Add kernel interfaces to call EFI Runtime Services.

Runtime services require special execution environment for the call.
Besides that, OS must inform firmware about runtime virtual memory map
which will be active during the calls, with the SetVirtualAddressMap()
runtime call, done while the 1:1 mapping is still used.  There are two
complication: the SetVirtualAddressMap() effectively must be done from
loader, which needs to know kernel address map in advance.  More,
despite not explicitely mentioned in the specification, both 1:1 and
the map passed to SetVirtualAddressMap() must be active during the
SetVirtualAddressMap() call.  Second, there are buggy BIOSes which
require both mappings active during runtime calls as well, most likely
because they fail to identify all relocations to perform.

On amd64, we can get rid of both problems by providing 1:1 mapping for
the duration of runtime calls, by temprorary remapping user addresses.
As result, we avoid the need for loader to know about future kernel
address map, and avoid bugs in BIOSes.  Typically BIOS only maps
something in low 4G.  If not runtime bugs, we would take advantage of
the DMAP, as previous versions of this patch did.

Similar but more complicated trick can be used even for i386 and 32bit
runtime, if and when the EFI boot on i386 is supported.  We would need
a trampoline page, since potentially whole 4G of VA would be switched
on calls, instead of only userspace portion on amd64.

Context switches are disabled for the duration of the call, FPU access
is granted, and interrupts are not disabled.  The later is possible
because kernel is mapped during calls.

To test, the sysctl mib debug.efi_time is provided, setting it to 1
makes one call to EFI get_time() runtime service, on success the efitm
structure is printed to the control terminal.  Load efirt.ko, or add
EFIRT option to the kernel config, to enable code.

Discussed with:	emaste, imp
Tested by:	emaste (mac, qemu)
Sponsored by:	The FreeBSD Foundation
MFC after:	2 weeks
This commit is contained in:
Konstantin Belousov 2016-09-21 11:31:58 +00:00
parent 6307380ad1
commit bc3ad3a179
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=306097
7 changed files with 629 additions and 0 deletions

