- Check on target wordsize instead of compile time define if we build on

64-bit PowerPC or 32-bit PowerPC.
- Make gdb work on powerpc64, the code for this is obtained from
  ppc-linux-tdep.c.
- Remove non-elf core read functionality. Implement core read functionality
  similar like other FreeBSD targets.
- Set long double limitations.
This commit is contained in:
Andreas Tobler 2011-06-14 15:20:30 +00:00
parent 3501942bbe
commit c81c8b1a46
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=223082

View File

@ -27,7 +27,9 @@
#include "target.h"
#include "breakpoint.h"
#include "value.h"
#include "gdb_string.h"
#include "osabi.h"
#include "regset.h"
#include "ppc-tdep.h"
#include "ppcfbsd-tdep.h"
@ -80,6 +82,17 @@ ppcfbsd_supply_reg (char *regs, int regno)
regcache_raw_supply (current_regcache, PC_REGNUM,
regs + REG_PC_OFFSET);
}
static void
ppcfbsd_supply_gregset (const struct regset *regset,
struct regcache *regcache,
int regnum, void *gregs, size_t size)
{
ppcfbsd_supply_reg (gregs, -1);
}
static struct regset ppcfbsd_gregset = {
NULL, (void*)ppcfbsd_supply_gregset
};
void
ppcfbsd_fill_reg (char *regs, int regno)
@ -144,6 +157,20 @@ ppcfbsd_supply_fpreg (char *fpregs, int regno)
fpregs + FPREG_FPSCR_OFFSET);
}
static void
ppcfbsd_supply_fpregset (const struct regset *regset,
struct regcache * regcache,
int regnum, void *fpset, size_t size)
{
ppcfbsd_supply_fpreg (fpset, -1);
}
static struct regset ppcfbsd_fpregset =
{
NULL, (void*)ppcfbsd_supply_fpregset
};
void
ppcfbsd_fill_fpreg (char *fpregs, int regno)
{
@ -174,69 +201,285 @@ ppcfbsd_fill_fpreg (char *fpregs, int regno)
fpregs + FPREG_FPSCR_OFFSET);
}
static void
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size, int which,
CORE_ADDR ignore)
/* Return the appropriate register set for the core section identified
by SECT_NAME and SECT_SIZE. */
const struct regset *
ppcfbsd_regset_from_core_section (struct gdbarch *gdbarch,
const char *sect_name, size_t sect_size)
{
char *regs, *fpregs;
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* We get everything from one section. */
if (which != 0)
return;
if (strcmp (sect_name, ".reg") == 0 && sect_size >= SIZEOF_STRUCT_REG)
return &ppcfbsd_gregset;
regs = core_reg_sect;
fpregs = core_reg_sect + SIZEOF_STRUCT_REG;
if (strcmp (sect_name, ".reg2") == 0 && sect_size >= SIZEOF_STRUCT_FPREG)
return &ppcfbsd_fpregset;
/* Integer registers. */
ppcfbsd_supply_reg (regs, -1);
/* Floating point registers. */
ppcfbsd_supply_fpreg (fpregs, -1);
return NULL;
}
static void
fetch_elfcore_registers (char *core_reg_sect, unsigned core_reg_size, int which,
CORE_ADDR ignore)
/* Macros for matching instructions. Note that, since all the
operands are masked off before they're or-ed into the instruction,
you can use -1 to make masks. */
#define insn_d(opcd, rts, ra, d) \
((((opcd) & 0x3f) << 26) \
| (((rts) & 0x1f) << 21) \
| (((ra) & 0x1f) << 16) \
| ((d) & 0xffff))
#define insn_ds(opcd, rts, ra, d, xo) \
((((opcd) & 0x3f) << 26) \
| (((rts) & 0x1f) << 21) \
| (((ra) & 0x1f) << 16) \
| ((d) & 0xfffc) \
| ((xo) & 0x3))
#define insn_xfx(opcd, rts, spr, xo) \
((((opcd) & 0x3f) << 26) \
| (((rts) & 0x1f) << 21) \
| (((spr) & 0x1f) << 16) \
| (((spr) & 0x3e0) << 6) \
| (((xo) & 0x3ff) << 1))
/* Read a PPC instruction from memory. PPC instructions are always
big-endian, no matter what endianness the program is running in, so
we can't use read_memory_integer or one of its friends here. */
static unsigned int
read_insn (CORE_ADDR pc)
{
switch (which)
unsigned char buf[4];
read_memory (pc, buf, 4);
return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
}
/* An instruction to match. */
struct insn_pattern
{
unsigned int mask; /* mask the insn with this... */
unsigned int data; /* ...and see if it matches this. */
int optional; /* If non-zero, this insn may be absent. */
};
/* Return non-zero if the instructions at PC match the series
described in PATTERN, or zero otherwise. PATTERN is an array of
'struct insn_pattern' objects, terminated by an entry whose mask is
zero.
