Allow allocations across meta boundaries.

Remove restrictions that prevent allocation requests to cross the
boundary between two meta nodes.

Replace the bmu_avail field in meta nodes with a bitmap that identifies
which subtrees have some free memory, and iterate over the nonempty
subtrees only in blst_meta_alloc.  If free memory is scarce, this should
make searching for it faster.

Put the code for handling the next-leaf allocation in a separate
function.  When taking blocks from the next leaf empties the leaf, be
sure to clear the appropriate bit in its parent, and so on, up to the
least-common ancestor of this leaf and the next.

Eliminate special terminator nodes, and rely instead on the fact that
there is a 0-bit at the end of the bitmask at the root of the tree that
will stop a meta_alloc search, or a next-leaf search, before the search
falls off the end of the tree. Make sure that the tree is big enough to
have space for that 0-bit.

Eliminate special all-free indicators.  Lazy initialization of subtrees
stands in the way of having an allocation span a meta-node boundary, so
a subtree of all free blocks is not treated specially.  Subtrees of
all-allocated blocks are still recognized by looking at the bitmask at
the root and finding 0.

Don't print all-allocated subtrees.  Do print the bitmasks for meta
nodes, when tree-printing.

Submitted by:	Doug Moore <dougm@rice.edu>
Reviewed by:	alc
MFC after:	1 month
Differential Revision:	https://reviews.freebsd.org/D12635
This commit is contained in:
Mark Johnston 2018-11-13 18:40:01 +00:00
parent 6f8ba91638
commit bb4a27f927
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=340402
2 changed files with 225 additions and 382 deletions

View File

@ -46,11 +46,11 @@
* upper bound on a potential allocation, but not necessarily a tight upper
* bound.
*
* The radix tree also implements two collapsed states for meta nodes:
* the ALL-ALLOCATED state and the ALL-FREE state. If a meta node is
* in either of these two states, all information contained underneath
* the node is considered stale. These states are used to optimize
* allocation and freeing operations.
* The bitmap field in each node directs the search for available blocks.
* For a leaf node, a bit is set if the corresponding block is free. For a
* meta node, a bit is set if the corresponding subtree contains a free
* block somewhere within it. The search at a meta node considers only
* children of that node that represent a range that includes a free block.
*
* The hinting greatly increases code efficiency for allocations while
* the general radix structure optimizes both allocations and frees. The
@ -59,19 +59,19 @@
*
* The blist code wires all necessary memory at creation time. Neither
* allocations nor frees require interaction with the memory subsystem.
* The non-blocking features of the blist code are used in the swap code
* (vm/swap_pager.c).
* The non-blocking nature of allocations and frees is required by swap
* code (vm/swap_pager.c).
*
* LAYOUT: The radix tree is laid out recursively using a
* linear array. Each meta node is immediately followed (laid out
* sequentially in memory) by BLIST_META_RADIX lower level nodes. This
* is a recursive structure but one that can be easily scanned through
* a very simple 'skip' calculation. In order to support large radixes,
* portions of the tree may reside outside our memory allocation. We
* handle this with an early-termination optimization (when bighint is
* set to -1) on the scan. The memory allocation is only large enough
* to cover the number of blocks requested at creation time even if it
* must be encompassed in larger root-node radix.
* LAYOUT: The radix tree is laid out recursively using a linear array.
* Each meta node is immediately followed (laid out sequentially in
* memory) by BLIST_META_RADIX lower level nodes. This is a recursive
* structure but one that can be easily scanned through a very simple
* 'skip' calculation. The memory allocation is only large enough to
* cover the number of blocks requested at creation time. Nodes that
* represent blocks beyond that limit, nodes that would never be read
* or written, are not allocated, so that the last of the
* BLIST_META_RADIX lower level nodes of a some nodes may not be
* allocated.
