scc(4)/uart(4): Remove obsolete support for Siemens SAB 82532

It's no longer used since 58aa35d429
and r357455 respectively.
This commit is contained in:
Marius Strobl 2020-12-26 13:44:00 +01:00
parent 863de60ebc
commit b63eeef41f
13 changed files with 6 additions and 1259 deletions

View File

@ -25,7 +25,7 @@
.\"
.\" $FreeBSD$
.\"
.Dd December 25, 2020
.Dd December 26, 2020
.Dt SCC 4
.Os
.\"
@ -56,8 +56,6 @@ driver supports the following classes of SCCs:
.It
QUICC: Freescale/NXP QUad Integrated Communications Controllers.
.It
SAB82532: Siemens SAB 82532 based serial communications controllers.
.It
Z8530: Zilog 8530 based serial communications controllers.
.El
.\"

View File

@ -1771,8 +1771,8 @@ options BREAK_TO_DEBUGGER # A BREAK/DBG on the console goes to
options ALT_BREAK_TO_DEBUGGER
# Serial Communications Controller
# Supports the Freescale/NXP QUad Integrated, Siemens SAB 82532 and Zilog Z8530
# multi-channel communications controllers.
# Supports the Freescale/NXP QUad Integrated and Zilog Z8530 multi-channel
# communications controllers.
device scc
# PCI Universal Communications driver

View File

@ -3066,7 +3066,6 @@ dev/scc/scc_if.m optional scc
dev/scc/scc_bfe_quicc.c optional scc quicc
dev/scc/scc_core.c optional scc
dev/scc/scc_dev_quicc.c optional scc quicc
dev/scc/scc_dev_sab82532.c optional scc
dev/scc/scc_dev_z8530.c optional scc
dev/sdhci/sdhci.c optional sdhci
dev/sdhci/sdhci_fdt.c optional sdhci fdt
@ -3240,7 +3239,6 @@ dev/uart/uart_dev_mvebu.c optional uart uart_mvebu
dev/uart/uart_dev_ns8250.c optional uart uart_ns8250 | uart uart_snps
dev/uart/uart_dev_pl011.c optional uart pl011
dev/uart/uart_dev_quicc.c optional uart quicc
dev/uart/uart_dev_sab82532.c optional uart uart_sab82532 | uart scc
dev/uart/uart_dev_snps.c optional uart uart_snps fdt
dev/uart/uart_dev_z8530.c optional uart uart_z8530 | uart scc
dev/uart/uart_if.m optional uart

