask.shl(BitShift);
}
if (OverallLeftShift >= (int)BitValues.size())
return true;
if (OverallLeftShift <= -(int)BitValues.size())
return true;
return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
BitValues, BitProvenance);
}
// If this is a logical 'and' with a mask that clears bits, clear the
// corresponding bits in BitMask.
if (I->getOpcode() == Instruction::And &&
isa<ConstantInt>(I->getOperand(1))) {
unsigned NumBits = BitValues.size();
APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
for (unsigned i = 0; i != NumBits; ++i, Bit <<= 1) {
// If this bit is masked out by a later operation, we don't care what
// the and mask is.
if (BitMask[i] == 0)
continue;
// If the AndMask is zero for this bit, clear the bit.
APInt MaskB = AndMask & Bit;
if (MaskB == 0) {
BitMask.clearBit(i);
continue;
}
// Otherwise, this bit is kept.
}
return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
BitValues, BitProvenance);
}
}
// Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
// the input value to the bswap/bitreverse. To be part of a bswap or
// bitreverse we must be demanding a contiguous range of bits from it.
unsigned InputBitLen = BitMask.countPopulation();
unsigned InputBitNo = BitMask.countTrailingZeros();
if (BitMask.getBitWidth() - BitMask.countLeadingZeros() - InputBitNo !=
InputBitLen)
// Not a contiguous set range of bits!
return true;
// We know we're moving a contiguous range of bits from the input to the
// output. Record which bits in the output came from which bits in the input.
unsigned DestBitNo = InputBitNo + OverallLeftShift;
for (unsigned I = 0; I < InputBitLen; ++I)
BitProvenance[DestBitNo + I] = InputBitNo + I;
// If the destination bit value is already defined, the values are or'd
// together, which isn't a bswap/bitreverse (unless it's an or of the same
// bits).
if (BitValues[DestBitNo] && BitValues[DestBitNo] != V)
return true;
for (unsigned I = 0; I < InputBitLen; ++I)
BitValues[DestBitNo + I] = V;
return false;
}
static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
unsigned BitWidth) {
if (From % 8 != To % 8)
return false;
// Convert from bit indices to byte indices and check for a byte reversal.
From >>= 3;
To >>= 3;
BitWidth >>= 3;
return From == BitWidth - To - 1;
}
static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
unsigned BitWidth) {
return From == BitWidth - To - 1;
}
/// Given an OR instruction, check to see if this is a bswap or bitreverse
/// idiom. If so, insert the new intrinsic and return it.
Instruction *InstCombiner::MatchBSwapOrBitReverse(BinaryOperator &I) {
IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
if (!ITy)
return nullptr; // Can't do vectors.
unsigned BW = ITy->getBitWidth();
/// We keep track of which bit (BitProvenance) inside which value (BitValues)
/// defines each bit in the result.
SmallVector<Value *, 8> BitValues(BW, nullptr);
SmallVector<int, 8> BitProvenance(BW, -1);
// Try to find all the pieces corresponding to the bswap.
APInt BitMask = APInt::getAllOnesValue(BitValues.size());
if (CollectBitParts(&I, 0, BitMask, BitValues, BitProvenance))
SmallVector<Instruction*, 4> Insts;
if (!recognizeBitReverseOrBSwapIdiom(&I, true, false, Insts))
return nullptr;
Instruction *LastInst = Insts.pop_back_val();
LastInst->removeFromParent();
// Check to see if all of the bits come from the same value.
Value *V = BitValues[0];
if (!V) return nullptr; // Didn't find a bit? Must be zero.
if (!std::all_of(BitValues.begin(), BitValues.end(),
[&](const Value *X) { return X == V; }))
return nullptr;
// Now, is the bit permutation correct for a bswap or a bitreverse? We can
// only byteswap values with an even number of bytes.
bool OKForBSwap = BW % 16 == 0, OKForBitReverse = true;;
for (unsigned i = 0, e = BitValues.size(); i != e; ++i) {
OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[i], i, BW);
OKForBitReverse &=
bitTransformIsCorrectForBitReverse(BitProvenance[i], i, BW);
}
Intrinsic::ID Intrin;
if (OKForBSwap)
Intrin = Intrinsic::bswap;
else if (OKForBitReverse)
Intrin = Intrinsic::bitreverse;
else
return nullptr;
Function *F = Intrinsic::getDeclaration(I.getModule(), Intrin, ITy);
return CallInst::Create(F, V);
for (auto *Inst : Insts)
Worklist.Add(Inst);
return LastInst;
}
/// We have an expression of the form (A&C)|(B&D). Check if A is (cond?-1:0)