*
* NOTE: the allocator cannot currently allocate more than
* BLIST_BMAP_RADIX blocks per call. It will panic with 'allocation too
@ -105,6 +105,7 @@ __FBSDID("$FreeBSD$");
#define BLIST_DEBUG
#endif
#include <sys/errno.h>
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/sbuf.h>
@ -118,7 +119,7 @@ __FBSDID("$FreeBSD$");
#define bitcount64(x) __bitcount64((uint64_t)(x))
#define malloc(a,b,c) calloc(a, 1)
#define free(a,b) free(a)
static __inline int imax(int a, int b) { return (a > b ? a : b); }
#define ummin(a,b) ((a) < (b) ? (a) : (b))
#include <sys/blist.h>
@ -178,6 +179,18 @@ radix_to_skip(daddr_t radix)
((BLIST_BMAP_RADIX / BLIST_META_RADIX) * BLIST_META_MASK));
}
/*
* Provide a mask with count bits set, starting as position n.
*/
static inline u_daddr_t
bitrange(int n, int count)
{
return (((u_daddr_t)-1 << n) &
((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - (n + count))));
}
/*
* Use binary search, or a faster method, to find the 1 bit in a u_daddr_t.
* Assumes that the argument has only one bit set.
@ -220,9 +233,7 @@ blist_t
blist_create(daddr_t blocks, int flags)
{
blist_t bl;
daddr_t i, last_block;
u_daddr_t nodes, radix, skip;
int digit;
u_daddr_t nodes, radix;
if (blocks == 0)
panic("invalid block count");
@ -230,30 +241,13 @@ blist_create(daddr_t blocks, int flags)
/*
* Calculate the radix and node count used for scanning.
*/
last_block = blocks - 1;
nodes = 1;
radix = BLIST_BMAP_RADIX;
while (radix < blocks) {
if (((last_block / radix + 1) & BLIST_META_MASK) != 0)
/*
* We must widen the blist to avoid partially
* filled nodes.
*/
last_block |= radix - 1;
while (radix <= blocks) {
nodes += 1 + (blocks - 1) / radix;
radix *= BLIST_META_RADIX;
}
/*
* Count the meta-nodes in the expanded tree, including the final
* terminator, from the bottom level up to the root.
*/
nodes = 1;
if (radix - blocks >= BLIST_BMAP_RADIX)
nodes++;
last_block /= BLIST_BMAP_RADIX;
while (last_block > 0) {
nodes += last_block + 1;
last_block /= BLIST_META_RADIX;
}
bl = malloc(offsetof(struct blist, bl_root[nodes]), M_SWAP, flags |
M_ZERO);
if (bl == NULL)
@ -261,33 +255,6 @@ blist_create(daddr_t blocks, int flags)
bl->bl_blocks = blocks;
bl->bl_radix = radix;
bl->bl_cursor = 0;
/*
* Initialize the empty tree by filling in root values, then initialize
* just the terminators in the rest of the tree.
*/
bl->bl_root[0].bm_bighint = 0;
if (radix == BLIST_BMAP_RADIX)
bl->bl_root[0].u.bmu_bitmap = 0;
else
bl->bl_root[0].u.bmu_avail = 0;
last_block = blocks - 1;
i = 0;
while (radix > BLIST_BMAP_RADIX) {
radix /= BLIST_META_RADIX;
skip = radix_to_skip(radix);
digit = last_block / radix;
i += 1 + digit * skip;
if (digit != BLIST_META_MASK) {
/*
* Add a terminator.