595
sys/amd64/amd64/efirt.c Normal file
View File

@ -0,0 +1,595 @@
/*-
* Copyright (c) 2004 Marcel Moolenaar
* Copyright (c) 2001 Doug Rabson
* Copyright (c) 2016 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by Konstantin Belousov
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/efi.h>
#include <sys/kernel.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/clock.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <machine/fpu.h>
#include <machine/efi.h>
#include <machine/metadata.h>
#include <machine/md_var.h>
#include <machine/smp.h>
#include <machine/vmparam.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
static struct efi_systbl *efi_systbl;
static struct efi_cfgtbl *efi_cfgtbl;
static struct efi_rt *efi_runtime;
static int efi_status2err[25] = {
0, /* EFI_SUCCESS */
ENOEXEC, /* EFI_LOAD_ERROR */
EINVAL, /* EFI_INVALID_PARAMETER */
ENOSYS, /* EFI_UNSUPPORTED */
EMSGSIZE, /* EFI_BAD_BUFFER_SIZE */
EOVERFLOW, /* EFI_BUFFER_TOO_SMALL */
EBUSY, /* EFI_NOT_READY */
EIO, /* EFI_DEVICE_ERROR */
EROFS, /* EFI_WRITE_PROTECTED */
EAGAIN, /* EFI_OUT_OF_RESOURCES */
EIO, /* EFI_VOLUME_CORRUPTED */
ENOSPC, /* EFI_VOLUME_FULL */
ENXIO, /* EFI_NO_MEDIA */
ESTALE, /* EFI_MEDIA_CHANGED */
ENOENT, /* EFI_NOT_FOUND */
EACCES, /* EFI_ACCESS_DENIED */
ETIMEDOUT, /* EFI_NO_RESPONSE */
EADDRNOTAVAIL, /* EFI_NO_MAPPING */
ETIMEDOUT, /* EFI_TIMEOUT */
EDOOFUS, /* EFI_NOT_STARTED */
EALREADY, /* EFI_ALREADY_STARTED */
ECANCELED, /* EFI_ABORTED */
EPROTO, /* EFI_ICMP_ERROR */
EPROTO, /* EFI_TFTP_ERROR */
EPROTO /* EFI_PROTOCOL_ERROR */
};
static int
efi_status_to_errno(efi_status status)
{
u_long code;
code = status & 0x3ffffffffffffffful;
return (code < nitems(efi_status2err) ? efi_status2err[code] : EDOOFUS);
}
static struct mtx efi_lock;
static pml4_entry_t *efi_pml4;
static vm_object_t obj_1t1_pt;
static vm_page_t efi_pml4_page;
static void
efi_destroy_1t1_map(void)
{
vm_page_t m;
if (obj_1t1_pt != NULL) {
VM_OBJECT_RLOCK(obj_1t1_pt);
TAILQ_FOREACH(m, &obj_1t1_pt->memq, listq)
m->wire_count = 0;
atomic_subtract_int(&vm_cnt.v_wire_count,
obj_1t1_pt->resident_page_count);
VM_OBJECT_RUNLOCK(obj_1t1_pt);
vm_object_deallocate(obj_1t1_pt);
}
obj_1t1_pt = NULL;
efi_pml4 = NULL;
efi_pml4_page = NULL;
}
static vm_page_t
efi_1t1_page(vm_pindex_t idx)
{
return (vm_page_grab(obj_1t1_pt, idx, VM_ALLOC_NOBUSY |
VM_ALLOC_WIRED | VM_ALLOC_ZERO));
}
static pt_entry_t *
efi_1t1_pte(vm_offset_t va)
{
pml4_entry_t *pml4e;
pdp_entry_t *pdpe;
pd_entry_t *pde;
pt_entry_t *pte;
vm_page_t m;
vm_pindex_t pml4_idx, pdp_idx, pd_idx;
vm_paddr_t mphys;
pml4_idx = pmap_pml4e_index(va);
pml4e = &efi_pml4[pml4_idx];
if (*pml4e == 0) {
m = efi_1t1_page(1 + pml4_idx);
mphys = VM_PAGE_TO_PHYS(m);
*pml4e = mphys | X86_PG_RW | X86_PG_V;
} else {
mphys = *pml4e & ~PAGE_MASK;
}
pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys);
pdp_idx = pmap_pdpe_index(va);
pdpe += pdp_idx;
if (*pdpe == 0) {
m = efi_1t1_page(1 + NPML4EPG + (pml4_idx + 1) * (pdp_idx + 1));
mphys = VM_PAGE_TO_PHYS(m);
*pdpe = mphys | X86_PG_RW | X86_PG_V;
} else {
mphys = *pdpe & ~PAGE_MASK;
}
pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
pd_idx = pmap_pde_index(va);
pde += pd_idx;
if (*pde == 0) {
m = efi_1t1_page(1 + NPML4EPG + NPML4EPG * NPDPEPG +
(pml4_idx + 1) * (pdp_idx + 1) * (pd_idx + 1));
mphys = VM_PAGE_TO_PHYS(m);
*pde = mphys | X86_PG_RW | X86_PG_V;
} else {
mphys = *pde & ~PAGE_MASK;
}
pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
pte += pmap_pte_index(va);
KASSERT(*pte == 0, ("va %#jx *pt %#jx", va, *pte));
return (pte);
}
static bool
efi_create_1t1_map(struct efi_md *map, int ndesc, int descsz)
{
struct efi_md *p;
pt_entry_t *pte;
vm_offset_t va;
uint64_t idx;
int bits, i, mode;
obj_1t1_pt = vm_pager_allocate(OBJT_PHYS, NULL, 1 + NPML4EPG +
NPML4EPG * NPDPEPG + NPML4EPG * NPDPEPG * NPDEPG,
VM_PROT_ALL, 0, NULL);
VM_OBJECT_WLOCK(obj_1t1_pt);
efi_pml4_page = efi_1t1_page(0);
VM_OBJECT_WUNLOCK(obj_1t1_pt);
efi_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(efi_pml4_page));
pmap_pinit_pml4(efi_pml4_page);
for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p,
descsz)) {
if ((p->md_attr & EFI_MD_ATTR_RT) == 0)
continue;
if (p->md_virt != NULL) {
if (bootverbose)
