ktls: start a thread to keep the 16k ktls buffer zone populated

Ktls recently received an optimization where we allocate 16k
physically contiguous crypto destination buffers. This provides a
large (more than 5%) reduction in CPU use in our
workload. However, after several days of uptime, the performance
benefit disappears because we have frequent allocation failures
from the ktls buffer zone.

It turns out that when load drops off, the ktls buffer zone is
trimmed, and some 16k buffers are freed back to the OS. When load
picks back up again, re-allocating those 16k buffers fails after
some number of days of uptime because physical memory has become
fragmented. This causes allocations to fail, because they are
intentionally done without M_NORECLAIM, so as to avoid pausing
the ktls crytpo work thread while the VM system defragments
memory.

To work around this, this change starts one thread per VM domain
to allocate ktls buffers with M_NORECLAIM, as we don't care if
this thread is paused while memory is defragged. The thread then
frees the buffers back into the ktls buffer zone, thus allowing
future allocations to succeed.

Note that waking up the thread is intentionally racy, but neither
of the races really matter. In the worst case, we could have
either spurious wakeups or we could have to wait 1 second until
the next rate-limited allocation failure to wake up the thread.

This patch has been in use at Netflix on a handful of servers,
and seems to fix the issue.

Differential Revision: https://reviews.freebsd.org/D31260
Reviewed by: jhb, markj,  (jtl, rrs, and dhw reviewed earlier version)
Sponsored by: Netflix
This commit is contained in:
Andrew Gallatin 2021-08-05 10:15:09 -04:00
parent 3f1f6b6ef7
commit 98215005b7

View File

@ -78,6 +78,7 @@ __FBSDID("$FreeBSD$");
#include <vm/vm.h>
#include <vm/vm_pageout.h>
#include <vm/vm_page.h>
#include <vm/vm_pagequeue.h>
struct ktls_wq {
struct mtx mtx;
@ -87,9 +88,17 @@ struct ktls_wq {
int lastallocfail;
} __aligned(CACHE_LINE_SIZE);
struct ktls_alloc_thread {
uint64_t wakeups;
uint64_t allocs;
struct thread *td;
int running;
};
struct ktls_domain_info {
int count;
int cpu[MAXCPU];
struct ktls_alloc_thread alloc_td;
};
struct ktls_domain_info ktls_domains[MAXMEMDOM];
@ -142,6 +151,11 @@ SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN,
&ktls_sw_buffer_cache, 1,
"Enable caching of output buffers for SW encryption");
static int ktls_max_alloc = 128;
SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN,
&ktls_max_alloc, 128,
"Max number of 16k buffers to allocate in thread context");
static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active);
SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
&ktls_tasks_active, "Number of active tasks");
@ -278,6 +292,7 @@ static void ktls_cleanup(struct ktls_session *tls);
static void ktls_reset_send_tag(void *context, int pending);
#endif
static void ktls_work_thread(void *ctx);
static void ktls_alloc_thread(void *ctx);
#if defined(INET) || defined(INET6)
static u_int
@ -418,6 +433,32 @@ ktls_init(void *dummy __unused)
ktls_number_threads++;
}
/*
* Start an allocation thread per-domain to perform blocking allocations
* of 16k physically contiguous TLS crypto destination buffers.
*/
if (ktls_sw_buffer_cache) {
for (domain = 0; domain < vm_ndomains; domain++) {
if (VM_DOMAIN_EMPTY(domain))
continue;
if (CPU_EMPTY(&cpuset_domain[domain]))
continue;
error = kproc_kthread_add(ktls_alloc_thread,
&ktls_domains[domain], &ktls_proc,
&ktls_domains[domain].alloc_td.td,
0, 0, "KTLS", "alloc_%d", domain);
if (error)
panic("Can't add KTLS alloc thread %d error %d",
domain, error);
CPU_COPY(&cpuset_domain[domain], &mask);
error = cpuset_setthread(ktls_domains[domain].alloc_td.td->td_tid,
&mask);
if (error)
panic("Unable to bind KTLS alloc %d error %d",
domain, error);
}
}
/*
* If we somehow have an empty domain, fall back to choosing
* among all KTLS threads.
@ -1946,6 +1987,7 @@ static void *
ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m)
{
void *buf;
int domain, running;
if (m->m_epg_npgs <= 2)
return (NULL);
@ -1961,8 +2003,23 @@ ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m)
return (NULL);
}
buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM);
if (buf == NULL)
if (buf == NULL) {
domain = PCPU_GET(domain);
wq->lastallocfail = ticks;
/*
* Note that this check is "racy", but the races are
* harmless, and are either a spurious wakeup if
* multiple threads fail allocations before the alloc
* thread wakes, or waiting an extra second in case we
* see an old value of running == true.
*/
if (!VM_DOMAIN_EMPTY(domain)) {
running = atomic_load_int(&ktls_domains[domain].alloc_td.running);
if (!running)
wakeup(&ktls_domains[domain].alloc_td);
}
}
return (buf);
}
@ -2154,6 +2211,68 @@ ktls_encrypt(struct ktls_wq *wq, struct mbuf *top)
CURVNET_RESTORE();
}
static void
ktls_alloc_thread(void *ctx)
{
struct ktls_domain_info *ktls_domain = ctx;
struct ktls_alloc_thread *sc = &ktls_domain->alloc_td;
void **buf;
struct sysctl_oid *oid;
char name[80];
int i, nbufs;
curthread->td_domain.dr_policy =
DOMAINSET_PREF(PCPU_GET(domain));
snprintf(name, sizeof(name), "domain%d", PCPU_GET(domain));
if (bootverbose)
printf("Starting KTLS alloc thread for domain %d\n",
PCPU_GET(domain));
oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO,
name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs",
CTLFLAG_RD, &sc->allocs, 0, "buffers allocated");
SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups",
CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups");
SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running",
CTLFLAG_RD, &sc->running, 0, "thread running");
buf = NULL;
nbufs = 0;
for (;;) {
atomic_store_int(&sc->running, 0);
tsleep(sc, PZERO, "waiting for work", 0);
atomic_store_int(&sc->running, 1);
sc->wakeups++;
if (nbufs != ktls_max_alloc) {
free(buf, M_KTLS);
nbufs = atomic_load_int(&ktls_max_alloc);
buf = malloc(sizeof(void *) * nbufs, M_KTLS,
M_WAITOK | M_ZERO);
}
/*
* Below we allocate nbufs with different allocation
* flags than we use when allocating normally during
* encryption in the ktls worker thread. We specify
* M_NORECLAIM in the worker thread. However, we omit
* that flag here and add M_WAITOK so that the VM
* system is permitted to perform expensive work to
* defragment memory. We do this here, as it does not
* matter if this thread blocks. If we block a ktls
* worker thread, we risk developing backlogs of
* buffers to be encrypted, leading to surges of
* traffic and potential NIC output drops.
*/
for (i = 0; i < nbufs; i++) {
buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK);
sc->allocs++;
}
for (i = 0; i < nbufs; i++) {
uma_zfree(ktls_buffer_zone, buf[i]);
buf[i] = NULL;
}
}
}
static void
ktls_work_thread(void *ctx)
{