*/
bl->bl_root[i + skip].bm_bighint = (daddr_t)-1;
bl->bl_root[i + skip].u.bmu_bitmap = 0;
}
last_block %= radix;
}
#if defined(BLIST_DEBUG)
printf(
@ -321,6 +288,9 @@ blist_alloc(blist_t bl, daddr_t count)
{
daddr_t blk;
if (count > BLIST_MAX_ALLOC)
panic("allocation too large");
/*
* This loop iterates at most twice. An allocation failure in the
* first iteration leads to a second iteration only if the cursor was
@ -331,11 +301,12 @@ blist_alloc(blist_t bl, daddr_t count)
blk = blst_meta_alloc(bl->bl_root, bl->bl_cursor, count,
bl->bl_radix);
if (blk != SWAPBLK_NONE) {
bl->bl_avail -= count;
bl->bl_cursor = blk + count;
if (bl->bl_cursor == bl->bl_blocks)
bl->bl_cursor = 0;
return (blk);
} else if (bl->bl_cursor != 0)
}
bl->bl_cursor = 0;
}
return (SWAPBLK_NONE);
@ -348,10 +319,7 @@ daddr_t
blist_avail(blist_t bl)
{
if (bl->bl_radix == BLIST_BMAP_RADIX)
return (bitcount64(bl->bl_root->u.bmu_bitmap));
else
return (bl->bl_root->u.bmu_avail);
return (bl->bl_avail);
}
/*
@ -363,7 +331,10 @@ void
blist_free(blist_t bl, daddr_t blkno, daddr_t count)
{
if (blkno < 0 || blkno + count > bl->bl_blocks)
panic("freeing invalid range");
blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix);
bl->bl_avail += count;
}
/*
@ -375,8 +346,13 @@ blist_free(blist_t bl, daddr_t blkno, daddr_t count)
daddr_t
blist_fill(blist_t bl, daddr_t blkno, daddr_t count)
{
daddr_t filled;
return (blst_meta_fill(bl->bl_root, blkno, count, bl->bl_radix));
if (blkno < 0 || blkno + count > bl->bl_blocks)
panic("filling invalid range");
filled = blst_meta_fill(bl->bl_root, blkno, count, bl->bl_radix);
bl->bl_avail -= filled;
return (filled);
}
/*
@ -414,7 +390,10 @@ blist_resize(blist_t *pbl, daddr_t count, int freenew, int flags)
void
blist_print(blist_t bl)
{
printf("BLIST cursor = %08jx {\n", (uintmax_t)bl->bl_cursor);
printf("BLIST avail = %jd, cursor = %08jx {\n",
(uintmax_t)bl->bl_avail, (uintmax_t)bl->bl_cursor);
if (bl->bl_root->bm_bitmap != 0)
blst_radix_print(bl->bl_root, 0, bl->bl_radix, 4);
printf("}\n");
}
@ -569,16 +548,11 @@ blist_stats(blist_t bl, struct sbuf *s)
* Check for skippable subtrees starting at i.
*/
while (radix > BLIST_BMAP_RADIX) {
if (bl->bl_root[nodes].u.bmu_avail == 0) {
if (bl->bl_root[nodes].bm_bitmap == 0) {
if (gap_stats_counting(stats))
update_gap_stats(stats, i);
break;
}
if (bl->bl_root[nodes].u.bmu_avail == radix) {
if (!gap_stats_counting(stats))
update_gap_stats(stats, i);
break;
}
/*
* Skip subtree root.
@ -590,7 +564,7 @@ blist_stats(blist_t bl, struct sbuf *s)
/*
* Scan leaf.
*/
mask = bl->bl_root[nodes].u.bmu_bitmap;
mask = bl->bl_root[nodes].bm_bitmap;
diff = mask ^ (mask << 1);
if (gap_stats_counting(stats))
diff ^= 1;
@ -618,7 +592,57 @@ blist_stats(blist_t bl, struct sbuf *s)
*/
/*
* blist_leaf_alloc() - allocate at a leaf in the radix tree (a bitmap).
* BLST_NEXT_LEAF_ALLOC() - allocate the first few blocks in the next leaf.
*
* 'scan' is a leaf node, associated with a block containing 'blk'.
* The next leaf node could be adjacent, or several nodes away if the
* least common ancestor of 'scan' and its neighbor is several levels
* up. Use 'blk' to determine how many meta-nodes lie between the
* leaves. If the next leaf has enough initial bits set, clear them
* and clear the bits in the meta nodes on the path up to the least
* common ancestor to mark any subtrees made completely empty.
*/
static int
blst_next_leaf_alloc(blmeta_t *scan, daddr_t blk, int count)
{
blmeta_t *next;
daddr_t skip;
u_daddr_t radix;
int digit;
next = scan + 1;
blk += BLIST_BMAP_RADIX;
radix = BLIST_BMAP_RADIX;
while ((digit = ((blk / radix) & BLIST_META_MASK)) == 0 &&
(next->bm_bitmap & 1) == 1) {
next++;
radix *= BLIST_META_RADIX;
}
if (((next->bm_bitmap + 1) & ~((u_daddr_t)-1 << count)) != 0) {
/*
* The next leaf doesn't have enough free blocks at the
* beginning to complete the spanning allocation.