View File

@ -1,327 +0,0 @@
/* $OpenBSD: sab82532reg.h,v 1.2 2002/04/08 17:49:42 jason Exp $ */
/*-
* SPDX-License-Identifier: BSD-4-Clause
*
* Copyright (c) 2001 Jason L. Wright (jason@thought.net)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Jason L. Wright
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Effort sponsored in part by the Defense Advanced Research Projects
* Agency (DARPA) and Air Force Research Laboratory, Air Force
* Materiel Command, USAF, under agreement number F30602-01-2-0537.
*
* $FreeBSD$
*/
#ifndef _DEV_IC_SAB82532_H_
#define _DEV_IC_SAB82532_H_
/*
* Register definitions for SAB82532 based on "Enhanced Serial Communication
* Controller ESCC2 Version 3.2 User's Manual 07.96" from:
* http://www.infineon.com
*/
#define SAB_NCHAN 2 /* number of channels */
#define SAB_CHANLEN 0x40 /* length of channel register set */
#define SAB_CHAN_A 0x00 /* channel A register offset */
#define SAB_CHAN_B 0x40 /* channel B register offset */
#define SAB_RFIFO 0x00 /* r: rx fifo */
#define SAB_XFIFO 0x00 /* w: tx fifo */
#define SAB_STAR 0x20 /* r: status register */
#define SAB_CMDR 0x20 /* w: command register */
#define SAB_MODE 0x22 /* rw: mode register */
#define SAB_TIMR 0x23 /* rw: timer register */
#define SAB_XON 0x24 /* rw: xon character */
#define SAB_XOFF 0x25 /* rw: xoff character */
#define SAB_TCR 0x26 /* rw: termination character */
#define SAB_DAFO 0x27 /* rw: data format */
#define SAB_RFC 0x28 /* rw: rfifo control register */
#define SAB_RBCL 0x2a /* r: rx byte count low */
#define SAB_TBCL 0x2a /* w: tx byte count low */
#define SAB_RBCH 0x2b /* r: rx byte count high */
#define SAB_XBCH 0x2b /* w: tx byte count high */
#define SAB_CCR0 0x2c /* rw: channel configuration register 0 */
#define SAB_CCR1 0x2d /* rw: channel configuration register 1 */
#define SAB_CCR2 0x2e /* rw: channel configuration register 2 */
#define SAB_CCR3 0x2f /* rw: channel configuration register 3 */
#define SAB_TSAX 0x30 /* w: time-slot assignment register tx */
#define SAB_TSAR 0x31 /* w: time-slot assignment register rx */
#define SAB_XCCR 0x32 /* w: tx channel capacity register */
#define SAB_RCCR 0x33 /* w: receive channel capacity register */
#define SAB_VSTR 0x34 /* r: version status */
#define SAB_BGR 0x34 /* w: baud rate generator */
#define SAB_TIC 0x35 /* w: transmit immediate character */
#define SAB_MXN 0x36 /* w: mask xon character */
#define SAB_MXF 0x37 /* w: mask xoff character */
#define SAB_GIS 0x38 /* r: global interrupt status */
#define SAB_IVA 0x38 /* w: interrupt vector address */
#define SAB_IPC 0x39 /* rw: interrupt port configuration */
#define SAB_ISR0 0x3a /* r: interrupt status 0 */
#define SAB_IMR0 0x3a /* w: interrupt mask 0 */
#define SAB_ISR1 0x3b /* r: interrupt status 1 */
#define SAB_IMR1 0x3b /* w: interrupt mask 1 */
#define SAB_PVR 0x3c /* rw: port value register */
#define SAB_PIS 0x3d /* r: port interrupt status */
#define SAB_PIM 0x3d /* w: port interrupt mask */
#define SAB_PCR 0x3e /* w: port configuration register */
#define SAB_CCR4 0x3f /* rw: channel configuration register 4 */
/* SAB_STAR: status register */
#define SAB_STAR_XDOV 0x80 /* transmit data overflow */
#define SAB_STAR_XFW 0x40 /* transmit fifo write enable */
#define SAB_STAR_RFNE 0x20 /* rfifo not empty */
#define SAB_STAR_FCS 0x10 /* flow control status */
#define SAB_STAR_TEC 0x08 /* tx immediate char is executing */
#define SAB_STAR_CEC 0x04 /* command is executing */
#define SAB_STAR_CTS 0x02 /* cts status: 0:inactive/high,1:active/low */
/* SAB_CMDR: command register */
#define SAB_CMDR_RMC 0x80 /* receive message complete */
#define SAB_CMDR_RRES 0x40 /* receiver reset */
#define SAB_CMDR_RFRD 0x20 /* receive fifo read enable */
#define SAB_CMDR_STI 0x10 /* start timer */
#define SAB_CMDR_XF 0x08 /* transmit frame */
#define SAB_CMDR_XRES 0x01 /* transmit reset */
/* SAB_MODE: mode register */
#define SAB_MODE_FRTS 0x40 /* flow control using rts */
#define SAB_MODE_FCTS 0x20 /* flow control using cts */
#define SAB_MODE_FLON 0x10 /* flow control on */
#define SAB_MODE_RAC 0x08 /* receiver active */
#define SAB_MODE_RTS 0x04 /* request to send */
#define SAB_MODE_TRS 0x02 /* timer resolution */
#define SAB_MODE_TLP 0x01 /* test loop */
/* SAB_TIMR: timer register */
#define SAB_TIMR_CNT 0xe0 /* count mask */
#define SAB_TIMR_VAL 0x1f /* value mask */
/* SAB_DAFO: data format */
#define SAB_DAFO_XBRK 0x40 /* transmit break */
#define SAB_DAFO_STOP 0x20 /* stop bit: 0:1 bit, 1:2 bits */
#define SAB_DAFO_PAR1 0x10 /* parity 1, see below */
#define SAB_DAFO_PAR0 0x08 /* parity 0, see below */
#define SAB_DAFO_PARE 0x04 /* parity enable */
#define SAB_DAFO_CHL1 0x02 /* character length 1, see below */
#define SAB_DAFO_CHL0 0x01 /* character length 0, see below */
#define SAB_DAFO_CHL_CSIZE (SAB_DAFO_CHL1|SAB_DAFO_CHL0)
#define SAB_DAFO_CHL_CS5 (SAB_DAFO_CHL1|SAB_DAFO_CHL0)
#define SAB_DAFO_CHL_CS6 (SAB_DAFO_CHL1)
#define SAB_DAFO_CHL_CS7 (SAB_DAFO_CHL0)
#define SAB_DAFO_CHL_CS8 (0)
#define SAB_DAFO_PARMASK (SAB_DAFO_PAR1|SAB_DAFO_PAR0|SAB_DAFO_PARE)
#define SAB_DAFO_PAR_MARK (SAB_DAFO_PAR1|SAB_DAFO_PAR0|SAB_DAFO_PARE)
#define SAB_DAFO_PAR_EVEN (SAB_DAFO_PAR1|SAB_DAFO_PARE)
#define SAB_DAFO_PAR_ODD (SAB_DAFO_PAR0|SAB_DAFO_PARE)
#define SAB_DAFO_PAR_SPACE (SAB_DAFO_PARE)
#define SAB_DAFO_PAR_NONE (0)
/* SAB_RFC: rfifo control register */
#define SAB_RFC_DPS 0x40 /* disable parity storage */
#define SAB_RFC_DXS 0x20 /* disable storage of xon/xoff characters */
#define SAB_RFC_RFDF 0x10 /* rfifo data format: 0 data,1 data+stat */
#define SAB_RFC_RFTH1 0x08 /* rfifo threshold level 1, see below */
#define SAB_RFC_RFTH0 0x04 /* rfifo threshold level 0, see below */
#define SAB_RFC_TCDE 0x01 /* termination character detection enable */
#define SAB_RFC_RFTH_MASK (SAB_RFC_RFTH1|SAB_RFC_RFTH0)
#define SAB_RFC_RFTH_32CHAR (SAB_RFC_RFTH1|SAB_RFC_RFTH0)
#define SAB_RFC_RFTH_16CHAR (SAB_RFC_RFTH1)
#define SAB_RFC_RFTH_4CHAR (SAB_RFC_RFTH0)
#define SAB_RFC_RFTH_1CHAR (0)
/* SAB_RBCH: received byte count high */
#define SAB_RBCH_DMA 0x80 /* read back of XBCH DMA bit */
#define SAB_RBCH_CAS 0x20 /* read back of XBCH CAS bit */
#define SAB_RBCH_CNT 0x0f /* ms 4 bits of rx byte count (not used) */
/* SAB_XBCH: transmit byte count high */
#define SAB_XBCH_DMA 0x80 /* dma mode: 1:dma, 0:interrupt */
#define SAB_XBCH_CAS 0x20 /* carrier detect auto-start */
#define SAB_XBCH_XC 0x10 /* transmit continuously */
#define SAB_XBCH_CNT 0x0f /* ms 4 bits of tx byte count */
/* SAB_CCR0: channel configuration register 0 */
#define SAB_CCR0_PU 0x80 /* 0:power-down, 1:power-up */
#define SAB_CCR0_MCE 0x40 /* master clock enable */
