epoch(9): fix priority handling, make callback lists pcpu, and other fixes

- Lend priority to preempted threads in epoch_wait to handle the case
  in which we've had priority lent to us. Previously we borrowed the
  priority of the lowest priority preempted thread. (pointed out by mjg@)

- Don't attempt allocate memory per-domain on powerpc, we don't currently
  handle empty sockets (as is the case on jhibbits Talos' board).

- Handle deferred callbacks as pcpu lists and poll the lists periodically.
  Currently the interval is 1/hz.

- Drop the thread lock when adaptive spinning. Holding the lock starves
  other threads and can even lead to lockups.

- Keep a generation count pcpu so that we don't keep spining if a thread
  has left and re-entered an epoch section.

- Actually removed the callback from the callback list so that we don't
  double free. Sigh ...

Approved by:	sbruno@
This commit is contained in:
Matt Macy 2018-05-11 04:54:12 +00:00
parent ef7f29d8e6
commit b2cb28963b
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=333480

View File

@ -54,9 +54,19 @@ MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation");
/* arbitrary --- needs benchmarking */
#define MAX_ADAPTIVE_SPIN 5000
#define EPOCH_EXITING 0x1
#ifdef __amd64__
#define EPOCH_ALIGN CACHE_LINE_SIZE*2
#else
#define EPOCH_ALIGN CACHE_LINE_SIZE
#endif
SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information");
SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats");
static int poll_intvl;
SYSCTL_INT(_kern_epoch, OID_AUTO, poll_intvl, CTLFLAG_RWTUN,
&poll_intvl, 0, "# of ticks to wait between garbage collecting deferred frees");
/* Stats. */
static counter_u64_t block_count;
SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
@ -81,20 +91,23 @@ TAILQ_HEAD(threadlist, thread);
typedef struct epoch_record {
ck_epoch_record_t er_record;
volatile struct threadlist er_tdlist;
volatile uint32_t er_gen;
uint32_t er_cpuid;
} *epoch_record_t;
struct epoch_pcpu_state {
struct epoch_record eps_record;
volatile int eps_waiters;
} __aligned(CACHE_LINE_SIZE);
STAILQ_HEAD(, epoch_cb) eps_cblist;
} __aligned(EPOCH_ALIGN);
struct epoch {
struct ck_epoch e_epoch;
struct mtx e_lock;
struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
struct grouptask e_gtask;
STAILQ_HEAD(, epoch_cb) e_cblist;
struct epoch_pcpu_state *e_pcpu_dom[MAXMEMDOM];
struct callout e_timer;
struct mtx e_lock;
int e_flags;
/* make sure that immutable data doesn't overlap with the gtask, callout, and mutex*/
struct epoch_pcpu_state *e_pcpu_dom[MAXMEMDOM] __aligned(EPOCH_ALIGN);
struct epoch_pcpu_state *e_pcpu[0];
};
@ -103,13 +116,26 @@ static __read_mostly int domoffsets[MAXMEMDOM];
static __read_mostly int inited;
static void epoch_call_task(void *context);
static bool usedomains = true;
#if defined(__powerpc64__) || defined(__powerpc__)
static bool usedomains = false;
#else
static bool usedomains = true;
#endif
static void
epoch_init(void *arg __unused)
{
int domain, count;
if (poll_intvl == 0)
poll_intvl = hz;
block_count = counter_u64_alloc(M_WAITOK);
migrate_count = counter_u64_alloc(M_WAITOK);
turnstile_count = counter_u64_alloc(M_WAITOK);
switch_count = counter_u64_alloc(M_WAITOK);
if (usedomains == false)
return;
count = domain = 0;
domoffsets[0] = 0;
for (domain = 0; domain < vm_ndomains; domain++) {
@ -127,10 +153,6 @@ epoch_init(void *arg __unused)
}
}
block_count = counter_u64_alloc(M_WAITOK);
migrate_count = counter_u64_alloc(M_WAITOK);
turnstile_count = counter_u64_alloc(M_WAITOK);
switch_count = counter_u64_alloc(M_WAITOK);
inited = 1;
}
SYSINIT(epoch, SI_SUB_CPU + 1, SI_ORDER_FIRST, epoch_init, NULL);
@ -170,10 +192,22 @@ epoch_init_legacy(epoch_t epoch)
er = &eps->eps_record;
ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
STAILQ_INIT(&eps->eps_cblist);
er->er_cpuid = i;
}
}
static void
epoch_callout(void *arg)
{
epoch_t epoch;
epoch = arg;
GROUPTASK_ENQUEUE(&epoch->e_gtask);
if ((epoch->e_flags & EPOCH_EXITING) == 0)
callout_reset(&epoch->e_timer, poll_intvl, epoch_callout, epoch);
}
epoch_t
epoch_alloc(void)
{
@ -184,13 +218,14 @@ epoch_alloc(void)
epoch = malloc(sizeof(struct epoch) + mp_ncpus*sizeof(void*),
M_EPOCH, M_ZERO|M_WAITOK);
ck_epoch_init(&epoch->e_epoch);
mtx_init(&epoch->e_lock, "epoch cblist", NULL, MTX_DEF);
STAILQ_INIT(&epoch->e_cblist);
mtx_init(&epoch->e_lock, "epoch callout", NULL, MTX_DEF);