*/
return (ENOMEM);
}
/* Clear the first 'count' bits in the next leaf to allocate. */
next->bm_bitmap &= (u_daddr_t)-1 << count;
/*
* Update bitmaps of next-ancestors, up to least common ancestor.
*/
skip = radix_to_skip(radix);
while (radix != BLIST_BMAP_RADIX && next->bm_bitmap == 0) {
(--next)->bm_bitmap ^= 1;
radix /= BLIST_META_RADIX;
}
if (next->bm_bitmap == 0)
scan[-digit * skip].bm_bitmap ^= (u_daddr_t)1 << digit;
return (0);
}
/*
* BLST_LEAF_ALLOC() - allocate at a leaf in the radix tree (a bitmap).
*
* This is the core of the allocator and is optimized for the
* BLIST_BMAP_RADIX block allocation case. Otherwise, execution
@ -633,15 +657,15 @@ blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count)
range1 = 0;
count1 = count - 1;
num_shifts = fls(count1);
mask = scan->u.bmu_bitmap;
mask = scan->bm_bitmap;
while ((-mask & ~mask) != 0 && num_shifts > 0) {
/*
* If bit i is set in mask, then bits in [i, i+range1] are set
* in scan->u.bmu_bitmap. The value of range1 is equal to
* in scan->bm_bitmap. The value of range1 is equal to
* count1 >> num_shifts. Grow range and reduce num_shifts to 0,
* while preserving these invariants. The updates to mask leave
* fewer bits set, but each bit that remains set represents a
* longer string of consecutive bits set in scan->u.bmu_bitmap.
* longer string of consecutive bits set in scan->bm_bitmap.
* If more updates to mask cannot clear more bits, because mask
* is partitioned with all 0 bits preceding all 1 bits, the loop
* terminates immediately.
@ -685,31 +709,14 @@ blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count)
* An allocation within this leaf is impossible, so a successful
* allocation depends on the next leaf providing some of the blocks.
*/
if (((blk / BLIST_BMAP_RADIX + 1) & BLIST_META_MASK) == 0) {
if (blst_next_leaf_alloc(scan, blk, hi - BLIST_BMAP_RADIX) != 0)
/*
* The next leaf has a different meta-node parent, so it
* is not necessarily initialized. Update bighint,
* comparing the range found at the end of mask to the
* largest earlier range that could have been made to
* vanish in the initial processing of mask.
*/
scan->bm_bighint = imax(BLIST_BMAP_RADIX - lo, range1);
return (SWAPBLK_NONE);
}
hi -= BLIST_BMAP_RADIX;
if (((scan[1].u.bmu_bitmap + 1) & ~((u_daddr_t)-1 << hi)) != 0) {
/*
* The next leaf doesn't have enough free blocks at the
* beginning to complete the spanning allocation. The
* hint cannot be updated, because the same allocation
* request could be satisfied later, by this leaf, if
* the state of the next leaf changes, and without any
* changes to this leaf.
* The hint cannot be updated, because the same
* allocation request could be satisfied later, by this
* leaf, if the state of the next leaf changes, and
* without any changes to this leaf.
*/
return (SWAPBLK_NONE);
}
/* Clear the first 'hi' bits in the next leaf, allocating them. */
scan[1].u.bmu_bitmap &= (u_daddr_t)-1 << hi;
hi = BLIST_BMAP_RADIX;
}
@ -724,12 +731,9 @@ blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count)
} else {
/* Clear the bits of mask at position 'hi' and higher. */
mask &= (u_daddr_t)-1 >> (BLIST_BMAP_RADIX - hi);
/* If this allocation uses all the bits, clear the hint. */
if (mask == scan->u.bmu_bitmap)
scan->bm_bighint = 0;
}
/* Clear the allocated bits from this leaf. */
scan->u.bmu_bitmap &= ~mask;
scan->bm_bitmap &= ~mask;
return ((blk & ~BLIST_BMAP_MASK) + lo);
}
@ -744,81 +748,61 @@ blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count)
static daddr_t
blst_meta_alloc(blmeta_t *scan, daddr_t cursor, daddr_t count, u_daddr_t radix)
{
daddr_t blk, i, next_skip, r, skip;
int child;
daddr_t blk, i, r, skip;
u_daddr_t bit, mask;
bool scan_from_start;
int digit;
if (radix == BLIST_BMAP_RADIX)
return (blst_leaf_alloc(scan, cursor, count));
if (scan->u.bmu_avail < count) {
/*
* The meta node's hint must be too large if the allocation
* exceeds the number of free blocks. Reduce the hint, and
* return failure.