View File

@ -179,13 +179,244 @@ void LandingPadInliningInfo::forwardResume(
RI->eraseFromParent();
}
/// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
static Value *getParentPad(Value *EHPad) {
if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
return FPI->getParentPad();
return cast<CatchSwitchInst>(EHPad)->getParentPad();
}
typedef DenseMap<Instruction *, Value *> UnwindDestMemoTy;
/// Helper for getUnwindDestToken that does the descendant-ward part of
/// the search.
static Value *getUnwindDestTokenHelper(Instruction *EHPad,
UnwindDestMemoTy &MemoMap) {
SmallVector<Instruction *, 8> Worklist(1, EHPad);
while (!Worklist.empty()) {
Instruction *CurrentPad = Worklist.pop_back_val();
// We only put pads on the worklist that aren't in the MemoMap. When
// we find an unwind dest for a pad we may update its ancestors, but
// the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
// so they should never get updated while queued on the worklist.
assert(!MemoMap.count(CurrentPad));
Value *UnwindDestToken = nullptr;
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
if (CatchSwitch->hasUnwindDest()) {
UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
} else {
// Catchswitch doesn't have a 'nounwind' variant, and one might be
// annotated as "unwinds to caller" when really it's nounwind (see
// e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
// parent's unwind dest from this. We can check its catchpads'
// descendants, since they might include a cleanuppad with an
// "unwinds to caller" cleanupret, which can be trusted.
for (auto HI = CatchSwitch->handler_begin(),
HE = CatchSwitch->handler_end();
HI != HE && !UnwindDestToken; ++HI) {
BasicBlock *HandlerBlock = *HI;
auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
for (User *Child : CatchPad->users()) {
// Intentionally ignore invokes here -- since the catchswitch is
// marked "unwind to caller", it would be a verifier error if it
// contained an invoke which unwinds out of it, so any invoke we'd
// encounter must unwind to some child of the catch.
if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
continue;
Instruction *ChildPad = cast<Instruction>(Child);
auto Memo = MemoMap.find(ChildPad);
if (Memo == MemoMap.end()) {
// Haven't figure out this child pad yet; queue it.
Worklist.push_back(ChildPad);
continue;
}
// We've already checked this child, but might have found that
// it offers no proof either way.
Value *ChildUnwindDestToken = Memo->second;
if (!ChildUnwindDestToken)
continue;
// We already know the child's unwind dest, which can either
// be ConstantTokenNone to indicate unwind to caller, or can
// be another child of the catchpad. Only the former indicates
// the unwind dest of the catchswitch.
if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
UnwindDestToken = ChildUnwindDestToken;
break;
}
assert(getParentPad(ChildUnwindDestToken) == CatchPad);
}
}
}
} else {
auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
for (User *U : CleanupPad->users()) {
if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
UnwindDestToken = RetUnwindDest->getFirstNonPHI();
else
UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
break;
}
Value *ChildUnwindDestToken;
if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
} else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
Instruction *ChildPad = cast<Instruction>(U);
auto Memo = MemoMap.find(ChildPad);
if (Memo == MemoMap.end()) {
// Haven't resolved this child yet; queue it and keep searching.
Worklist.push_back(ChildPad);
continue;
}
// We've checked this child, but still need to ignore it if it
// had no proof either way.
ChildUnwindDestToken = Memo->second;
if (!ChildUnwindDestToken)
continue;
} else {
// Not a relevant user of the cleanuppad
continue;
}
// In a well-formed program, the child/invoke must either unwind to
// an(other) child of the cleanup, or exit the cleanup. In the
// first case, continue searching.
if (isa<Instruction>(ChildUnwindDestToken) &&
getParentPad(ChildUnwindDestToken) == CleanupPad)
continue;
UnwindDestToken = ChildUnwindDestToken;
break;
}
}
// If we haven't found an unwind dest for CurrentPad, we may have queued its
// children, so move on to the next in the worklist.
if (!UnwindDestToken)
continue;
// Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
// any ancestors of CurrentPad up to but not including UnwindDestToken's
// parent pad. Record this in the memo map, and check to see if the
// original EHPad being queried is one of the ones exited.
Value *UnwindParent;
if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
UnwindParent = getParentPad(UnwindPad);
else
UnwindParent = nullptr;
bool ExitedOriginalPad = false;
for (Instruction *ExitedPad = CurrentPad;
ExitedPad && ExitedPad != UnwindParent;
ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
// Skip over catchpads since they just follow their catchswitches.
if (isa<CatchPadInst>(ExitedPad))
continue;
MemoMap[ExitedPad] = UnwindDestToken;
ExitedOriginalPad |= (ExitedPad == EHPad);
}
if (ExitedOriginalPad)
return UnwindDestToken;
// Continue the search.
}
// No definitive information is contained within this funclet.
return nullptr;
}
/// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