#define SAB_CCR0_SC2 0x10 /* serial port config 2, see below */
#define SAB_CCR0_SC1 0x08 /* serial port config 1, see below */
#define SAB_CCR0_SC0 0x04 /* serial port config 0, see below */
#define SAB_CCR0_SM1 0x02 /* serial mode 1, see below */
#define SAB_CCR0_SM0 0x01 /* serial mode 0, see below */
#define SAB_CCR0_SC_MASK (SAB_CCR0_SC2|SAB_CCR0_SC1|SAB_CCR0_SC0)
#define SAB_CCR0_SC_NRZ (0)
#define SAB_CCR0_SC_NRZI (SAB_CCR0_SC1)
#define SAB_CCR0_SC_FM0 (SAB_CCR0_SC2)
#define SAB_CCR0_SC_FM1 (SAB_CCR0_SC2|SAB_CCR0_SC0)
#define SAB_CCR0_SC_MANCHESTER (SAB_CCR0_SC2|SAB_CCR0_SC1)
#define SAB_CCR0_SM_MASK (SAB_CCR0_SM1|SAB_CCR0_SM0)
#define SAB_CCR0_SM_DLC (0)
#define SAB_CCR0_SM_DLCLOOP (SAB_CCR0_SM0)
#define SAB_CCR0_SM_BISYNC (SAB_CCR0_SM1)
#define SAB_CCR0_SM_ASYNC (SAB_CCR0_SM1|SAB_CCR0_SM0)
/* SAB_CCR1: channel configuration register 1 */
#define SAB_CCR1_ODS 0x10 /* Output driver select:1:pushpull,0:odrain */
#define SAB_CCR1_BCR 0x08 /* bit clock rate: 1:async, 0:isochronous */
#define SAB_CCR1_CM2 0x04 /* clock mode 2, see below */
#define SAB_CCR1_CM1 0x02 /* clock mode 1, see below */
#define SAB_CCR1_CM0 0x01 /* clock mode 0, see below */
#define SAB_CCR1_CM_MASK (SAB_CCR1_CM2|SAB_CCR1_CM1|SAB_CCR1_CM0)
#define SAB_CCR1_CM_7 (SAB_CCR1_CM2|SAB_CCR1_CM1|SAB_CCR1_CM0)
/* SAB_CCR2: channel configuration register 2, depends on clock mode above */
/* clock mode 0a, 1, 4, 5 */
#define SAB_CCR2_SOC1 0x80 /* special output 1, below */
#define SAB_CCR2_SOC0 0x40 /* special output 0, below */
#define SAB_CCR2_SOC_MASK (SAB_CCR2_SOC1|SAB_CCR2_SOC0)
#define SAB_CCR2_SOC_RTSHIGH (SAB_CCR2_SOC1)
#define SAB_CCR2_SOC_RTSNORM (0)
#define SAB_CCR2_SOC_RTSRX (SAB_CCR2_SOC1|SAB_CCR2_SOC0)
/* clock mode 0b, 2, 3, 6, 7 */
#define SAB_CCR2_BR9 0x80 /* baud rate bit 9 */
#define SAB_CCR2_BR8 0x40 /* baud rate bit 8 */
#define SAB_CCR2_BDF 0x20 /* baud rate division factor: 0:1: 1:BRG */
#define SAB_CCR2_SSEL 0x10 /* clock source select */
/* clock mode 5 */
#define SAB_CCR2_XCS0 0x20 /* tx clock shift, bit 0 */
#define SAB_CCR2_RCS0 0x10 /* rx clock shift, bit 0 */
/* clock mode 0b, 2, 3, 4, 5, 6, 7 */
#define SAB_CCR2_TOE 0x08 /* tx clock output enable */
/* clock mode 0a, 0b, 1, 2, 3, 4, 5, 6, 7 */
#define SAB_CCR2_RWX 0x04 /* read/write exchange (dma mode only) */
#define SAB_CCR2_DIV 0x01 /* data inversion (nrz) */
/* SAB_CCR3: channel configuration register 3 (v2 or greater) */
#define SAB_CCR3_PSD 0x01 /* dpll phase shift disable (nrz/nrzi) */
/* SAB_TSAX: time-slot assignment register transmit (clock mode 5 only) */
#define SAB_TSAX_TSNX 0xfc /* time-slot number transmit */
#define SAB_TSAX_XCS2 0x02 /* transmit clock shift bit 2 */
#define SAB_TSAX_XCS1 0x01 /* transmit clock shift bit 1 */
/* SAB_TSAR: time-slot assignment register receive (clock mode 5 only) */
#define SAB_TSAR_TSNR 0xfc /* time-slot number receive */
#define SAB_TSAR_RCS2 0x02 /* receive clock shift bit 2 */
#define SAB_TSAR_RCS1 0x01 /* receive clock shift bit 1 */
/* SAB_VSTR: version status register */
#define SAB_VSTR_CD 0x80 /* carrier detect status */
#define SAB_VSTR_DPLA 0x40 /* dpll asynchronous */
#define SAB_VSTR_VMASK 0x0f /* chip version mask: */
#define SAB_VSTR_V_1 0x00 /* version 1 */
#define SAB_VSTR_V_2 0x01 /* version 2 */
#define SAB_VSTR_V_32 0x02 /* version 3.2 */
/* SAB_GIS: global interrupt status register */
#define SAB_GIS_PI 0x80 /* universal port interrupt */
#define SAB_GIS_ISA1 0x08 /* interrupt status a1 */
#define SAB_GIS_ISA0 0x04 /* interrupt status a0 */
#define SAB_GIS_ISB1 0x02 /* interrupt status b1 */
#define SAB_GIS_ISB0 0x01 /* interrupt status b0 */
/* SAB_IVA: interrupt vector address */
#define SAB_IVA_MASK 0xf8 /* interrupt vector address mask */
/* SAB_IPC: interrupt port configuration */
#define SAB_IPC_VIS 0x80 /* masked interrupt bits visible */
#define SAB_IPC_SLAMASK 0x18 /* slave address mask */
#define SAB_IPC_CASM 0x04 /* cascading mode */
#define SAB_IPC_ICMASK 0x03 /* port config mask: */
#define SAB_IPC_ICOD 0x00 /* open drain output */
#define SAB_IPC_ICPL 0x01 /* push/pull active low output */
#define SAB_IPC_ICPH 0x03 /* push/pull active high output */
/* SAB_ISR0: interrupt status 0 */
#define SAB_ISR0_TCD 0x80 /* termination character detected */
#define SAB_ISR0_TIME 0x40 /* time-out limit exceeded */
#define SAB_ISR0_PERR 0x20 /* parity error */
#define SAB_ISR0_FERR 0x10 /* framing error */
#define SAB_ISR0_PLLA 0x08 /* dpll asynchronous */
#define SAB_ISR0_CDSC 0x04 /* carrier detect status change */
#define SAB_ISR0_RFO 0x02 /* rfifo overflow */
#define SAB_ISR0_RPF 0x01 /* receive pool full */
/* SAB_ISR1: interrupt status 1 */
#define SAB_ISR1_BRK 0x80 /* break detected */
#define SAB_ISR1_BRKT 0x40 /* break terminated */
#define SAB_ISR1_ALLS 0x20 /* all sent */
#define SAB_ISR1_XOFF 0x10 /* xoff detected */
#define SAB_ISR1_TIN 0x08 /* timer interrupt */
#define SAB_ISR1_CSC 0x04 /* clear to send status change */
#define SAB_ISR1_XON 0x02 /* xon detected */
#define SAB_ISR1_XPR 0x01 /* transmit pool ready */
/* SAB_IMR0: interrupt mask 0 */
#define SAB_IMR0_TCD 0x80 /* termination character detected */
#define SAB_IMR0_TIME 0x40 /* time-out limit exceeded */
#define SAB_IMR0_PERR 0x20 /* parity error */
#define SAB_IMR0_FERR 0x10 /* framing error */
#define SAB_IMR0_PLLA 0x08 /* dpll asynchronous */
#define SAB_IMR0_CDSC 0x04 /* carrier detect status change */
#define SAB_IMR0_RFO 0x02 /* rfifo overflow */
#define SAB_IMR0_RPF 0x01 /* receive pool full */
/* SAB_ISR1: interrupt mask 1 */
#define SAB_IMR1_BRK 0x80 /* break detected */
#define SAB_IMR1_BRKT 0x40 /* break terminated */
#define SAB_IMR1_ALLS 0x20 /* all sent */
#define SAB_IMR1_XDU 0x10 /* xoff detected */
#define SAB_IMR1_TIN 0x08 /* timer interrupt */
#define SAB_IMR1_CSC 0x04 /* clear to send status change */
#define SAB_IMR1_XMR 0x02 /* xon detected */
#define SAB_IMR1_XPR 0x01 /* transmit pool ready */
/* SAB_PVR: port value register */
#define SAB_PVR_DSR_A 0x01 /* port A DSR */
#define SAB_PVR_DTR_A 0x02 /* port A DTR */
#define SAB_PVR_DTR_B 0x04 /* port B DTR */
#define SAB_PVR_DSR_B 0x08 /* port B DSR */
#define SAB_PVR_MAGIC 0x10 /* dunno... */
/* SAB_CCR4: channel configuration register 4 */
#define SAB_CCR4_MCK4 0x80 /* master clock divide by 4 */
#define SAB_CCR4_EBRG 0x40 /* enhanced baud rate generator mode */
#define SAB_CCR4_TST1 0x20 /* test pin */
#define SAB_CCR4_ICD 0x10 /* invert polarity of carrier detect */
/* Receive status byte */
#define SAB_RSTAT_PE 0x80 /* parity error */
#define SAB_RSTAT_FE 0x40 /* framing error */
#define SAB_RSTAT_PAR 0x01 /* parity bit */
#endif /* _DEV_IC_SAB82532_H_ */