*/
scan->bm_bighint = scan->u.bmu_avail;
return (SWAPBLK_NONE);
}
blk = cursor & -radix;
scan_from_start = (cursor == blk);
radix /= BLIST_META_RADIX;
skip = radix_to_skip(radix);
next_skip = skip / BLIST_META_RADIX;
mask = scan->bm_bitmap;
/* Discard any candidates that appear before cursor. */
digit = (cursor / radix) & BLIST_META_MASK;
mask &= (u_daddr_t)-1 << digit;
/*
* An ALL-FREE meta node requires special handling before allocating
* any of its blocks.
* If the first try is for a block that includes the cursor, pre-undo
* the digit * radix offset in the first call; otherwise, ignore the
* cursor entirely.
*/
if (scan->u.bmu_avail == radix) {
radix /= BLIST_META_RADIX;
/*
* Reinitialize each of the meta node's children. An ALL-FREE
* meta node cannot have a terminator in any subtree.
*/
for (i = 1; i < skip; i += next_skip) {
if (next_skip == 1)
scan[i].u.bmu_bitmap = (u_daddr_t)-1;
if (((mask >> digit) & 1) == 1)
cursor -= digit * radix;
else
scan[i].u.bmu_avail = radix;
scan[i].bm_bighint = radix;
}
} else {
radix /= BLIST_META_RADIX;
}
cursor = blk;
if (count > radix) {
/*
* The allocation exceeds the number of blocks that are
* managed by a subtree of this meta node.
* Examine the nonempty subtree associated with each bit set in mask.
*/
panic("allocation too large");
}
scan_from_start = cursor == blk;
child = (cursor - blk) / radix;
blk += child * radix;
for (i = 1 + child * next_skip; i < skip; i += next_skip) {
do {
bit = mask & -mask;
digit = bitpos(bit);
i = 1 + digit * skip;
if (count <= scan[i].bm_bighint) {
/*
* The allocation might fit beginning in the i'th subtree.
*/
r = blst_meta_alloc(&scan[i],
cursor > blk ? cursor : blk, count, radix);
r = blst_meta_alloc(&scan[i], cursor + digit * radix,
count, radix);
if (r != SWAPBLK_NONE) {
scan->u.bmu_avail -= count;
if (scan[i].bm_bitmap == 0)
scan->bm_bitmap ^= bit;
return (r);
}
} else if (scan[i].bm_bighint == (daddr_t)-1) {
/*
* Terminator
*/
break;
}
blk += radix;
}
cursor = blk;
} while ((mask ^= bit) != 0);
/*
* We couldn't allocate count in this subtree, update bighint.
* We couldn't allocate count in this subtree. If the whole tree was
* scanned, and the last tree node is allocated, update bighint.
*/
if (scan_from_start && scan->bm_bighint >= count)
if (scan_from_start && !(digit == BLIST_META_RADIX - 1 &&
scan[i].bm_bighint == BLIST_MAX_ALLOC))
scan->bm_bighint = count - 1;
return (SWAPBLK_NONE);
@ -832,7 +816,6 @@ static void
blst_leaf_free(blmeta_t *scan, daddr_t blk, int count)
{
u_daddr_t mask;
int n;
/*
* free some data in this bitmap
@ -840,20 +823,10 @@ blst_leaf_free(blmeta_t *scan, daddr_t blk, int count)
* \_________/\__/
* count n
*/
n = blk & BLIST_BMAP_MASK;
mask = ((u_daddr_t)-1 << n) &
((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
if (scan->u.bmu_bitmap & mask)
mask = bitrange(blk & BLIST_BMAP_MASK, count);
if (scan->bm_bitmap & mask)
panic("freeing free block");
scan->u.bmu_bitmap |= mask;
/*
* We could probably do a better job here. We are required to make
* bighint at least as large as the biggest contiguous block of
* data. If we just shoehorn it, a little extra overhead will
* be incured on the next allocation (but only that one typically).