printf("EFI Runtime entry %d is mapped\n", i);
goto fail;
}
if ((p->md_phys & EFI_PAGE_MASK) != 0) {
if (bootverbose)
printf("EFI Runtime entry %d is not aligned\n",
i);
goto fail;
}
if (p->md_phys + p->md_pages * EFI_PAGE_SIZE < p->md_phys ||
p->md_phys + p->md_pages * EFI_PAGE_SIZE >=
VM_MAXUSER_ADDRESS) {
printf("EFI Runtime entry %d is not in mappable for RT:"
"base %#016jx %#jx pages\n",
i, (uintmax_t)p->md_phys,
(uintmax_t)p->md_pages);
goto fail;
}
if ((p->md_attr & EFI_MD_ATTR_WB) != 0)
mode = VM_MEMATTR_WRITE_BACK;
else if ((p->md_attr & EFI_MD_ATTR_WT) != 0)
mode = VM_MEMATTR_WRITE_THROUGH;
else if ((p->md_attr & EFI_MD_ATTR_WC) != 0)
mode = VM_MEMATTR_WRITE_COMBINING;
else if ((p->md_attr & EFI_MD_ATTR_WP) != 0)
mode = VM_MEMATTR_WRITE_PROTECTED;
else if ((p->md_attr & EFI_MD_ATTR_UC) != 0)
mode = VM_MEMATTR_UNCACHEABLE;
else {
if (bootverbose)
printf("EFI Runtime entry %d mapping "
"attributes unsupported\n", i);
mode = VM_MEMATTR_UNCACHEABLE;
}
bits = pmap_cache_bits(kernel_pmap, mode, FALSE) | X86_PG_RW |
X86_PG_V;
VM_OBJECT_WLOCK(obj_1t1_pt);
for (va = p->md_phys, idx = 0; idx < p->md_pages; idx++,
va += PAGE_SIZE) {
pte = efi_1t1_pte(va);
pte_store(pte, va | bits);
}
VM_OBJECT_WUNLOCK(obj_1t1_pt);
}
return (true);
fail:
efi_destroy_1t1_map();
return (false);
}
/*
* Create an environment for the EFI runtime code call. The most
* important part is creating the required 1:1 physical->virtual
* mappings for the runtime segments. To do that, we manually create
* page table which unmap userspace but gives correct kernel mapping.
* The 1:1 mappings for runtime segments usually occupy low 4G of the
* physical address map.
*
* The 1:1 mappings were chosen over the SetVirtualAddressMap() EFI RT
* service, because there are some BIOSes which fail to correctly
* relocate itself on the call, requiring both 1:1 and virtual
* mapping. As result, we must provide 1:1 mapping anyway, so no
* reason to bother with the virtual map, and no need to add a
* complexity into loader.
*
* The fpu_kern_enter() call allows firmware to use FPU, as mandated
* by the specification. In particular, CR0.TS bit is cleared. Also
* it enters critical section, giving us neccessary protection against
* context switch.
*
* There is no need to disable interrupts around the change of %cr3,
* the kernel mappings are correct, while we only grabbed the
* userspace portion of VA. Interrupts handlers must not access
* userspace. Having interrupts enabled fixes the issue with
* firmware/SMM long operation, which would negatively affect IPIs,
* esp. TLB shootdown requests.
*/
static int
efi_enter(void)
{
pmap_t curpmap;
int error;
if (efi_runtime == NULL)
return (ENXIO);
curpmap = PCPU_GET(curpmap);
PMAP_LOCK(curpmap);
mtx_lock(&efi_lock);
error = fpu_kern_enter(curthread, NULL, FPU_KERN_NOCTX);
if (error != 0) {
PMAP_UNLOCK(curpmap);
return (error);
}
load_cr3(VM_PAGE_TO_PHYS(efi_pml4_page) | (pmap_pcid_enabled ?
curpmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid : 0));
/*
* If PCID is enabled, the clear CR3_PCID_SAVE bit in the loaded %cr3
* causes TLB invalidation.
*/
if (!pmap_pcid_enabled)
invltlb();
return (0);
}
static void
efi_leave(void)
{
pmap_t curpmap;
curpmap = PCPU_GET(curpmap);
load_cr3(curpmap->pm_cr3 | (pmap_pcid_enabled ?
curpmap->pm_pcids[PCPU_GET(cpuid)].pm_pcid : 0));
if (!pmap_pcid_enabled)
invltlb();
fpu_kern_leave(curthread, NULL);
mtx_unlock(&efi_lock);
PMAP_UNLOCK(curpmap);
}
static int
efi_init(void)
{
struct efi_map_header *efihdr;
struct efi_md *map;
caddr_t kmdp;
size_t efisz;
mtx_init(&efi_lock, "efi", NULL, MTX_DEF);
if (efi_systbl_phys == 0) {
if (bootverbose)
printf("EFI systbl not available\n");
return (ENXIO);
}
efi_systbl = (struct efi_systbl *)PHYS_TO_DMAP(efi_systbl_phys);
if (efi_systbl->st_hdr.th_sig != EFI_SYSTBL_SIG) {
efi_systbl = NULL;
if (bootverbose)
printf("EFI systbl signature invalid\n");
return (ENXIO);
}
efi_cfgtbl = (efi_systbl->st_cfgtbl == 0) ? NULL :
(struct efi_cfgtbl *)efi_systbl->st_cfgtbl;
if (efi_cfgtbl == NULL) {
if (bootverbose)
printf("EFI config table is not present\n");
}
kmdp = preload_search_by_type("elf kernel");
if (kmdp == NULL)
kmdp = preload_search_by_type("elf64 kernel");