View File

@ -113,7 +113,6 @@ struct scc_class {
};
extern struct scc_class scc_quicc_class;
extern struct scc_class scc_sab82532_class;
extern struct scc_class scc_z8530_escc_class;
extern struct scc_class scc_z8530_legacy_class;

View File

@ -42,7 +42,7 @@
#define SCC_IVAR_HWMTX 5
/* Hardware class -- the SCC type. */
#define SCC_CLASS_SAB82532 0
#define SCC_CLASS_UNUSED 0
#define SCC_CLASS_Z8530 1
#define SCC_CLASS_QUICC 2

View File

@ -1,154 +0,0 @@
/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2004-2006 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <machine/bus.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/serial.h>
#include <dev/scc/scc_bfe.h>
#include <dev/scc/scc_bus.h>
#include <dev/ic/sab82532.h>
#include "scc_if.h"
static int sab82532_bfe_attach(struct scc_softc *, int);
static int sab82532_bfe_iclear(struct scc_softc *, struct scc_chan *);
static int sab82532_bfe_ipend(struct scc_softc *);
static int sab82532_bfe_probe(struct scc_softc *);
static kobj_method_t sab82532_methods[] = {
KOBJMETHOD(scc_attach, sab82532_bfe_attach),
KOBJMETHOD(scc_iclear, sab82532_bfe_iclear),
KOBJMETHOD(scc_ipend, sab82532_bfe_ipend),
KOBJMETHOD(scc_probe, sab82532_bfe_probe),
KOBJMETHOD_END
};
struct scc_class scc_sab82532_class = {
"sab82532 class",
sab82532_methods,
sizeof(struct scc_softc),
.cl_channels = SAB_NCHAN,
.cl_class = SCC_CLASS_SAB82532,
.cl_modes = SCC_MODE_ASYNC | SCC_MODE_BISYNC | SCC_MODE_HDLC,
.cl_range = SAB_CHANLEN,
};
static int
sab82532_bfe_attach(struct scc_softc *sc __unused, int reset __unused)
{
return (0);
}
static int
sab82532_bfe_iclear(struct scc_softc *sc, struct scc_chan *ch)
{
struct scc_bas *bas;
int i, ofs, rbcl;
bas = &sc->sc_bas;
ofs = (ch->ch_nr - 1) * SAB_CHANLEN;
mtx_lock_spin(&sc->sc_hwmtx);
if (ch->ch_ipend & SER_INT_RXREADY) {
if (scc_getreg(bas, ofs + SAB_STAR) & SAB_STAR_RFNE) {
rbcl = scc_getreg(bas, ofs + SAB_RBCL) & 31;
if (rbcl == 0)
rbcl = 32;
for (i = 0; i < rbcl; i += 2) {
(void)scc_getreg(bas, ofs + SAB_RFIFO);
(void)scc_getreg(bas, ofs + SAB_RFIFO + 1);
}
}
while (scc_getreg(bas, ofs + SAB_STAR) & SAB_STAR_CEC)
;
scc_setreg(bas, ofs + SAB_CMDR, SAB_CMDR_RMC);
scc_barrier(bas);
}
mtx_unlock_spin(&sc->sc_hwmtx);
return (0);
}
static int
sab82532_bfe_ipend(struct scc_softc *sc)
{
struct scc_bas *bas;
struct scc_chan *ch;
int ipend;
int c, ofs;
uint8_t isr0, isr1;
bas = &sc->sc_bas;
ipend = 0;
for (c = 0; c < SAB_NCHAN; c++) {
ch = &sc->sc_chan[c];
ofs = c * SAB_CHANLEN;
mtx_lock_spin(&sc->sc_hwmtx);
isr0 = scc_getreg(bas, ofs + SAB_ISR0);
isr1 = scc_getreg(bas, ofs + SAB_ISR1);
scc_barrier(bas);
if (isr0 & SAB_ISR0_TIME) {
while (scc_getreg(bas, ofs + SAB_STAR) & SAB_STAR_CEC)
;
scc_setreg(bas, ofs + SAB_CMDR, SAB_CMDR_RFRD);
scc_barrier(bas);
}
mtx_unlock_spin(&sc->sc_hwmtx);
ch->ch_ipend = 0;
if (isr1 & SAB_ISR1_BRKT)
ch->ch_ipend |= SER_INT_BREAK;
if (isr0 & SAB_ISR0_RFO)
ch->ch_ipend |= SER_INT_OVERRUN;
if (isr0 & (SAB_ISR0_TCD|SAB_ISR0_RPF))
ch->ch_ipend |= SER_INT_RXREADY;
if ((isr0 & SAB_ISR0_CDSC) || (isr1 & SAB_ISR1_CSC))
ch->ch_ipend |= SER_INT_SIGCHG;
if (isr1 & SAB_ISR1_ALLS)
ch->ch_ipend |= SER_INT_TXIDLE;
ipend |= ch->ch_ipend;
}
return (ipend);
}
static int
sab82532_bfe_probe(struct scc_softc *sc __unused)
{
return (0);
}