*/
scan->bm_bighint = BLIST_BMAP_RADIX;
scan->bm_bitmap |= mask;
}
/*
@ -869,79 +842,37 @@ blst_leaf_free(blmeta_t *scan, daddr_t blk, int count)
static void
blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count, u_daddr_t radix)
{
daddr_t blk, i, next_skip, skip, v;
int child;
daddr_t blk, endBlk, i, skip;
int digit, endDigit;
/*
* We could probably do a better job here. We are required to make
* bighint at least as large as the biggest allocable block of data.
* If we just shoehorn it, a little extra overhead will be incurred
* on the next allocation (but only that one typically).
*/
scan->bm_bighint = BLIST_MAX_ALLOC;
if (scan->bm_bighint == (daddr_t)-1)
panic("freeing invalid range");
if (radix == BLIST_BMAP_RADIX)
return (blst_leaf_free(scan, freeBlk, count));
skip = radix_to_skip(radix);
next_skip = skip / BLIST_META_RADIX;
if (scan->u.bmu_avail == 0) {
/*
* ALL-ALLOCATED special case, with possible
* shortcut to ALL-FREE special case.
*/
scan->u.bmu_avail = count;
scan->bm_bighint = count;
if (count != radix) {
for (i = 1; i < skip; i += next_skip) {
if (scan[i].bm_bighint == (daddr_t)-1)
break;
scan[i].bm_bighint = 0;
if (next_skip == 1) {
scan[i].u.bmu_bitmap = 0;
} else {
scan[i].u.bmu_avail = 0;
}
}
/* fall through */
}
} else {
scan->u.bmu_avail += count;
/* scan->bm_bighint = radix; */
}
/*
* ALL-FREE special case.
*/
if (scan->u.bmu_avail == radix)
return;
if (scan->u.bmu_avail > radix)
panic("blst_meta_free: freeing already free blocks (%lld) %lld/%lld",
(long long)count, (long long)scan->u.bmu_avail,
(long long)radix);
/*
* Break the free down into its components
*/
blk = freeBlk & -radix;
endBlk = ummin(freeBlk + count, (freeBlk + radix) & -radix);
radix /= BLIST_META_RADIX;
child = (freeBlk - blk) / radix;
blk += child * radix;
i = 1 + child * next_skip;
while (i < skip && blk < freeBlk + count) {
v = blk + radix - freeBlk;
if (v > count)
v = count;
blst_meta_free(&scan[i], freeBlk, v, radix);
if (scan->bm_bighint < scan[i].bm_bighint)
scan->bm_bighint = scan[i].bm_bighint;
count -= v;
freeBlk += v;
skip = radix_to_skip(radix);
blk = freeBlk & -radix;
digit = (blk / radix) & BLIST_META_MASK;
endDigit = 1 + (((endBlk - 1) / radix) & BLIST_META_MASK);
scan->bm_bitmap |= bitrange(digit, endDigit - digit);
for (i = 1 + digit * skip; blk < endBlk; i += skip) {
blk += radix;
i += next_skip;
count = ummin(blk, endBlk) - freeBlk;
blst_meta_free(&scan[i], freeBlk, count, radix);
freeBlk = blk;
}
}
/*
* BLIST_RADIX_COPY() - copy one radix tree to another
* BLST_COPY() - copy one radix tree to another
*
* Locates free space in the source tree and frees it in the destination
* tree. The space may not already be free in the destination.