/// return that pad instruction. If it unwinds to caller, return
/// ConstantTokenNone. If it does not have a definitive unwind destination,
/// return nullptr.
///
/// This routine gets invoked for calls in funclets in inlinees when inlining
/// an invoke. Since many funclets don't have calls inside them, it's queried
/// on-demand rather than building a map of pads to unwind dests up front.
/// Determining a funclet's unwind dest may require recursively searching its
/// descendants, and also ancestors and cousins if the descendants don't provide
/// an answer. Since most funclets will have their unwind dest immediately
/// available as the unwind dest of a catchswitch or cleanupret, this routine
/// searches top-down from the given pad and then up. To avoid worst-case
/// quadratic run-time given that approach, it uses a memo map to avoid
/// re-processing funclet trees. The callers that rewrite the IR as they go
/// take advantage of this, for correctness, by checking/forcing rewritten
/// pads' entries to match the original callee view.
static Value *getUnwindDestToken(Instruction *EHPad,
UnwindDestMemoTy &MemoMap) {
// Catchpads unwind to the same place as their catchswitch;
// redirct any queries on catchpads so the code below can
// deal with just catchswitches and cleanuppads.
if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
EHPad = CPI->getCatchSwitch();
// Check if we've already determined the unwind dest for this pad.
auto Memo = MemoMap.find(EHPad);
if (Memo != MemoMap.end())
return Memo->second;
// Search EHPad and, if necessary, its descendants.
Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
if (UnwindDestToken)
return UnwindDestToken;
// No information is available for this EHPad from itself or any of its
// descendants. An unwind all the way out to a pad in the caller would
// need also to agree with the unwind dest of the parent funclet, so
// search up the chain to try to find a funclet with information. Put
// null entries in the memo map to avoid re-processing as we go up.
MemoMap[EHPad] = nullptr;
Instruction *LastUselessPad = EHPad;
Value *AncestorToken;
for (AncestorToken = getParentPad(EHPad);
auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
AncestorToken = getParentPad(AncestorToken)) {
// Skip over catchpads since they just follow their catchswitches.
if (isa<CatchPadInst>(AncestorPad))
continue;
assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
auto AncestorMemo = MemoMap.find(AncestorPad);
if (AncestorMemo == MemoMap.end()) {
UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
} else {
UnwindDestToken = AncestorMemo->second;
}
if (UnwindDestToken)
break;
LastUselessPad = AncestorPad;
}
// Since the whole tree under LastUselessPad has no information, it all must
// match UnwindDestToken; record that to avoid repeating the search.
SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
while (!Worklist.empty()) {
Instruction *UselessPad = Worklist.pop_back_val();
assert(!MemoMap.count(UselessPad) || MemoMap[UselessPad] == nullptr);
MemoMap[UselessPad] = UnwindDestToken;
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
for (BasicBlock *HandlerBlock : CatchSwitch->handlers())
for (User *U : HandlerBlock->getFirstNonPHI()->users())
if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
Worklist.push_back(cast<Instruction>(U));
} else {
assert(isa<CleanupPadInst>(UselessPad));
for (User *U : UselessPad->users())
if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
Worklist.push_back(cast<Instruction>(U));
}
}
return UnwindDestToken;
}
/// When we inline a basic block into an invoke,
/// we have to turn all of the calls that can throw into invokes.
/// This function analyze BB to see if there are any calls, and if so,
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
/// nodes in that block with the values specified in InvokeDestPHIValues.
static BasicBlock *
HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, BasicBlock *UnwindEdge) {
static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
BasicBlock *BB, BasicBlock *UnwindEdge,
UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
Instruction *I = &*BBI++;
@ -196,6 +427,31 @@ HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, BasicBlock *UnwindEdge) {
if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
continue;
if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
// This call is nested inside a funclet. If that funclet has an unwind
// destination within the inlinee, then unwinding out of this call would
// be UB. Rewriting this call to an invoke which targets the inlined
// invoke's unwind dest would give the call's parent funclet multiple
// unwind destinations, which is something that subsequent EH table
// generation can't handle and that the veirifer rejects. So when we
// see such a call, leave it as a call.
auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
Value *UnwindDestToken =
getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
continue;
#ifndef NDEBUG
Instruction *MemoKey;
if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
MemoKey = CatchPad->getCatchSwitch();
else
MemoKey = FuncletPad;
assert(FuncletUnwindMap->count(MemoKey) &&