View File

@ -104,7 +104,6 @@ struct uart_class;
extern struct uart_class uart_ns8250_class __attribute__((weak));
extern struct uart_class uart_quicc_class __attribute__((weak));
extern struct uart_class uart_s3c2410_class __attribute__((weak));
extern struct uart_class uart_sab82532_class __attribute__((weak));
extern struct uart_class uart_sbbc_class __attribute__((weak));
extern struct uart_class uart_z8530_class __attribute__((weak));

View File

@ -100,9 +100,6 @@ uart_scc_probe(device_t dev)
case SCC_CLASS_QUICC:
sc->sc_class = &uart_quicc_class;
break;
case SCC_CLASS_SAB82532:
sc->sc_class = &uart_sab82532_class;
break;
case SCC_CLASS_Z8530:
sc->sc_class = &uart_z8530_class;
break;

View File

@ -1,762 +0,0 @@
/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2003 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <machine/bus.h>
#include <dev/uart/uart.h>
#include <dev/uart/uart_cpu.h>
#include <dev/uart/uart_bus.h>
#include <dev/ic/sab82532.h>
#include "uart_if.h"
#define DEFAULT_RCLK 29491200
/*
* NOTE: To allow us to read the baudrate divisor from the chip, we
* copy the value written to the write-only BGR register to an unused
* read-write register. We use TCR for that.
*/
static int
sab82532_delay(struct uart_bas *bas)
{
int divisor, m, n;
uint8_t bgr, ccr2;
bgr = uart_getreg(bas, SAB_TCR);
ccr2 = uart_getreg(bas, SAB_CCR2);
n = (bgr & 0x3f) + 1;
m = (bgr >> 6) | ((ccr2 >> 4) & 0xC);
divisor = n * (1<<m);
/* 1/10th the time to transmit 1 character (estimate). */
return (16000000 * divisor / bas->rclk);
}
static int
sab82532_divisor(int rclk, int baudrate)
{
int act_baud, act_div, divisor;
int error, m, n;
if (baudrate == 0)
return (0);
divisor = (rclk / (baudrate << 3) + 1) >> 1;
if (divisor < 2 || divisor >= 1048576)
return (0);
/* Find the best (N+1,M) pair. */
for (m = 1; m < 15; m++) {
n = divisor / (1<<m);
if (n < 1 || n > 63)
continue;
act_div = n * (1<<m);
act_baud = rclk / (act_div << 4);
/* 10 times error in percent: */
error = ((act_baud - baudrate) * 2000 / baudrate + 1) >> 1;
/* 3.0% maximum error tolerance: */
if (error < -30 || error > 30)
continue;
/* Got it. */
return ((n - 1) | (m << 6));
}
return (0);
}
static void
sab82532_flush(struct uart_bas *bas, int what)
{
if (what & UART_FLUSH_TRANSMITTER) {
while (uart_getreg(bas, SAB_STAR) & SAB_STAR_CEC)
;
uart_setreg(bas, SAB_CMDR, SAB_CMDR_XRES);
uart_barrier(bas);
}
if (what & UART_FLUSH_RECEIVER) {
while (uart_getreg(bas, SAB_STAR) & SAB_STAR_CEC)
;
uart_setreg(bas, SAB_CMDR, SAB_CMDR_RRES);
uart_barrier(bas);
}
}
static int
sab82532_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
int parity)
{
int divisor;
uint8_t ccr2, dafo;
if (databits >= 8)
dafo = SAB_DAFO_CHL_CS8;
else if (databits == 7)
dafo = SAB_DAFO_CHL_CS7;
else if (databits == 6)
dafo = SAB_DAFO_CHL_CS6;
else
dafo = SAB_DAFO_CHL_CS5;
if (stopbits > 1)
dafo |= SAB_DAFO_STOP;
switch (parity) {
case UART_PARITY_EVEN: dafo |= SAB_DAFO_PAR_EVEN; break;
case UART_PARITY_MARK: dafo |= SAB_DAFO_PAR_MARK; break;
case UART_PARITY_NONE: dafo |= SAB_DAFO_PAR_NONE; break;
case UART_PARITY_ODD: dafo |= SAB_DAFO_PAR_ODD; break;
case UART_PARITY_SPACE: dafo |= SAB_DAFO_PAR_SPACE; break;
default: return (EINVAL);
}
/* Set baudrate. */
if (baudrate > 0) {
divisor = sab82532_divisor(bas->rclk, baudrate);
if (divisor == 0)
return (EINVAL);
uart_setreg(bas, SAB_BGR, divisor & 0xff);
uart_barrier(bas);
/* Allow reading the (n-1,m) tuple from the chip. */
uart_setreg(bas, SAB_TCR, divisor & 0xff);
uart_barrier(bas);
ccr2 = uart_getreg(bas, SAB_CCR2);
ccr2 &= ~(SAB_CCR2_BR9 | SAB_CCR2_BR8);
ccr2 |= (divisor >> 2) & (SAB_CCR2_BR9 | SAB_CCR2_BR8);
uart_setreg(bas, SAB_CCR2, ccr2);
uart_barrier(bas);
}
uart_setreg(bas, SAB_DAFO, dafo);
uart_barrier(bas);
return (0);
}
/*
* Low-level UART interface.
*/
static int sab82532_probe(struct uart_bas *bas);
static void sab82532_init(struct uart_bas *bas, int, int, int, int);
static void sab82532_term(struct uart_bas *bas);
static void sab82532_putc(struct uart_bas *bas, int);
static int sab82532_rxready(struct uart_bas *bas);
static int sab82532_getc(struct uart_bas *bas, struct mtx *);
static struct uart_ops uart_sab82532_ops = {
.probe = sab82532_probe,
.init = sab82532_init,
.term = sab82532_term,
.putc = sab82532_putc,
.rxready = sab82532_rxready,
.getc = sab82532_getc,
};
static int
sab82532_probe(struct uart_bas *bas)
{
return (0);
}
static void
sab82532_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
int parity)
{
uint8_t ccr0, pvr;
if (bas->rclk == 0)
bas->rclk = DEFAULT_RCLK;
/*
* Set all pins, except the DTR pins (pin 1 and 2) to be inputs.
* Pin 4 is magical, meaning that I don't know what it does, but
* it too has to be set to output.
*/
uart_setreg(bas, SAB_PCR,
~(SAB_PVR_DTR_A|SAB_PVR_DTR_B|SAB_PVR_MAGIC));
uart_barrier(bas);
/* Disable port interrupts. */
uart_setreg(bas, SAB_PIM, 0xff);
uart_barrier(bas);
/* Interrupts are active low. */
uart_setreg(bas, SAB_IPC, SAB_IPC_ICPL);
uart_barrier(bas);
/* Set DTR. */
pvr = uart_getreg(bas, SAB_PVR);
switch (bas->chan) {
case 1:
pvr &= ~SAB_PVR_DTR_A;
break;
case 2:
pvr &= ~SAB_PVR_DTR_B;
break;
}
uart_setreg(bas, SAB_PVR, pvr | SAB_PVR_MAGIC);
uart_barrier(bas);
/* power down */
uart_setreg(bas, SAB_CCR0, 0);
uart_barrier(bas);
/* set basic configuration */
ccr0 = SAB_CCR0_MCE|SAB_CCR0_SC_NRZ|SAB_CCR0_SM_ASYNC;
uart_setreg(bas, SAB_CCR0, ccr0);
uart_barrier(bas);
uart_setreg(bas, SAB_CCR1, SAB_CCR1_ODS|SAB_CCR1_BCR|SAB_CCR1_CM_7);
uart_barrier(bas);