When the match is successful, fill INSN[i] with what PATTERN[i]
matched. If PATTERN[i] is optional, and the instruction wasn't
present, set INSN[i] to 0 (which is not a valid PPC instruction).
INSN should have as many elements as PATTERN. Note that, if
PATTERN contains optional instructions which aren't present in
memory, then INSN will have holes, so INSN[i] isn't necessarily the
i'th instruction in memory. */
static int
insns_match_pattern (CORE_ADDR pc,
struct insn_pattern *pattern,
unsigned int *insn)
{
int i;
for (i = 0; pattern[i].mask; i++)
{
case 0: /* Integer registers. */
if (core_reg_size != SIZEOF_STRUCT_REG)
warning (_("Wrong size register set in core file."));
insn[i] = read_insn (pc);
if ((insn[i] & pattern[i].mask) == pattern[i].data)
pc += 4;
else if (pattern[i].optional)
insn[i] = 0;
else
ppcfbsd_supply_reg (core_reg_sect, -1);
break;
case 2: /* Floating point registers. */
if (core_reg_size != SIZEOF_STRUCT_FPREG)
warning (_("Wrong size FP register set in core file."));
else
ppcfbsd_supply_fpreg (core_reg_sect, -1);
break;
default:
/* Don't know what kind of register request this is; just ignore it. */
break;
return 0;
}
return 1;
}
static struct core_fns ppcfbsd_core_fns =
{
bfd_target_unknown_flavour, /* core_flavour */
default_check_format, /* check_format */
default_core_sniffer, /* core_sniffer */
fetch_core_registers, /* core_read_registers */
NULL /* next */
};
static struct core_fns ppcfbsd_elfcore_fns =
/* Return the 'd' field of the d-form instruction INSN, properly
sign-extended. */
static CORE_ADDR
insn_d_field (unsigned int insn)
{
bfd_target_elf_flavour, /* core_flavour */
default_check_format, /* check_format */
default_core_sniffer, /* core_sniffer */
fetch_elfcore_registers, /* core_read_registers */
NULL /* next */
};
return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
}
/* Return the 'ds' field of the ds-form instruction INSN, with the two
zero bits concatenated at the right, and properly
sign-extended. */
static CORE_ADDR
insn_ds_field (unsigned int insn)
{
return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
}
/* If DESC is the address of a 64-bit PowerPC FreeBSD function
descriptor, return the descriptor's entry point. */
static CORE_ADDR
ppc64_desc_entry_point (CORE_ADDR desc)
{
/* The first word of the descriptor is the entry point. */
return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
}
/* Pattern for the standard linkage function. These are built by
build_plt_stub in elf64-ppc.c, whose GLINK argument is always
zero. */
static struct insn_pattern ppc64_standard_linkage[] =
{
/* addis r12, r2, <any> */
{ insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
/* std r2, 40(r1) */
{ -1, insn_ds (62, 2, 1, 40, 0), 0 },
/* ld r11, <any>(r12) */
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
/* addis r12, r12, 1 <optional> */
{ insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
/* ld r2, <any>(r12) */
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
/* addis r12, r12, 1 <optional> */
{ insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
/* mtctr r11 */
{ insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467),
0 },
/* ld r11, <any>(r12) */
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
/* bctr */
{ -1, 0x4e800420, 0 },
{ 0, 0, 0 }
};
#define PPC64_STANDARD_LINKAGE_LEN \
(sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0]))
/* When the dynamic linker is doing lazy symbol resolution, the first
call to a function in another object will go like this:
- The user's function calls the linkage function:
100007c4: 4b ff fc d5 bl 10000498
100007c8: e8 41 00 28 ld r2,40(r1)
- The linkage function loads the entry point (and other stuff) from
the function descriptor in the PLT, and jumps to it:
10000498: 3d 82 00 00 addis r12,r2,0
1000049c: f8 41 00 28 std r2,40(r1)
100004a0: e9 6c 80 98 ld r11,-32616(r12)
100004a4: e8 4c 80 a0 ld r2,-32608(r12)
100004a8: 7d 69 03 a6 mtctr r11
100004ac: e9 6c 80 a8 ld r11,-32600(r12)
100004b0: 4e 80 04 20 bctr
- But since this is the first time that PLT entry has been used, it
sends control to its glink entry. That loads the number of the
PLT entry and jumps to the common glink0 code:
10000c98: 38 00 00 00 li r0,0
10000c9c: 4b ff ff dc b 10000c78
- The common glink0 code then transfers control to the dynamic
linker's fixup code:
10000c78: e8 41 00 28 ld r2,40(r1)
10000c7c: 3d 82 00 00 addis r12,r2,0
10000c80: e9 6c 80 80 ld r11,-32640(r12)
10000c84: e8 4c 80 88 ld r2,-32632(r12)
10000c88: 7d 69 03 a6 mtctr r11
10000c8c: e9 6c 80 90 ld r11,-32624(r12)
10000c90: 4e 80 04 20 bctr
Eventually, this code will figure out how to skip all of this,