@ -950,21 +881,21 @@ static void
blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix, blist_t dest,
daddr_t count)
{
daddr_t i, next_skip, skip;
daddr_t endBlk, i, skip;
/*
* Leaf node
*/
if (radix == BLIST_BMAP_RADIX) {
u_daddr_t v = scan->u.bmu_bitmap;
u_daddr_t v = scan->bm_bitmap;
if (v == (u_daddr_t)-1) {
blist_free(dest, blk, count);
} else if (v != 0) {
int i;
for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
for (i = 0; i < count; ++i) {
if (v & ((u_daddr_t)1 << i))
blist_free(dest, blk + i, 1);
}
@ -976,42 +907,22 @@ blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix, blist_t dest,
* Meta node
*/
if (scan->u.bmu_avail == 0) {
if (scan->bm_bitmap == 0) {
/*
* Source all allocated, leave dest allocated
*/
return;
}
if (scan->u.bmu_avail == radix) {
/*
* Source all free, free entire dest
*/
if (count < radix)
blist_free(dest, blk, count);
else
blist_free(dest, blk, radix);
return;
}
skip = radix_to_skip(radix);
next_skip = skip / BLIST_META_RADIX;
endBlk = blk + count;
radix /= BLIST_META_RADIX;
for (i = 1; count && i < skip; i += next_skip) {
if (scan[i].bm_bighint == (daddr_t)-1)
break;
if (count >= radix) {
blst_copy(&scan[i], blk, radix, dest, radix);
count -= radix;
} else {
if (count) {
blst_copy(&scan[i], blk, radix, dest, count);
}
count = 0;
}
skip = radix_to_skip(radix);
for (i = 1; blk < endBlk; i += skip) {
blk += radix;
count = radix;
if (blk >= endBlk)
count -= blk - endBlk;
blst_copy(&scan[i], blk - radix, radix, dest, count);
}
}
@ -1027,16 +938,13 @@ blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count)
{
daddr_t nblks;
u_daddr_t mask;
int n;
n = blk & BLIST_BMAP_MASK;
mask = ((u_daddr_t)-1 << n) &
((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
mask = bitrange(blk & BLIST_BMAP_MASK, count);
/* Count the number of blocks that we are allocating. */
nblks = bitcount64(scan->u.bmu_bitmap & mask);
nblks = bitcount64(scan->bm_bitmap & mask);
scan->u.bmu_bitmap &= ~mask;
scan->bm_bitmap &= ~mask;
return (nblks);
}
@ -1051,70 +959,27 @@ blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count)
static daddr_t
blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count, u_daddr_t radix)
{
daddr_t blk, i, nblks, next_skip, skip, v;
int child;
daddr_t blk, endBlk, i, nblks, skip;
int digit;
if (scan->bm_bighint == (daddr_t)-1)
panic("filling invalid range");
if (count > radix) {
/*
* The allocation exceeds the number of blocks that are
* managed by this node.
*/
panic("fill too large");
}
if (radix == BLIST_BMAP_RADIX)
return (blst_leaf_fill(scan, allocBlk, count));
if (count == radix || scan->u.bmu_avail == 0) {
/*
* ALL-ALLOCATED special case
*/
nblks = scan->u.bmu_avail;
scan->u.bmu_avail = 0;
scan->bm_bighint = 0;
return (nblks);
}
endBlk = ummin(allocBlk + count, (allocBlk + radix) & -radix);
radix /= BLIST_META_RADIX;
skip = radix_to_skip(radix);
next_skip = skip / BLIST_META_RADIX;
blk = allocBlk & -radix;
/*
* An ALL-FREE meta node requires special handling before allocating
* any of its blocks.
*/
if (scan->u.bmu_avail == radix) {
radix /= BLIST_META_RADIX;
/*
* Reinitialize each of the meta node's children. An ALL-FREE
* meta node cannot have a terminator in any subtree.