(*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
"must get memoized to avoid confusing later searches");
#endif // NDEBUG
}
// Convert this function call into an invoke instruction. First, split the
// basic block.
BasicBlock *Split =
@ -328,13 +584,23 @@ static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
// This connects all the instructions which 'unwind to caller' to the invoke
// destination.
UnwindDestMemoTy FuncletUnwindMap;
for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
BB != E; ++BB) {
if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
if (CRI->unwindsToCaller()) {
CleanupReturnInst::Create(CRI->getCleanupPad(), UnwindDest, CRI);
auto *CleanupPad = CRI->getCleanupPad();
CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
CRI->eraseFromParent();
UpdatePHINodes(&*BB);
// Finding a cleanupret with an unwind destination would confuse
// subsequent calls to getUnwindDestToken, so map the cleanuppad
// to short-circuit any such calls and recognize this as an "unwind
// to caller" cleanup.
assert(!FuncletUnwindMap.count(CleanupPad) ||
isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
FuncletUnwindMap[CleanupPad] =
ConstantTokenNone::get(Caller->getContext());
}
}
@ -345,12 +611,41 @@ static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
Instruction *Replacement = nullptr;
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
if (CatchSwitch->unwindsToCaller()) {
Value *UnwindDestToken;
if (auto *ParentPad =
dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
// This catchswitch is nested inside another funclet. If that
// funclet has an unwind destination within the inlinee, then
// unwinding out of this catchswitch would be UB. Rewriting this
// catchswitch to unwind to the inlined invoke's unwind dest would
// give the parent funclet multiple unwind destinations, which is
// something that subsequent EH table generation can't handle and
// that the veirifer rejects. So when we see such a call, leave it
// as "unwind to caller".
UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
continue;
} else {
// This catchswitch has no parent to inherit constraints from, and
// none of its descendants can have an unwind edge that exits it and
// targets another funclet in the inlinee. It may or may not have a
// descendant that definitively has an unwind to caller. In either
// case, we'll have to assume that any unwinds out of it may need to
// be routed to the caller, so treat it as though it has a definitive
// unwind to caller.
UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
}
auto *NewCatchSwitch = CatchSwitchInst::Create(
CatchSwitch->getParentPad(), UnwindDest,
CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
CatchSwitch);
for (BasicBlock *PadBB : CatchSwitch->handlers())
NewCatchSwitch->addHandler(PadBB);
// Propagate info for the old catchswitch over to the new one in
// the unwind map. This also serves to short-circuit any subsequent
// checks for the unwind dest of this catchswitch, which would get
// confused if they found the outer handler in the callee.
FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
Replacement = NewCatchSwitch;
}
} else if (!isa<FuncletPadInst>(I)) {
@ -369,8 +664,8 @@ static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
for (Function::iterator BB = FirstNewBlock->getIterator(),
E = Caller->end();
BB != E; ++BB)
if (BasicBlock *NewBB =
HandleCallsInBlockInlinedThroughInvoke(&*BB, UnwindDest))
if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
&*BB, UnwindDest, &FuncletUnwindMap))
// Update any PHI nodes in the exceptional block to indicate that there
// is now a new entry in them.
UpdatePHINodes(NewBB);
@ -1415,6 +1710,20 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
}
}
// If we are inlining for an invoke instruction, we must make sure to rewrite
// any call instructions into invoke instructions. This is sensitive to which
// funclet pads were top-level in the inlinee, so must be done before
// rewriting the "parent pad" links.
if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
BasicBlock *UnwindDest = II->getUnwindDest();
Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
if (isa<LandingPadInst>(FirstNonPHI)) {
HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
} else {
HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
}
}
// Update the lexical scopes of the new funclets and callsites.
// Anything that had 'none' as its parent is now nested inside the callsite's
// EHPad.
@ -1472,18 +1781,6 @@ bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
}
}
// If we are inlining for an invoke instruction, we must make sure to rewrite
// any call instructions into invoke instructions.
if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
BasicBlock *UnwindDest = II->getUnwindDest();
Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
if (isa<LandingPadInst>(FirstNonPHI)) {
HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
} else {
HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
}
}
// Handle any inlined musttail call sites. In order for a new call site to be
// musttail, the source of the clone and the inlined call site must have been
// musttail. Therefore it's safe to return without merging control into the