uart_setreg(bas, SAB_CCR2, SAB_CCR2_BDF|SAB_CCR2_SSEL|SAB_CCR2_TOE);
uart_barrier(bas);
uart_setreg(bas, SAB_CCR3, 0);
uart_barrier(bas);
uart_setreg(bas, SAB_CCR4, SAB_CCR4_MCK4|SAB_CCR4_EBRG|SAB_CCR4_ICD);
uart_barrier(bas);
uart_setreg(bas, SAB_MODE, SAB_MODE_FCTS|SAB_MODE_RTS|SAB_MODE_RAC);
uart_barrier(bas);
uart_setreg(bas, SAB_RFC, SAB_RFC_DPS|SAB_RFC_RFDF|
SAB_RFC_RFTH_32CHAR);
uart_barrier(bas);
sab82532_param(bas, baudrate, databits, stopbits, parity);
/* Clear interrupts. */
uart_setreg(bas, SAB_IMR0, (unsigned char)~SAB_IMR0_TCD);
uart_setreg(bas, SAB_IMR1, 0xff);
uart_barrier(bas);
uart_getreg(bas, SAB_ISR0);
uart_getreg(bas, SAB_ISR1);
uart_barrier(bas);
sab82532_flush(bas, UART_FLUSH_TRANSMITTER|UART_FLUSH_RECEIVER);
/* Power up. */
uart_setreg(bas, SAB_CCR0, ccr0|SAB_CCR0_PU);
uart_barrier(bas);
}
static void
sab82532_term(struct uart_bas *bas)
{
uint8_t pvr;
pvr = uart_getreg(bas, SAB_PVR);
switch (bas->chan) {
case 1:
pvr |= SAB_PVR_DTR_A;
break;
case 2:
pvr |= SAB_PVR_DTR_B;
break;
}
uart_setreg(bas, SAB_PVR, pvr);
uart_barrier(bas);
}
static void
sab82532_putc(struct uart_bas *bas, int c)
{
int delay, limit;
/* 1/10th the time to transmit 1 character (estimate). */
delay = sab82532_delay(bas);
limit = 20;
while ((uart_getreg(bas, SAB_STAR) & SAB_STAR_TEC) && --limit)
DELAY(delay);
uart_setreg(bas, SAB_TIC, c);
limit = 20;
while ((uart_getreg(bas, SAB_STAR) & SAB_STAR_TEC) && --limit)
DELAY(delay);
}
static int
sab82532_rxready(struct uart_bas *bas)
{
return ((uart_getreg(bas, SAB_STAR) & SAB_STAR_RFNE) != 0 ? 1 : 0);
}
static int
sab82532_getc(struct uart_bas *bas, struct mtx *hwmtx)
{
int c, delay;
uart_lock(hwmtx);
/* 1/10th the time to transmit 1 character (estimate). */
delay = sab82532_delay(bas);
while (!(uart_getreg(bas, SAB_STAR) & SAB_STAR_RFNE)) {
uart_unlock(hwmtx);
DELAY(delay);
uart_lock(hwmtx);
}
while (uart_getreg(bas, SAB_STAR) & SAB_STAR_CEC)
;
uart_setreg(bas, SAB_CMDR, SAB_CMDR_RFRD);
uart_barrier(bas);
while (!(uart_getreg(bas, SAB_ISR0) & SAB_ISR0_TCD))
DELAY(delay);
c = uart_getreg(bas, SAB_RFIFO);
uart_barrier(bas);
/* Blow away everything left in the FIFO... */
while (uart_getreg(bas, SAB_STAR) & SAB_STAR_CEC)
;
uart_setreg(bas, SAB_CMDR, SAB_CMDR_RMC);
uart_barrier(bas);
uart_unlock(hwmtx);
return (c);
}
/*
* High-level UART interface.
*/
struct sab82532_softc {
struct uart_softc base;
};
static int sab82532_bus_attach(struct uart_softc *);
static int sab82532_bus_detach(struct uart_softc *);
static int sab82532_bus_flush(struct uart_softc *, int);
static int sab82532_bus_getsig(struct uart_softc *);
static int sab82532_bus_ioctl(struct uart_softc *, int, intptr_t);
static int sab82532_bus_ipend(struct uart_softc *);
static int sab82532_bus_param(struct uart_softc *, int, int, int, int);
static int sab82532_bus_probe(struct uart_softc *);
static int sab82532_bus_receive(struct uart_softc *);
static int sab82532_bus_setsig(struct uart_softc *, int);
static int sab82532_bus_transmit(struct uart_softc *);
static void sab82532_bus_grab(struct uart_softc *);
static void sab82532_bus_ungrab(struct uart_softc *);
static kobj_method_t sab82532_methods[] = {
KOBJMETHOD(uart_attach, sab82532_bus_attach),
KOBJMETHOD(uart_detach, sab82532_bus_detach),
KOBJMETHOD(uart_flush, sab82532_bus_flush),
KOBJMETHOD(uart_getsig, sab82532_bus_getsig),
KOBJMETHOD(uart_ioctl, sab82532_bus_ioctl),
KOBJMETHOD(uart_ipend, sab82532_bus_ipend),
KOBJMETHOD(uart_param, sab82532_bus_param),
KOBJMETHOD(uart_probe, sab82532_bus_probe),
KOBJMETHOD(uart_receive, sab82532_bus_receive),
KOBJMETHOD(uart_setsig, sab82532_bus_setsig),
KOBJMETHOD(uart_transmit, sab82532_bus_transmit),
KOBJMETHOD(uart_grab, sab82532_bus_grab),
KOBJMETHOD(uart_ungrab, sab82532_bus_ungrab),
{ 0, 0 }
};
struct uart_class uart_sab82532_class = {
"sab82532",
sab82532_methods,
sizeof(struct sab82532_softc),
.uc_ops = &uart_sab82532_ops,
.uc_range = 64,
.uc_rclk = DEFAULT_RCLK,
.uc_rshift = 0
};
#define SIGCHG(c, i, s, d) \
if (c) { \
i |= (i & s) ? s : s | d; \
} else { \
i = (i & s) ? (i & ~s) | d : i; \
}
static int
sab82532_bus_attach(struct uart_softc *sc)
{
struct uart_bas *bas;
uint8_t imr0, imr1;
bas = &sc->sc_bas;
if (sc->sc_sysdev == NULL)
sab82532_init(bas, 9600, 8, 1, UART_PARITY_NONE);
imr0 = SAB_IMR0_TCD|SAB_IMR0_TIME|SAB_IMR0_CDSC|SAB_IMR0_RFO|
SAB_IMR0_RPF;
uart_setreg(bas, SAB_IMR0, 0xff & ~imr0);
imr1 = SAB_IMR1_BRKT|SAB_IMR1_ALLS|SAB_IMR1_CSC;
uart_setreg(bas, SAB_IMR1, 0xff & ~imr1);
uart_barrier(bas);
if (sc->sc_sysdev == NULL)
sab82532_bus_setsig(sc, SER_DDTR|SER_DRTS);
(void)sab82532_bus_getsig(sc);
return (0);
}
static int
sab82532_bus_detach(struct uart_softc *sc)
{
struct uart_bas *bas;
bas = &sc->sc_bas;
uart_setreg(bas, SAB_IMR0, 0xff);
uart_setreg(bas, SAB_IMR1, 0xff);
uart_barrier(bas);
uart_getreg(bas, SAB_ISR0);
uart_getreg(bas, SAB_ISR1);
uart_barrier(bas);
uart_setreg(bas, SAB_CCR0, 0);
uart_barrier(bas);
return (0);
}
static int
sab82532_bus_flush(struct uart_softc *sc, int what)
{
uart_lock(sc->sc_hwmtx);
sab82532_flush(&sc->sc_bas, what);
uart_unlock(sc->sc_hwmtx);
return (0);
}
static int
sab82532_bus_getsig(struct uart_softc *sc)
{
struct uart_bas *bas;
uint32_t new, old, sig;
uint8_t pvr, star, vstr;
bas = &sc->sc_bas;
do {
old = sc->sc_hwsig;
sig = old;
uart_lock(sc->sc_hwmtx);
star = uart_getreg(bas, SAB_STAR);
SIGCHG(star & SAB_STAR_CTS, sig, SER_CTS, SER_DCTS);
vstr = uart_getreg(bas, SAB_VSTR);
SIGCHG(vstr & SAB_VSTR_CD, sig, SER_DCD, SER_DDCD);
pvr = ~uart_getreg(bas, SAB_PVR);