efihdr = (struct efi_map_header *)preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_EFI_MAP);
if (efihdr == NULL) {
if (bootverbose)
printf("EFI map is not present\n");
return (ENXIO);
}
efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
map = (struct efi_md *)((uint8_t *)efihdr + efisz);
if (efihdr->descriptor_size == 0)
return (ENOMEM);
if (!efi_create_1t1_map(map, efihdr->memory_size /
efihdr->descriptor_size, efihdr->descriptor_size)) {
if (bootverbose)
printf("EFI cannot create runtime map\n");
return (ENOMEM);
}
efi_runtime = (efi_systbl->st_rt == 0) ? NULL :
(struct efi_rt *)efi_systbl->st_rt;
if (efi_runtime == NULL) {
if (bootverbose)
printf("EFI runtime services table is not present\n");
efi_destroy_1t1_map();
return (ENXIO);
}
return (0);
}
static void
efi_uninit(void)
{
efi_destroy_1t1_map();
efi_systbl = NULL;
efi_cfgtbl = NULL;
efi_runtime = NULL;
mtx_destroy(&efi_lock);
}
int
efi_get_table(struct uuid *uuid, void *ptr)
{
struct efi_cfgtbl *ct;
u_long count;
if (efi_cfgtbl == NULL)
return (ENXIO);
count = efi_systbl->st_entries;
ct = efi_cfgtbl;
while (count--) {
if (!bcmp(&ct->ct_uuid, uuid, sizeof(*uuid))) {
ptr = (void *)PHYS_TO_DMAP(ct->ct_data);
return (0);
}
ct++;
}
return (ENOENT);
}
int
efi_get_time_locked(struct efi_tm *tm)
{
efi_status status;
int error;
mtx_assert(&resettodr_lock, MA_OWNED);
error = efi_enter();
if (error != 0)
return (error);
status = efi_runtime->rt_gettime(tm, NULL);
efi_leave();
error = efi_status_to_errno(status);
return (error);
}
int
efi_get_time(struct efi_tm *tm)
{
int error;
if (efi_runtime == NULL)
return (ENXIO);
mtx_lock(&resettodr_lock);
error = efi_get_time_locked(tm);
mtx_unlock(&resettodr_lock);
return (error);
}
int
efi_reset_system(void)
{
int error;
error = efi_enter();
if (error != 0)
return (error);
efi_runtime->rt_reset(EFI_RESET_WARM, 0, 0, NULL);
efi_leave();
return (EIO);
}
int
efi_set_time_locked(struct efi_tm *tm)
{
efi_status status;
int error;
mtx_assert(&resettodr_lock, MA_OWNED);
error = efi_enter();
if (error != 0)
return (error);
status = efi_runtime->rt_settime(tm);
efi_leave();
error = efi_status_to_errno(status);
return (error);
}
int
efi_set_time(struct efi_tm *tm)
{
int error;
if (efi_runtime == NULL)
return (ENXIO);
mtx_lock(&resettodr_lock);
error = efi_set_time_locked(tm);
mtx_unlock(&resettodr_lock);
return (error);
}
int
efi_var_get(efi_char *name, struct uuid *vendor, uint32_t *attrib,
size_t *datasize, void *data)
{
efi_status status;
int error;
error = efi_enter();
if (error != 0)
return (error);
status = efi_runtime->rt_getvar(name, vendor, attrib, datasize, data);
efi_leave();
error = efi_status_to_errno(status);
return (error);
}
int
efi_var_nextname(size_t *namesize, efi_char *name, struct uuid *vendor)
{
efi_status status;
int error;
error = efi_enter();
if (error != 0)
return (error);
status = efi_runtime->rt_scanvar(namesize, name, vendor);
efi_leave();
error = efi_status_to_errno(status);
return (error);
}
int
efi_var_set(efi_char *name, struct uuid *vendor, uint32_t attrib,
size_t datasize, void *data)
{
efi_status status;
int error;
error = efi_enter();
if (error != 0)
return (error);
status = efi_runtime->rt_setvar(name, vendor, attrib, datasize, data);
efi_leave();
error = efi_status_to_errno(status);
return (error);
}
static int
efirt_modevents(module_t m, int event, void *arg __unused)
{
switch (event) {
case MOD_LOAD:
return (efi_init());
break;
case MOD_UNLOAD:
efi_uninit();
return (0);
case MOD_SHUTDOWN:
return (0);
default:
return (EOPNOTSUPP);
}
}
static moduledata_t efirt_moddata = {
.name = "efirt",
.evhand = efirt_modevents,
.priv = NULL,
};
DECLARE_MODULE(efirt, efirt_moddata, SI_SUB_VM_CONF, SI_ORDER_ANY);
MODULE_VERSION(efirt, 1);
/* XXX debug stuff */
static int
efi_time_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
struct efi_tm tm;
int error, val;
val = 0;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
error = efi_get_time(&tm);
if (error == 0) {
uprintf("EFI reports: Year %d Month %d Day %d Hour %d Min %d "
"Sec %d\n", tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour,
tm.tm_min, tm.tm_sec);
}
return (error);
}
SYSCTL_PROC(_debug, OID_AUTO, efi_time, CTLTYPE_INT | CTLFLAG_RW, NULL, 0,
efi_time_sysctl_handler, "I", "");