View File

@ -1592,3 +1592,205 @@ bool llvm::callsGCLeafFunction(ImmutableCallSite CS) {
return false;
}
/// A potential constituent of a bitreverse or bswap expression. See
/// collectBitParts for a fuller explanation.
struct BitPart {
BitPart(Value *P, unsigned BW) : Provider(P) {
Provenance.resize(BW);
}
/// The Value that this is a bitreverse/bswap of.
Value *Provider;
/// The "provenance" of each bit. Provenance[A] = B means that bit A
/// in Provider becomes bit B in the result of this expression.
SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
enum { Unset = -1 };
};
/// Analyze the specified subexpression and see if it is capable of providing
/// pieces of a bswap or bitreverse. The subexpression provides a potential
/// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
/// the output of the expression came from a corresponding bit in some other
/// value. This function is recursive, and the end result is a mapping of
/// bitnumber to bitnumber. It is the caller's responsibility to validate that
/// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
///
/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
/// that the expression deposits the low byte of %X into the high byte of the
/// result and that all other bits are zero. This expression is accepted and a
/// BitPart is returned with Provider set to %X and Provenance[24-31] set to
/// [0-7].
///
/// To avoid revisiting values, the BitPart results are memoized into the
/// provided map. To avoid unnecessary copying of BitParts, BitParts are
/// constructed in-place in the \c BPS map. Because of this \c BPS needs to
/// store BitParts objects, not pointers. As we need the concept of a nullptr
/// BitParts (Value has been analyzed and the analysis failed), we an Optional
/// type instead to provide the same functionality.
///
/// Because we pass around references into \c BPS, we must use a container that
/// does not invalidate internal references (std::map instead of DenseMap).
///
static const Optional<BitPart> &
collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
std::map<Value *, Optional<BitPart>> &BPS) {
auto I = BPS.find(V);
if (I != BPS.end())
return I->second;
auto &Result = BPS[V] = None;
auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
if (Instruction *I = dyn_cast<Instruction>(V)) {
// If this is an or instruction, it may be an inner node of the bswap.
if (I->getOpcode() == Instruction::Or) {
auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
MatchBitReversals, BPS);
auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
MatchBitReversals, BPS);
if (!A || !B)
return Result;
// Try and merge the two together.
if (!A->Provider || A->Provider != B->Provider)
return Result;
Result = BitPart(A->Provider, BitWidth);
for (unsigned i = 0; i < A->Provenance.size(); ++i) {
if (A->Provenance[i] != BitPart::Unset &&
B->Provenance[i] != BitPart::Unset &&
A->Provenance[i] != B->Provenance[i])
return Result = None;
if (A->Provenance[i] == BitPart::Unset)
Result->Provenance[i] = B->Provenance[i];
else
Result->Provenance[i] = A->Provenance[i];
}
return Result;
}
// If this is a logical shift by a constant, recurse then shift the result.
if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
unsigned BitShift =
cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