switch (bas->chan) {
case 1:
pvr &= SAB_PVR_DSR_A;
break;
case 2:
pvr &= SAB_PVR_DSR_B;
break;
}
SIGCHG(pvr, sig, SER_DSR, SER_DDSR);
uart_unlock(sc->sc_hwmtx);
new = sig & ~SER_MASK_DELTA;
} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
return (sig);
}
static int
sab82532_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
{
struct uart_bas *bas;
uint8_t dafo, mode;
int error;
bas = &sc->sc_bas;
error = 0;
uart_lock(sc->sc_hwmtx);
switch (request) {
case UART_IOCTL_BREAK:
dafo = uart_getreg(bas, SAB_DAFO);
if (data)
dafo |= SAB_DAFO_XBRK;
else
dafo &= ~SAB_DAFO_XBRK;
uart_setreg(bas, SAB_DAFO, dafo);
uart_barrier(bas);
break;
case UART_IOCTL_IFLOW:
mode = uart_getreg(bas, SAB_MODE);
if (data) {
mode &= ~SAB_MODE_RTS;
mode |= SAB_MODE_FRTS;
} else {
mode |= SAB_MODE_RTS;
mode &= ~SAB_MODE_FRTS;
}
uart_setreg(bas, SAB_MODE, mode);
uart_barrier(bas);
break;
case UART_IOCTL_OFLOW:
mode = uart_getreg(bas, SAB_MODE);
if (data)
mode &= ~SAB_MODE_FCTS;
else
mode |= SAB_MODE_FCTS;
uart_setreg(bas, SAB_MODE, mode);
uart_barrier(bas);
break;
default:
error = EINVAL;
break;
}
uart_unlock(sc->sc_hwmtx);
return (error);
}
static int
sab82532_bus_ipend(struct uart_softc *sc)
{
struct uart_bas *bas;
int ipend;
uint8_t isr0, isr1;
bas = &sc->sc_bas;
uart_lock(sc->sc_hwmtx);
isr0 = uart_getreg(bas, SAB_ISR0);
isr1 = uart_getreg(bas, SAB_ISR1);
uart_barrier(bas);
if (isr0 & SAB_ISR0_TIME) {
while (uart_getreg(bas, SAB_STAR) & SAB_STAR_CEC)
;
uart_setreg(bas, SAB_CMDR, SAB_CMDR_RFRD);
uart_barrier(bas);
}
uart_unlock(sc->sc_hwmtx);
ipend = 0;
if (isr1 & SAB_ISR1_BRKT)
ipend |= SER_INT_BREAK;
if (isr0 & SAB_ISR0_RFO)
ipend |= SER_INT_OVERRUN;
if (isr0 & (SAB_ISR0_TCD|SAB_ISR0_RPF))
ipend |= SER_INT_RXREADY;
if ((isr0 & SAB_ISR0_CDSC) || (isr1 & SAB_ISR1_CSC))
ipend |= SER_INT_SIGCHG;
if (isr1 & SAB_ISR1_ALLS)
ipend |= SER_INT_TXIDLE;
return (ipend);
}
static int
sab82532_bus_param(struct uart_softc *sc, int baudrate, int databits,
int stopbits, int parity)
{
struct uart_bas *bas;
int error;
bas = &sc->sc_bas;
uart_lock(sc->sc_hwmtx);
error = sab82532_param(bas, baudrate, databits, stopbits, parity);
uart_unlock(sc->sc_hwmtx);
return (error);
}
static int
sab82532_bus_probe(struct uart_softc *sc)
{
char buf[80];
const char *vstr;
int error;
char ch;
error = sab82532_probe(&sc->sc_bas);
if (error)
return (error);
sc->sc_rxfifosz = 32;
sc->sc_txfifosz = 32;
ch = sc->sc_bas.chan - 1 + 'A';
switch (uart_getreg(&sc->sc_bas, SAB_VSTR) & SAB_VSTR_VMASK) {
case SAB_VSTR_V_1:
vstr = "v1";
break;
case SAB_VSTR_V_2:
vstr = "v2";
break;
case SAB_VSTR_V_32:
vstr = "v3.2";
sc->sc_hwiflow = 0; /* CTS doesn't work with RFC:RFDF. */
sc->sc_hwoflow = 1;
break;
default:
vstr = "v4?";
break;
}
snprintf(buf, sizeof(buf), "SAB 82532 %s, channel %c", vstr, ch);
device_set_desc_copy(sc->sc_dev, buf);
return (0);
}
static int
sab82532_bus_receive(struct uart_softc *sc)
{
struct uart_bas *bas;
int i, rbcl, xc;
uint8_t s;
bas = &sc->sc_bas;
uart_lock(sc->sc_hwmtx);
if (uart_getreg(bas, SAB_STAR) & SAB_STAR_RFNE) {
rbcl = uart_getreg(bas, SAB_RBCL) & 31;
if (rbcl == 0)
rbcl = 32;
for (i = 0; i < rbcl; i += 2) {
if (uart_rx_full(sc)) {
sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
break;
}
xc = uart_getreg(bas, SAB_RFIFO);
s = uart_getreg(bas, SAB_RFIFO + 1);
if (s & SAB_RSTAT_FE)
xc |= UART_STAT_FRAMERR;
if (s & SAB_RSTAT_PE)
xc |= UART_STAT_PARERR;
uart_rx_put(sc, xc);
}
}
while (uart_getreg(bas, SAB_STAR) & SAB_STAR_CEC)
;
uart_setreg(bas, SAB_CMDR, SAB_CMDR_RMC);
uart_barrier(bas);
uart_unlock(sc->sc_hwmtx);
return (0);
}
static int
sab82532_bus_setsig(struct uart_softc *sc, int sig)
{
struct uart_bas *bas;
uint32_t new, old;
uint8_t mode, pvr;
bas = &sc->sc_bas;
do {
old = sc->sc_hwsig;
new = old;
if (sig & SER_DDTR) {
SIGCHG(sig & SER_DTR, new, SER_DTR,
SER_DDTR);
}
if (sig & SER_DRTS) {
SIGCHG(sig & SER_RTS, new, SER_RTS,
SER_DRTS);
}
} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
uart_lock(sc->sc_hwmtx);
/* Set DTR pin. */
pvr = uart_getreg(bas, SAB_PVR);
switch (bas->chan) {
case 1:
if (new & SER_DTR)
pvr &= ~SAB_PVR_DTR_A;
else
pvr |= SAB_PVR_DTR_A;
break;
case 2:
if (new & SER_DTR)
pvr &= ~SAB_PVR_DTR_B;
else
pvr |= SAB_PVR_DTR_B;
break;
}
uart_setreg(bas, SAB_PVR, pvr);
/* Set RTS pin. */
mode = uart_getreg(bas, SAB_MODE);
if (new & SER_RTS)
mode &= ~SAB_MODE_FRTS;
else
mode |= SAB_MODE_FRTS;
uart_setreg(bas, SAB_MODE, mode);
uart_barrier(bas);
uart_unlock(sc->sc_hwmtx);
return (0);
}
static int
sab82532_bus_transmit(struct uart_softc *sc)
{
struct uart_bas *bas;
int i;
bas = &sc->sc_bas;
uart_lock(sc->sc_hwmtx);
while (!(uart_getreg(bas, SAB_STAR) & SAB_STAR_XFW))
;
for (i = 0; i < sc->sc_txdatasz; i++)
uart_setreg(bas, SAB_XFIFO + i, sc->sc_txbuf[i]);
uart_barrier(bas);
while (uart_getreg(bas, SAB_STAR) & SAB_STAR_CEC)
;
uart_setreg(bas, SAB_CMDR, SAB_CMDR_XF);
sc->sc_txbusy = 1;
uart_unlock(sc->sc_hwmtx);
return (0);
}
static void
sab82532_bus_grab(struct uart_softc *sc)
{
struct uart_bas *bas;
uint8_t imr0;
bas = &sc->sc_bas;
imr0 = SAB_IMR0_TIME|SAB_IMR0_CDSC|SAB_IMR0_RFO; /* No TCD or RPF */
uart_lock(sc->sc_hwmtx);
uart_setreg(bas, SAB_IMR0, 0xff & ~imr0);
uart_barrier(bas);
uart_unlock(sc->sc_hwmtx);
}
static void
sab82532_bus_ungrab(struct uart_softc *sc)
{
struct uart_bas *bas;
uint8_t imr0;
bas = &sc->sc_bas;
imr0 = SAB_IMR0_TCD|SAB_IMR0_TIME|SAB_IMR0_CDSC|SAB_IMR0_RFO|
SAB_IMR0_RPF;
uart_lock(sc->sc_hwmtx);
uart_setreg(bas, SAB_IMR0, 0xff & ~imr0);
uart_barrier(bas);
uart_unlock(sc->sc_hwmtx);
}