callout_init_mtx(&epoch->e_timer, &epoch->e_lock, 0);
taskqgroup_config_gtask_init(epoch, &epoch->e_gtask, epoch_call_task, "epoch call task");
if (usedomains)
epoch_init_numa(epoch);
else
epoch_init_legacy(epoch);
callout_reset(&epoch->e_timer, poll_intvl, epoch_callout, epoch);
return (epoch);
}
@ -207,6 +242,15 @@ epoch_free(epoch_t epoch)
MPASS(TAILQ_EMPTY(&eps->eps_record.er_tdlist));
}
#endif
mtx_lock(&epoch->e_lock);
epoch->e_flags |= EPOCH_EXITING;
mtx_unlock(&epoch->e_lock);
/*
* Execute any lingering callbacks
*/
GROUPTASK_ENQUEUE(&epoch->e_gtask);
gtaskqueue_drain(epoch->e_gtask.gt_taskqueue, &epoch->e_gtask.gt_task);
callout_drain(&epoch->e_timer);
mtx_destroy(&epoch->e_lock);
taskqgroup_config_gtask_deinit(&epoch->e_gtask);
if (usedomains)
@ -282,6 +326,7 @@ epoch_exit(epoch_t epoch)
td->td_epochnest--;
if (td->td_epochnest == 0)
TAILQ_REMOVE(&eps->eps_record.er_tdlist, td, td_epochq);
eps->eps_record.er_gen++;
critical_exit();
}
@ -311,8 +356,7 @@ epoch_block_handler(struct ck_epoch *global __unused, ck_epoch_record_t *cr,
struct thread *td, *tdwait, *owner;
struct turnstile *ts;
struct lock_object *lock;
u_char prio;
int spincount;
int spincount, gen;
eps = arg;
record = __containerof(cr, struct epoch_record, er_record);
@ -327,10 +371,14 @@ epoch_block_handler(struct ck_epoch *global __unused, ck_epoch_record_t *cr,
*/
if ((tdwait = TAILQ_FIRST(&record->er_tdlist)) != NULL &&
TD_IS_RUNNING(tdwait)) {
while (tdwait == TAILQ_FIRST(&record->er_tdlist) &&
TD_IS_RUNNING(tdwait) && spincount++ < MAX_ADAPTIVE_SPIN) {
gen = record->er_gen;
thread_unlock(td);
do {
cpu_spinwait();
}
} while (tdwait == TAILQ_FIRST(&record->er_tdlist) &&
gen == record->er_gen && TD_IS_RUNNING(tdwait) &&
spincount++ < MAX_ADAPTIVE_SPIN);
thread_lock(td);
return;
}
@ -360,10 +408,17 @@ epoch_block_handler(struct ck_epoch *global __unused, ck_epoch_record_t *cr,
* priority thread (highest prio value) and drop our priority
* to match to allow it to run.
*/
prio = 0;
TAILQ_FOREACH(tdwait, &record->er_tdlist, td_epochq) {
if (td->td_priority > prio)
prio = td->td_priority;
/*
* Propagate our priority to any other waiters to prevent us
* from starving them. They will have their original priority
* restore on exit from epoch_wait().
*/
if (!TD_IS_INHIBITED(tdwait) && tdwait->td_priority > td->td_priority) {
thread_lock(tdwait);
sched_prio(tdwait, td->td_priority);
thread_unlock(tdwait);
}
if (TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait) &&
((ts = tdwait->td_blocked) != NULL)) {
/*
@ -401,12 +456,9 @@ epoch_block_handler(struct ck_epoch *global __unused, ck_epoch_record_t *cr,
}
/*
* We didn't find any threads actually blocked on a lock
* we have nothing to do except set our priority to match
* that of the lowest value on the queue and context switch
* away.
* so we have nothing to do except context switch away.
*/
counter_u64_add(switch_count, 1);
sched_prio(td, prio);
mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
/*
@ -464,41 +516,58 @@ epoch_wait(epoch_t epoch)
/* restore thread priority */
sched_prio(td, old_prio);
thread_unlock(td);
KASSERT(td->td_locks == 0,
("%d locks held", td->td_locks));
PICKUP_GIANT();
}
void
epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t))
{
struct epoch_pcpu_state *eps;
epoch_cb_t cb;
cb = (void *)ctx;
MPASS(cb->ec_callback == NULL);
MPASS(cb->ec_link.stqe_next == NULL);
MPASS(epoch);
MPASS(callback);
cb->ec_callback = callback;
mtx_lock(&epoch->e_lock);
STAILQ_INSERT_TAIL(&epoch->e_cblist, cb, ec_link);
GROUPTASK_ENQUEUE(&epoch->e_gtask);
mtx_unlock(&epoch->e_lock);
critical_enter();
eps = epoch->e_pcpu[curcpu];
STAILQ_INSERT_HEAD(&eps->eps_cblist, cb, ec_link);
critical_exit();
}
static void
epoch_call_task(void *context)
{
struct epoch_pcpu_state *eps;
epoch_t epoch;
epoch_cb_t cb;
struct thread *td;
int cpu;
STAILQ_HEAD(, epoch_cb) tmp_head;
epoch = context;
STAILQ_INIT(&tmp_head);
mtx_lock(&epoch->e_lock);
STAILQ_CONCAT(&tmp_head, &epoch->e_cblist);
mtx_unlock(&epoch->e_lock);
td = curthread;
thread_lock(td);
CPU_FOREACH(cpu) {
sched_bind(td, cpu);
eps = epoch->e_pcpu[cpu];
if (!STAILQ_EMPTY(&eps->eps_cblist))
STAILQ_CONCAT(&tmp_head, &eps->eps_cblist);
}
sched_unbind(td);
thread_unlock(td);
epoch_wait(epoch);
while ((cb = STAILQ_FIRST(&tmp_head)) != NULL)
while ((cb = STAILQ_FIRST(&tmp_head)) != NULL) {
STAILQ_REMOVE_HEAD(&tmp_head, ec_link);
cb->ec_callback((void*)cb);
}
}
int