// Ensure the shift amount is defined.
if (BitShift > BitWidth)
return Result;
auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
MatchBitReversals, BPS);
if (!Res)
return Result;
Result = Res;
// Perform the "shift" on BitProvenance.
auto &P = Result->Provenance;
if (I->getOpcode() == Instruction::Shl) {
P.erase(std::prev(P.end(), BitShift), P.end());
P.insert(P.begin(), BitShift, BitPart::Unset);
} else {
P.erase(P.begin(), std::next(P.begin(), BitShift));
P.insert(P.end(), BitShift, BitPart::Unset);
}
return Result;
}
// If this is a logical 'and' with a mask that clears bits, recurse then
// unset the appropriate bits.
if (I->getOpcode() == Instruction::And &&
isa<ConstantInt>(I->getOperand(1))) {
APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
// Check that the mask allows a multiple of 8 bits for a bswap, for an
// early exit.
unsigned NumMaskedBits = AndMask.countPopulation();
if (!MatchBitReversals && NumMaskedBits % 8 != 0)
return Result;
auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
MatchBitReversals, BPS);
if (!Res)
return Result;
Result = Res;
for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
// If the AndMask is zero for this bit, clear the bit.
if ((AndMask & Bit) == 0)
Result->Provenance[i] = BitPart::Unset;
return Result;
}
}
// Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
// the input value to the bswap/bitreverse.
Result = BitPart(V, BitWidth);
for (unsigned i = 0; i < BitWidth; ++i)
Result->Provenance[i] = i;
return Result;
}
static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
unsigned BitWidth) {
if (From % 8 != To % 8)
return false;
// Convert from bit indices to byte indices and check for a byte reversal.
From >>= 3;
To >>= 3;
BitWidth >>= 3;
return From == BitWidth - To - 1;
}
static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
unsigned BitWidth) {
return From == BitWidth - To - 1;
}
/// Given an OR instruction, check to see if this is a bitreverse
/// idiom. If so, insert the new intrinsic and return true.
bool llvm::recognizeBitReverseOrBSwapIdiom(
Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
SmallVectorImpl<Instruction *> &InsertedInsts) {
if (Operator::getOpcode(I) != Instruction::Or)
return false;
if (!MatchBSwaps && !MatchBitReversals)
return false;
IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
if (!ITy || ITy->getBitWidth() > 128)
return false; // Can't do vectors or integers > 128 bits.
unsigned BW = ITy->getBitWidth();
// Try to find all the pieces corresponding to the bswap.
std::map<Value *, Optional<BitPart>> BPS;
auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
if (!Res)
return false;
auto &BitProvenance = Res->Provenance;
// Now, is the bit permutation correct for a bswap or a bitreverse? We can
// only byteswap values with an even number of bytes.
bool OKForBSwap = BW % 16 == 0, OKForBitReverse = true;
for (unsigned i = 0; i < BW; ++i) {
OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[i], i, BW);
OKForBitReverse &=
bitTransformIsCorrectForBitReverse(BitProvenance[i], i, BW);
}
Intrinsic::ID Intrin;
if (OKForBSwap && MatchBSwaps)
Intrin = Intrinsic::bswap;
else if (OKForBitReverse && MatchBitReversals)
Intrin = Intrinsic::bitreverse;
else
return false;
Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
return true;
}