View File

@ -53,7 +53,6 @@ __FBSDID("$FreeBSD$");
static struct uart_class *uart_classes[] = {
&uart_ns8250_class,
&uart_sab82532_class,
&uart_z8530_class,
#if defined(__arm__)
&uart_s3c2410_class,

View File

@ -8,7 +8,7 @@ scc_bfe= scc_bfe_macio.c scc_bfe_quicc.c scc_dev_quicc.c
KMOD= scc
SRCS= ${scc_bfe} scc_core.c scc_if.c scc_if.h \
scc_dev_sab82532.c scc_dev_z8530.c
scc_dev_z8530.c
SRCS+= bus_if.h device_if.h ofw_bus_if.h serdev_if.c serdev_if.h
.include <bsd.kmod.mk>

View File

@ -32,7 +32,7 @@ SRCS= ${uart_bus_acpi} uart_bus_isa.c uart_bus_pccard.c \
uart_bus_pci.c uart_bus_puc.c uart_bus_scc.c \
uart_core.c ${uart_cpu_acpi} ${uart_cpu_machine} uart_dbg.c \
${uart_dev_mvebu} uart_dev_ns8250.c ${uart_dev_mu} \
uart_dev_quicc.c uart_dev_sab82532.c uart_dev_z8530.c \
uart_dev_quicc.c uart_dev_z8530.c \
uart_if.c uart_if.h uart_subr.c uart_tty.c
SRCS+= acpi_if.h bus_if.h card_if.h device_if.h isa_if.h ${ofw_bus_if} \