*/
for (i = 1; i < skip; i += next_skip) {
if (next_skip == 1)
scan[i].u.bmu_bitmap = (u_daddr_t)-1;
else
scan[i].u.bmu_avail = radix;
scan[i].bm_bighint = radix;
}
} else {
radix /= BLIST_META_RADIX;
}
nblks = 0;
child = (allocBlk - blk) / radix;
blk += child * radix;
i = 1 + child * next_skip;
while (i < skip && blk < allocBlk + count) {
v = blk + radix - allocBlk;
if (v > count)
v = count;
nblks += blst_meta_fill(&scan[i], allocBlk, v, radix);
count -= v;
allocBlk += v;
while (blk < endBlk) {
digit = (blk / radix) & BLIST_META_MASK;
i = 1 + digit * skip;
blk += radix;
i += next_skip;
count = ummin(blk, endBlk) - allocBlk;
nblks += blst_meta_fill(&scan[i], allocBlk, count, radix);
if (scan[i].bm_bitmap == 0)
scan->bm_bitmap &= ~((u_daddr_t)1 << digit);
allocBlk = blk;
}
scan->u.bmu_avail -= nblks;
return (nblks);
}
@ -1123,64 +988,44 @@ blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count, u_daddr_t radix)
static void
blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int tab)
{
daddr_t i, next_skip, skip;
daddr_t skip;
u_daddr_t bit, mask;
int digit;
if (radix == BLIST_BMAP_RADIX) {
printf(
"%*.*s(%08llx,%lld): bitmap %016llx big=%lld\n",
"%*.*s(%08llx,%lld): bitmap %0*llx big=%lld\n",
tab, tab, "",
(long long)blk, (long long)radix,
(long long)scan->u.bmu_bitmap,
1 + (BLIST_BMAP_RADIX - 1) / 4,
(long long)scan->bm_bitmap,
(long long)scan->bm_bighint
);
return;
}
if (scan->u.bmu_avail == 0) {
printf(
"%*.*s(%08llx,%lld) ALL ALLOCATED\n",
tab, tab, "",
(long long)blk,
(long long)radix
);
return;
}
if (scan->u.bmu_avail == radix) {
printf(
"%*.*s(%08llx,%lld) ALL FREE\n",
tab, tab, "",
(long long)blk,
(long long)radix
);
return;
}
printf(
"%*.*s(%08llx,%lld): subtree (%lld/%lld) big=%lld {\n",
"%*.*s(%08llx): subtree (%lld/%lld) bitmap %0*llx big=%lld {\n",
tab, tab, "",
(long long)blk, (long long)radix,
(long long)scan->u.bmu_avail,
(long long)radix,
1 + (BLIST_META_RADIX - 1) / 4,
(long long)scan->bm_bitmap,
(long long)scan->bm_bighint
);
skip = radix_to_skip(radix);
next_skip = skip / BLIST_META_RADIX;
radix /= BLIST_META_RADIX;
skip = radix_to_skip(radix);
tab += 4;
for (i = 1; i < skip; i += next_skip) {
if (scan[i].bm_bighint == (daddr_t)-1) {
printf(
"%*.*s(%08llx,%lld): Terminator\n",
tab, tab, "",
(long long)blk, (long long)radix
);
break;
}
blst_radix_print(&scan[i], blk, radix, tab);
blk += radix;
}
mask = scan->bm_bitmap;
/* Examine the nonempty subtree associated with each bit set in mask */
do {
bit = mask & -mask;
digit = bitpos(bit);
blst_radix_print(&scan[1 + digit * skip], blk + digit * radix,
radix, tab);
} while ((mask ^= bit) != 0);
tab -= 4;
printf(
@ -1196,7 +1041,7 @@ blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int tab)
int
main(int ac, char **av)
{
int size = 1024;
int size = BLIST_META_RADIX * BLIST_BMAP_RADIX;
int i;
blist_t bl;
struct sbuf *s;

View File

@ -73,22 +73,20 @@ typedef uint64_t u_daddr_t; /* unsigned disk address */
*/
typedef struct blmeta {
union {
daddr_t bmu_avail; /* space available under us */
u_daddr_t bmu_bitmap; /* bitmap if we are a leaf */
} u;
u_daddr_t bm_bitmap; /* bitmap if we are a leaf */
daddr_t bm_bighint; /* biggest contiguous block hint*/
} blmeta_t;
typedef struct blist {
daddr_t bl_blocks; /* area of coverage */
daddr_t bl_avail; /* # available blocks */
u_daddr_t bl_radix; /* coverage radix */
daddr_t bl_cursor; /* next-fit search starts at */
blmeta_t bl_root[1]; /* root of radix tree */
} *blist_t;
#define BLIST_META_RADIX 16
#define BLIST_BMAP_RADIX (sizeof(u_daddr_t)*8)
#define BLIST_META_RADIX BLIST_BMAP_RADIX
#define BLIST_MAX_ALLOC BLIST_BMAP_RADIX