View File

@ -970,15 +970,34 @@ static Value *valueHasFloatPrecision(Value *Val) {
return nullptr;
}
//===----------------------------------------------------------------------===//
// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
/// Any floating-point library function that we're trying to simplify will have
/// a signature of the form: fptype foo(fptype param1, fptype param2, ...).
/// CheckDoubleTy indicates that 'fptype' must be 'double'.
static bool matchesFPLibFunctionSignature(const Function *F, unsigned NumParams,
bool CheckDoubleTy) {
FunctionType *FT = F->getFunctionType();
if (FT->getNumParams() != NumParams)
return false;
Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
bool CheckRetType) {
// The return type must match what we're looking for.
Type *RetTy = FT->getReturnType();
if (CheckDoubleTy ? !RetTy->isDoubleTy() : !RetTy->isFloatingPointTy())
return false;
// Each parameter must match the return type, and therefore, match every other
// parameter too.
for (const Type *ParamTy : FT->params())
if (ParamTy != RetTy)
return false;
return true;
}
/// Shrink double -> float for unary functions like 'floor'.
static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
bool CheckRetType) {
Function *Callee = CI->getCalledFunction();
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
!FT->getParamType(0)->isDoubleTy())
if (!matchesFPLibFunctionSignature(Callee, 1, true))
return nullptr;
if (CheckRetType) {
@ -1013,15 +1032,10 @@ Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
return B.CreateFPExt(V, B.getDoubleTy());
}
// Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax'
Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
/// Shrink double -> float for binary functions like 'fmin/fmax'.
static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
FunctionType *FT = Callee->getFunctionType();
// Just make sure this has 2 arguments of the same FP type, which match the
// result type.
if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
FT->getParamType(0) != FT->getParamType(1) ||
!FT->getParamType(0)->isFloatingPointTy())
if (!matchesFPLibFunctionSignature(Callee, 2, true))
return nullptr;
// If this is something like 'fmin((double)floatval1, (double)floatval2)',
@ -1394,12 +1408,21 @@ Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
Value *Ret = nullptr;
if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
Callee->getIntrinsicID() == Intrinsic::sqrt))
Ret = optimizeUnaryDoubleFP(CI, B, true);
// FIXME: Refactor - this check is repeated all over this file and even in the
// preceding call to shrink double -> float.
// Make sure this has 1 argument of FP type, which matches the result type.
FunctionType *FT = Callee->getFunctionType();
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isFloatingPointTy())
return Ret;
if (!CI->hasUnsafeAlgebra())
return Ret;

View File

@ -3548,14 +3548,16 @@ void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
E = CGF.EmitAnyExpr(EExpr);
CGF.EmitOMPAtomicSimpleUpdateExpr(
X, E, BO, /*IsXLHSInRHSPart=*/true, llvm::Monotonic, Loc,
[&CGF, UpExpr, VD, IPriv](RValue XRValue) {
[&CGF, UpExpr, VD, IPriv, Loc](RValue XRValue) {
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
PrivateScope.addPrivate(VD, [&CGF, VD, XRValue]() -> Address {
Address LHSTemp = CGF.CreateMemTemp(VD->getType());
CGF.EmitStoreThroughLValue(
XRValue, CGF.MakeAddrLValue(LHSTemp, VD->getType()));
return LHSTemp;
});
PrivateScope.addPrivate(
VD, [&CGF, VD, XRValue, Loc]() -> Address {
Address LHSTemp = CGF.CreateMemTemp(VD->getType());
CGF.emitOMPSimpleStore(
CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
VD->getType().getNonReferenceType(), Loc);
return LHSTemp;
});
(void)PrivateScope.Privatize();
return CGF.EmitAnyExpr(UpExpr);
});