including the dynamic linker. At the moment, we just get through
the linkage function. */
/* If the current thread is about to execute a series of instructions
at PC matching the ppc64_standard_linkage pattern, and INSN is the result
from that pattern match, return the code address to which the
standard linkage function will send them. (This doesn't deal with
dynamic linker lazy symbol resolution stubs.) */
static CORE_ADDR
ppc64_standard_linkage_target (CORE_ADDR pc, unsigned int *insn)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
/* The address of the function descriptor this linkage function
references. */
CORE_ADDR desc
= ((CORE_ADDR) read_register (tdep->ppc_gp0_regnum + 2)
+ (insn_d_field (insn[0]) << 16)
+ insn_ds_field (insn[2]));
/* The first word of the descriptor is the entry point. Return that. */
return ppc64_desc_entry_point (desc);
}
/* Given that we've begun executing a call trampoline at PC, return
the entry point of the function the trampoline will go to. */
static CORE_ADDR
ppc64_skip_trampoline_code (CORE_ADDR pc)
{
unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN];
if (insns_match_pattern (pc, ppc64_standard_linkage,
ppc64_standard_linkage_insn))
return ppc64_standard_linkage_target (pc, ppc64_standard_linkage_insn);
else
return 0;
}
/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG) on PPC64
GNU/Linux and FreeBSD.
Usually a function pointer's representation is simply the address
of the function. On GNU/Linux on the 64-bit PowerPC however, a
function pointer is represented by a pointer to a TOC entry. This
TOC entry contains three words, the first word is the address of
the function, the second word is the TOC pointer (r2), and the
third word is the static chain value. Throughout GDB it is
currently assumed that a function pointer contains the address of
the function, which is not easy to fix. In addition, the
conversion of a function address to a function pointer would
require allocation of a TOC entry in the inferior's memory space,
with all its drawbacks. To be able to call C++ virtual methods in
the inferior (which are called via function pointers),
find_function_addr uses this function to get the function address
from a function pointer. */
/* If ADDR points at what is clearly a function descriptor, transform
it into the address of the corresponding function. Be
conservative, otherwize GDB will do the transformation on any
random addresses such as occures when there is no symbol table. */
static CORE_ADDR
ppc64_fbsd_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
CORE_ADDR addr,
struct target_ops *targ)
{
struct section_table *s = target_section_by_addr (targ, addr);
/* Check if ADDR points to a function descriptor. */
if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
return get_target_memory_unsigned (targ, addr, 8);
return addr;
}
static int
ppcfbsd_pc_in_sigtramp (CORE_ADDR pc, char *func_name)
@ -270,27 +513,42 @@ static void
ppcfbsd_init_abi (struct gdbarch_info info,
struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* FreeBSD doesn't support the 128-bit `long double' from the psABI. */
set_gdbarch_long_double_bit (gdbarch, 64);
set_gdbarch_pc_in_sigtramp (gdbarch, ppcfbsd_pc_in_sigtramp);
/* For NetBSD, this is an on again, off again thing. Some systems
do use the broken struct convention, and some don't. */
set_gdbarch_return_value (gdbarch, ppcfbsd_return_value);
#ifdef __powerpc64__
set_solib_svr4_fetch_link_map_offsets (gdbarch,
svr4_lp64_fetch_link_map_offsets);
#else
set_solib_svr4_fetch_link_map_offsets (gdbarch,
svr4_ilp32_fetch_link_map_offsets);
#endif
if (tdep->wordsize == 4)
{
set_gdbarch_return_value (gdbarch, ppcfbsd_return_value);
set_solib_svr4_fetch_link_map_offsets (gdbarch,
svr4_ilp32_fetch_link_map_offsets);
}
if (tdep->wordsize == 8)
{
set_gdbarch_convert_from_func_ptr_addr
(gdbarch, ppc64_fbsd_convert_from_func_ptr_addr);
set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
set_solib_svr4_fetch_link_map_offsets (gdbarch,
svr4_lp64_fetch_link_map_offsets);
}
set_gdbarch_regset_from_core_section (gdbarch,
ppcfbsd_regset_from_core_section);
}
void
_initialize_ppcfbsd_tdep (void)
{
gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc,
GDB_OSABI_FREEBSD_ELF, ppcfbsd_init_abi);
gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64,
GDB_OSABI_FREEBSD_ELF, ppcfbsd_init_abi);
gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_FREEBSD_ELF,
ppcfbsd_init_abi);
gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_FREEBSD_ELF,
ppcfbsd_init_abi);
add_core_fns (&ppcfbsd_core_fns);
add_core_fns (&ppcfbsd_elfcore_fns);
}