View File

@ -592,6 +592,9 @@ options ENABLE_ALART # Control alarm on Intel intpm driver
#
options NKPT=31
# EFI Runtime Services support (not functional yet).
options EFIRT
#####################################################################
# ABI Emulation

View File

@ -39,4 +39,21 @@
*/
#define EFIABI_ATTR __attribute__((ms_abi))
#ifdef _KERNEL
struct uuid;
struct efi_tm;
int efi_get_table(struct uuid *uuid, void *ptr);
int efi_get_time(struct efi_tm *tm);
int efi_get_time_locked(struct efi_tm *tm);
int efi_reset_system(void);
int efi_set_time(struct efi_tm *tm);
int efi_set_time_locked(struct efi_tm *tm);
int efi_var_get(uint16_t *name, struct uuid *vendor, uint32_t *attrib,
size_t *datasize, void *data);
int efi_var_nextname(size_t *namesize, uint16_t *name, struct uuid *vendor);
int efi_var_set(uint16_t *name, struct uuid *vendor, uint32_t attrib,
size_t datasize, void *data);
#endif
#endif /* __AMD64_INCLUDE_EFI_H_ */

View File

@ -134,6 +134,7 @@ amd64/amd64/cpu_switch.S standard
amd64/amd64/db_disasm.c optional ddb
amd64/amd64/db_interface.c optional ddb
amd64/amd64/db_trace.c optional ddb
amd64/amd64/efirt.c optional efirt
amd64/amd64/elf_machdep.c standard
amd64/amd64/exception.S standard
amd64/amd64/fpu.c standard

View File

@ -64,3 +64,6 @@ XENHVM opt_global.h
# options for the Intel C600 SAS driver (isci)
ISCI_LOGGING opt_isci.h
# EFI Runtime services support
EFIRT opt_efirt.h

View File

@ -103,6 +103,7 @@ SUBDIR= \
${_drm2} \
dummynet \
${_ed} \
${_efirt} \
${_elink} \
${_em} \
en \
@ -669,6 +670,7 @@ _x86bios= x86bios
.endif
.if ${MACHINE_CPUARCH} == "amd64"
_efirt= efirt
_ioat= ioat
_ixl= ixl
_ixlv= ixlv

View File

@ -0,0 +1,8 @@
# $FreeBSD$
.PATH: ${.CURDIR}/../../${MACHINE}/${MACHINE}
KMOD= efirt
SRCS= efirt.c
.include <bsd.kmod.mk>