View File

@ -2163,17 +2163,17 @@ static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst,
}
}
static void emitSimpleStore(CodeGenFunction &CGF, LValue LVal, RValue RVal,
QualType RValTy, SourceLocation Loc) {
switch (CGF.getEvaluationKind(LVal.getType())) {
void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal,
QualType RValTy, SourceLocation Loc) {
switch (getEvaluationKind(LVal.getType())) {
case TEK_Scalar:
CGF.EmitStoreThroughLValue(RValue::get(convertToScalarValue(
CGF, RVal, RValTy, LVal.getType(), Loc)),
LVal);
EmitStoreThroughLValue(RValue::get(convertToScalarValue(
*this, RVal, RValTy, LVal.getType(), Loc)),
LVal);
break;
case TEK_Complex:
CGF.EmitStoreOfComplex(
convertToComplexValue(CGF, RVal, RValTy, LVal.getType(), Loc), LVal,
EmitStoreOfComplex(
convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal,
/*isInit=*/false);
break;
case TEK_Aggregate:
@ -2201,7 +2201,7 @@ static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
// list.
if (IsSeqCst)
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
emitSimpleStore(CGF, VLValue, Res, X->getType().getNonReferenceType(), Loc);
CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc);
}
static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
@ -2459,7 +2459,7 @@ static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst,
}
}
// Emit post-update store to 'v' of old/new 'x' value.
emitSimpleStore(CGF, VLValue, NewVVal, NewVValType, Loc);
CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc);
// OpenMP, 2.12.6, atomic Construct
// Any atomic construct with a seq_cst clause forces the atomically
// performed operation to include an implicit flush operation without a

View File

@ -2211,6 +2211,8 @@ class CodeGenFunction : public CodeGenTypeCache {
llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
void GenerateOpenMPCapturedVars(const CapturedStmt &S,
SmallVectorImpl<llvm::Value *> &CapturedVars);
void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
SourceLocation Loc);
/// \brief Perform element by element copying of arrays with type \a
/// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
/// generated by \a CopyGen.

View File

@ -16,6 +16,7 @@
#include "OrcLazyJIT.h"
#include "RemoteJITUtils.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/CodeGen/LinkAllCodegenComponents.h"
@ -741,11 +742,11 @@ std::unique_ptr<FDRPCChannel> launchRemote() {
ChildPath.reset(new char[ChildExecPath.size() + 1]);
std::copy(ChildExecPath.begin(), ChildExecPath.end(), &ChildPath[0]);
ChildPath[ChildExecPath.size()] = '\0';
std::string ChildInStr = std::to_string(PipeFD[0][0]);
std::string ChildInStr = utostr(PipeFD[0][0]);
ChildIn.reset(new char[ChildInStr.size() + 1]);
std::copy(ChildInStr.begin(), ChildInStr.end(), &ChildIn[0]);
ChildIn[ChildInStr.size()] = '\0';
std::string ChildOutStr = std::to_string(PipeFD[1][1]);
std::string ChildOutStr = utostr(PipeFD[1][1]);
ChildOut.reset(new char[ChildOutStr.size() + 1]);
std::copy(ChildOutStr.begin(), ChildOutStr.end(), &ChildOut[0]);
ChildOut[ChildOutStr.size()] = '\0';

View File

@ -7,4 +7,4 @@
#define CLANG_VENDOR "FreeBSD "
#define SVN_REVISION "257836"
#define SVN_REVISION "258549"